WorldWideScience

Sample records for advanced power generation

  1. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  2. Current Advanced Power Generation Technologies and Options for China (1)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs and environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.

  3. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  4. Current Advanced Power Generation Technologies and Options for China (2)

    Institute of Scientific and Technical Information of China (English)

    Deng Nubo; Mohsen Assadi; Yang Cheng

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs arid environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.Here published is the second part of the paper.

  5. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    OpenAIRE

    Timbus, Adrian Vasile

    2007-01-01

    The movement towards a clean technology for energy production and the constraints in reducing the CO2 emissions are some factors facilitating the growth of distributed power generation systems based on renewable energy resources. Consequently, large penetration of distributed generators has been reported in some countries creating concerns about power system stability. This leads to a continuous evolution of grid interconnection requirements towards a better controllability of generated power...

  6. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  7. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  8. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  9. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  10. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  11. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  12. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and int

  13. Advanced manufacturing techniques for next generation power FET technology

    OpenAIRE

    2005-01-01

    The development and incorporation of an evaporated airbridge technology into an established power pHEMT device is described. Advantages of this technology over a conventional plated technology are discussed. Use of this technology has resulted in improvements to the process flow in terms of reduced complexity and cycle time. Improvements in uniformity and reduced feature size have enabled the use of an automated visual inspection capability to reliably differentiate good and bad die.

  14. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    . First part of the thesis investigates possible algorithms for fast and accurate identi cation of utility network variables such as voltage amplitude, frequency, phase angle and line impedance. Special attention has been paid to grid synchronization algorithm in terms of accurate estimation of grid...... of grid voltage and the frequency of utility network. As a result, fast and accurate identi cation of both variables has been achieved. In addition, positive and negative sequence components of grid voltage can also be calculated. Simple, yet powerful ltering techniques, based on second order generalized...... integrator (SOGI) and delay signal cancellation (DSC) have been used to separate the sequence components. Simulation and experimental results attest the accuracy and e ectiveness of the developed algorithms in identifying the frequency, phase angle and magnitude of grid voltages during severe distortions...

  15. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Y. E-mail: yolanda.lechon@ciemat.es; Cabal, H.; Saez, R.M.; Hallberg, B.; Aquilonius, K.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power.

  16. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    Science.gov (United States)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  17. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  18. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  19. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  20. Next Generation Power and Energy

    Science.gov (United States)

    2010-12-02

    Cells Advanced Generators Direct Conversion Photovoltaics Future Fuels Energy Storage Batteries Capacitors Flywheels Motors & Actuators Motors Actuators...Generation Power Distribution Energy Storage Power Conversion Propulsion Ship’s Power Sources Mission Systems Industry Competes for Components; ‘Submit...Chiller Technologies / HVAC ONR Maintaining Robust S&T Investment Power LoadSystem Control Power Generation Power Distribution Energy Storage Power

  1. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  2. An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2015-09-01

    Full Text Available Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakeholders of the electricity energy market. Thus, there is increasing interest determining how to forecast wind power production accurately. Most the methods that have been published in the relevant literature provided deterministic forecasts even though great interest has been focused recently on probabilistic forecast methods. In this paper, an advanced probabilistic method is proposed for short-term forecasting of wind power production. A mixture of two Weibull distributions was used as a probability function to model the uncertainties associated with wind speed. Then, a Bayesian inference approach with a particularly-effective, autoregressive, integrated, moving-average model was used to determine the parameters of the mixture Weibull distribution. Numerical applications also are presented to provide evidence of the forecasting performance of the Bayesian-based approach.

  3. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Science.gov (United States)

    1994-05-01

    This project has successfully advanced the technology for MSOFC's for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-sq cm per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  4. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    Science.gov (United States)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  5. Modified 9% Cr steels for advanced power generation: microstructure and properties

    OpenAIRE

    Czyrska-Filemonowicz, A; A. Zielińska-Lipiec; Ennis, P. J.

    2006-01-01

    Purpose: The 9-10%Cr steels developed for advanced power stations, P91, P92 and E911, have beeninvestigated.Design/methodology/approach: Quantitative microstructural investigations (sub-grain width, dislocationdensity, particle size distribution and their chemical compositions) have been carried out using analyticaltransmission electron microscopy.Findings: Comparison of the microstructural parameters of three 9%Cr steels mentioned above and a correlationwith different creep rupture behaviour...

  6. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

    Science.gov (United States)

    Faure, Denis; Joly, Dominique

    2015-04-01

    Next-generation sequencing (NGS) provides unprecedented insight into (meta)genomes, (meta)transcriptomes (cDNA) and (meta)barcodes of individuals, populations and communities of Archaea, Bacteria and Eukarya, as well as viruses. This special issue combines reviews and original papers reporting technical and scientific advances in genomics and transcriptomics of non-model species, as well as quantification and functional analyses of biodiversity using NGS technologies of the second and third generations. In addition, certain papers also exemplify the transition from Sanger to NGS barcodes in molecular taxonomy.

  7. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  8. The Advanced Helical Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  9. High-temperature coal-syngas plasma characteristics for advanced MHD power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S. [Hokkaido University, Hokkaido (Japan)

    2006-03-15

    Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.

  10. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    Science.gov (United States)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  11. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  12. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  13. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  14. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.;

    2012-01-01

    . This paper analyzes and compares the synchronization capability of three advanced synchronization systems: the Decoupled Double Synchronous Reference Frame-Phase-Locked Loop, the Dual Second Order Generalized Integgrator- Phase-Locked Loop and the Three-Phase Enhanced Phase-Locked Loop, designed to work...... contributed to enhance their response under faulty and distorted scenarios, and hence to fulfill these requirements. In order to achieve satisfactory results it is necessary to count on accurate and fast grid voltage synchronization algorithms, which are able to work under unbalanced and distorted conditions...... under such conditions. Its response will be analyzed with respect the synchronization needs that can be extracted from the standards....

  15. Research into advanced concepts of microwave power amplification and generation utilizing linear beam devices

    Science.gov (United States)

    Mcisaac, P. R.

    1972-01-01

    A theoretical study of some aspects of the interaction between a drifting stream of electrons with transverse cyclotron motions and an electromagnetic field is presented. Particular emphasis was given to the possible generation and amplification of millimeter waves. The major effort was devoted to a theoretical study of the cyclotron resonance oscillator. The appendices include published papers on the cyclotron resonance oscillator which resulted from this investigation.

  16. Power generation, operation, and control

    CERN Document Server

    Wood, Allen J

    2012-01-01

    A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities

  17. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  18. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    Science.gov (United States)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    conditions with geophysics. Borehole-based technologies include a novel geochemical two-phase reservoir sampler deployed at Otway, and thermal-based measurements at CO2SINK for coupled hydrologic-geochemical reservoir analyses. Seismic, geomechanical, hydrologic, geochemical, and core studies are used in a multidisciplinary approach to assess CO2 trapping and reservoir integrity at In Salah. With estimated lifetime storage of 17 MtCO2 at In Salah, this and other CCS demonstrations provide opportunities to gain commercial experience for advancing coal-based power generation-CCS for carbon management.

  19. Advanced Power Electronics Components

    Science.gov (United States)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  20. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  1. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  2. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  3. Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation

    Directory of Open Access Journals (Sweden)

    Quanyong Lu

    2016-07-01

    Full Text Available We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications.

  4. Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation

    OpenAIRE

    Quanyong Lu; Manijeh Razeghi

    2016-01-01

    We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectiv...

  5. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  6. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  7. GEOTHERMAL POWER GENERATION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  8. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  9. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  10. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  11. Development of ITM Oxygen Technology for Integration in IGCC and Other Advanced Power Generation DECISION POINT 1 UNDER PHASE 3

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lori

    2013-08-01

    Air Products and the DOE have partnered over a number of years in the development of ITM Oxygen technology in support of gasification technology. Throughout this process, studies of application of the technology to IGCC and oxy-coal combustion have shown significant reduction in capital and operating costs compared to similar systems using conventional cryogenic air separation. Phase 3, the current phase of the program, focuses on the design, construction and operation of a 30- to 100-TPD pilot facility, the Intermediate Scale Test Unit (ISTU). Execution of this phase to date has resulted in significant advances in a number of areas including ceramic membrane material development, module design and production, ceramic-to-metal seal design, process control strategies, and engineering development of process cycles. Phase 3 will be complete upon successful operation of the ISTU in a series of tests making oxygen from ceramic membrane modules and producing power from a hot gas expander. Phase 3 work has extended beyond the planned schedule due to a delay in delivery of equipment from vendors. Air Products is currently managing the equipment delay by close involvement with the vendor to redesign the problematic equipment and oversee its fabrication. The result of these unforeseen challenges is that the ISTU project completion date has been delayed. Tight cost controls have been implemented both by DOE program management and APCI to meet budget constraints despite increased costs due to budget delays. Total project costs have increased in several areas. Increased costs in the ISTU project include purchased equipment, instruments, construction, and contractor engineering. Increased costs for other tasks include additional work in support of module production by Ceramatec, Inc, and increased Air Products labor for component testing. Air Products plans to complete testing as outlined in the SOPO and successfully complete all project objectives by the end of FY14.

  12. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  13. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  14. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  15. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  16. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  17. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  18. Microfluidic Power Generation

    Science.gov (United States)

    2008-03-28

    electricity and magnetism we of ancient time, neither one had any practical application at the time and were simply observed as curiosities [24]. The first...mechanical energy to magnetic energy. The water flowing through the microchannels will induce mechanical pressure on the turbine, causing it to rotate...C. Panchal, and L. Genens, "Design and Cost of Near-term OTEC Plants for the Production of Desalinated Water adn Electric Power," U. S. D. o. Energy

  19. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  20. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  1. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  2. Taming power: Generative historical consciousness.

    Science.gov (United States)

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962.

  3. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  4. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  5. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  6. Power generation from solid fuels

    CERN Document Server

    Spliethoff, Hartmut

    2010-01-01

    Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reduci

  7. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  8. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  9. Advanced coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hebel, G.; Weirich, P.H.

    1988-02-01

    Reconstruction of coal-fired power plants under the aspects of higher economic efficiency and lower emissions has become more interesting as the petroleum and natural gas reserves have become shorter. A number of advanced concepts have been presented in the last few years and tested in experimental facilities, pilot plants and demonstration plants. If construction is envisaged within the next five years, better steam processes and coal gas turbines should be employed. Supercharged steam generators, which will bring about further improvements, will be available by the mid-Nineties.

  10. Dry cooling of power generating stations: a summary of the economic evaluation of several advanced concepts via a design optimization study and a conceptual design and cost estimate

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.; Allemann, R.T.; Faletti, D.W.; Fryer, B.C.; Zaloudek, F.R.

    1976-09-01

    Due to enhanced concern about water supplies and water use priorities, dry cooling systems for thermal power plants are receiving increased consideration, even though electric power from dry-cooled power plants currently costs 10 to 15 percent more than power from wet-cooled plants. A two-year study which analyzed the performance of existing dry-cooled systems and which developed economic and performance models for cost optimization of dry-cooled systems is reported. First, a design optimization code was used to compare the cost of a number of advanced all-dry systems. Then, 5 different dry/wet systems were carried through conceptual design and cost estimating. The results showed for either an all dry or a combination wet-and-dry cooling system, cost optimization can be achieved with an advanced system using ammonia as an intermediate heat exchange fluid (between the turbine and the dry tower), and that development of the ammonia concept should procede in order to provide performance and reliability data for the ammonia system. (LCL)

  11. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  12. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of

  13. Wind Power Generation Design Considerations.

    Science.gov (United States)

    1984-12-01

    sites. have low starting torques, operate at high tip-to- wind speeds, and generate high power output per turbine weight. 5 The Savonius rotor operates...DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two

  14. Advanced Accessory Power Supply Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  15. Rankine engine solar power generation. II - The power generation module

    Science.gov (United States)

    Batton, W. D.; Barber, R. E.

    1981-11-01

    The characteristics and performance of a solar flat plate collector powered low temperature power generation module (PGM) funded by NASA are described. The PGM uses a halogen refrigerant as a working fluid, which is pumped from a reservoir to a chamber where it is heated by exchangers filled with an ethylene-glycol fluid which has gained thermal energy from a collector array. The heated refrigerant is allowed to expand through turbine blades and exits through a regenerative heater to condensation into the original well. The PGM was built mainly from off-the-shelf components, except for the turbo-gearbox, which was fabricated specifically for the PGM and attains the design goal of 80% efficiency, producing 13.8 kW at the design point. The components and controls are detailed, including start-up and shutdown, and safety procedures. The testing program is outlined, and 6000 hours of operating experience has resulted in a 7.2% efficiency.

  16. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  17. Wind wheel electric power generator

    Science.gov (United States)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  18. Advances in generative lexicon theory

    CERN Document Server

    Pustejovsky, James; Isahara, Hitoshi; Kanzaki, Kyoko

    2012-01-01

    This book offers papers addressing models of linguistic composition from a Generative Lexicon perspective, showing how GL has developed to account for a range of linguistic phenomena, including argument alternation, polysemy, discourse phenomena and metaphor.

  19. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  20. Advanced Vehicle and Power Initiative

    Science.gov (United States)

    2010-07-29

    but has previously been geographically limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded...Edison Automotive Insight Hawaii Center for Advanced Transportation Technology SWRI Automation Alley Honeywell U.S. Fuel Cell Council Automotive...Insight Hydrogenics Corporation University of Hawaii at Minoa AVL Powertrain Engineering, Inc. IAV Automotive Engineering Inc University of Michigan

  1. ADVANCED POWER SYSTEMS ANALYSIS TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Robert R. Jensen; Steven A. Benson; Jason D. Laumb

    2001-08-31

    The use of Energy and Environmental Research Center (EERC) modeling tools and improved analytical methods has provided key information in optimizing advanced power system design and operating conditions for efficiency, producing minimal air pollutant emissions and utilizing a wide range of fossil fuel properties. This project was divided into four tasks: the demonstration of the ash transformation model, upgrading spreadsheet tools, enhancements to analytical capabilities using the scanning electron microscopy (SEM), and improvements to the slag viscosity model. The ash transformation model, Atran, was used to predict the size and composition of ash particles, which has a major impact on the fate of the combustion system. To optimize Atran key factors such as mineral fragmentation and coalescence, the heterogeneous and homogeneous interaction of the organically associated elements must be considered as they are applied to the operating conditions. The resulting model's ash composition compares favorably to measured results. Enhancements to existing EERC spreadsheet application included upgrading interactive spreadsheets to calculate the thermodynamic properties for fuels, reactants, products, and steam with Newton Raphson algorithms to perform calculations on mass, energy, and elemental balances, isentropic expansion of steam, and gasifier equilibrium conditions. Derivative calculations can be performed to estimate fuel heating values, adiabatic flame temperatures, emission factors, comparative fuel costs, and per-unit carbon taxes from fuel analyses. Using state-of-the-art computer-controlled scanning electron microscopes and associated microanalysis systems, a method to determine viscosity using the incorporation of grey-scale binning acquired by the SEM image was developed. The image analysis capabilities of a backscattered electron image can be subdivided into various grey-scale ranges that can be analyzed separately. Since the grey scale's intensity

  2. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  3. Advanced power electronics and electric machinery program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  4. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation uncerta

  5. Connecticut Biodiesel Power Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Grannis, Lee [Greater New Haven Clean Cities Coalition, Bethany, CT (United States); York, Carla R. [Greater New Haven Clean Cities Coalition, Bethany, CT (United States)

    2010-10-31

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike. Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.

  6. Future Photovoltaic Power Generation for Space-Based Power Utilities

    Science.gov (United States)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  7. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  8. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  9. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  10. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  11. Electronic power generators for ultrasonic frequencies

    Science.gov (United States)

    Ciovica, D.

    1974-01-01

    The design and construction of an ultrasonic frequency electronic power generator are discussed. The principle design elements of the generator are illustrated. The generator provides an inductive load with an output power of two kilowatts and a variable output frequency in the fifteen to thirty KiloHertz range. The method of conducting the tests and the results obtained with selected materials are analyzed.

  12. Uncertainty Sets For Wind Power Generation

    OpenAIRE

    Dvorkin, Yury; Lubin, Miles; Backhaus, Scott; Chertkov, Michael

    2015-01-01

    As penetration of wind power generation increases, system operators must account for its stochastic nature in a reliable and cost-efficient manner. These conflicting objectives can be traded-off by accounting for the variability and uncertainty of wind power generation. This letter presents a new methodology to estimate uncertainty sets for parameters of probability distributions that capture wind generation uncertainty and variability.

  13. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators....... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  14. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  15. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  16. Power generation in the open market

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, T. (National Society for Clean Air, Brighton (UK))

    1992-09-01

    The article describes power generation in the United Kingdom. The open market for electricity, in which generators compete to supply electricity to the National Grid Company, is described. Other aspects discussed are: types of power plant; engineering challenges associated with different types of power plant; combined heat and power (CHP) systems; fossil fuel emissions; fossil fuel reserves; energy efficiency; and environmental costs. 1 fig., 4 tabs.

  17. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  18. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  19. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  1. Saving Energy Through Advanced Power Strips (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  2. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... to be applied, especially at low power levels where gating loss becomes a significant percentage of the total loss budget. Various resonant gate drive methods have been proposed to address this design challenge, with varying size, cost, and complexity. This dissertation presents a self-oscillating resonant gate...

  3. Power Quality Improvement of a Distributed Generation Power System

    Directory of Open Access Journals (Sweden)

    Panga Harish

    2016-06-01

    Full Text Available The aim of this work is to improve the power quality for Distributed Generation (DG with power storage system. Power quality is the combination of voltage quality and current quality. Power quality is the set of limits of electrical properties that allows electrical systems to function in their intended manner without significant loss of performance or life. The electrical power quality is more concerned issue. The main problems are stationery and transient distortions in the line voltage such as harmonics, flicker, swells, sags and voltage asymmetries. Distributed Generation (DG also called as site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from the many small energy sources. In recent years, micro electric power systems such as photovoltaic generation systems, wind generators and micro gas turbines, etc., have increased with the deregulation and liberalization of the power market. Under such circumstances the environment surrounding the electric power industry has become ever more complicated and provides high-quality power in a stable manner which becomes an important topic. Here DG is assumed to include Wind power Generation (WG and Fuel Cells (FC, etc. Advantages of this system are constant power supply, constant voltage magnitude, absence of harmonics insupply voltage, un-interrupted power supply. In this project the electric power qualities in two cases will be compared. Case I: With the storage battery when it is introduced. Case II: Without the storage battery. The storage battery executes the control that maintains the voltage in the power system. It will be found that the Electric power quality will be improved, when storage battery is introduced. The model system used in this Project work is composed of a Wind Turbine, an Induction Generator, Fuel Cells, An Inverter and a Storage Battery. A miniature Wind Power Generator is

  4. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  5. Cycloidal tidal power generation - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the findings of a project investigating the economic and technical viability of a cycloidal tidal stream generator and developing a performance prediction model to assess the applicability of cycloidal turbines to power generation. The concept of cycloidal power generation is described along with the use of the model to examine the performance of six designs in the tidal flow off the west coast of Scotland. Details are given of the estimated power generated and cost reductions using optimised designs. Areas to be examined for design optimisation are listed.

  6. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  7. Optimal prediction intervals of wind power generation

    OpenAIRE

    Wan, Can; Wu, Zhao; Pinson, Pierre; Dong, Zhao Yang; Wong, Kit Po

    2014-01-01

    Accurate and reliable wind power forecasting is essential to power system operation. Given significant uncertainties involved in wind generation, probabilistic interval forecasting provides a unique solution to estimate and quantify the potential impacts and risks facing system operation with wind penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machin...

  8. Power Generation Using Piezoelectric Transducer

    Directory of Open Access Journals (Sweden)

    Tanu Chouhan

    2016-05-01

    Full Text Available The most basic need of today’s world is energy which is non-renewable source of energy available on earth. The need is increasing day by day, to overcome this there is requirement of energy harvesting. This paper attempts to show how man has been utilizing and optimizing kinetic energy. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal. “The idea of energy harvesting is applicable to sensors as well as transducers that are placed and operated on some entities for a long time to replace the sensor module batteries. Such sensors are commonly called self-powered sensors.” Embarked piezoelectric transducer, which is an electromechanical converter, undergoes mechanical vibrations therefore produce electricity. This power source has many applications as in agriculture, home application and street lighting and as energy source for sensors in remote locations.

  9. Assessment of novel power generation systems for the biomass industry

    OpenAIRE

    Codeceira Neto, Alcides

    1999-01-01

    The objective of this programme of research is to produce a method for assessing and optimising the performance of advanced gas turbine power plants for electricity generation within the Brazilian electric sector. With the privatisation of the Brazilian electric sector, interest has been given to the thermal plants and studies have been carried out along with the use of other alternative fuels rather than fossil fuels. Biomass is a fuel of increasing interest for power gener...

  10. Management Innovations in Power Generation Groups

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Since the institutional reform of power industry in 2002,power sectors,in particularelectrity generation enterprises in China have been grently changed, not only in institutionand industrial pattern but also in operational environment.The year2006is a turning point of tense power supply lasting for three years and a half .The change of power supply situationin the 11th Five-Year Plan period and in-depth reform of power institutional systm haveplaced serious challenges in front of power genration groups.In this new historical era,powergeneration groups can keep undefeated only by carrying out actively mangement innovations.

  11. Electromechanical Peak Devices of Distributed Power Generation

    Directory of Open Access Journals (Sweden)

    S. V. Konstantinova

    2011-01-01

    Full Text Available The power world crises (1973, 1979 have demonstrated that mankind entered the expensive energy epoch. More and more attitude is given to power saving problem by including renewable power sources in energy balance of the countries. The paper analyzes a power system inBelarusand a typical chart of the active load is cited in the paper. Equalization of load chart is considered as one of measures directed on provision of higher operational efficiency of power system and power saving.  This purpose can be obtained while including electromechanical peak devices of the distributed generation in the energy balance.

  12. Advances in generating functional diversity for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Marienhagen, Jan; Mundhada, Hemanshu; Schenk, Alexander; Schwaneberg, Ulrich

    2009-02-01

    Despite advances in screening technologies, only a very small fraction of theoretical protein sequence can be sampled in directed evolution experiments. At the current state of random mutagenesis technologies mutation frequencies have often been adjusted to values that cause a limited number of amino acid changes (often one to four amino acid changes per protein). For harvesting the power of directed evolution algorithms it is therefore important that generated mutant libraries are rich in diversity and enriched in active population. Insufficient knowledge about protein traits, mutational robustness of protein folds and technological limitations in diversity generating methods are main challenges for managing the complexity of protein sequence space. This review covers computational and experimental advances for high quality mutant library generation that have been achieved in the past two years.

  13. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...

  14. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  15. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  16. Electrical Power Conversion of River and Tidal Power Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-11-21

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  17. Development of micro power generators - A review

    Energy Technology Data Exchange (ETDEWEB)

    Chou, S.K.; Yang, W.M.; Chua, K.J.; Li, J. [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Zhang, K.L. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue (China)

    2011-01-15

    The demand for energy sources that are compact, lightweight and powerful has significantly increased in recent years. Traditional chemical batteries which are highly developed are unable to meet the demand for high energy intensity. This gap is expected to widen in the future as electronic devices need more power to support enhanced functionalities. Hydrocarbon fuels have energy densities much greater than the best batteries. Therefore, taking advantage of the high energy density of chemical fuels to generate power becomes an attractive technological alternative to batteries. To address the growing demand for smaller scale and higher energy density power sources, various combustion-based micro power generators are being developed around the world. This review paper provides an update on recent progresses and developments in micro-scale combustion and micro power generators. The paper, broadly divided into four main sections, begins with a review of various methods to enhance and stabilize the combustion at micro-scale, subsequently improving the efficiency. This is followed by a description of various micro-thermophotovoltaic power generators. The third section focuses on MEMS based solid propellant micro-propulsion system. Lastly, a brief review is made to other micro power generators. (author)

  18. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  19. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  20. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... relying on import or export for power balancing. The impacts on the transmission system are furthermore analysed demonstrating that new strategies for balancing power generation and power demand (power balancing strategies) also influence grid losses and the requirements of the transmission grid. If new.......3% in 2002 (Eltra, 2004). At the same time, Denmark has other forms of distributed generation e.g. extensive CHP plants for district heating or for covering industrial heat demands. This results in a relatively high fuel efficiency as well as a technically complex energy system. This article deliberates...

  1. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    Science.gov (United States)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  2. Bike-powered electricity generator

    Directory of Open Access Journals (Sweden)

    ŞTEFAN MOCANU

    2015-02-01

    Full Text Available Finding new energy sources is an important challenge of our times. A lot of research focuses on identifying such sources that can also be exploited with relatively simple and efficient systems. These sources can be either new materials that can be used to generate energy, or solutions to scavenge already existing forms of energy. Part of the latter class of solutions, the system presented in this paper converts the energy consumed by many people in gyms (or even at home, during exercise into electric energy. This energy exists anyway, because people want to be healthier or to look better. Currently, this significant (in our opinion amount of energy is actually wasted and transformed into heat. Instead, in this study, a prototype scavenging system (dedicated to fitness/stationary bikes to collect and (reuse this energy is presented. Specifically, we depict the design of a low-budget system that uses existing, discrete components and is able to scavenge some of the energy spent by the biker. The experimental results show that the system is functional, but its efficiency is limited by (mechanical losses before the collection.

  3. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  4. Apparatus and method for thermal power generation

    Science.gov (United States)

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  5. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    OpenAIRE

    Yassine Allani; Klaus Ziegler; Daniel Favrat; Malick Kane

    2000-01-01

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors) featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS). This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a) the ISCCS (Integrated Solar Combined Cycle System)...

  6. Entropy-generated power and its efficiency

    DEFF Research Database (Denmark)

    Golubeva, N.; Imparato, A.; Esposito, M.

    2013-01-01

    We propose a simple model for a motor that generates mechanical motion by exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological paramet...... parameters. Furthermore, we find that the efficiency at maximum power may show discontinuities....

  7. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Hudson, C.R. II

    1993-05-01

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI`s East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost.

  8. Synchrophasor Applications for Wind Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  9. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre

    2014-01-01

    Accurate and reliable wind power forecasting is essential to power system operation. Given significant uncertainties involved in wind generation, probabilistic interval forecasting provides a unique solution to estimate and quantify the potential impacts and risks facing system operation with wind...... penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization. Prediction intervals with Associated confidence levels are generated through...... conducted. Comparing with benchmarks applied, experimental results demonstrate the high efficiency and reliability of the developed approach. It is therefore convinced that the proposed method provides a new generalized framework for probabilistic wind power forecasting with high reliability and flexibility...

  10. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  11. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  12. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  13. Advances in high power semiconductor diode lasers

    Science.gov (United States)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  14. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  15. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  16. Recent Advances in Technology on Dish Stirling Solar Power Generating Systems%碟式斯特林太阳能发电系统最新进展

    Institute of Scientific and Technical Information of China (English)

    刘建明; 陈革; 章其初

    2011-01-01

    太阳能热发电技术中最具发展潜力的是碟式太阳能高温发电技术,尤其是近几年碟式斯特林太阳能发电技术更是令世界瞩目,它具有光电转换效率高、耗水量低、发电方式灵活及可逐步规模化等特点.目前,国内外碟式斯特林太阳能发电系统的研制方兴未艾,国外太阳能斯特林发电机制作及测试技术已趋于成熟,正处于中试和大规模推广阶段.国外主要的碟式斯特林发电系统包括SES公司的SunCatcher单元、Cleanergy,公司的Eumdish单元、Infinia公司的PowerDish单元等.国内碟式斯特林太阳能热发电技术研究取得了一些成绩,但总体来说,目前还未获得实质性的进展,相关研究尚处于初级阶段.碟式斯特林太阳能发电系统的核心部件是太阳能斯特林发电机,其某些关键部件的研发难度较大,如高温太阳能吸收器、高效回热器、工质密封、功率和转速控制等.要攻克这些关键技术,需要国内外相关部门的大力支持.我国科研工作者应通过各种形式与国外斯特林发电机制造商及科研机构进行技术合作,逐渐掌握此项技术;或者借鉴国外的研制经验自主研发,然后通过示范推广,建设大型碟式斯特林太阳能发电厂.

  17. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E.A.

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  18. Thermoelectric fabrics: toward power generating clothing.

    Science.gov (United States)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  19. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  20. Piezoelectric devices for generating low power

    Science.gov (United States)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  1. Conditional prediction intervals of wind power generation

    OpenAIRE

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform of the situation-specific uncertainty of point forecasts. In order to avoid a restrictive assumption on the shape of forecast error distributions, focus is given to an empirical and nonparametric app...

  2. On reliability optimization for power generation systems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reliability level of a power generation system is an important problem which is concerned by both electricity producers and electricity consumers. Why? It is known that the high reliability level may result in additional utility cost, and the low reliability level may result in additional consumer's cost, so the optimum reliability level should be determined such that the total cost can reach its minimum. Four optimization models for power generation system reliability are constructed, and the proven efficient solutions for these models are also given.

  3. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  4. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  5. Advanced LVDC Electrical Power Architectures and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Vasquez, Juan Carlos; Guerrero, Josep M.

    2014-01-01

    the high set goals for share of renewable energy sources (RESs) in satisfying total demand. RESs operate either natively at DC or have a DC link in the heart of their power electronic interface, whereas the end point connection of electronic loads, batteries and fuel cells is exclusively DC. Therefore......Current trends indicate that worldwide electricity distribution networks are experiencing a transformation towards direct-current (DC) at both generation and consumption level. This tendency is powered by the outburst of various electronic loads and, at the same time, with the struggle to meet......, merging these devices into dedicated DC distribution architectures through corresponding DC-DC converters arises as an attractive option not only in terms of enhancing efficiency due to reduction of conversion steps, but also for having power quality independence from the utility mains. These kinds...

  6. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm......, for which three point forecasting methods are considered as input. The probabilistic forecasts generated are evaluated based on their reliability and sharpness, while compared to forecasts based on quantile regression and the climatology benchmark. The operational application of adapted resampling...

  7. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  8. Advanced High-Power Generator Research Program

    Science.gov (United States)

    1986-05-01

    l4 ~ 1 T- 14 SLOTS 5CALZ ’/A EQUALLY 574 SPACED 7 40 A: / / 4.0 DIA ~ A ~ ~I \\HIP SOND L.Qý - C4 𔃿CALE- DIA THRUU SCALE.- F:ULL HEAT TREAT1 PER...devi- ation between slots of less than 0.001 in. (b) A dummy magnet with a 0.009-in, shim on each side was inserted into the slot. The height of the... dummy magnet was checked relative to the outer diameter of the poles. Readings ranged from 0.007 in. to 0.021 in. below the rotor outside diameter. It

  9. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  10. Advanced Eddy current NDE steam generator tubing.

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  11. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  12. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  13. Virtual Generation (Energy Efficiency) The Cheapest Source For Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Hasnie, Sohail

    2010-09-15

    Energy efficiency is the cheapest source of energy that has escaped the minds of the politicians in the developing countries. This paper argues for large scale utility led end use efficiency programs in a new paradigm, where 1 million efficient light bulbs is synonymous to a 50 MW power station that costs only 2% of the traditional fossil fuel power station and zero maintenance. Bulk procurement, setting up new standards and generation of certified emissions reduction is part of this strategy. It discusses implementation of a $20 million pilot in the Philippines supported by the Asian Development Bank.

  14. Photovoltaic Power Generation in the Stellar Environments

    CERN Document Server

    Girish, T E

    2010-01-01

    In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

  15. Power Consideration in a Piezoelectric Generator

    Directory of Open Access Journals (Sweden)

    Rémi Tardiveau

    2013-01-01

    Full Text Available A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.

  16. Improvement of power quality using distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)

    2010-12-15

    This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)

  17. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  18. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  19. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  20. Power performance of circular piezoelectric diaphragm generators

    Institute of Scientific and Technical Information of China (English)

    Kehong TANG; Junwu KAN; Taijiang PENG; Zhigang YANG; Guangming CHENG

    2008-01-01

    Energy generation performance of a piezo-electric generator depends mainly on several elements such as the structural style, boundary conditions, geo-metry parameters, materials, vibration-source frequency, and external load. To obtain the optimal energy-harvest-ing device, the Raleigh method is used to establish the analysis model of circular piezoelectric composite dia-phragms. Simply supported and clamped boundary con-ditions were considered. The relationships between the output power and the structural parameters of piezo-electric composite diaphragms, and the external load res-istance and frequency were shown. Given the correlative material parameters and boundary conditions, the output power, using structural parameters, external load, or vibrating frequency as variables, can be calculated. Simulation results show that there are optimal structural parameters and load for a composite diaphragm to achieve the maximum output power. A piezoelectric dia-phragm generator with given dimensions tends to achieve higher output power under clamped boundary conditions than that under simply supported boundary conditions.

  1. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  2. Modeling and Simulation of Wind Power with Permanent Magnet Synchronous Generator (PMSG)

    OpenAIRE

    Syafaruddin

    2016-01-01

    High dependency on fossil fuel can be reduced by utilizing renewable energy sources. One of the potential and promising energy sources is the wind power due to their abundance source in nature. In fact, the wind power technology is rapidly developing compared to other renewable energy sources due to the maturity technology which can be seen from basic to advanced levels. Recently, the technology of generation of wind power is changed from families of induction generator to synchronous generat...

  3. Research on Low Power Marine Current Power Generation System

    Directory of Open Access Journals (Sweden)

    Dongkai Peng

    2013-09-01

    Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.

  4. Solar power generation technology, new concepts & policy

    CERN Document Server

    Reddy, P Jayarama

    2012-01-01

    This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives i

  5. Methods for generating hydroelectric power development alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  6. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  7. MHD power generation with fully ionized seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, H.; Shioda, S.

    1977-01-01

    Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.

  8. Heat Management in Thermoelectric Power Generators.

    Science.gov (United States)

    Zebarjadi, M

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  9. Heat Management in Thermoelectric Power Generators

    CERN Document Server

    Zebarjadi, Mona

    2015-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show that if Bi1, it lowers the conversion efficiency.

  10. Utility interconnection issues for wind power generation

    Science.gov (United States)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  11. Economic evaluation of geothermal power generation, heating, and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kanoglu, Mehmet; Cengel, Yunus A. [Nevada Univ., Dept. of Mechanical Engineering, Reno, NV (United States)

    1999-06-01

    Economic analysis of a typical geothermal resource shows that potential revenues from geothermal heating or cooling can be much larger than those from power generation alone. Geothermal heating may generate up to about 3.1 times and geothermal absorption cooling 2.9 times as much revenue as power generation alone. Similarly, combined power generation and heating may generate about 2.1 times and combined power generation and cooling about 1.2 times as much revenue as power generation alone. Cost and payback period comparison appear to favor power generation, followed by district heating. (Author)

  12. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  13. Advanced nuclear power plants for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J. [BNFL, Inc. (United States)

    1996-10-01

    This paper examines, following four issues: capacity; the closure of the fuel cycle; deregulation; and the need to maintain the development of the advanced systems. Demand is a governing parameter: if one doesn`t need the power then there is no need to increase generating capacity. However, there is no question but that the population is growing. All predictions are that new generating capacity will be needed -- the questions are when and how? Until the various issues involved in deregulation are played through it is not clear what form markets will take for the longer term or how investment in large-capital-cost facilities will fit into the financial structure. Deregulation needs the time to throw light on these matters and to gain some experience in the various financial options. The lack of closure of the fuel cycle is both a cost and public perception issue. The US program, as a result of a cold-war paranoia against recycling the partially used fuel, is based upon the final disposal of useful supplies of energy. However, the program itself is plagued with poor management, delays, and uncertainties that are due, in no small measure, to half-uttered thoughts by all concerned, that this is the wrong policy. Current efforts to rethink the policy, and its implementing projects, are welcome. Finally, if it is important to keep design options for advanced nuclear power plants open for the future, then it necessary to maintain valid research and development programs for those designs. Current US policy is damaging to a number of the more advanced options. This paper discusses the candidate systems: LWR, ALMR, HTGR, and CANDU systems for the special contributions they may each provide in an ideal electrical generating industry of the mid-twenty-first century, and makes suggestions for the future. (J.P.N.)

  14. Development of the ultra high efficiency thermal power generation facility

    Energy Technology Data Exchange (ETDEWEB)

    Sano, Toshihiro

    2010-09-15

    In order to prevent global warming, attention is focused on nuclear power generation and renewable energy such as wind and solar power generation. The electric power suppliers of Japan are aiming to increase the amount of nuclear and non-fossil fuel power generation over 50% of the total power generation by 2020. But this means that the remaining half will still be of thermal power generation using fossil fuel and will still play an important role. Under such circumstances, further efficiency improvement of the thermal power generation and its aggressive implementation is ongoing in Japan.

  15. Directions for advanced use of nuclear power in century XXI

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C E

    1999-05-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

  16. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  17. Thermodynamic analysis of the advanced zero emission power plant

    Science.gov (United States)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  18. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  19. Power Generator with Thermo-Differential Modules

    Science.gov (United States)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  20. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  1. Optical fibers and solar power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kribus, Abraham; Zik, Ory; Karni, Jacob [Weizmann Inst. of Science, Environmental Sciences and Energy Research Dept., Rehovot (Israel)

    2000-07-01

    A study of the potential use of optical fibers for solar thermal power generation is presented. The main performance characteristics (numerical aperture and attenuation) and typical costs of currently available fibers are discussed. Several approaches to the application of fibers are presented, for centralised (tower, central receiver) and distributed (dish-engine) systems. The overall system design-point efficiency and overall system cost are estimated. A scaling relation between system size and the cost of the fiber component is identified, which severely limits the applicability of fibers to small systems only. The overall system cost for centralised systems is found to be higher than the currently competitive range, even under optimistic assumptions of mass production of major components. A significant reduction in fiber cost is required before the use of fibers for centralised solar power generation can become competitive. In distributed generation using dish/engine systems, however, the use of fibers does achieve competitive performance and costs, comparable to the costs for conventional dish systems. (Author)

  2. Integrated control of next generation power system

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  3. Integration of Renewable Generation in Power System Defence Plans

    DEFF Research Database (Denmark)

    Das, Kaushik

    , one of them being the North East area with high share of wind power generation.The aim of this study is to investigate how renewable generations like wind power can contribute to the power system defence plans. This PhD project “Integration of Renewable Generation in Power System Defence Plans...

  4. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  5. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  6. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  7. Cycloidal tidal power generation - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes the second phase of a study aimed at addressing the technical and economic viability of cycloidal tidal power generation with the objective of examining design optimisation, the building and testing a scale model, and the use of an enhanced model to estimated the overall system economic performance. Details are given of the analytical and physical modelling studies, the use of Computational Fluid Dynamics (CDF) analysis to understand the fluid flow through the cycloidal unit, the optimisation of the turbine blades, and performance predictions.

  8. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    Science.gov (United States)

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  9. Impact of fuel properties on advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  10. Department of Energy power generation programs for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  11. 46 CFR 111.10-4 - Power requirements, generating sources.

    Science.gov (United States)

    2010-10-01

    ... services include cooking, heating, air conditioning (where installed), domestic refrigeration, mechanical... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  12. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  13. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    Directory of Open Access Journals (Sweden)

    Yassine Allani

    2000-12-01

    Full Text Available

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS. This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a the ISCCS (Integrated Solar Combined Cycle System that integrates the parabolic trough into a fossil fired combined cycle, which allows a larger exergy potential of the fuel to be converted. b the HSTS (Hybrid Solar Tower System which uses high concentration optics (via a power tower generator and high temperature air receivers to drive the combined cycle power plant. In the latter case, solar energy is used at a higher exergy level as a heat source of the topping cycle. This paper presents the results of a thermoeconomic investigation of an ISCCS envisaged in Tunisia. The study is realized in two phases. In the first phase, a mixed approach, based on pinch technology principles coupled with a mathematical optimization algorithm, is used to minimize the heat transfer exergy losses in the steam generators, respecting the off design operating conditions of the steam turbine (cone law. In the second phase, an economic analysis based on the Levelized Electricity Cost (LEC approach was carried out for the configurations, which provided the best concepts during the first phase. A comparison of ISCCS with pure fossil fueled plants (CC+GT is reported for the same electrical power load. A sensitivity analysis based on the relative size of the solar field is presented.

    •  This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000

  14. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy storage...

  15. Design of Permanent Magnet Synchronous Generators for Wave Power Generation

    Institute of Scientific and Technical Information of China (English)

    方红伟; 王丹

    2016-01-01

    In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embed-ded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coeffi-cient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.

  16. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  17. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management

  18. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  19. Fully solution-processed, transparent organic power-generating polarizer

    Science.gov (United States)

    Chou, Wei-Yu; Hsu, Fang-Chi; Chen, Yang-Fang

    2017-03-01

    We fabricate transparent organic power-generating polarizer by all solution process. Based on the conventional indium–tin-oxide-coated glass as the bottom cathode, the subsequent layers are prepared by a combination of solution processing methods. Sprayed silver nanowires film serves as the top anode and can transmit greater than 80% of the visible light with sheet resistance of 16 Ω/□. By adopting the quasi-bilayer structure for the photoactive layer composed of rubbed polymer donors to produce anisotropic optical property underneath fullerene acceptors, the finished device demonstrates a power conversion efficiency of 1.36% with unpolarized light, a dichroic ratio of 3.2, and a high short circuit current ratio of 2.6 with polarized light. Our proposed fabrication procedures of devices take into account not only the cost-effective production, but also the flexibility of devices for applying in flexible, scalable circuits to advance the development of future technology.

  20. Method of an integrated and advanced evaluation of vulnerability. Conceptional-methodical fundamentals and examplary implementation for the water household, power generation and energetic utilisation of wood under climatic change; Methode einer integrierten und erweiterten Vulnerabilitaetsbewertung. Konzeptionell-methodische Grundlagen und exemplarische Umsetzung fuer Wasserhaushalt, Stromerzeugung und energetische Nutzung von Holz unter Klimawandel

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Helga; Koch, Hagen; Lasch, Petra [Potsdam-Institut fuer Klimafolgenforschung e.V. (Germany)] [and others

    2013-07-15

    Actually, in Germany there are more than hundred investigations on the consequences of the climatic change. It is difficult to evaluate the vulnerability of Germany against the climatic change. Under this aspect, the authors of the contributions report on a method of an integrated and advanced evaluation of vulnerability: Conceptional-methodical fundamentals and exemplary implementation for water household, power generation and energetic utilization of wood under climatic change.

  1. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  2. Development of a portable thermophotovoltaic power generator

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1997-03-01

    A 150 Watt thermophotovoltaic (TPV) power generator is being developed. The technical approach taken in the design focused on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a selective emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the initial prototype system, fibrous ytterbia emitters radiating in a band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The system has been operated with air preheat temperatures up to 1350K. The design of the system and development status are presented.

  3. 43 CFR 431.6 - Power generation estimates.

    Science.gov (United States)

    2010-10-01

    ... Hoover Powerplant showing estimated power generation and estimated maintenance outages for review, and... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE, AND REPLACEMENT AT...

  4. Evaluation of Teaching on Clean Energy with Wind Power Generation

    OpenAIRE

    塩沢, 臣城; 石田, 聡一; 干川, 圭吾

    2000-01-01

    Evaluation of teaching material on clean energy with wind power generation is reported in this paper. A wind power generation system was developed as a teaching material in electric and electronics field in technology education of junior high school. It is shown that the teaching material was effective for students to understand the wind power generation and the clean energy.

  5. AC power generation from microbial fuel cells

    Science.gov (United States)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  6. Generation of pulsed ion beams by an inductive storage pulsed power generator

    Science.gov (United States)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  7. Recent developments of thermoelectric power generation

    Institute of Scientific and Technical Information of China (English)

    LUAN Weiling; TU Shantung

    2004-01-01

    One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, TEPG possesses the salient features of being compact, light-weighted,noiseless in operation, highly reliable, free of carbon dioxide emission and radioactive substances. Low current conversion efficiency and high cost, however, are some of the disadvantages. Use of TEPG is therefore justified to hightech applications associated with aerospace, military operation,tel-communication and navigation, instrumentation of unmanned vehicles monitored from remote locations. Moreover, TEPG does not contribute to the depletion of natural resource and pollution of the environment such as climate warming that has been a concern in recent times. This work is concerned with providing an overview of the state of the art of TEPG with emphases placed on assessing its current and potential application. Pointed out are the ways to fabricate high performance thermoelectric material, a hurdle to overcome for the enhancement of TEPG device efficiency.

  8. Power-efficient computer architectures recent advances

    CERN Document Server

    Själander, Magnus; Kaxiras, Stefanos

    2014-01-01

    As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Sp

  9. Advanced On Board Inert Gas Generation System (OBBIGS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  10. Comparison of advanced engines for parabolic dish solar thermal power plants

    Science.gov (United States)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  11. A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses

    Directory of Open Access Journals (Sweden)

    Qi-Xun Zhang

    2015-07-01

    Full Text Available In this study we design and test a novel solar tracking generation system. Moreover, we show that this system could be successfully used as an advanced solar power source to generate power in greenhouses. The system was developed after taking into consideration the geography, climate, and other environmental factors of northeast China. The experimental design of this study included the following steps: (i the novel solar tracking generation system was measured, and its performance was analyzed; (ii the system configuration and operation principles were evaluated; (iii the performance of this power generation system and the solar irradiance were measured according to local time and conditions; (iv the main factors affecting system performance were analyzed; and (v the amount of power generated by the solar tracking system was compared with the power generated by fixed solar panels. The experimental results indicated that compared to the power generated by fixed solar panels, the solar tracking system generated about 20% to 25% more power. In addition, the performance of this novel power generating system was found to be closely associated with solar irradiance. Therefore, the solar tracking system provides a new approach to power generation in greenhouses.

  12. Advanced Power Transmission of the Future

    OpenAIRE

    Rabinowitz, Mario

    2003-01-01

    Electric power is a vital ingredient of modern society. This article is written to provide an insight into the physics and engineering that go into the transmission of electric power and its potential modernization. Topics covered will be Transmission and Distribution, Comparing Overhead and Underground Delivery, Pros and Cons of Underground Delivery, Superconducting Transmission, Cryorisistive Delivery, Hyperconductivity, and Metal-Plated Graphite Fibers.

  13. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  14. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  15. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  16. Integration of Renewable Generation in Power System Defence Plans

    OpenAIRE

    Das, Kaushik; Sørensen, Poul Ejnar; Anca Daniela HANSEN; Abildgaard, Hans

    2016-01-01

    Increasing levels of penetration of wind power and other renewable generations in European power systems pose challenges to power system security. The power system operators are continuously challenged especially when generations from renewables are high thereby reducing online capacity of conventional controllable generations to minimum. In such operation hours, the system is typically more vulnerable to disturbances in general and major disturbances in particular. This was the case in the m...

  17. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  18. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  19. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  20. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...... operation are always achieved by the proposed control strategy. It can regulate the PV output power according to any set-point, and force the PV systems to operate at the left side of the maximum power point without stability problems. Experimental results have verified the effectiveness of the proposed CPG...

  1. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)], E-mail: lifeng_zhao@ksg.harvard.edu; Xiao Yunhan [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China); Gallagher, Kelly Sims [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Wang Bo; Xu Xiang [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)

    2008-07-15

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China.

  2. Testing of Passive Safety System Performance for Higher Power Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    brian G. Woods; Jose Reyes, Jr.; John Woods; John Groome; Richard Wright

    2004-12-31

    This report describes the results of NERI research on the testing of advanced passive safety performance for the Westinghouse AP1000 design. The objectives of this research were: (a) to assess the AP1000 passive safety system core cooling performance under high decay power conditions for a spectrum of breaks located at a variety of locations, (b) to compare advanced thermal hydraulic computer code predictions to the APEX high decay power test data and (c) to develop new passive safety system concepts that could be used for Generation IV higher power reactors.

  3. Power Generating Coverings and Casings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in structured heterogeneity together with nanomaterials tailoring has made it possible to create thermoelectrics using high temperature, polymer...

  4. Power Generating Coverings and Casings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in structured heterogeneity together with nanomaterials tailoring has made it possible to create thermoelectrics using high temperature, polymer composites....

  5. Research on Comparisons of New Clean Power Generation Technologies

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities to the development of supercritical and ultra-supercritical pressure coal-fired power generation technologies and taking vigorous action to nuclear power generation technology within the following 5-10 years, exploiting wind power within the following 10-15 years, and suggested that the installed capacity of nuclear power reach 80-100 GW and that of wind power reach 50-80 GW by 2020.

  6. 43 CFR 418.16 - Using water for power generation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power..., incentive water (§ 418.35 ), or spills....

  7. The changing face of international power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I. [World Energy Council, London (United Kingdom)

    1997-12-31

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  8. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    In recent years, more and more evidence suggests that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emerging high-performance energy storage devices, as well as the ever increasing penetration of renewable energy...... sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase......, aerospace/aircraft power systems, as well as maritime power systems....

  9. Power Generation Capabilities of Tie Tube Assemblies

    Science.gov (United States)

    Gunn, Stanley V.; Hedstrom, James; Hundal, Rolv

    1994-07-01

    Second generation nuclear thermal rocket engine designs, employing solid core reactors and expander engine cycles, generally rely on some form of nuclear-driven heater to supply the major portion of thermal energy required to preheat the turbine-drive gases. If adequate heat transfer occurs, not only will efficiency-enhancing turbine-inlet temperatures be realized, but sufficient energy will be available to enable engine operation at chamber pressures ranging to at least 2,000 psia. For the case of reactor cores employing prismatic fuel elements, the utilization of tie tube assemblies, as first employed in the core-support subsystem of the Phoebus II reactor, can provide the basis of an array of propellant (hydrogen) preheaters that offer an ample supply of energy and temperature to enable candidate expander engine cycles over a wide range of operating parameters, without reducing the total enthalpy of the core-exit gas and its attendant effect on specific impulse. By modifying the tie tube design concept set forth in LASL's Nuclear Rocket Engine definition study, a powerful, weight and packaging-effective, preheater assembly can be realized. The design features of these tie tube assemblies reflect their functional objectives, core criticality considerations, and space constraints. Since the core pressure and inertial mass loads are carried by these assemblies, the structural tubular element(s) also provide coolant passage(s) for the hydrogen. The transfer of heat to the coolant surfaces is controlled by the effective thermal conductivity of the filler structure and ``insulating sleeves,'' which surround the tubular elements and are in controlled thermal contact with the surrounding core fuel elements. An option exists to further increase the transported heat to the coolant walls by the selective loading of the filler structure, ``insulating sleeves,'' and the moderator annular element with fissionable material.

  10. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    Science.gov (United States)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  11. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  12. Numerical Calculation of the Output Power of a MHD Generator

    Directory of Open Access Journals (Sweden)

    Adrian CARABINEANU

    2014-12-01

    Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.

  13. Managing strategic alliances in the power generation industry

    DEFF Research Database (Denmark)

    Kumar, Rajesh

    2003-01-01

    Highlights the challenges for power development developers in initiating alliances in the power generation industry. Importance of strategic alliances in the industry; Nature of the alliances in the independent power industry; Strategies for creating and sustaining value in global power development......; Management of tensions inherent in internal and external alliances....

  14. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei; Mather, Barry; Baggu, Murali

    2016-11-21

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This paper explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.

  15. Renewable energy power generation projects started construction in Tibet

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.

  16. Generating Functions for the Powers of Fibonacci Sequences

    Science.gov (United States)

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  17. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical...... output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the electricity network, the controller being further configured for providing a damping control signal...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  18. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  19. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  20. Circuit Simulation of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator could be divided into the following parts, a Marx generator consisting of 12 spark gap switches and 24 low inductance capacitors (Maxwell Corporation products)

  1. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  2. Software Framework for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  3. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  4. A Maximum Power Tracker for Improved Thermophotovoltaic Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  5. Nanostructured electrodes for Solar Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key to achieving high-power solar arrays for NASA applications is the development of high-efficiency, thin-film solar cells that can be fabricated directly on...

  6. Advanced solutions in power systems HVDC, facts, and artificial intelligence

    CERN Document Server

    Liu, Chen-Ching; Edris, Abdel-Aty

    2016-01-01

    Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements.

  7. Electric Power Generation from Low to Intermediate Temperature Resourcces

    Energy Technology Data Exchange (ETDEWEB)

    Gosnold, William [Univ. of North Dakota, Grand Forks, ND (United States); Mann, Michael [Chemical Engineering Department, University of North Dakota, Grand Forks, ND (United States); Salehfar, Hossein [Univ. of North Dakota, Grand Forks, ND (United States)

    2017-03-20

    The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowing at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the

  8. Coal gasification for electric power generation.

    Science.gov (United States)

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized.

  9. Carpet Specifiers Guide. Ultron, Advanced Generation Nylon Carpet Fiber.

    Science.gov (United States)

    Monsanto Textiles Co., Atlanta, GA.

    The purpose of this guide is to assist specifiers in properly specifying carpet made of Monsanto Ultron advanced generation nylon fiber. The guide describes a variety of conditions that should be considered in arriving at the proper selection and provides reference information and data, ranging from varying regulatory requirements, performance and…

  10. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  11. Windfarm generation assessment for reliability analysis of power systems

    DEFF Research Database (Denmark)

    Negra, N.B.; Holmstrøm, O.; Bak-Jensen, B.;

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...

  12. Refurbishment Status of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator, formerly used to pump KrF laser, was updated around the year 2000 from the original Light Ⅱ, a pulsed power generator built in 1980s at CIAE. This machine was

  13. Fiber optical magnetic field sensor for power generator monitoring

    Science.gov (United States)

    Willsch, Michael; Bosselmann, Thomas; Villnow, Michael

    2014-05-01

    Inside of large electrical engines such as power generators and large drives, extreme electric and magnetic fields can occur which cannot be measured electrically. Novel fiber optical magnetic field sensors are being used to characterize the fields and recognize inner faults of large power generators.

  14. Gas-fired Power Generation in India: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    India's fast growing economy needs to add 100,000 MW power generating capacity between 2002-2012. Given limitations to the use of coal in terms of environmental considerations, quality and supply constraints, gas is expected to play an increasingly important role in India's power sector. This report briefs NMC Delegates on the potential for gas-fired power generation in India and describes the challenges India faces to translate the potential for gas-fired power generation into reality.

  15. Application of Artificial Neural Networks for Predicting Generated Wind Power

    Directory of Open Access Journals (Sweden)

    Vijendra Singh

    2016-03-01

    Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.

  16. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  17. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  18. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  19. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  20. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  1. Power generation from fuelwood by the Nicaraguan sugar mills

    NARCIS (Netherlands)

    Carneiro de Miranda, R.; Broek, R. van den

    2002-01-01

    With new concept development for the sugar industry and with new power market opportunities, two sugar mills in Nicaragua initiated projects aimed at becoming power plants during the sugar cane off-season. Basically the idea is to use more efficient boilers and turbines, and generate power beyond th

  2. FEATURES OF CALCULATION OF THE NONCONTACT ELECTRIC POWER GENERATORS

    Directory of Open Access Journals (Sweden)

    Kvitko A. V.

    2015-10-01

    Full Text Available The article shows that to improve the performance of autonomous systems we need new methods and principles of their design, associated with both the use of renewable sources and the application of new technical solutions of electromechanical generators and static stabilizers and inverters electric power settings. We have disclosed modern requirements for generators of electric power, as well as features of calculating the parameters of contactless electrical power generators: asynchronous generators capacitive excitation and asynchronous generators with permanent magnets. The article presents some analytical expressions for calculating the electrical losses and the efficiency of the generators, specific weight and power. It is shown, that expedient to designing contactless electrical power generators to carry out as part of the autonomous electricity supply systems, as it is sometimes advantageous to understate the main criteria of efficiency of generators, in order to improve, for example, weight and overall dimensions of static converters. The conclusion is made that in order to improve the efficiency of designing contactless electrical power generators in the early stages of designing it is necessary to carry out a preliminary assessment of the main criteria of efficiency of contactless electrical machines. We have also discussed analytical expressions, which might be used for preliminary evaluation of application features for various types of contactless generators in the stand-alone electricity supply systems taking into account the conditions of use

  3. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    Science.gov (United States)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  4. Novel Power Conditioning Circuits for Piezoelectric Micro Power Generators

    Science.gov (United States)

    2003-10-31

    Voltage Multiplier Circuits,” IEEE Trans. on Circuits and Systems, vol. CAS-24, No. 10, Oct. 1977, pp. 517-530. [38] A. S. Sedra , and K. C. Smith ...Proceedings, PowerCon 2000, International Conference on, vol.3, Dec. 2000, pp.1605 – 1608. [3] V. J. Gosbell, V. Smith , D. A. Robinson, B.S.P. Perera

  5. Greener power generation technologies. Solutions for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Reimuth, Oliver; Kremer, Hermann; Vortmeyer, Nicolas [Siemens AG, Erlangen (Germany)

    2011-07-01

    Fossil-based power generation will continue to account for a dominant share of over 50 % in the future energy mix. In order to meet the requirements of climate protection, a combination of highly-efficient, flexible combined cycle power plants and the use of CCS in coal-based power generation will be necessary. In addition to funding of the first demonstration projects comprehensive statutory framework and public acceptance are necessary for launching CCS technology. (orig.)

  6. Apparatus for advancing a wellbore using high power laser energy

    Science.gov (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  7. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    Science.gov (United States)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  8. Power generation planning: a survey from monopoly to competition

    Energy Technology Data Exchange (ETDEWEB)

    Kagiannas, A.G.; Askounis, D.T.; Psarras, J. [National Technical University of Athens (Greece). Department of Electrical and Computer Engineering, Decision Support Systems Lab

    2004-07-01

    During the last two decades electric power generation industry in many countries and regions around the world has undergone a significant transformation from being a centrally coordinated monopoly to a deregulated liberalized market. In the majority of those countries, competition has been introduced through the adoption of a competitive wholesale electricity spot market. Short-term efficiency of power generators under competitive environment has attracted considerable effort from researchers, while long-term investment performance has received less attention. In this context, the paper aims to serve as a comprehensive review basis for generation planning methods applied in a competitive electric power generation market. The traditional modeling techniques developed for generation expansion planning under monopoly are initially presented in an effort to assess the evolution of generation planning according to the evolution of the structure of the electric power market. (author)

  9. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  10. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    Science.gov (United States)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  11. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  12. Evaluation on the efficiency of biomass power generation industry in china.

    Science.gov (United States)

    Sun, Jingqi; Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  13. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  14. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  15. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  16. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  17. Optimized power generation in offshore wind parks

    NARCIS (Netherlands)

    Oliveira Filho, J. de; Papp, Z.

    2011-01-01

    Electricity generation on offshore wind parks has an increasing economic importance - the European Commission foresees that 12% of the wind energy will be produced on offshore installations by 2020, and this share is likely to increase further in the following years. However, the continuously varyin

  18. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  19. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  20. Interagency Advanced Power Group -- Steering group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-18

    This document contains the draft meeting minutes of the Steering Group of the Interagency Advanced Power Group. Included are the discussions resulting from the presentation of working group reports and the results of a discussion of IAPG policies and procedures. In the appendix are the reports of the following working groups: Electrical, Mechanical, Solar, and Systems.

  1. Center for Space Power and Advanced Electronics, Auburn University

    Science.gov (United States)

    Deis, Dan W.; Hopkins, Richard H.

    1991-01-01

    The union of Auburn University's Center for Space Power and Advanced Electronics and the Westinghouse Science and Technology Center to form a Center for the Commercial Development of Space (CCDS) is discussed. An area of focus for the CCDS will be the development of silicon carbide electronics technology, in terms of semiconductors and crystal growth. The discussion is presented in viewgraph form.

  2. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  3. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  4. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  5. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  6. FY2009 Annual Progress Report for Advanced Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States)

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  7. Advanced Integrated Power and Attitude Control System (IPACS) study

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  8. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  9. A mechatronic power boosting design for piezoelectric generators

    Science.gov (United States)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-10-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  10. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  11. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  12. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  13. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  14. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... semiconductors is emphasized and a multidisciplinary approach for the stress analysis is introduced. Based on the proposed criteria and tools, the electrical and thermal behaviors of wind power converters are investigated under both normal and fault conditions, where the factors of wind speeds, grid codes...

  15. Boosting the Power Generation in Wind and Hydro Power Production

    OpenAIRE

    2016-01-01

    When approaching a conventional wind turbine, the air flow is slowed down and widened. This results in a loss of turbine efficiency. In order to exploit wind or water flow power as effectively as possible, it was suggested that the turbine should be placed inside a shroud, which consists of 4 wing-shaped surfaces. Two internal air foils improve the turbine performance by speeding up the flow acting on the turbine blades, two external wings create a field of low pressure behind the turbine, th...

  16. Electrical power generation by mechanically modulating electrical double layers.

    Science.gov (United States)

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  17. Holographic window for solar power generation

    Science.gov (United States)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-08-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  18. Holographic window for solar power generation

    Science.gov (United States)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-12-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  19. Windmills: Ancestors of the wind power generation

    Science.gov (United States)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2016-12-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  20. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  1. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  2. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....

  3. Gasification CFD Modeling for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  4. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; HE GuangYu; MEI ShengWei; SUN YingYun; RUAN QianTu; WANG Wei; ZHANG WangJun; YU XuFeng

    2008-01-01

    To meet the demand of high stability, high quality, and low losses of power systems, the advanced energy management system (AEMS) is established and revealed in this bulletin, which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea, theory, method, software, and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closedloop control of power systems. Based on an "event-driven" strategy, the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS, as well as its implementation in Shanghai power system.

  5. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To meet the demand of high stability,high quality,and low losses of power systems,the advanced energy management system (AEMS) is established and revealed in this bulletin,which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea,theory,method,software,and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closed-loop control of power systems. Based on an "event-driven" strategy,the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS,as well as its implementation in Shanghai power system.

  6. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  7. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...... technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared...

  8. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M.; Yokoyama, R.; Yasuda, K. [Tokyo Metropolitan Univ. (Japan); Sasaki, H. [Hiroshima Univ. (Japan); Ogimoto, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  9. Advanced Derating Strategy for Extended Lifetime of Power Electronics in Wind Power Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    It is well known that one of the main causes of failure in wind power applications is due to the power converter and its semiconductor devices. Consequently, the main objective of this paper consists of analyzing the impact of converter derating on the lifetime of the power devices by means...... of advanced reliability models and tools. The wind power system together with the thermal cycling in the power semiconductor devices has been modeled and the dynamic behavior of the system has been analyzed under certain mission profiles. Based on the thermal loading of the devices, the lifetime estimation...

  10. Optimal generator bidding strategies for power and ancillary services

    Science.gov (United States)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  11. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  12. An ABC analysis for power generation project

    Directory of Open Access Journals (Sweden)

    Batool Hasani

    2013-07-01

    Full Text Available One of the primary concerns on performance measurement is to know how much a particular project cost. However, using traditional method on project-based products often leads to inappropriate results. In this paper, we re-examine this issue by comparing the cost of a power station construction project using ABC versus traditional method. The results of survey show that ABC method is capable of providing better estimates for overhead costs compared with traditional method. In other words, ABC method helps reduce some of the unnecessary overhead cost items and increase on some other cost components. This helps increase the relative efficiency of the system by reducing total cost of project.

  13. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  14. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...... active power control methods are required. As a cost-effective solution to avoid overloading, a Constant Power Generation (CPG) control scheme by limiting the feed-in power has been introduced into the currently active grid regulations. In order to achieve a CPG operation, this paper presents three CPG...... strategies based on: 1) a power control method (P-CPG), 2) a current limit method (I-CPG) and 3) the Perturb and Observe algorithm (P&O-CPG). However, the operational mode changes (e.g., from the maximum power point tracking to a CPG operation) will affect the entire system performance. Thus, a benchmarking...

  15. Local Control of Reactive Power by Distributed Photovoltaic Generators

    CERN Document Server

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  16. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: building a small microrover that employs energy generated by a bacterial source Objective: investigate the usability of a microbial fuel cell to power a...

  17. Gasification combined cycle power generation - process alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Korhonen, M.

    1988-01-01

    Interest in Integrated Gasification Combined Cycle (IGCC) power plants has recently increased also in Finland. The IGCC systems offer the potential of superior efficiency and environmental performance over conventional pulverized coal or peat fired boilers. Potential applications are both large-scale electricity production from coal and medium-scale combined heat and electricity production. In the latter case, the gasification process should also be applicable to peat and wood. Several IGCC processes have been developed in USA and in Europe. These processes differ from each other in many respects. Nearest to commercialization are processes, which employ oxygen gasification and cold gas cleanup. The Cool Water plant, which was brought into operation in 1984 in USA, has demonstrated the feasibility of an IGCC system using Texaco entrained-bed gasifier. Several pressurized fluidized-bed and fixed-bed gasification processes have also reached a pilot or demonstration stage with a wide variety of coals from lignite to hard coal. Pressurized fluidized-bed gasification of peat (Rheinbraun-HTW-process) will also be demonstrated at the peat ammonia plant of Kemira Oy, which will be commissioned in 1988 in Oulu, Finland. Oxygen gasification and cold gas cleanup are, however, economically viable only in large-scale applications. Technology is being developed to simplify the IGCC system, in order to reduce its capital costs and increase its efficiency. Air gasification combined with ho gas cleanup seems to have a great potential of improving the competitiveness of the IGCC system.

  18. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  19. Thermal Power: Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    Han Wei; Li Jialu

    2009-01-01

    @@ History review Before the foundation of New China, there was no thermal power equipment manufacturing industry in China at all. China imported the manufacturing technology of 6-MW and 12-MW thermal power units from the former Czechoslovakia in 1952, and imported the manufacturing technology of 6-MW and 50-MW thermal power units from the former Soviet Union in 1953. At that time, the thermal power equipment manufacturing industry in China started to develop. Before the reform and opening up, China had been able to independently develop 6-300-MW thermal power units of high-pressure, super high-pressure and sub-critical utility boiler, impulse turbine, dual internal water cooling or water-hydrogen-hydrogen turbogenerator, among which the 100-MW, 125-MW,200-MW and 300-MW thermal power units had become the main parts in power grids, and three large-scale power generation equipment manufacturing bases of Harbin, Shanghai and Dongfang had been established simultaneously.

  20. Adequacy of Frequency Reserves for High Wind Power Generation

    DEFF Research Database (Denmark)

    Das, Kaushik; Litong-Palima, Marisciel; Maule, Petr

    2016-01-01

    In this article, a new methodology is developed to assess the adequacy of frequency reserves to handle power imbalances caused by wind power forecast errors. The goal of this methodology is to estimate the adequate volume and speed of activation of frequency reserves required to handle power...... imbalances caused due to high penetration of wind power. An algorithm is proposed and developed to estimate the power imbalances due to wind power forecast error following activation of different operating reserves. Frequency containment reserve requirements for mitigating these power imbalances...... are developed through this methodology. Furthermore, the probability of reducing this frequency containment reserve requirement is investigated through this methodology with activation of different volumes and speed of frequency restoration reserve. Wind power generation for 2020 and 2030 scenarios...

  1. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  2. Advanced nanoparticle generation and excitation by lasers in liquids.

    Science.gov (United States)

    Barcikowski, Stephan; Compagnini, Giuseppe

    2013-03-01

    Today, nanoparticles are widely implemented as functional elements onto surfaces, into volumes and as nano-hybrids, resulting for example in bioactive composites and biomolecule conjugates. However, only limited varieties of materials compatible for integration into advanced functional materials are available: nanoparticles synthesized using conventional gas phase processes are often agglomerated into micro powders that are hard to re-disperse into functional matrices. Chemical synthesis methods often lead to impurities of the nanoparticle colloids caused by additives and precursor reaction products. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment, and conjugate a large variety of nanostructures in a scalable and clean manner. This editorial briefly highlights selected recent advancements and critical aspects in the field of pulsed laser-based nanoparticle generation and manipulation, including exemplary strategies to harvest the unique properties of the laser-generated nanomaterials in the field of biomedicine and catalysis. The presented critical aspects address future assignments such as size control and scale-up.

  3. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...... of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter...

  4. Parametric instability in the high power era of Advanced LIGO

    Science.gov (United States)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  5. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...... concentrate on single-tone performance, this study also encompasses two-tone intermodulation distortion measurements. An 8GHz two-stage power amplifier (PA) MMIC was developed. Harmonic tuning was performed to enhance the power-added efficiency (PAE). The transistors were biased in deep class-AB where low...

  6. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature......This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... power cycling test setup is given. Then, an improved in situ junction temperature estimation method using on-state collector–emitter voltage VCE ON and load current is proposed. In addition, a procedure of advanced accelerated power cycling test and test results with 600 V, 30 A transfer molded IGBT...

  7. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  8. Power generation from wind turbines in a solar chimney

    Directory of Open Access Journals (Sweden)

    Tudor Foote, Ramesh K. Agarwal

    2013-01-01

    Full Text Available Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable k – ε model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  9. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  10. Variable-Speed, Constant-Frequency Generation Of Power

    Science.gov (United States)

    Brady, Frank J.

    1988-01-01

    Feedback of stator power and reactive volt-amperes determines rotor excitation. New method involves control circuit separating rotor excitation into generation of slip frequency and control of amplitude and phase. In control circuit, speed determines slip frequency, while stator power and reactive volt-amperes determine amplitude and phase of rotor current.

  11. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...... as well as possibilities for the wind power conversion, and may be useful as an inspiring reference for the researchers in this field....

  12. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  13. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  14. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  15. Modeling the Ocean Tide for Tidal Power Generation Applications

    Science.gov (United States)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  16. Injector power supplies reliability improvements at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, A.; Pasky, S.; Sereno, N.; Soliday, R.; Wang, J.

    2006-01-01

    Operational goals for the Advanced Photon Source (APS) facility include 97% availability and a mean time between unscheduled beam losses (faults) of 70 hours, with more than 5000 user hours of scheduled beam per year. To meet this objective, our focus has been maximizing the mean time between faults (MTBF). We have made various hardware and software improvements to better operate and monitor the injector power supply systems. These improvements have been challenging to design and implement in light of the facility operating requirements but are critical to maintaining maximum reliability and availability of beam for user operations. This paper presents actions taken as well as future plans to continue improving injector power supply hardware and software to meet APS user operation goals. The Advanced Photon Source (APS) has two major components. The storage ring (SR) accelerator is the primary accelerator that delivers X-ray beams to users and uses over 1,400 power supplies. The injector accelerators provide beam to the SR and use 361 different supplies. The control system ranges from the standard VME-IOC and Allen Bradley to GESPAC with additional mini-PLCs for monitoring. Injector power supplies range from {approx}30 watts DC to a ramped peak of 4.6 megawatts in 250 ms. Finally, all accelerators use pulsed supplies, and some of them deliver peak power in megawatts. In the SR, each multipole and corrector magnet is separately powered, with only the main dipole magnets on a common bus. Independent power supplies provide increased flexibility, but place additional demands on power supply reliability. The APS reliability goals are 97% availability and 70 hours mean time to unscheduled beam loss. There are 5,129 user hours scheduled per year, 1,315 hours used for machine studies, and the remaining 2,316 hours used for maintenance. The present annual operating schedule provides for three user runs (typically 10 to 12 weeks long), and three machine shutdowns (typically

  17. Motor-Generator powering the PS (Proton Synchrotron) main magnets

    CERN Multimedia

    1983-01-01

    This motor-generator,30 MW peak, 1500 r.p.m.,pulsed power supply for the PS main magnet replaced in 1968 the initial 3000 r.p.m. motor-generator-flywheel set which had served from the PS start-up in 1959 until end 1967. See also photo 8302337 and its abstract.

  18. Next generation geothermal power plants. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  19. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  20. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    Science.gov (United States)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  1. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  2. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Jonathan Lueke

    2011-01-01

    Full Text Available Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  3. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    CERN Document Server

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  4. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...... on the grid side. Therefore, considerations about power generation, safe running and grid synchronization must be done before connecting these systems to the utility network. This paper is mainly dealing with the grid synchronization issues of distributed systems. An overview of the synchronization methods...

  5. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap electrical resistance and heat conductivity of the considered materials.......The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost...

  6. Windfarm Generation Assessment for Reliability Analysis of Power Systems

    DEFF Research Database (Denmark)

    Barberis Negra, Nicola; Bak-Jensen, Birgitte; Holmstrøm, O.

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...... in a reliability model and the generation of a windfarm is evaluated by means of sequential Monte Carlo simulation. Results are used to analyse how each mentioned Factor influences the assessment, and why and when they should be included in the model....

  7. Windfarm Generation Assessment for ReliabilityAnalysis of Power Systems

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis; Holmstrøm, Ole; Bak-Jensen, Birgitte

    2007-01-01

    Due to the fast development of wind generation in the past ten years, increasing interest has been paid to techniques for assessing different aspects of power systems with a large amount of installed wind generation. One of these aspects concerns power system reliability. Windfarm modelling plays...... in a reliability model and the generation of a windfarm is evaluated by means of sequential Monte Carlo simulation. Results are used to analyse how each mentioned Factor influences the assessment, and why and when they should be included in the model....

  8. Use of thermoelectric generators for improve power dependability over grid power

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Jack [Global Thermoelectric, Calgary (Canada)

    2005-07-01

    A natural gas transportation company was experiencing extensive pipeline corrosion on some sections of their pipeline protected by impressed current using grid power and rectifiers. After determining that grid power was being interrupted on the affected sections, the gas transporter began looking for a more dependable power supply and chose thermoelectric generators. Since installing thermoelectric generators in 2002, the pipeline potentials have stabilized and transporter was able to experience 100% operational time on affected sections. (author)

  9. Generation Expansion Planning with High Penetration of Wind Power

    Science.gov (United States)

    Sharan, Ishan; Balasubramanian, R.

    2016-08-01

    Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.

  10. Advanced Techniques for Power System Identification from Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block

  11. Design, Modeling and Optimization of Thermoelectrical Power Generation Devices

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania

    Thermoelectric generators (TEG) can convert waste heat that abounds in modern societies into electricity in an environmentally friendly and reliable manner. The development works mostly focused on thermoelectric materials required a significant amount of heat and mass transfer optimization...... is providing compact and light power systems as well as the pumping power, the power generation, and the cost per performance of the system are modified. This PhD dissertation develops and establishes the basic layout of the micro-structured heat sinks by a system design strategy connected to the theoretical...... approaches. The geometrical effects of the TEG on the heat transfer characteristics in the heat sink are studied in conjunction with computational simulation to explore the effective design of the microchannel heat sink. In addition, output power of a TEG module versus pumping power required...

  12. A Thermoelectric Generation System and Its Power Electronics Stage

    Science.gov (United States)

    Gao, Junling; Sun, Kai; Ni, Longxian; Chen, Min; Kang, Zhengdong; Zhang, Li; Xing, Yan; Zhang, Jianzhong

    2012-06-01

    The electricity produced by a thermoelectric generator (TEG) must satisfy the requirements of specific loads given the signal level, stability, and power performance. In the design of such systems, one major challenge involves the interactions between the thermoelectric power source and the power stage and signal-conditioning circuits of the load, including DC-DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC-DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify the feasibility and effectiveness of the proposed design. Finally, the thermal-electric coupling effects caused by current-related heat source terms, such as the Peltier effect etc., are reported and discussed, and the potential influence on the power electronics design due to such coupling is analyzed.

  13. Power density improvement of the power conditioning circuit for combined piezoelectric and electrodynamic generators

    Science.gov (United States)

    Zessin, H.; Spies, P.; Mateu, L.

    2016-11-01

    In this study, we report a power management circuit for a combined piezoelectric- electrodynamic generator. A piezoelectric element is bonded to a spring steel cantilever beam and a magnet, used as tip mass, oscillates through a coil. This principle creates the combined generator. A test setup has been created to automate the characterization of the piezoelectric generator and its power management circuit. Three different power management circuits for the piezoelectric part of the combined generator have been analysed: a bridge rectifier, an SSHI circuit with an external inductance and an SSHI circuit which utilizes the coil of the electrodynamic generator as circuit element. The three circuits are compared in terms of their output power, efficiency and power density. The SSHI circuit with an external inductance has the highest output power and efficiency, followed by the SSHI circuit with the electrodynamic generator coil. The power density of the bridge rectifier is the highest but for higher efficiency the power density of the SSHI circuit with the coil of the electromagnetic generator reaches the best results.

  14. A Survey on Next-generation Power Grid Data Architecture

    Energy Technology Data Exchange (ETDEWEB)

    You, Shutang [University of Tennessee, Knoxville (UTK); Zhu, Dr. Lin [University of Tennessee (UT); Liu, Yong [ORNL; Liu, Yilu [ORNL; Shankar, Mallikarjun (Arjun) [ORNL; Robertson, Russell [Grid Protection Alliance; King Jr, Thomas J [ORNL

    2015-01-01

    The operation and control of power grids will increasingly rely on data. A high-speed, reliable, flexible and secure data architecture is the prerequisite of the next-generation power grid. This paper summarizes the challenges in collecting and utilizing power grid data, and then provides reference data architecture for future power grids. Based on the data architecture deployment, related research on data architecture is reviewed and summarized in several categories including data measurement/actuation, data transmission, data service layer, data utilization, as well as two cross-cutting issues, interoperability and cyber security. Research gaps and future work are also presented.

  15. Advanced Test Accelerator (ATA) pulse power technology development

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-03-09

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described.

  16. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  17. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame....... The formula for the control reference is explicitly deduced in this paper considering the losses of the generator, the power electronic devices and the filter. Three control strategies are compared with the proposed method under different wind speeds and different reactive power references. The simulation...

  18. Power fluctuations smoothing and regulations in wind turbine generator systems

    Science.gov (United States)

    Babazadehrokni, Hamed

    Wind is one of the most popular renewable energy sources and it has the potential to become the biggest energy source in future. Since the wind does not always blow constantly, the output wind power is not constant which may make some problem for the power grid. According to the grid code which is set by independent system operator, ISO, wind turbine generator systems need to follow some standards such as the predetermined acceptable power fluctuations. In order to smooth the output powers, the energy storage system and some power electronics modules are employed. The utilized power electronics modules in the wind turbine system can pursue many different goals, such as maintaining the voltage stability, frequency stability, providing the available and predetermined output active and reactive power. On the other side, the energy storage system can help achieving some of these goals but its main job is to store the extra energy when not needed and release the stored energy when needed. The energy storage system can be designed in different sizes, material and also combination of different energy storage systems (hybrid designs). Combination of power electronics devises and also energy storage system helps the wind turbine systems to smooth the output power according to the provided standards. In addition prediction of wind speed may improve the performance of wind turbine generator systems. In this research study all these three topics are studied and the obtained results are written in 10 papers which 7 of them are published and three of them are under process.

  19. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    Science.gov (United States)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  20. Wind Generation Participation in Power System Frequency Response: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; Zhang, Yingchen

    2017-01-01

    The electrical frequency of an interconnected power system must be maintained close its nominal level at all times. Excessive under- and overfrequency excursions can lead to load shedding, instability, machine damage, and even blackouts. There is a rising concern in the electric power industry in recent years about the declining amount of inertia and primary frequency response (PFR) in many interconnections. This decline may continue due to increasing penetrations of inverter-coupled generation and the planned retirements of conventional thermal plants. Inverter-coupled variable wind generation is capable of contributing to PFR and inertia with a response that is different from that of conventional generation. It is not yet entirely understood how such a response will affect the system at different wind power penetration levels. The modeling work presented in this paper evaluates the impact of wind generation's provision of these active power control strategies on a large, synchronous interconnection. All simulations were conducted on the U.S. Western Interconnection with different levels of instantaneous wind power penetrations (up to 80%). The ability of wind power plants to provide PFR - and a combination of synthetic inertial response and PFR - significantly improved the frequency response performance of the system.

  1. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  2. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  3. Performance optimization for doubly fed wind power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, S.; Spee, R.; Enslin, J.H.R.

    1999-08-01

    Significant variation of the resource kinetic energy, in the form of wind speed, results in substantially reduced energy capture in a fixed-speed wind turbine. In order to increase the wind energy capture in the turbine, variable-speed generation (VSG) strategies have been proposed and implemented. However, that requires an expensive ac/ac power converter, which increases the capital investment significantly. Consequently, doubly fed systems have been proposed to reduce the size of the power converter and, thereby, the associated cost. Additionally, in doubly fed systems, as a fixed operating point (power and speed), power flow can be regulated between the two winding systems on the machine. This feature can by utilized to essentially minimize losses in the machine associated with the given operating point or achieve other desired performance enhancements. In this paper, a brushless doubly fed machine (BDFM) is utilized to develop a VSG wind power generator. The VSG controller employs a wind-speed-estimation-based maximum power point tracker and a heuristic-model-based maximum efficiency point tracker to optimize the power output of the system. The controller has been verified for efficacy on a 1.5-kW laboratory VSG wind generator. The strategy is applicable to all doubly fed configurations, including conventional wound-rotor induction machines, Scherbius cascades, BDFM's and doubly fed reluctance machines.

  4. Resource Needs for Nuclear Power Generation in Ghana

    Directory of Open Access Journals (Sweden)

    Benjamin J. B. Nyarko

    2011-06-01

    Full Text Available Nuclear power is a proven technology that has served humanity for the past fifty years. It has provided electricity for several countries and shall continue to serve as a viable base load source of electric power. The need for skilled human resources for nuclear practice cannot be overlooked in the quest of any nation to adopt the technology. The Ghana Atomic Energy Commission and the University of Ghana in collaboration with the International Atomic Energy Agency have thus started a Graduate School of Nuclear and Allied Sciences to provide the human resources needed for nuclear power generation in Ghana. The School currently offers second degree courses as well as doctor of philosophy courses. Financial, land and water resource needs for nuclear power generation have been discussed. Availability of the national grid due to the deregulation of the electric power sector has also been discussed. Nuclear Fuel availability has been discussed along with the steps Ghana has to go through to obtain the technology to her development. The legal and legislative framework for nuclear power generation has also been presented. The programs currently available from the IAEA to assist Ghana to develop nuclear power have also been discussed. Conclusions have been drawn based on the discussions made.

  5. Probabilistic forecasting of wind power generation using extreme learning machine

    DEFF Research Database (Denmark)

    Wan, Can; Xu, Zhao; Pinson, Pierre

    2014-01-01

    with the best performance. Consequently, a new method for prediction intervals formulation based on theELMand the pairs bootstrap is developed.Wind power forecasting has been conducted in different seasons using the proposed approach with the historical wind power time series as the inputs alone. The results......Accurate and reliable forecast of wind power is essential to power system operation and control. However, due to the nonstationarity of wind power series, traditional point forecasting can hardly be accurate, leading to increased uncertainties and risks for system operation. This paper proposes...... an extreme learning machine (ELM)-based probabilistic forecasting method for wind power generation. To account for the uncertainties in the forecasting results, several bootstrapmethods have been compared for modeling the regression uncertainty, based on which the pairs bootstrap method is identified...

  6. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  7. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  8. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  9. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  10. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  11. Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    Science.gov (United States)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-06-01

    There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD™ commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL™ software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency-power maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from

  12. Prediction of Chiller Power Consumption: An Entropy Generation Approach

    KAUST Repository

    Saththasivam, Jayaprakash

    2016-06-21

    Irreversibilities in each component of vapor compression chillers contribute to additional power consumption in chillers. In this study, chiller power consumption was predicted by computing the Carnot reversible work and entropy generated in every component of the chiller. Thermodynamic properties namely enthalpy and entropy of the entire refrigerant cycle were obtained by measuring the pressure and temperature at the inlet and outlet of each primary component of a 15kW R22 water cooled scroll chiller. Entropy generation of each component was then calculated using the First and Second Laws of Thermodynamics. Good correlation was found between the measured and computed chiller power consumption. This irreversibility analysis can be also effectively used as a performance monitoring tool in vapor compression chillers as higher entropy generation is anticipated during faulty operations.

  13. Electric energy production by particle thermionic-thermoelectric power generators

    Science.gov (United States)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  14. Renewable Energy Based Floating Power Generator (Rivers and Canals

    Directory of Open Access Journals (Sweden)

    Dr. J.R.Gandhi

    2016-02-01

    Full Text Available We have developed a stand alone, (river and canal water stream floating power generator system for village electrification, agriculture water pumping, bridge street lights and such other utilities. The system is the unique one of its kind as per our knowledge and various surveys. The physical structure of the system is made of the non corrosive and unbreakable materials like mild steel, fiber glass etc. It works, as it rotates in the water flow. It does not require any kind of the external electric grid power for its working. As the water flows, the specially designed blades of the system rotate in the direction of the flow and ultimately the consistent power is generated, this power can be used directly or it may be stored in battery and the utilized as and when required. No permanent installation, No pollution and environment friendly floating Pico turbine. The observations taken from the sight are tabulated and accordingly results are discussed.

  15. Voltage Control in Wind Power Plants with Doubly Fed Generators

    DEFF Research Database (Denmark)

    Garcia, Jorge Martinez

    In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...

  16. Fully casted soft power generating triboelectric shoe insole

    Science.gov (United States)

    Haque, Rubaiyet I.; Farine, Pierre-André; Briand, Danick

    2016-11-01

    Power generating soft triboelectric based shoe insole fully elastomeric and compatible with large-scale fabrication technique has been developed. During the process, film casting and stencil printing techniques were implemented to deposit/pattern elastomeric and soft/flexible materials, such as, polydimethylsiloxane (PDMS) and polyurethane (PU). Carbon- based elastomeric materials were used as electrodes, which were also film casted. The developed triboelectric generator (TENG) was capable of harnessing electrical power effectively from mechanical deformation of the system during walking or running activities. The performance of the device was tested for walking with frequency of 0.9±0.2 Hz. The power (rms value) of 0.25 mW was achieved for load resistance of 100 MΩ,, which corresponded to the power density (rms value) of 1.9 μW/cm2.

  17. A Conceptual Venus Rover Mission Using Advanced Radioisotope Power Systems

    Science.gov (United States)

    Evans, Michael; Shirley, James H.; Abelson, Robert Dean

    2006-01-01

    This concept study demonstrates that a long lived Venus rover mission could be enabled by a novel application of advanced RPS technology. General Purpose Heat Source (GPHS) modules would be employed to drive an advanced thermoacoustic Stirling engine, pulse tube cooler and linear alternator that provides electric power and cooling for the rover. The Thermoacoustic Stirling Heat Engine (TASHE) is a system for converting high-temperature heat into acoustic power which then drives linear alternators and a pulse tube cooler to provide both electric power and coolin6g for the rover. A small design team examined this mission concept focusing on the feasibility of using the TASHE system in this hostile environment. A rover design is described that would provide a mobile platform for science measurements on the Venus surface for 60 days, with the potential of operating well beyond that. A suite of science instruments is described that collects data on atmospheric and surface composition, surface stratigraphy, and subsurface structure. An Earth-Venus-Venus trajectory would be used to deliver the rover to a low entry angle allowing an inflated ballute to provide a low deceleration and low heat descent to the surface. All rover systems would be housed in a pressure vessel in vacuum with the internal temperature maintained by the TASHE at under 50 °C.

  18. Direct steam generation (DSG) solar thermal power plant in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sukchai, Sukruedee; Chramsa-ard, Wisut; Sonsaree, Sorawit; Boonsu, Rungrudee [Naresuan Univ., Phitsanulok (Thailand). School of Renewable Energy Technology; Krueger, Joachim; Pandian, Yuvaraj [Solarlite GmbH, Duckwitz (Germany)

    2012-07-01

    In 2010, the total electricity consumption in Thailand was 149,301 GWh, increased by 10.5% compared with that in the previous year. The economic sector accounting for the highest share of national electricity consumption was the industrial sector, holding a share of 46%; while the household and commercial sectors accounted for a share of 22% and 15% respectively. The electricity is generated from natural gas, coal, oil, hydro, import and other of 72%, 18%, 0.4%, 3%, 4%, and 2% respectively. In the past, the Electricity Generating Authority of Thailand (EGAT) was the sole power producer. Later, the government had formulated a policy promoting the private sector role in the power generation sector in order to encourage competition in the generation business. Currently, it is resulting in a growing number of Very Small Power Producers (VSPP), using renewable energy as main fuel, supplying power to the grid. In this presentation, general background and situation of solar thermal power plant (DSG) in Thailand will be presented. The resource potential which presented by solar map for the central, north and northeast parts of the country is quite clear sky that receive the highest direct normal irradiation of 1,350 - 1,400 kWh/m{sup 2}-year stand for 43% of the total areas of the country. Together with the high direct normal irradiation is received during summer from January to April about 14-17 MJ/m{sup 2}-day. The first of solar thermal power plant in Thailand is presented. Solar energy development that is one of renewable energy promotion program in the nation master plan has been reviewed and discussed to indicate the recommendation. Barriers as educational, technical and financial to promote solar thermal power plant is also presented. From the investigation, this presentation proposes some idea to be the guideline for policy setting, overcome the solar thermal power plant barrier in Thailand. (orig.)

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  20. Experience of pico/micro hydro based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, S.S. [Indian Inst. of Technology, Delhi, New Delhi (India). Dept. of Electrical Engineering

    2010-07-01

    Although India has approximately 150,000 megawatts of hydro potential, only a small portion is tapped. There is also significant untapped hydro potential in many developing countries such as Nepal, Bhutan, Vietnam, Indonesia and regions in South America and Africa. Small-scale hydroelectric power systems with capacities of up to a few megawatts are eco-friendly and sustainable. They can be classified based on unit sizes as pico (u pto 10 kilowatts), micro (10-100 kilowatts) and mini (100 kilowatts to a few megawatts) hydro systems. Mini hydro systems are always grid connected while micro can be either grid connected or off grid. Pico is always off grid. In India, there are thousands of favorable sites in this range that should be tapped for distributed power generation to electrify local communities. This need is reflected by the global emphasis on distributed power generation as well as the Government of India's policy to promote this type of power generation. A working stand alone pico-hydro power generating system has been successfully installed in 5 sites in Karnataka. The purpose of the project was to demonstrate the technical, managerial and economic feasibility of setting up small hydro projects in remote hilly areas of Karnataka, India and its positive environmental impact. The presentation discussed the site selection criteria; installed sites of pico hydro; system description; parts of the system; the electric load controller; types of electronic load controllers; and a description of the unit and control scheme. tabs., figs.

  1. Tackling investment challenges in power generation - in IEA countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In most IEA countries a new investment cycle in power generation is looming. A window of opportunity now exists to push for a cleaner and more efficient generation portfolio that could transform the power sector and help to build a more sustainable infrastructure lasting over the next 40-50 years. What are the recent trends and prospects for investment in power generation? What are the main drivers and barriers? This book assesses these issues and gives special emphasis to the question of how uncertainties may affect investment decisions. Uncertainties on CO{sub 2} constraints, on power plant licensing, on acceptability of nuclear power, on local opposition to any new energy infrastructure, on government support for specific generation technologies and on government policies on energy efficiency are particularly disturbing. Market liberalisation can also be a key uncertainty, but this may be greatly reduced and deliver considerable benefits if liberalisation is implemented whole-heartedly and backed by on-going government commitment. Government action is urgently needed: to reduce regulatory uncertainty for investors, to establish effective competitive markets and to give firm policy directions in those areas where markets fall short, such as in taking environmental costs and security of supply into account.

  2. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  3. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).

  4. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    of a substation transformer is determined by the sum of the maximum loading at individual radial feeders while assuming no generation output from local generators. However, such a deterministic analysis does not provide a realistic evaluation of system steady-state performance. A more realistic evaluation can...... that minimizes the expectation of power losses of a 69-bus distribution system by controlling the power factor of WTs. The optimization is subjected to the probabilistic constraints of bus voltage and line current. The algorithm combines a constrained nonlinear optimization algorithm and a Monte Carlo based PLF...

  5. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  6. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  7. Photonic microwave generation with high-power photodiodes

    CERN Document Server

    Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

    2013-01-01

    We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

  8. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    in this paper to solve the above problem. C-shape stator cores are employed in a modular design concept for quick maintenance or replacement, and a ring-shape excitation assistant coil is sandwiched in the space between the modular stator cores. The magnetization and torque characteristics are simulated by 3-D......The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed...

  9. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    Science.gov (United States)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  10. Microcombustor-thermoelectric power generator for 10-50 watt applications

    Science.gov (United States)

    Marshall, Daniel S.; Cho, Steve T.

    2010-04-01

    Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.

  11. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  12. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  13. Electric Power Quality and Distributed Generation in Cuba

    Directory of Open Access Journals (Sweden)

    Miguel Castro Fernández

    2010-10-01

    Full Text Available Diesel engine generator (RM is one of the most used technologies on distributed generation (DG. The presence of RM, no manner its operation form need an analysis about differents problems: one of them is related with power quality (PQ. First results obained inside one study directed to obtain answers about differents perturbations for the RM presence like shortcircuit and voltage variation on RM termianls and rejected charge are presented in this paper.

  14. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  15. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  16. PowerPivot for advanced reporting and dashboards

    CERN Document Server

    Bosco, Robert

    2013-01-01

    A step-by-step tutorial with focused examples that builds progressively from basic to advanced topics and helps you create business intelligence reports and dashboards quickly and efficiently using the PowerPivot add-in.This book is ideal for data analysts, reporting and MIS professionals, business analysts, managers, dashboard makers, business intelligence professionals, self-service business intelligence personnel, and students. It is assumed that you have basic data analysis skills and intermediate level Excel skills. Familiarity with Pivot Tables as well as basic knowledge of VBA scripting

  17. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  18. Advanced thermal management techniques for space power electronics

    Science.gov (United States)

    Reyes, Angel Samuel

    1992-01-01

    Modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Current thermal management techniques are not sufficient for the increasing waste heat dissipation of novel electronic technologies. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. The benefits and limitations of emerging cooling technologies are discussed. These technologies include: liquid pumped devices, mechanically pumped two-phase cooling, capillary pumped evaporative cooling, and thermoelectric devices. Currently, liquid pumped devices offer the most promising alternative for electronics thermal control.

  19. Test facility of thermal storage equipment for space power generation

    Science.gov (United States)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  20. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  1. Directions in US Air Force space power energy generation and distribution technology

    Science.gov (United States)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  2. Sensor-Based Trajectory Generation for Advanced Driver Assistance System

    Directory of Open Access Journals (Sweden)

    Christopher James Shackleton

    2013-03-01

    Full Text Available This paper investigates the trajectory generation problem for an advanced driver assistance system that could sense the driving state of the vehicle, so that a collision free trajectory can be generated safely. Specifically, the problem of trajectory generation is solved for the safety assessment of the driving state and to manipulate the vehicle in order to avoid any possible collisions. The vehicle senses the environment so as to obtain information about other vehicles and static obstacles ahead. Vehicles may share the perception of the environment via an inter-vehicle communication system. The planning algorithm is based on a visibility graph. A lateral repulsive potential is applied to adaptively maintain a trade-off between the trajectory length and vehicle clearance, which is the greatest problem associated with visibility graphs. As opposed to adaptive roadmap approaches, the algorithm exploits the structured nature of the environment for construction of the roadmap. Furthermore, the mostly organized nature of traffic systems is exploited to obtain orientation invariance, which is another limitation of both visibility graphs and adaptive roadmaps. Simulation results show that the algorithm can successfully solve the problem for a variety of commonly found scenarios.

  3. Photovoltaic power conditioners: Development, evolution, and the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Bulawka, A. [USDOE, Washington, DC (United States); Krauthamer, S.; Das, R. [Jet Propulsion Lab., Pasadena, CA (United States); Bower, W. [Sandia National Labs., Albuquerque, NM (United States)

    1994-07-01

    Market-place acceptance of utility-connected photovoltaic (PV) power generation systems and their accelerated installation into residential and commercial applications are heavily dependent upon the ability of their power conditioning subsystems (PCS) to meet high reliability, low cost, and high performance goals. Many PCS development efforts have taken place over the last 15 years, and those efforts have resulted in substantial PCS hardware improvements. These improvements, however, have generally fallen short of meeting many reliability, cost and performance goals. Continuously evolving semiconductor technology developments, coupled with expanded market opportunities for power processing, offer a significant promise of improving PCS reliability, cost and performance, as they are integrated into future PCS designs. This paper revisits past and present development efforts in PCS design, identifies the evolutionary improvements and describes the new opportunities for PCS designs. The new opportunities are arising from the increased availability and capability of semiconductor switching components, smart power devices, and power integrated circuits (PICS).

  4. Enhancement of Distributed Generation by Using Custom Power Device

    Institute of Scientific and Technical Information of China (English)

    Kishor V. Bhadane; M. S. Ballal; R. M. Moharil

    2015-01-01

    Abstract-Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.

  5. Research on Power Control of Wind Power Generation Based on Neural Network Adaptive Control

    Institute of Scientific and Technical Information of China (English)

    Hai-ying DONG; Chuan-hua SUN

    2010-01-01

    -For the characteristics of wind power generation system is multivariable,nonlinear and random,in this paper the neural network PID adaptive control is adopted.The size of pitch angle is adjusted in time to improve the performance of power control.The PID parameters are corrected by the gradient descent method,and Radial Basis Functinn(RBF)neural network is used as the system identifier in this method.Simulation results shaw that by using neural adaptive PID controller the generator power control can inhibit effectively the speed and affect the output power of generator.The dynamic performance and robustness of the controlled system is good,and the performance of wind power system is improved.

  6. Application of Designing Economic Mechanisms to Power Market - Part 1 Generation Side Power Market Design

    Directory of Open Access Journals (Sweden)

    XIE Qingyang

    2013-04-01

    Full Text Available The paper studies on the core philosophy and algorithm of the designing economic mechanisms theory, a new algorithm of designing incentive compatible power market mechanisms is proposed, a generation side power market mechanism model which has features of inventive compatibility, informationally efficient and decentralized decision is constructed. The power market based on the designing economic mechanisms theory can lead to the Pareto Optimality of the resource allocation; meanwhile GENCOs are permitted to pursue profits maximization. The paper is in two parts. Part 1 focuses on the process of constructing a generation side power market competitive mechanism model based on the designing economic mechanisms theory. Part 2 presents the characteristic analysis of the generation side power market competitive mechanism.

  7. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  8. Recent advances in phosphate laser glasses for high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  9. Advanced simulation of windmills in electric power supply

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, Hans; Nielsen, Arne Hejde

    2000-01-01

    -connected windmills as a part of realistic electrical grid models. That means an arbitrary number of wind farms or single windmills within an arbitrary network configuration. The windmill model may be applied to study of electric power system stability and of power quality as well. It is found that a grid......-connected windmill operates as a low-pass filter, whereby two following observations are made: 1. interaction between the electrical grid and the mechanical systems of grid-connected windmills is given by a low frequency oscillation as the result of disturbances in the electric grid; 2. flicker, which is commonly......An advanced model of a grid-connected windmill is set up where the windmill is a complex electro-mechanical system. The windmill model is implemented as a standardised component in the dynamic simulation tool, PSS/E, which makes it possible to investigate dynamic behaviour of grid...

  10. Fuel cycle comparison of distributed power generation technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  11. Study of thermoelectric systems applied to electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A.; Vian, J.G.; Astrain, D.; Martinez, A. [Dpto. Ingenieria Mecanica, Energetica y de Materiales, Universidad Publica de Navarra, Pamplona (Spain)

    2009-05-15

    A computational model has been developed in order to simulate the thermal and electric behavior of thermoelectric generators. This model solves the nonlinear system of equations of the thermoelectric and heat transfer equations. The inputs of the program are the thermoelectric parameters as a function of temperature and the boundary conditions, (room temperature and residual heat flux). The outputs are the temperature values of all the elements forming the thermoelectric generator, (performance, electric power, voltage and electric current generated). The model solves the equation system using the finite difference method and semi-empirical expressions for the convection coefficients. A thermoelectric electric power generation test bench has been built in order to validate and determine the accuracy of the computational model, which maximum error is lower than 5%. The objective of this study is to create a design tool that allows us to solve the system of equations involved in the electric generation process without needing to impose boundary conditions that are not known in the design phase, such as the temperature of the Peltier modules. With the computational model, we study the influence of the heat flux supplied as well as the room temperature on the electric power generated. (author)

  12. A numerical investigation of a thermodielectric power generation system

    Science.gov (United States)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  13. NREL's Education Program in Action in the Concentrating Solar Power Program Advanced Materials Task

    Science.gov (United States)

    Kennedy, Cheryl

    2010-03-01

    Concentrating solar power (CSP) technologies use large mirrors to concentrate sunlight and the thermal energy collected is converted to electricity. The CSP industry is growing rapidly and is expected to reach 25 GW globally by 2020. Cost target goals are for CSP technologies to produce electricity competitive with intermediate-load power generation (i.e., natural gas) by 2015 with 6 hours of thermal storage and competitive in carbon constrained base load power markets (i.e., coal) by 2020 with 12-17 hours of thermal storage. The solar field contributes more than 40% of the total cost of a parabolic trough plant and together the mirrors and receivers contribute more than 25% of the installed solar field cost. CSP systems cannot hit these targets without aggressive cost reductions and revolutionary performance improvements from technology advances. NREL's Advanced Materials task in the CSP Advanced R&D project performs research to develop low cost, high performance, durable solar reflector and high-temperature receiver materials to meet these needs. The Advanced Materials task leads the world in this research and the task's reliance on NREL's educational program will be discussed.

  14. Advanced Grid Support Functionality Testing for Florida Power and Light

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurtt, James [Florida Power and Light, Juno Beach, FL (United States)

    2017-03-21

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are being required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis

  15. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  16. Impact of renewable power market penetration on coal power generation capacity growth

    Institute of Scientific and Technical Information of China (English)

    ABDUL Majeed Aziz; R.Larry Grayson; VLADISLAV Kecojevic

    2011-01-01

    Since renewable energy sources are growing in importance, how well they can penetrate the energy market for power generation will be a very important factor in the role the coal industry will play in the future. This paper examined the displacement of coal power plant capacity from 2010 to 2050 by renewables with respect to three drivers assumed under various conditions: the American Recovery and Reinvestment Act (ARRA), Greenhouse Gas (GHG) policy, and varying plant capital cost cases. The results by 2050 illustrate that renewable market penetration captures anywhere from 1.9% to 6.4% of potential coal power generation capacity additions. Renewable power generation capacity additions is expected to outpace coal power plant additions by 89% with respect to ARRA in 2050, however with no GHG policy coal power generation capacity build-outs will outpace renewables by as high as 809%. Finally, coal power generation is still projected to be the largest single energy source contributor to the electricity market making up 28.0% of total available capacity, while renewables are expected to only make up 16.3% of total available capacity.

  17. A thermoelectric generator using loop heat pipe and design match for maximum-power generation

    KAUST Repository

    Huang, Bin-Juine

    2015-09-05

    The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.

  18. Advanced targets, diagnostics and applications of laser-generated plasmas

    Science.gov (United States)

    Torrisi, L.

    2015-04-01

    High-intensity sub-nanosecond-pulsed lasers irradiating thin targets in vacuum permit generation of electrons and ion acceleration and high photon yield emission in non-equilibrium plasmas. At intensities higher than 1015 W/cm2 thin foils can be irradiated in the target-normal sheath acceleration regime driving ion acceleration in the forward direction above 1 MeV per charge state. The distributions of emitted ions in terms of energy, charge state and angular emission are controlled by laser parameters, irradiation conditions, target geometry and composition. Advanced targets can be employed to increase the laser absorption in thin foils and to enhance the energy and the yield of the ion acceleration process. Semiconductor detectors, Thomson parabola spectrometer and streak camera can be employed as online plasma diagnostics to monitor the plasma parameters, shot by shot. Some applications in the field of the multiple ion implantation, hadrontherapy and nuclear physics are reported.

  19. Second Generation Advanced Reburning for High Efficiency NOx Control

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Pete M. Maly; Vitali V. Lissianski

    2000-12-31

    This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR) which has the potential to achieve 90+% NO{sub x} control in coal-fired boilers at a significantly lower cost than SCR. The thirteenth reporting period in Phase II (October 1-December 31, 2000) included SGAR tests in which coal was used as the reburning fuel. All test work was conducted at GE-EER's 1.0 MMBtu/hr Boiler Simulator Facility. Three test series were performed including AR-Lean, AR-Rich, and reburning + SNCR. Tests demonstrated that over 90% NO{sub x} reduction could be achieved with utilization of coal as a reburning fuel in SGAR. The most effective SGAR variant is reburning + SNCR followed by AR-Lean and AR-Rich.

  20. Market Power and Investment in Renewable Electricity Generation

    DEFF Research Database (Denmark)

    Ernstsen, Rune Ramsdal; Misir, Nihat

    In this paper, we compare the investment timing and the optimal level of investment for a strategic firm and a social planner that have a one-time opportunity to invest in different types of electricity generators. Different technology choices entail different revenue streams and hence a different...... while incurring lower investment costs. We additionally find that highly convex investment cost greatly diminishes the impact of market power on the investment decisions. Furthermore, for both the strategic firm and the social planner, fixed baseload generation is preferable during low installed...... capacity and uncertainty cases whereas high uncertainty tends to result in the choice of flexible peakload generation....

  1. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.

    Science.gov (United States)

    Cui, Nuanyang; Liu, Jinmei; Gu, Long; Bai, Suo; Chen, Xiaobo; Qin, Yong

    2015-08-26

    A cloth-base wearable triboelectric nanogenerator made of nylon and Dacron fabric was fabricated for harvesting body motion energy. Through the friction between forearm and human body, the generator can turn the mechanical energy of an arm swing into electric energy and power an electroluminescent tubelike lamp easily. The maximum output current and voltage of the generator reach up to 0.2 mA and 2 kV. Furthermore, this generator can be easily folded, kneaded, and cleaned like a common garment.

  2. Analysis of R&D Strategy for Advanced Combined Cycle Power Systems

    Science.gov (United States)

    Akimoto, Keigo; Hayashi, Ayami; Kosugi, Takanobu; Tomoda, Toshimasa

    This article analyzes and evaluates the R&D strategy for advanced power generation technologies, such as natural gas combined cycles, IGCCs (Integrated coal Gasification Combined Cycles), and large-scale fuel cell power generation systems with a mixed-integer programming model. The R&D processes are explicitly formulated in the model through GERT (Graphical Evaluation and Review Technique), and the data on each required time of R&D was collected through questionnaire surveys among the experts. The obtained cost-effective strategy incorporates the optimum investment allocation among the developments of various elemental technologies, and at the same time, it incorporates the least-cost expansion planning of power systems in Japan including other power generation technologies such as conventional coal, oil, and gas fired, and hydro and wind power. The simulation results show the selection of the cost-effective technology developments and the importance of the concentrated investments in them. For example, IGCC, which has a relatively high thermal efficiency, and LNG-CCs of the assumed two efficiencies are the cost-effective investment targets in the no-CO2-regulation case.

  3. Advanced DC-DC converter for power conditioning in hydrogen fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, G.; Tenconi, A.; Bojoi, R. [Department of Electrical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-06-15

    The fuel cell (FC) generators can produce electric energy directly from hydrogen and oxygen. The DC voltage generated by FC is generally low amplitude and it is not constant, depending on the operating conditions. Furthermore, FC systems have dynamic response that is slower than the transient responses typically requested by the load. For this reason, in many applications the FC generators must be interfaced with other energy/power sources by means of an electronic power converter. An advanced full-bridge (FB) DC-DC converter, which effectively achieves zero-voltage switching and zero-current switching (ZVS-ZCS), is proposed for power-conditioning (PC) in hydrogen FC applications. The operation and features of the converter are analyzed and verified by simulations results. The ZVS-ZCS operation is obtained by means of a simple auxiliary circuit. Introduction of the soft-switching operation in PC unit brings improvements not only from the converter efficiency point of view, but also in terms of increased converter power density. Quantitative analysis of hard and soft-switching operating of the proposed converter is also made, bringing in evidence the benefits of soft-switching operation mode. The proposed converter can be a suitable solution for PC in hydrogen FC systems, especially for the medium to high-power applications. (author)

  4. Regulation, pollution and heterogeneity in Japanese steam power generation companies

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Carlos Pestana [Instituto Superior de Economia e Gestao, Technical University of Lisbon Rua Miguel Lupi, Lisbon (Portugal); Managi, Shunsuke [Faculty of Business Administration, Yokohama National University, 79-4, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2009-08-15

    In this paper, the random stochastic frontier model is used to estimate the technical efficiency of Japanese steam power generation companies taking into regulation and pollution. The companies are ranked according to their productivity for the period 1976-2003 and homogenous and heterogeneous variables in the cost function are disentangled. Policy implication is derived. (author)

  5. Biomass power generation: toward a sustainable energy future

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 16 October, 2005 was a day of celebration for the Guangzhou Institute of Energy Conversion(GIEC), CAS, as its technology ofbiomass gasification and power generation (BGPG) was chosen by an evaluation panel of the United Nations Industrial Development Organization as one of the 10 top investment scenarios to apply new technologies for renewable energy utilization.

  6. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    Science.gov (United States)

    2003-09-01

    Heliostats Heliostats , or solar concentrators, can be used to collect heat to power Stirling en- gines. They use a lens or reflectors to concentrate...Configurations ......................................................................................................... 38 Heliostats ...equipment is possible in the form of cooling and heating ; enhancing a 20 to 35 percent generation efficiency to between 75 and 80 percent. DG increases

  7. Modeling, Simulation, and Testing of Surf Kites for Power Generation

    NARCIS (Netherlands)

    Williams, P.; Lansdorp, B.; Ruiterkamp, R.; Ockels, W.J.

    2008-01-01

    Non-powered flight vehicles such as kites can provide a means of transmitting wind energy from higher altitudes to the ground via tethers. At Delft University of Technology, construction and testing of such a high altitude wind machine is ongoing. The concept is called the Laddermill. It generates e

  8. Power Generation and Voltage Regulation of 132KV Karbala grid using DFIG Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    Qasim Kamil Mohsin

    2015-06-01

    Full Text Available Due to increasing demand on electrical energy in Iraq and to have clean energy that is environmental friendly, wind energy would be one of the most important and promising sources of renewable energy to achieve this goal. This paper discussed the reasons to use the Doubly-Feed Induction Generator (DFIG amongst the available types of wind turbine generators, and in section (III illustrate Motivations to select place to the wind farm construction. using decupling method (the vector control strategy to change reactive power of DFIG 2MW connected to middle of the 132KV transmission line (Karbala north – Alahkader without effect about the active power generated from DFIG itself with fixed wind speed value assumed to provide the voltage regulation, and control of the transmission line In addition to power generating. By using PSCAD/EMTDC, different simulation results are presented based on various scenarios.

  9. Linkages from DOE’s Geothermal R&D to Commercial Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics, LLC, Haddonfield, NJ (United States)

    2011-02-01

    This study provides an evaluation of the Geothermal Technologies Program (GTP) of the U.S. Department of Energy (DOE). Specifically, for the period 1976 to 2008, it investigates the linkages between GTP's outputs and their downstream use by others to produce power from geothermal energy. The results are relevant for assessing DOE's past and future roles in the development and advancement of the nation's geothermal resources. In addition, the study investigates other applications of the GTP's outputs beyond power generation.

  10. Semidigital PLL Design for Low-Cost Low-Power Clock Generation

    Directory of Open Access Journals (Sweden)

    Ni Xu

    2011-01-01

    Full Text Available This paper describes recent semidigital architectures of the phase-locked loop (PLL systems for low-cost low-power clock generation. With the absence of the time-to-digital converter (TDC, the semi-digital PLL (SDPLL enables low-power linear phase detection and does not necessarily require advanced CMOS technology while maintaining a technology scalability feature. Two design examples in 0.18 μm CMOS and 65 nm CMOS are presented with hardware and simulation results, respectively.

  11. Optical Far-IR Wave Generation - State-of-the-Art and Advanced Device Structures

    DEFF Research Database (Denmark)

    Krozer, Viktor; Leone, B.; Roskos, H.

    2004-01-01

    A recent study initiated by the European Space Agency aimed at identifying the most promising technologies to significantly improve on the generation of coherent electromagnetic radiation in the THz regime. The desired improvements include, amongst others, higher output powers and efficiencies...... and experimental results selected for medium to short term development. These technologies include advanced p-i-n photomixer with superlattice structures and, THz quantum cascade lasers. Recent results achieved in these fields will be put into the potential perspective for the respective technology in the future....

  12. Solar Stirling power generation - Systems analysis and preliminary tests

    Science.gov (United States)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  13. Simulation of IGFC power generation system by Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Sayem, Abu Sadahat

    2010-01-01

    The solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur free syngas from the gas cleaning unit serves as a fuel for SOFC in IGFC (Integrated gasification Fuel cell) power plant. It converts the chemical energy of the fuel gas directly to electric energy...... efficiency and power with respect to a variety of SOFC inputs. HRSG which is located after the SOFC is also included in current simulation study with various operating parameters. This paper also describes for the IGFC Power Plants, the optimization of the Heat Recovery Steam Generator (HRSG...... and therefore, very high efficiencies can be achieved. The outputs from SOFC can be utilized by HRSG which drives steam turbine for electricity production. The SOFC stack model developed using the process flow sheet simulator Aspen Plus which is of equilibrium type. The results indicate there must be tread off...

  14. Triboelectric generators and sensors for self-powered wearable electronics.

    Science.gov (United States)

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.

  15. Dynamic Analysis of Permanent Magnet Synchronous Generator with Power Electronics

    Directory of Open Access Journals (Sweden)

    OZCIRA, S.

    2010-05-01

    Full Text Available Permanent magnet DC motor-generators (PMDC, PMSG have been widely used in industrial and energy sectors recently. Power control of these systems can be achieved by controlling the output voltage. In this study, PMDC-PMSG systems are mathematically modeled and simulated in MATLAB and Simulink software. Then the results are discussed. A low power permanent magnet synchronous generator is driven by a permanent magnet DC motor and the output voltage is controlled by a frequency cycle-converter. The output of a half-wave uncontrolled rectifier is applied to an SPWM inverter and the power is supplied to a 300V, 50Hz load. The load which is connected to an LC filter is modeled by state-space equations. LC filter is utilized in order to suppress the voltage oscillations at the inverter output.

  16. Development of a Cost Effective Power Generation System: An Overview

    Directory of Open Access Journals (Sweden)

    Shiv Prakash Bihari

    2016-03-01

    Full Text Available This paper presents an overview on development of cost effective power generation system and motivates for development of a model for hybrid system with wind to investigate the combined operation of wind with different sources to cater to wind’s stochastic nature for imbalance minimization and optimal operation. Development of model for trading power in competitive electricity market and development of strategies for trading in electricity markets (wind energy and reserves markets to investigate the effects of real time pricing tariffs on electricity market operation has been illustrated in this paper. Dynamic modelling related studies to investigate the wind generator’s kinetic energy for primary frequency support using simulink and simulation studies on doubly fed induction generator to study its capability during small disturbances / fluctuations on power system have been described.

  17. Operation of the power information center: Performance of secretariat functions and information exchange activities in the advanced power field of the interagency advanced power group

    Science.gov (United States)

    1983-01-01

    Highlights of activities conducted during the reporting period to facilitate the exchange of technical information among scientists and engineers both within the federal government and within industry are cited. Interagency Advanced Power Group meetings and special efforts, project briefs, and organization development are considered.

  18. Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems

    Science.gov (United States)

    Vadstrup, Casper; Schaltz, Erik; Chen, Min

    2013-07-01

    In a thermoelectric generator (TEG) system the DC/DC converter is under the control of a maximum power point tracker which ensures that the TEG system outputs the maximum possible power to the load. However, if the conditions, e.g., temperature, health, etc., of the TEG modules are different, each TEG module will not produce its maximum power. If each TEG module is controlled individually, each TEG module can be operated at its maximum power point and the TEG system output power will therefore be higher. In this work a power converter based on noninverting buck-boost converters capable of handling four TEG modules is presented. It is shown that, when each module in the TEG system is operated under individual maximum power point tracking, the system output power for this specific application can be increased by up to 8.4% relative to the situation when the modules are connected in series and 16.7% relative to the situation when the modules are connected in parallel.

  19. Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant

    Directory of Open Access Journals (Sweden)

    George Tsatsaronis

    2012-06-01

    Full Text Available A conventional exergy analysis can highlight the main components having high thermodynamic inefficiencies, but cannot consider the interactions among components or the true potential for the improvement of each component. By splitting the exergy destruction into endogenous/exogenous and avoidable/unavoidable parts, the advanced exergy analysis is capable of providing additional information to conventional exergy analysis for improving the design and operation of energy conversion systems. This paper presents the application of both a conventional and an advanced exergy analysis to a supercritical coal-fired power plant. The results show that the ratio of exogenous exergy destruction differs quite a lot from component to component. In general, almost 90% of the total exergy destruction within turbines comes from their endogenous parts, while that of feedwater preheaters contributes more or less 70% to their total exergy destruction. Moreover, the boiler subsystem is proven to have a large amount of exergy destruction caused by the irreversibilities within the remaining components of the overall system. It is also found that the boiler subsystem still has the largest avoidable exergy destruction; however, the enhancement efforts should focus not only on its inherent irreversibilities but also on the inefficiencies within the remaining components. A large part of the avoidable exergy destruction within feedwater preheaters is exogenous; while that of the remaining components is mostly endogenous indicating that the improvements mainly depend on advances in design and operation of the component itself.

  20. High Power Wind Generator Designs with Less or No PMs

    DEFF Research Database (Denmark)

    Boldea, Ion; Tutelea, Lucian; Blaabjerg, Frede

    2014-01-01

    wind generator systems with less or no PMs: from classifications based in principle and on gear ratio, through topologies, modeling, design and performance issues, with results from literature and also from authors findings. It is hoped that such a study, focused on the wind generator itself (though......The recent steep increase in high energy permanent magnet (PM) price (above 130$/kg and more) triggered already strong R&D efforts to develop wind generators with less PMs (less weight in NdFeB magnets/kW or the use of ferrite PMs) or fully without PMs. All these by optimizing existing dc excited...... synchronous generators, by doubly-fed (wound rotor) induction and cage induction generators and by introducing new topologies with pertinent costs for high power (MW range) wind energy conversion units. The present overview attempts, based on recent grid specifications, an evaluation of commercial and novel...

  1. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  2. Grid synchronization for advanced power processing and FACTS in wind power systems

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Vazquez, G.;

    2010-01-01

    The high penetration of wind power systems in the electrical network has introduced new issues in the stability and transient operation of the grid. By means of providing advanced functionalities to the existing power converters of such power plants it is possible to enhance their performance...... and also to support the grid operation, as the new grid codes demand. The connection of FACTS based on power converters, such as STATCOMs, are also contributing to the integration of renewable energies improving their behavior under contingencies. However, in both cases it is needed to have a grid voltage...... synchronization system, able to work under unbalanced and distorted conditions. This paper presents the discrete representation and performance of three PLL's structures, designed to work in that kind of situations. Their synchronization capability will be tested in different scenarios and their performance...

  3. Impact of Dispersed Generation on Optimization of Power Exports

    Directory of Open Access Journals (Sweden)

    Ganiyu A. Ajenikoko

    2015-05-01

    Full Text Available Dispersed generation (DG is defined as any source of electrical energy of limited size that is connected directly to the distribution system of a power network. It is also called decentralized generation, embedded generation or distributed generation. Dispersed generation is any modular generation located at or near the load center. It can be applied in the form of rechargeable, such as, mini-hydro, solar, wind and photovoltaic system or in the form of fuel-based systems, such as, fuel cells and micro-turbines. This paper presents the impact of dispersed generation on the optimization of power exports. Computer simulation was carried out using the hourly loads of the selected distribution feeders on Kaduna distribution system as input parameters for the computation of the line loss reduction ratio index (LLRI. The result showed that the line loss reduced from 163.56MW to 144.61 MW when DG was introduced which is an indication of a reduction in line losses with the installation of DG at the various feeders of the distribution system. In all the feeders where DG is integrated, the average magnitude of the line loss reduction index is 0.8754 MW which is less than 1 indicating a reduction in the electrical line losses with the introduction of DG. The line loss reduction index confirmed that by integrating DG into the distribution system, the distribution losses are reduced and optimization of power exports is achieved The results of this research paper will form a basis to establish that proper location of distributed generation units have significant impact on their effective capacity.

  4. Computer aided power flow software engineering and code generation

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, R. [Swiss Federal Inst. of Tech., Zuerich (Switzerland)

    1996-02-01

    In this paper a software engineering concept is described which permits the automatic solution of a non-linear set of network equations. The power flow equation set can be seen as a defined subset of a network equation set. The automated solution process is the numerical Newton-Raphson solution process of the power flow equations where the key code parts are the numeric mismatch and the numeric Jacobian term computation. It is shown that both the Jacobian and the mismatch term source code can be automatically generated in a conventional language such as Fortran or C. Thereby one starts from a high level, symbolic language with automatic differentiation and code generation facilities. As a result of this software engineering process an efficient, very high quality newton-Raphson solution code is generated which allows easier implementation of network equation model enhancements and easier code maintenance as compared to hand-coded Fortran or C code.

  5. Computer aided power flow software engineering and code generation

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, R. [Swiss Federal Inst. of Tech., Zuerich (Switzerland)

    1995-12-31

    In this paper a software engineering concept is described which permits the automatic solution of a non-linear set of network equations. The power flow equation set can be seen as a defined subset of a network equation set. The automated solution process is the numerical Newton-Raphson solution process of the power flow equations where the key code parts are the numeric mismatch and the numeric Jacobian term computation. It is shown that both the Jacobian and the mismatch term source code can be automatically generated in a conventional language such as Fortran or C. Thereby one starts from a high level, symbolic language with automatic differentiation and code generation facilities. As a result of this software engineering process an efficient, very high quality Newton-Raphson solution code is generated which allows easier implementation of network equation model enhancements and easier code maintenance as compared to hand-coded Fortran or C code.

  6. Positive laws on generators in powerful pro-p groups

    CERN Document Server

    Acciarri, Cristina

    2011-01-01

    If G is a finitely generated powerful pro-p group satisfying a certain law v=1, and if G can be generated by a normal subset T of finite width which satisfies a positive law, we prove that G is nilpotent. Furthermore, the nilpotency class of G can be bounded in terms of the prime p, the number of generators of G, the law v=1, the width of T, and the degree of the positive law. The main interest of this result is the application to verbal subgroups: if G is a p-adic analytic pro-p group in which all values of a word w satisfy positive law, and if the verbal subgroup w(G) is powerful, then w(G) is nilpotent.

  7. Development of large wind energy power generation system

    Science.gov (United States)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  8. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  9. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Neill, Barbara [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  10. Development of a linear piston-type pulse power electric generator for powering electric guns

    Science.gov (United States)

    Summerfield, Martin

    1993-01-01

    The development of a linear piston-type electric pulse-power generator capable of powering electric guns and EM (rail and coil) guns and ET guns, presently under development, is discussed. The pulse-power generator consists of a cylindrical armature pushed by gases from the combustion of fuel or propellant through an externally produced magnetic field. An arrangement of electrodes and connecting straps serves to extract current from the moving armature and to send it to an external load (the electric gun).

  11. Remote-site power generation opportunities for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  12. Application of advanced austenitic alloys to fossil power system components

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  13. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  14. The Next-Generation Power Electronics Technology for Smart Grids

    Science.gov (United States)

    Akagi, Hirofumi

    This paper presents an overview of the next-generation power electronics technology for the Japanese-version smart grid. It focuses on a grid-level battery energy storage system, a grid-level STATCOM (STATic synchronous COMpensator), and a 6.6-kV BTB (Back-To-Back) system for power flow control between two power distribution feeders. These power electronic devices play an important role in achieving load frequency control and voltage regulation. Their circuit configurations based on modular multilevel cascade PWM converters are characterized by flexible system design, low voltage steps, and low EMI (Electro-Magnetic Interference) emission. Their downscaled laboratory models are designed, constructed, and tested to verify the viability and effectiveness of the circuit configurations and control methods.

  15. Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Zhou, Dao; Su, Chi

    2017-01-01

    In modern wind farms, maximum power point tracking (MPPT) is widely implemented. Using the MPPT method, each individual wind turbine is controlled by its pitch angle and tip speed ratio to generate the maximum active power. In a wind farm, the upstream wind turbine may cause power loss to its...... downstream wind turbines due to the wake effect. According to the wake model, downstream power loss is also determined by the pitch angle and tip speed ratio of the upstream wind turbine. By optimizing the pitch angle and tip speed ratio of each wind turbine, the total active power of the wind farm can...... be increased. In this paper, the optimal pitch angle and tip speed ratio are selected for each wind turbine by the exhausted search. Considering the estimation error of the wake model, a solution to implement the optimized pitch angle and tip speed ratio is proposed, which is to generate the optimal control...

  16. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directly through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss this

  17. Transportable high-energy high-power generator.

    Science.gov (United States)

    Novac, B M; Smith, I R; Senior, P; Parker, M; Louverdis, G

    2010-05-01

    High-power applications sometimes require a transportable, simple, and robust gigawatt pulsed power generator, and an analysis of various possible approaches shows that one based on a twin exploding wire array is extremely advantageous. A generator based on this technology and used with a high-energy capacitor bank has recently been developed at Loughborough University. An H-configuration circuit is used, with one pair of diagonally opposite arms each comprising a high-voltage ballast inductor and the other pair exploding wire arrays capable of generating voltages up to 300 kV. The two center points of the H configuration provide the output to the load, which is coupled through a high-voltage self-breakdown spark gap, with the entire autonomous source being housed in a metallic container. Experimentally, a load resistance of a few tens of Ohms is provided with an impulse of more than 300 kV, having a rise time of about 140 ns and a peak power of over 1.7 GW. Details of the experimental arrangement and typical results are presented and diagnostic measurements of the current and voltage output are shown to compare well with theoretical predictions based on detailed numerical modeling. Finally, the next stage toward developing a more powerful and energetic transportable source is outlined.

  18. Experimental investigation on thermoelectric generator of micro hybrid power source

    Science.gov (United States)

    Shang, Yonghong; Li, Yanqiu; Yu, Hongyun; Sun, Hongguang; Su, Bo

    2007-12-01

    The micro power system, which is composed of photovoltaic solar cell, heat conductor, thermoelectric generator (TEG) module and fin heat sink has been developed in our laboratory. A photovoltaic silicon solar cell of the P-N junction type is sensitive to radiant energy of wavelength from 5,000 Å to 12,000 Å. Radiation under and within this range is converted not only into electric energy but also into heat energy. The wavelength longer than this range is also converted into heat energy, which degrades the conversion efficiency of the solar cell. TEG produces electrical power from temperature difference via Seebeck effect that can be put under the solar cell to absorb the heat. The heat energy can be converted into electrical power. It was found that when TEG surface area was 150mm×60mm, it could generate 0.24V output voltage and 4.18mA short circuit at ambient temperature varying between 5-10°C at winter. It also could generate 1.3V output voltage and 16mA short circuit at ambient temperature varying between 30-36°C at summer. In fact we can use a dc-dc boost up converter to enlarge the output voltage to meet the requirements of wireless sensor network nodes or its recharging battery. It will be an alternative power source for many portable electronic types of equipment.

  19. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  20. Complete Study of the Phase Advancing in the Switched Reluctance Motor/Standalone Generator

    Directory of Open Access Journals (Sweden)

    Majid Asgar

    2014-12-01

    Full Text Available The switched reluctance motor is a singly excited, doubly salient machine which can be used in the generation mode by selecting the proper firing angles of the phases. Due to its robustness, it has the potential and the ability to become one of the generators to be used in the harsh environment. This paper briefly discusses the energy conversion by a switched reluctance generator (SRG when two switches per phase converter circuit and discrete position sensors are employed. It is well known fact that, as the generator’s speed increases by a prime mover and the shape of the current waveform changes in such a way that limits the production of generating voltage. At high speeds, it is possible for the phase current never reaches the desired value to produce enough back-EMF for sufficient voltage generation, therefore, the output power falls off. In order to remedy this problem, the phase turn on angle is advanced in a way that the phase commutation begins sooner. Since one of the advantages of this type of generator is its variable speed then, the amount of advancing for the turn on angle should be accomplished automatically to obtain the desired output voltage according to the speed of the generator, meaning, as the generator speed increases so should the turn on angle and vice versa. In this respect, this paper introduces an electronic circuit in conjunction with time reshaping of the command pulses obtained from position sensors and the drive converter to achieve this task for a desired output voltage when a SRG feeding a resistive load. To evaluate the generator performance, two types of analysis, namely numerical technique and experimental studies have been utilized on a 6 by 4, 30 V, SRG. In the numerical analysis, due to the highly non-linear nature of the motor, a three dimensional finite element analysis is employed to calculate some of motor parameters and then using these parameter, current shape and magnitude are computed, whereas in

  1. BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research

    Science.gov (United States)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2016-09-01

    Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  2. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    Science.gov (United States)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  3. Human reliability, error, and human factors in power generation

    CERN Document Server

    Dhillon, B S

    2014-01-01

    Human reliability, error, and human factors in the area of power generation have been receiving increasing attention in recent years. Each year billions of dollars are spent in the area of power generation to design, construct/manufacture, operate, and maintain various types of power systems around the globe, and such systems often fail due to human error. This book compiles various recent results and data into one volume, and eliminates the need to consult many diverse sources to obtain vital information.  It enables potential readers to delve deeper into a specific area, providing the source of most of the material presented in references at the end of each chapter. Examples along with solutions are also provided at appropriate places, and there are numerous problems for testing the reader’s comprehension.  Chapters cover a broad range of topics, including general methods for performing human reliability and error analysis in power plants, specific human reliability analysis methods for nuclear power pl...

  4. Studying the factors affecting solar power generation systems performance ( SPGSP

    Directory of Open Access Journals (Sweden)

    Jalal A Al-Tabtabaei

    2014-12-01

    Full Text Available Solar energy is a huge, clean and renewable source of energy. It is also available everywhere on the earth. However, there are many technical and economic difficulties need to be solved so that solar energy becomes a strong competition against the traditional energy sources. Energy from the sun can be used successfully in electric power generation systems. Depending on the climate conditions and the use of a properly designed, installing and maintained system can meet a large demand in this request. Work plane for this research will include many steps, the first step will include an introduction to solar energy. The second step will be a short review of the solar energy availability, geometry, fields of applications and the largest commercial application of solar energy is the solar thermal power generation. In addition, the most common types of solar thermal power plants, the solar field, heat transfer fluid and the power conversion system types will be explained in detail. The third step, a simple analysis for the solar thermal power plant will be explained in order to predict the optimum conditions leading to maximum performance. Discussions of results will be the fourth step. The last step a conclusion and recommendation for future work will also be included.

  5. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  6. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  7. Site Selection of Ocean Current Power Generation from Drifter Measurements

    Science.gov (United States)

    2014-12-01

    capital and maintenance costs of 20 years are about 4.7 billion NTD. The sales 147 income of a 30 MW plant is 30,000 kW × 20 (years) × 365 (day/year...Asia is 26 optimally from the Surface Velocity Program (SVP) data using the bin average method. 27 Japan , Vietnam, Taiwan, and Philippines have...located near coastlines of Vietnam, Japan , Taiwan, and Philippines, are 35 indentified for ocean current power generation. After the Kuroshio power plant

  8. A Renewably Powered Hydrogen Generation and Fueling Station Community Project

    Science.gov (United States)

    Lyons, Valerie J.; Sekura, Linda S.; Prokopius, Paul; Theirl, Susan

    2009-01-01

    The proposed project goal is to encourage the use of renewable energy and clean fuel technologies for transportation and other applications while generating economic development. This can be done by creating an incubator for collaborators, and creating a manufacturing hub for the energy economy of the future by training both white- and blue-collar workers for the new energy economy. Hydrogen electrolyzer fueling stations could be mass-produced, shipped and installed in collaboration with renewable energy power stations, or installed connected to the grid with renewable power added later.

  9. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  10. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation......Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...

  11. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    Science.gov (United States)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

  12. Stabilization of a Power System including Inverter Type Distributed Generators by the Virtual Synchronous Generator

    Science.gov (United States)

    Sakimoto, Kenichi; Miura, Yushi; Ise, Toshifumi

    The capacity of Distributed Generators (DGs) connected to grid by inverters are growing year and year. The inverters are generally controlled by PLL (Phase Locked Loop) in order to synchronize with power system frequency. Power systems will become unstable, if the capacity of inverter type DGs become larger and larger, because inverter frequency is controlled just to follow the frequency decided by other synchronous generators. There is the idea that inverters are controlled to behave like a synchronous generator. This concept is called Virtual Synchronous Generator (VSG). In this paper, a control scheme of VSG is presented, and the design method of required energy storage and the ability of grid stabilizing control by VSG is investigated by computer simulations.

  13. Integration of distributed generation in the power system

    CERN Document Server

    Bollen, Math H J

    2011-01-01

    "The integration of new sources of energy like wind power, solar-power, small-scale generation, or combined heat and power in the power grid is something that impacts a lot of stakeholders: network companies (both distribution and transmission), the owners and operators of the DG units, other end-users of the power grid (including normal consumers like you and me) and not in the least policy makers and regulators. There is a lot of misunderstanding about the impact of DG on the power grid, with one side (including mainly some but certainly not all, network companies) claiming that the lights will go out soon, whereas the other side (including some DG operators and large parks of the general public) claiming that there is nothing to worry about and that it's all a conspiracy of the large production companies that want to protect their own interests and keep the electricity price high. The authors are of the strong opinion that this is NOT the way one should approach such an important subject as the integration...

  14. Computer controlled MHD power consolidation and pulse-generation system

    Science.gov (United States)

    Johnson, R.

    The major goal of this project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility will be established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a magnetohydrodynamic (MHD) Faraday connected generator which may be viewed as a multi-terminal d.c. source. This consolidation/inversion process is referred to subsequently as Pulse-Amplitude-Synthesis-and-Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible Phase 2 prototype system. This report covers the initial six months portion of the project and includes discussions on the following areas: (1) selection of a control computer with software tool kit for development of the PASC controller contract requirement; (2) problem formulation considerations for simulation of the PASC technique on digital computers; (3) initial simulation results for the PASC transformer, including simulation results obtained using SPICE and the INTEG program; (4) a survey of available gate-turn-off (GTO's), power semiconductors, power field effect transistors (PFET's), and fiber optics signal cabling and transducers.

  15. Nanodevices for generating power from molecules and batteryless sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  16. Nanodevices for generating power from molecules and batteryless sensing

    Science.gov (United States)

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  17. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  18. Advances in Optimizing Weather Driven Electric Power Systems.

    Science.gov (United States)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States (and global) energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. The National Energy with Weather System Simulator (NEWS) is a mathematical optimization tool that allows the construction of weather-driven energy sources that will work in harmony with the needs of the system. For example, it will match the electric load, reduce variability, decrease costs, and abate carbon emissions. One important test run included existing US carbon-free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. These results were found without the need for storage. Further, we tested the effect of changing natural gas fuel prices on the optimal configuration of the national electric power system. Another test that was carried out was an extension to global regions. The extension study shows that the same properties found in the US study extend to the most populous regions of the planet. The extra test is a simplified version of the US study, and is where much more research can be carried out. We compare our results to other model results.

  19. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...... the current ratings of the converter is introduced. Moreover, a novel flexible algorithm has been proposed in order to regulate easily the injection of positive and negative currents for general purpose applications....

  20. A Selection Method for Power Generation Plants Used for Enhanced Geothermal Systems (EGS

    Directory of Open Access Journals (Sweden)

    Kaiyong Hu

    2016-07-01

    Full Text Available As a promising and advanced technology, enhanced geothermal systems (EGS can be used to generate electricity using deep geothermal energy. In order to better utilize the EGS to produce electricity, power cycles’ selection maps are generated for people to choose the best system based on the geofluids’ temperature and dryness conditions. Optimizations on double-flash system (DF, flash-organic Rankine cycle system (FORC, and double-flash-organic Rankine cycle system (DFORC are carried out, and the single-flash (SF system is set as a reference system. The results indicate that each upgraded system (DF, FORC, and DFORC can produce more net power output compared with the SF system and can reach a maximum net power output under a given geofluid condition. For an organic Rankine cycle (ORC using R245fa as working fluid, the generated selection maps indicate that using the FORC system can produce more power than using other power cycles when the heat source temperature is below 170 °C. Either DF or DFORC systems could be an option if the heat source temperature is above 170 °C, but the DF system is more attractive under a relatively lower geofluid’s dryness and a higher temperature condition.

  1. Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhong

    2017-01-01

    Full Text Available Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power generation of photovoltaic (PV system in advance. In order to improve the prediction accuracy, in this paper, a novel particle swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China are being employed for model verification. The experimental results indicate that, compared with the conventional grey model, the mean relative error in the proposed model has been reduced from 7.14% to 3.53%. The real practice demonstrates that the proposed optimization model outperforms the conventional grey model from both theoretical and practical perspectives.

  2. Repower and Evaluation of New Power of Synchronous Generators

    Directory of Open Access Journals (Sweden)

    S. P.Y. Santos

    2011-01-01

    Full Text Available Problem Statement: Useful life of winding isolation is about 30 years. It can be reduced when it is submitted to overloads or when it is worked in aggressive environments. Approach: When retrofit is done, an increasing to superior isolation class is recommendable. So, generator capacity can be increased and pay back could be excellent justifying the investment. Result: Several Brazilians experiences successfully showed the retrofit with repower, for example many GE generators at Henry Borden Power Plant in Cubatão, São Paulo, whose power had increased up to 50%. This study aimed at presenting two cases of rewound with repower, changing the old insulating materials by other modern ones in substantial increases of power about 30%. The discussion also included how to determine the new power obtained after the repower and before the load tests. In large machines, the load tests are accomplished with machine connected with network power system and they needed special attention and care. In other words, they are critical tests. The calculations of the field current of full load generator for determining field temperature elevation, indirect tests (no load are done. Which are the methods that present reliable results? Conclusion: This study showed a confrontation among three studied methods, ASA, IEEE 115 and General Method with their theoretical analyze. ASA method was normalized in many countries; in Brazilian showed in NBR-5052. In IEEE 115, the method is named Phasor Diagram Analysis-Salient-pole Machines. General Method is an academic treatment with better theoretical explanation.

  3. Studying the factors affecting solar power generation systems performance ( SPGSP)

    OpenAIRE

    Jalal A Al-Tabtabaei

    2014-01-01

    Solar energy is a huge, clean and renewable source of energy. It is also available everywhere on the earth. However, there are many technical and economic difficulties need to be solved so that solar energy becomes a strong competition against the traditional energy sources. Energy from the sun can be used successfully in electric power generation systems. Depending on the climate conditions and the use of a properly designed, installing and maintained system can meet a large dema...

  4. Optimal Design of Tidal Power Generator Using Stochastic Optimization Techniques

    OpenAIRE

    2014-01-01

    Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are usedto reduce the cost of a permanent magnet synchronous generator with concentratedwindings for tidal power applications. Reducing the cost of the electricalmachine is one way of making tidal energy more competitive compared to traditionalsources of electricity.Hybrid optimization combining PSO or GA with gradient based algorithmsseems to be suited for design of electrical machines. Results from optimizationwith Matlab indicat...

  5. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  6. Advanced Low Temperature Thermoelectric Materials for Cryogenic Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work we will: 1) develop novel TE materials  with a factor of 2x or more improvement in the dimensionless TE figure of merit (ZT) over state-of-the-art...

  7. GT power generation stations in noise sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Gambino, V.; Richarz, W. [Aercoustics Engineering Ltd., Toronto, ON (Canada)

    2009-07-01

    Noise impact must be quantified during the initial planning phase of a power plant because it may play a part in potential land acquisitions and system configuration. Noise control measures are required at gas turbine power generating stations located in noise sensitive areas. This study used graphs to illustrate that assigning noise control priorities may be complicated. Noise ranking with respect to the contribution of sound power was plotted against the ranking with respect to the contribution of sound pressure levels. Noise impact estimates based on a simplistic source model tend to over-predict the actual sound levels. More detailed emission models are needed during the initial planning phase to help assess the cost of any noise controls. The methodology described in this paper was developed to help the developer during the planning phases to determine the relative contribution of various components to the overall sound and to mitigate excessive noise. 4 tabs., 7 figs.

  8. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  9. Advanced Control Strategy of DFIG Wind Turbines for Power System Fault Ride Through

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Ostergaard, Jacob;

    2012-01-01

    This paper presents an advanced control strategy for the rotor and grid side converters of the doubly fed induction generator (DFIG) based wind turbine (WT) to enhance the low-voltage ride-through (LVRT) capability according to the grid connection requirement. Within the new control strategy...... the oscillations in the stator and rotor currents and the DC bus voltage. The effectiveness of the proposed control strategy has been demonstrated through various simulation cases. Compared with conventional crowbar protection, the proposed control method can not only improve the LVRT capability of the DFIG WT......, but also help maintaining continuous active and reactive power control of the DFIG during the grid faults....

  10. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  11. Development of third generation advanced high strength steels

    Science.gov (United States)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  12. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  13. Assessment of environmental external effects in power generation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H.; Morthorst, P.E.; Schleisner, L. [Risoe National Lab. (Denmark); Meyer, N.I.; Nielsen, P.S.; Nielsen, V. [The Technical Univ. of Denmark (Denmark)

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs.

  14. Control for Wind Power Generation Based on Inverse System Theory

    Directory of Open Access Journals (Sweden)

    Jiyong Zhang

    2013-11-01

    Full Text Available Traditional Double-fed Wind Generation systems are based on the vector control method, and it is dependent on motor parameters. The performance of the control system will be affected with the parameters changing,. This paper proposes a new control method based on inverse system and variable structure sliding mode(VSS theories, through the inverse system theory, the structure of its state’s equation, obtaining the structure of the inverse system, the establishment of Wind Power Generation closed-loop control system is established. The VSS controller, designed with exponential reaching law, can improve the dynamic performance in normal operation range effectively. When the system operates with variable speed constant frequency (VSCF and the phase voltage drops, the simulations show that the control system can control the DC link voltage steabily, maintain unity power factor, achieve the decoupling of the active and reactive power. And experiments show that the control method used in  VSCF wind power system is feasible.  

  15. Wind Power Generation in India: Evolution, Trends and Prospects

    Directory of Open Access Journals (Sweden)

    M.F. Khan

    2013-10-01

    Full Text Available In the present context of shrinking conventional resources coupled with environmental perils, the wind power offers an attractive alternative. Wind power generation in India started way back in early 1980s with the installation of experimental wind turbines in western and southern states of Gujarat and Tamil Nadu. For first two decades of its existence until about 2000 the progress was slow but steady. In last one decade Indian wind electricity sector has grown at very rapid pace which has promoted the country to the fifth position as largest wind electric power generator and the third largest market in the world. The galvanization of wind sector has been achieved through some aggressive policy mechanisms and persistent support by government organizations such as MNRE and C-WET. This paper articulates the journey of Indian wind program right since its inception to the present trends and developments as well as the future prospects. Keywords: mnre, c-wet, renewable energy, wind power, wind turbines.

  16. Microgravity fluid management requirements of advanced solar dynamic power systems

    Science.gov (United States)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  17. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    OpenAIRE

    Florian Heberle; Dieter Brüggemann

    2014-01-01

    We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC) in a combined heat and power generation (CHP) case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency...

  18. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  19. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  20. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    Science.gov (United States)

    Sritram, P.; Treedet, W.; Suntivarakorn, R.

    2015-12-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m3/min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m3/min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency.