WorldWideScience

Sample records for advanced power generation

  1. Advanced IGCC technology for competitive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H.-R.; Ullrich, N.; Haupt, G.; Zimmermann, G.; Pruschek, R.; Oeljeklaus, G. [Krupp Uhde GmbH (Germany)

    1998-12-31

    The paper reports interim results of a comprehensive ongoing study of potential for development funded by the European Commission. First, the status of the advanced IGCC technology is described. This IGCC 98 concept, including what has been achieved in 1998, results in net station efficiencies around 52% according to the site conditions prevailing in Denmark, where one of the world`s most modern pulverised-coal-fired power plants (design efficiency 47%) is currently under construction. The advanced IGCC station will be equipped with PRENFLO gasification developed by Krupp and a Siemens Model V94.3A gas turbine-generator. The second section depicts the results of a detailed cost estimate based on Western European conditions and aimed at clearly lower specific capital investment for an IGCC power plant. This cost estimate is based mainly on bidding information from competent manufacturers and suggests that the target purchase price of 1,100 US dollars per kW installed capacity is likely to be verified in the near future. One main factor contributing to achievement of this figure is the tremendous increase in net power output to about 450 MW with nearly the same absolute capital investment as for IGCC plants designed previously. Consequently, this permits IGCC generating costs surely lower than those of a comparable pulverised-coal-fired (PCF) steam power plant, so that the advanced IGCC stations described in this paper can be regarded as truly competitive. 2 refs., 3 figs., 3 tabs.

  2. Recent advances in RF power generation

    International Nuclear Information System (INIS)

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 μs. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs

  3. Current Advanced Power Generation Technologies and Options for China (1)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs and environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.

  4. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  5. Current Advanced Power Generation Technologies and Options for China (2)

    Institute of Scientific and Technical Information of China (English)

    Deng Nubo; Mohsen Assadi; Yang Cheng

    2008-01-01

    @@ In China,electricity consumption keeps growing at a high speed and installed capacity will be doubled in the next fifteen years.As the world second CO2 producer and also a member of Kyoto Protocol,how to balance energy needs arid environmental protection responsibility in the future is a serious problem for China.As such,there are a number of technology choices for today's electric power generation.After discussing the current advanced power generation technologies based on Chinese energy structure and current conditions of power industry,this paper gives a reference to the technology options for China in the future.Here published is the second part of the paper.

  6. Design features of Advanced Power Reactor (APR) 1400 steam generator

    International Nuclear Information System (INIS)

    Advanced Power Reactor 1400 (APR 1400) which is to achieve the improvement of the safety and economical efficiency has been developed by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) with the support from industries and research institutes. The steam generator for APR 1400 is an evolutionary type from System 80+, which is the recirculating U-tube heat exchanger with integral economizer. Compared to the System 80+ steam generator, it is focused on the improved design features, operating and design conditions of APR 1400 steam generator. Especially, from the operation experience of Korean Standard Nuclear Power Plant (KSNP) steam generator, the lessons-learned measures are incorporated to prevent the tube wear caused by flow-induced vibration (FIV). The concepts for the preventive design features against FIV are categorized to two fields; flow distribution and dynamic response characteristics. From the standpoint of flow distribution characteristics, the egg-crate flow distribution plate (EFDP) is installed to prevent the local excessive flow loaded on the most susceptible tube to wear. The parametric study is performed to select the optimum design with the efficient mitigation of local excessive flow. ATHOS3 Mod-01 is used and partly modified to analyze the flow field of the APR 1400 steam generator. In addition, the upper tube bundle support is designed to eliminate the presence of tube with a low natural frequency. Based on the improved upper tube bundle support, the modal analysis is performed and compared with that of System 80+. Using the results of flow distribution and modal analysis, the two mechanisms of flow-induced vibration are investigated; fluid-elastic instability (FEI) and random turbulence excitation (RTE). (authors)

  7. Low-Rank Coal and Advanced Technologies for Power Generation

    Science.gov (United States)

    Zhang', Dong-ke; Jackson, Peter J.; Vuthaluru, Hari B.

    Fluidised-bed based advanced power generation technologies offer higher efficiencies than conventional pulverised fuel fired power plants and better prospects in reducing ash-related problems associated with low-rank coal in such plants. However, bed material agglomeration and bed defluidisation present significant operational difficulties for the utilisation of the low-rank coal in fluidised-bed processes. Alkali and alkaline-earth elements and sulphur compounds, often found in low-rank coals, form low melting point eutectics at typical fluidised-bed combustion and gasification operating temperatures. These low melting-point materials are subsequently transferred onto the bed material particle surfaces, and the ash-coated particles then become adhesive and agglomerate. Defluidisation can occur either as an extension of agglomeration as a rate process gradually leading to defluidisation or as an instantaneous event without agglomeration. A critical thickness of the ash coating layer on the particle surface exists, above which defluidisation occurs. This critical thickness decreases with an increase in bed temperature. Several mineral additives, alternative bed materials and pretreatment of coal have been shown to suppress, to different extents, particle agglomeration and bed defluidisation when burning a high sodium, high sulphur low-rank coal in a spouted fluidised-bed combustor. Sillimanite as an alternative bed material is found to be most effective for defluidisation control. Alternative advanced technologies such as low-temperature pyrolysis and co-production are proposed for future investigation.

  8. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  9. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  10. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  11. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  12. Studies on advanced water-cooled reactors beyond generation Ⅲ for power generation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu

    2007-01-01

    China's ambitious nuclear power program motivates the country's nuclear community to develop advanced reactor concepts beyond generation Ⅲ to ensure a long-term, stable, and sustainable development of nuclear power. The paper discusses some main criteria for the selection of future water-cooled reactors by considering the specific Chinese situation. Based on the suggested selection criteria, two new types of water-cooled reactors are recommended for future Chinese nuclear power generation. The high conversion pressurized water reactor utilizes the present PWR technology to a large extent. With a conversion ratio of about 0.95, the fuel utilization is increased about 5 times. This significantly improves the sustainability of fuel resources. The supercritical water-cooled reactor has favorable features in economics,sustainability and technology availability. It is a logical extension of the generation Ⅲ PWR technology in China.The status of international R&D work is reviewed. A new supercritieal water-cooled reactor (SCWR) core structure (the mixed reactor core) and a new fuel assembly design (two-rows FA) are proposed. The preliminary analysis using a coupled neutron-physics/thermal-hydranlics method is carded out. It shows good feasibility for the new design proposal.

  13. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  14. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and int

  15. Advanced Control Structures of Turbo Generator System of Nuclear Power Plant

    OpenAIRE

    Paweł Sokólski; Karol Kulkowski; Anna Kobylarz; Kazimierz Duzinkiewicz; Tomasz A. Rutkowski; Michał Grochowski

    2015-01-01

    In the paper a synthesis of advanced control structures of turbine and synchronous generator for nuclear power plant working under changing operating conditions (supplied power level) is presented. It is based on the nonlinear models of the steam turbine and synchronous generator cooperating with the power system. The considered control structure consists of multi-regional fuzzy control systems with local linear controllers, including PID controllers, in particular control loops of turbine...

  16. Grid Monitoring and Advanced Control of Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile

    of controllers have been studied and compared. The possibility of using the information about grid variables into the control structure in order to improve the control of DPGS has also been investigated. As a consequence, improved behavior of resonant controller has been noticed if grid frequency information...... is forwarded to its internal model. Additionally, controllers such as dead beat and hysteresis controller improve their robustness to parameter mismatch if the identi ed value of grid impedance is passed to the controller. Moreover, several control strategies to provide exible active and reactive power control...

  17. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Y. E-mail: yolanda.lechon@ciemat.es; Cabal, H.; Saez, R.M.; Hallberg, B.; Aquilonius, K.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power.

  18. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  19. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    Science.gov (United States)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  20. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  1. Challenges and solutions for adoption of advanced cycles for power generation in today's business climate

    International Nuclear Information System (INIS)

    plant in Victoria and South Australia. In order to minimise the impact of new coal fired power generation on the environment, advanced cycle power generation systems must be developed and demonstrated to be commercially viable in the current business climate. The potential greenhouse gas abatement expected from advanced cycles for power generation is illustrated in Figure 1 for high moisture brown coal. While there remains a considerable amount of R and D to be completed on the development of advanced cycles, the principal challenge for the implementation of these technologies in the future is a consequence of the manner in which the power generation industry has developed worldwide over the last decade or so. That is, the technical knowledge for the implementation of these technologies is available or will be in the next few years. The principal challenge is not research and development of the technologies but rather creation of a business climate where the risk and cost hurdles to their introduction can be overcome

  2. Creep-fatigue effects in structural materials used in advanced nuclear power generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C. R.

    1980-01-01

    Various aspects of time-dependent fatigue behavior of a number of structural alloys in use or planned for use in advanced nuclear power generating systems are reviewed. Materials included are types 304 and 316 stainless steel, Fe-2 1/4 Cr-1 Mo steel, and alloy 800H. Examples of environmental effects, including both chemical and physical interaction, are presented for a number of environments. The environments discussed are high-purity liquid sodium, high vacuum, air, impure helium, and irradiation damage, including internal helium bubble generation.

  3. Monolithic solid oxide fuel cell technology advancement for coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  4. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  5. Advanced biomass power generation: The biomass-integrated gasifier/gas turbine and beyond

    International Nuclear Information System (INIS)

    The most promising initial strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using advanced gas turbines fired by gasified biomass. The major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required with bioenergy systems. Beyond the turn of the century fuel cells operated on gasified biomass offer the promise of even higher performance levels. For the near term, electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy in a wide range of circumstances. It is reasonable to expect that biomass could be providing 25-35% of total global power generation in the second quarter of the next century, helping make it possible to substantially reduce CO2 emissions from the power sector relative to present levels in that time frame

  6. Development of a rotor alloy for advanced ultra super critical turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Shigekazu; Yamada, Masayuki; Suga, Takeo; Imai, Kiyoshi; Nemoto, Kuniyoshi; Yoshioka, Youmei [Toshiba Corporation, Yokohama (Japan)

    2008-07-01

    A Ni-based superalloy ''TOS1X'', for the rotor material of the 700 class advanced ultra super critical (A-USC) turbine power generation system was developed. TOS1X is an alloy that is improved in the creep rupture strength of Inconel trademark 617 maintaining both forgeability and weldability. The 7 t weight model rotor made of TOS1X was manufactured by double melt process, vacuum induction melting and electro slag remelting, and forging. During forging process, forging cracks and any other abnormalities were not detected on the ingots. The metallurgical and the mechanical properties in this rotor were investigated. Macro and micro structure observation, and some mechanical tests were conducted. According to the metallurgical structure investigation, there was no remarkable segregation in whole area and the forging effect was reached in the center part of the rotor ingot. The results of tensile test and creep rupture test proved that proof stress and tensile stress of the TOS1X are higher than those of Inconel trademark 617 and creep rupture strength of TOS1X is much superior than that of Inconel trademark 617. (orig.)

  7. Investigation on the advanced control room design for next generation nuclear power plants

    International Nuclear Information System (INIS)

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. With regard to automation, the automating strategies of emergency operation are developed for achieving safe shutdown in pressurized water reactors. These strategies can make emergency operation optimal, and as well they considerably lengthen the operator response time. Decision-making and control are investigated in order to develop the automating strategies. In decision-making, diagnostic trees are established to automate the diagnostic tasks for selecting appropriate emergency operations, and the decision-making procedure is developed to automate some decisions which must be made on a plant- and event-specific basis. In control, cooldown is planned by

  8. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

    Science.gov (United States)

    Faure, Denis; Joly, Dominique

    2015-04-01

    Next-generation sequencing (NGS) provides unprecedented insight into (meta)genomes, (meta)transcriptomes (cDNA) and (meta)barcodes of individuals, populations and communities of Archaea, Bacteria and Eukarya, as well as viruses. This special issue combines reviews and original papers reporting technical and scientific advances in genomics and transcriptomics of non-model species, as well as quantification and functional analyses of biodiversity using NGS technologies of the second and third generations. In addition, certain papers also exemplify the transition from Sanger to NGS barcodes in molecular taxonomy.

  9. The Advanced Helical Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  10. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    Science.gov (United States)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  11. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  12. The Lightweight Integrated Solar Array and Transceiver (LISA-T): second generation advancements and the future of SmallSat power generation

    OpenAIRE

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA’s Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. ...

  13. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Phillip A. [Air Products And Chemicals, Inc., Allentown, PA (United States)

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state

  14. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources for both terrestrial and space...

  15. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  16. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.;

    2012-01-01

    . This paper analyzes and compares the synchronization capability of three advanced synchronization systems: the Decoupled Double Synchronous Reference Frame-Phase-Locked Loop, the Dual Second Order Generalized Integgrator- Phase-Locked Loop and the Three-Phase Enhanced Phase-Locked Loop, designed to work...... contributed to enhance their response under faulty and distorted scenarios, and hence to fulfill these requirements. In order to achieve satisfactory results it is necessary to count on accurate and fast grid voltage synchronization algorithms, which are able to work under unbalanced and distorted conditions...... under such conditions. Its response will be analyzed with respect the synchronization needs that can be extracted from the standards....

  17. MHD Power Generation

    Science.gov (United States)

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  18. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  19. Power generation, operation, and control

    CERN Document Server

    Wood, Allen J

    2012-01-01

    A comprehensive text on the operation and control of power generation and transmission systems In the ten years since Allen J. Wood and Bruce F. Wollenberg presented their comprehensive introduction to the engineering and economic factors involved in operating and controlling power generation systems in electric utilities, the electric power industry has undergone unprecedented change. Deregulation, open access to transmission systems, and the birth of independent power producers have altered the structure of the industry, while technological advances have created a host of new opportunities

  20. Power generation technologies

    CERN Document Server

    Breeze, Paul

    2014-01-01

    The new edition of Power Generation Technologies is a concise and readable guide that provides an introduction to the full spectrum of currently available power generation options, from traditional fossil fuels and the better established alternatives such as wind and solar power, to emerging renewables such as biomass and geothermal energy. Technology solutions such as combined heat and power and distributed generation are also explored. However, this book is more than just an account of the technologies - for each method the author explores the economic and environmental costs and risk factor

  1. Advanced Power Electronics Components

    Science.gov (United States)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  2. Advanced power generation systems for the 21st Century: Market survey and recommendations for a design philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Andriulli, J.B.; Gates, A.E.; Haynes, H.D.; Klett, L.B.; Matthews, S.N.; Nawrocki, E.A.; Otaduy, P.J.; Scudiere, M.B.; Theiss, T.J.; Thomas, J.F.; Tolbert, L.M.; Yauss, M.L.; Voltz, C.A.

    1999-11-01

    The purpose of this report is to document the results of a study designed to enhance the performance of future military generator sets (gen-sets) in the medium power range. The study includes a market survey of the state of the art in several key component areas and recommendations comprising a design philosophy for future military gen-sets. The market survey revealed that the commercial market is in a state of flux, but it is currently or will soon be capable of providing the technologies recommended here in a cost-effective manner. The recommendations, if implemented, should result in future power generation systems that are much more functional than today's gen-sets. The number of differing units necessary (both family sizes and frequency modes) to cover the medium power range would be decreased significantly, while the weight and volume of each unit would decrease, improving the transportability of the power source. Improved fuel economy and overall performance would result from more effective utilization of the prime mover in the generator. The units would allow for more flexibility and control, improved reliability, and more effective power management in the field.

  3. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  4. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-12-31

    During the wind power generator project a design algorithm for a gearless permanent magnet generator with an axially orientated magnetic flux was developed and a 10 kW model machine was constructed. Utilising the test results a variable wind speed system of 100 kW was designed that incorporates a permanent magnet generator, a frequency converter and a fuzzy controller. This system produces about 5-15% more energy than existing types and stresses to the blades are minimised. The type of generator designed in the project represents in general a gearless solution for slow-speed electrical drives. (orig.)

  5. Electric power generating bicycle

    OpenAIRE

    Brito, Nuno; Ribeiro, Luís; Esteves, João Sena

    2006-01-01

    It is manifest the growing interest in both personal health and environmental issues. The device described on this paper contemplates both aspects: generating environment-friendly electric power while keeping fit. A car alternator excited through a 12V battery is coupled to a mountain bicycle, and this arrangement enables the lighting of six halogen lamps, if a cyclist pedals fast enough. Such a machine gives rise to the thought of a self-powered gymnasium. Considerable physical effort is req...

  6. Magnetohydrodynamic power generation

    International Nuclear Information System (INIS)

    The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)

  7. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    Science.gov (United States)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  8. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    Science.gov (United States)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  9. Next Generation Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  10. Wind power. [electricity generation

    Science.gov (United States)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  11. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Quarterly technical status report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-14

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  12. AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells. FINAL REPORT

    OpenAIRE

    Di Donato, Antonello; Puigjaner Corbella, Lluís; Velo García, Enrique; Nougués, José María; Pérez Fortes, María del Mar; Bojarski, Aarón David

    2010-01-01

    Informe Final del Projecte ECSC RFC-CR-04006: AGAPUTE - Advanced gas purification technologies for co-gasification of coal, refinery by-products, biomass & waste, targeted to clean power produced from gas & steam turbine generator sets and fuel cells

  13. GEOTHERMAL POWER GENERATION PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  14. Geothermal Power Generation Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya [Oregon Inst. of Technology, Klamath Falls, OR (United States). Geo-Heat Center

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  15. Reactive power management of power networks with wind generation

    CERN Document Server

    Amaris, Hortensia; Ortega, Carlos Alvarez

    2012-01-01

    As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key

  16. Advanced stellarator power plants

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  17. Advanced nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Full text: Korea Hydro and Nuclear Power Co., Ltd (KHNP) is the largest power company among the six subsidiaries that separated from Korea Electric Power Corporation (KEPCO) in 2001, accounting for approximately 25% of electricity producing facilities, hydro and nuclear combined. KHNP operates 20 nuclear power plants in Kori, Yonggwang, Ulchin and Wolsong site and several hydroelectric power generation facilities, providing approximately 36% of the national power supply. As a major source of electricity generation in Korea, nuclear energy contributes greatly to the stability of national electricity supply and energy security. KHNP's commercial nuclear power plant operation, which started with Kori Unit 1 in 1978, has achieved an average capacity factor more than 90% since 2000 and a high record of 93.4% in 2008. Following the introduction of nuclear power plants in the 1970's, Korea accumulated its nuclear technology in the 1980's, developed OPR 1000(Optimized Power Reactor) and demonstrated advanced level of its nuclear technology capabilities in the 2000's by developing an advanced type reactor, APR 1400(Advanced Power Reactor) which is being constructed at Shin-Kori Unit 3 and 4 for the first time. By 2022, KHNP will construct additional 12 nuclear power plants in order to ensure a stable power supply according to the Government Plan of Long-Term Electricity supply and Demand. 4 units of OPR 1000 reactor model will be commissioned by 2013 and 8 units of APR 1400 are under construction and planned. At the end of 2022, the nuclear capacity will reach 33% share of total generation capacity in Korea and account for 48% of national power generation. (author)

  18. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  19. Technical advances power neuroscience

    Energy Technology Data Exchange (ETDEWEB)

    Barinaga, M.

    1991-01-01

    New techniques are helping researchers study the development of nerve cells in cell cultures and in vivo. These new methods are offering insights into the brain that were not available even a couple of years ago. Among the new advances discussed are imaging technology for evaluating the thinking human brain. One area in which researchers have made recent progress is the quest for ways to create immortal cell lines from specific types of nerve cells. Other projects using genetically engineered retroviruses and tumor-inducing genes, as well as gene regulation are discussed. Recent advances in neuroscience techniques apply not only to neurons, but also to whole brains as well. One example is a high-resulution electroencephalogram (EEG). Although the EEG cannot pin down the actual sites of activity as precisely as static brain imaging methods, it complements them with real-time recording that can keep up with the very rapid pace of brain activity.

  20. Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion

    International Nuclear Information System (INIS)

    Highlights: • Integration of CO2/O2 based UCG, CLC and CCS for clean coal utilization. • Incorporation of CLC system reduces the ASU load of the power plant. • Use of CO enriched UCG gas in Ni based CLC reduces the difficulty of heat balance. • Coupling of the proposed UCG with IGCC and IGST for the efficient power generation. • Demonstration of reduced CCS energy penalty in the advanced coupled system. - Abstract: Underground coal gasification (UCG) is a clean coal technology to utilize deep coal resources effectively. In-situ CO2-oxy coal gasification may eliminate the operational difficulty of the steam gasification process and utilize CO2 (greenhouse gas) effectively. Furthermore, it is necessary to convert the clean gasified energy from the UCG into clean combustion energy for an end-use. In order to achieve efficient clean power production, the present work investigates the thermodynamic feasibility of integration of CO2 based UCG with power generating systems operating in a chemical looping combustion (CLC) of product gas. The use of CO enriched syngas from O2/CO2 based UCG reduces the difficulty of the heat balance between a fuel reactor and an air reactor in a nickel oxygen-carrier based CLC system. Thermodynamic analyses have been made for various routes of power generation systems such as subcritical, supercritical and ultra-supercritical boiler based steam turbines and gas turbines for the UCG integrated system. It is shown, based on mass and energy balance analysis, that the integration of CO2 based UCG with the CLC system reduces the energy penalty of carbon capture and storage (CCS) significantly. A net thermal efficiency of 29.42% is estimated for the CCS incorporated system, which operates in a subcritical condition based steam turbine power plant. Furthermore, it is found that the efficiency of the proposed steam turbine system increases to 35.40% for an ultra-supercritical operating condition. The effect of operating temperature of the

  1. Gearless wind power generator

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, L.; Ridanpaeae, P.; Vihriaelae, H.; Peraelae, R. [Tampere Univ. of Technology (Finland). Lab. of Electricity and Magnetism

    1998-10-01

    In the project a 100 kW axial flux permanent magnet wind power generator has been designed. The toroidal stator with air gap winding is placed between two rotating discs with permanent magnets. The magnet material is NdBFe due to its excellent magnetic properties compared to other materials. This type of topology enables a very large number of poles compared to conventional machine of the same size. A large number of poles is required to achieve a low rotational speed and consequently a direct driven system. The stator winding is formed by rectangular coils. The end winding is very short leading to small resistive losses. On the other hand, the absence of iron teeth causes eddy current losses in the conductors. These can be restricted to an acceptable level by keeping the wire diameter and flux density small. This means that the number of phases should be large. Several independent three phase systems may be used. The toothless stator also means that the iron losses are small and there exists no cogging torque

  2. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  3. Power Systems Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    California Institute of Technology

    2007-03-31

    In the 17 quarters of the project, we have accomplished the following milestones - first, construction of the three multiwavelength laser scattering machines for different light scattering study purposes; second, build up of simulation software package for simulation of field and laboratory particulates matters data; third, carried out field online test on exhaust from combustion engines with our laser scatter system. This report gives a summary of the results and achievements during the project's 16 quarters period. During the 16 quarters of this project, we constructed three multiwavelength scattering instruments for PM2.5 particulates. We build up a simulation software package that could automate the simulation of light scattering for different combinations of particulate matters. At the field test site with our partner, Alturdyne, Inc., we collected light scattering data for a small gas turbine engine. We also included the experimental data feedback function to the simulation software to match simulation with real field data. The PM scattering instruments developed in this project involve the development of some core hardware technologies, including fast gated CCD system, accurately triggered Passively Q-Switched diode pumped lasers, and multiwavelength beam combination system. To calibrate the scattering results for liquid samples, we also developed the calibration system which includes liquid PM generator and size sorting instrument, i.e. MOUDI. In this report, we give the concise summary report on each of these subsystems development results.

  4. Power Generation for River and Tidal Generators

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wright, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Donegan, James [Ocean Renewable Power Company (ORPC), Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company (ORPC), Portland, ME (United States); McEntee, Jarlath [Ocean Renewable Power Company (ORPC), Portland, ME (United States)

    2016-06-01

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered one of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.

  5. Power generation, operation and control

    CERN Document Server

    Wood, Allen J; Sheblé, Gerald B

    2013-01-01

    Since publication of the second edition, there have been extensive changes in the algorithms, methods, and assumptions in energy management systems that analyze and control power generation. This edition is updated to acquaint electrical engineering students and professionals with current power generation systems. Algorithms and methods for solving integrated economic, network, and generating system analysis are provided. Also included are the state-of-the-art topics undergoing evolutionary change, including market simulation, multiple market analysis, multiple interchange contract analysis, c

  6. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  7. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  8. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  9. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Alvin

    2002-01-31

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic

  10. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  11. Powerful microsecond voltage pulse generator

    International Nuclear Information System (INIS)

    A microsecond voltage pulse generator, designed for investigations of high-power electron and ion beams generation in diode systems connected in parallel into a circuit with an inductive storage and plasma-erosion switch, is described. The generator consists of eight parallel pulsed voltage generators with 12 stages in each, assembled according to the Arkadiev-Marx scheme with two capacitors in each stage. The generator total energy at charged voltage of 80kV is 250 kJ. The main generator parameters are the following: the proper inductance is ≅0.7μH, wave resistance is ≅1.140hm, oscillation period is ≅3.83μs, attenuation is ≅105s-1. The results of the first experiments on generation of a microsecond high-current relativistic electron beam in a coaxial magnetically insulated diode are described

  12. Advanced technologies for power and fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U.; Mann, A.N. [US Department of Energy/National Energy Technology Lab., Pittsburgh, PA (United States)

    2001-07-01

    The Clean Coal Technology Program (CCT) being conducted by the United States Department of Energy (DOE) is a government and industry co-funded effort. The program's purpose is to demonstrate new generation of innovative, environmentally friendly processes that enhance the utilization of coal to meet increasing demand for electric power and fuels. Program demonstration areas include environmental control, advanced power generation, fuels production, and industrial applications. The CCT Program has now grown to maturity, with over 50% of the projects selected having successfully completed their demonstration goals and objectives. Under the CCT Program, nine advanced electric power generation projects and five coal processing for clean fuels projects were selected for full scale commercial demonstration. This paper provides the status, accomplishments and results of the most widely accepted technologies currently being commercialized under these two categories. The projects are (1) Atmospheric Fluidized-Bed Combustion (AFBC) at Jacksonville Electric Authority; (2) Integrated Gasification Combined-cycle (IGCC) at Wabash River, Tampa Electric and Kentucky Pioneer; and (3) Eastman Chemical's production of methanol via coal gasification using the LPMEOH{trademark} process. 7 figs., 7 tabs.

  13. Taming power: Generative historical consciousness.

    Science.gov (United States)

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962. PMID:26011649

  14. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  15. Advanced coal-fired power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, F. [Babcock Borsig Power Energy GmbH (Germany)

    2001-07-01

    This paper presents the joint efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{degree}C PF Power Plant'. Net efficiences of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{degree}C. The principal efforts are based on development of creep resistent nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. The Advanced 700{degree}C PF Power Plant project will improve the competitiveness of coal-fired power generation. Furthermore, it will provide a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. The demonstration programme will leave the possibility of any plant output between 400 and 1000 MW. The project will run to the end of 2003. 8 figs.

  16. Power generation from solid fuels

    CERN Document Server

    Spliethoff, Hartmut

    2010-01-01

    Power Generation from Solid Fuels introduces the different technologies to produce heat and power from solid fossil (hard coal, brown coal) and renewable (biomass, waste) fuels, such as combustion and gasification, steam power plants and combined cycles etc. The book discusses technologies with regard to their efficiency, emissions, operational behavior, residues and costs. Besides proven state of the art processes, the focus is on the potential of new technologies currently under development or demonstration. The main motivation of the book is to explain the technical possibilities for reduci

  17. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  18. Power generation with sour gas

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B. [Mercury Energy, Calgary, AB (Canada)

    2003-07-01

    This paper presents an overview of Mercury Energy and its experience with microturbines for power generation with sour gas. The economics of sour gas versus sweet gas were presented along with operational considerations for gas turbines and reciprocating engines. Mercury Electric was formed in 1995 as an independent power producer using waste gas. It tested the prototype and early production of microturbines for sour gas. Mercury Electric subsequently became Mercury Energy in 2002, and is now focused on exploration and production. The installation of the Gainsborough Battery in Saskatchewan offered insight into exhaust stacks, corrosion on microturbine exhaust enclosure, and the premium for low volume, sour trim compression required for hydrogen sulfide fuel gas. It was noted that small scale (less than 500 kW) sour gas fired generation is not competitive with grid power, but it may be viable for remote areas where grid power is not available. Larger scale (more than 1 MW) sour gas fired generation can compete with grid power under the right conditions. 2 tabs., 1 fig.

  19. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  20. Advances in Solar Power Forecasting

    Science.gov (United States)

    Haupt, S. E.; Kosovic, B.; Drobot, S.

    2014-12-01

    The National Center for Atmospheric Research and partners are building a blended SunCast Solar Power Forecasting system. This system includes several short-range nowcasting models and improves upon longer range numerical weather prediction (NWP) models as part of the "Public-Private-Academic Partnership to Advance Solar Power Forecasting." The nowcasting models being built include statistical learning models that include cloud regime prediction, multiple sky imager-based advection models, satellite image-based advection models, and rapid update NWP models with cloud assimilation. The team has also integrated new modules into the Weather Research and Forecasting Model (WRF) to better predict clouds, aerosols, and irradiance. The modules include a new shallow convection scheme; upgraded physics parameterizations of clouds; new radiative transfer modules that specify GHI, DNI, and DIF prediction; better satellite assimilation methods; and new aerosol estimation methods. These new physical models are incorporated into WRF-Solar, which is then integrated with publically available NWP models via the Dynamic Integrated Forecast (DICast) system as well as the Nowcast Blender to provide seamless forecasts at partner utility and balancing authority commercial solar farms. The improvements will be described and results to date discussed.

  1. Modeling of advanced fossil fuel power plants

    Science.gov (United States)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  2. Advances in generative lexicon theory

    CERN Document Server

    Pustejovsky, James; Isahara, Hitoshi; Kanzaki, Kyoko

    2012-01-01

    This book offers papers addressing models of linguistic composition from a Generative Lexicon perspective, showing how GL has developed to account for a range of linguistic phenomena, including argument alternation, polysemy, discourse phenomena and metaphor.

  3. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  4. Advanced Accessory Power Supply Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.

    2010-06-15

    This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new technology assessments for hybrid vehicle applications. Additionally, this task was to address the use of high temperature components in drive systems. Under this CRADA, ORNL conducted further research based on GM’s idea of using the motor magnetic core and windings to produce bidirectional accessory power supply that is nongalvanically coupled to the terminals of the high voltage dc-link battery of hybrid vehicles. In order not to interfere with the motor’s torque, ORNL suggested to use the zero-sequence, highfrequency harmonics carried by the main fundamental motor current for producing the accessory power

  5. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of

  6. Reference costs for power generation

    International Nuclear Information System (INIS)

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO2) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO2 emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation methods. Two

  7. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    Science.gov (United States)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  8. Induction generator powered coaxial launchers

    International Nuclear Information System (INIS)

    Most coaxial accelerator concepts to date have used switched power supplies to energize coils in the vicinity of the projectile, or have tolerated a grossly oversized power supply which energizes all coils during the course of the launch. Coordination of the switching, while engineeringly possible, provides opportunities for failure which reduces the reliability of the system as compared to a passively activated system requiring no switching. Excitation of un-used sections of a launcher dramatically reduces launch efficiency, and increases both power supply and cooling requirements. A launcher design which avoids the need for switching and automatically excites only the windings in the vicinity of the projectile is presented in this paper. The energy store for the launcher consists of rotating induction machines. The excitation for the launcher is provided by an excitation winding on the projectile, which makes the projectile act like the rotor of a synchronous condenser. This combination of super-synchronous induction machines (the energy stores) and synchronous alternators (the projectile) is called an induction generator. This paper provides a description of the induction generator powered launcher concept, and investigates scaling laws to assess the applicability of this technology for tactical and space launch applications

  9. Network integration of distributed power generation

    Science.gov (United States)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  10. Transforming Ontario's Power Generation Company

    International Nuclear Information System (INIS)

    The OPG Review Committee was formed by the Ontario Ministry of Energy to provide recommendations and advice on the future role of Ontario Power Generation Inc. (OPG) in the electricity sector. This report describes the future structure of OPG with reference to the appropriate corporate governance and senior management structure. It also discusses the potential refurbishing of the Pickering A nuclear generating Units 1, 2 and 3. The electricity system in Ontario is becoming increasingly fragile. The province relies heavily on electricity imports and the transmission system is being pushed to near capacity. Three nuclear generating units are out of service. The problems can be attributed to the fact that the electricity sector has been subjected to unpredictable policy changes for more than a decade, and that the largest electricity generator (OPG) has not been well governed. OPG has had frequent senior management change, accountability has been weak, and cost overruns have delayed the return to service of the Pickering nuclear power Unit 4. It was noted that the generating assets owned and operated by OPG are capable of providing more than 70 per cent of Ontario's electricity supply. Decisive action is needed now to avoid a potential supply shortage of about 5,000 to 7,000 megawatts by 2007. In its current state, OPG risks becoming a burden on ratepayers. Forty recommendations were presented, some of which suggest that OPG should become a rate-regulated commercial utility focused on running and maintaining its core generating assets. This would require that the government act as a shareholder, and the company operate like a commercial business. It was also emphasized that the market must be allowed to bring in new players. refs., tabs., figs

  11. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...

  12. Wind wheel electric power generator

    Science.gov (United States)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  13. Analysis of simulation tools for the study of advanced marine power systems

    OpenAIRE

    Brochard, Paul Eugene

    1992-01-01

    The United States Navy is at a crossroads in the design of ship's engineering plants. Advances in solid-state power electronics combined with a shift to gas turbine powered propulsion and electric plants has placed renewed emphasis on developing advanced power systems. These advanced power systems may combine the prime movers associated with propulsion and electric power generation into an integrated system. The development of advanced electric distribution systems and propulsion derived ship...

  14. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  15. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  16. Advanced Coordinating Control System for Power Plant

    Institute of Scientific and Technical Information of China (English)

    WU Peng; WEI Shuangying

    2006-01-01

    The coordinating control system is popular used in power plant. This paper describes the advanced coordinating control by control methods and optimal operation, introduces their principals and features by using the examples of power plant operation. It is wealthy for automation application in optimal power plant operation.

  17. Advanced power electronics and electric machinery program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  18. Reactive power of the ozone generators

    International Nuclear Information System (INIS)

    The paper presents the analysis of the reactive power flow in the ozone generator power system and discusses some possibilities of its minimization. Discharge elements of the ozone generator comprise strong non-linear capacitive energy receiver and supply system should provide the ozone generator with the active power P necessary to carry out reactions in the inter-electrode zone, the reactive capacitive power Qc that is to generate electric field at the gap and the dielectric of the discharge elements and the distortion power QD due to the ozone generator non-linearity. The reactive power is provided to the circuit from the power network and the same amount is returned during every period of supply voltage resulting in the energy loss at the elements of the power system. Their minimizations in the ozone generators allow reducing power loss in the process of the ozone generation and improve overall efficiency of the system. (author)

  19. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  20. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.;

    2007-01-01

    More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...... converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power...... management in the future European electricity network....

  1. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  2. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation uncerta

  3. Application of additional diesel generators in nuclear power stations

    International Nuclear Information System (INIS)

    In order to enlarge the nuclear safety margin, ensure safe shutdown of nuclear reactors under loss of on-site and offsite power supply, and raise the unit availability through elongation of diesel fallback time under unavailability of emergency diesel generators, at present, nuclear power stations of most countries and zones in the world such as France, the U.S., south Africa, South Korea and Taiwan have been equipped with additional diesel generators, making the safety performance of above-mentioned nuclear power stations advanced in the world. The wiring procedures, power supply mode, testing methods and the power supply and connection schemes of motor control center are described

  4. Future Photovoltaic Power Generation for Space-Based Power Utilities

    Science.gov (United States)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements

  5. Control strategies based on effective power factor for distributed generation power plants during unbalanced grid voltage

    OpenAIRE

    Camacho Santiago, Antonio; Castilla Fernández, Miguel; Miret Tomàs, Jaume; Matas Alcalá, José; Guzmán Solà, Ramon; de Sousa Pérez, Óscar; Martí Colom, Pau; García de Vicuña Muñoz de la Nava, José Luis

    2013-01-01

    Unbalanced voltages in three-phase power systems is a common perturbation propagated along the grid. Distributed Generation plants have gained widespread attention due to their capability to improve power quality in a distributed manner, including voltage unbalance mitigation. A conventional control strategy to command power plants during balanced grid voltages, is the use of power factor to inject/absorb reactive power depending on grid conditions. Advanced control strategies during unbalanc...

  6. Model-free adaptive control of advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...... power injection for both single-phase and three-phase systems. Other control strategies like constant power generation control for PV systems to further increase the penetration level, and the improvements of LVRT performance for a doubly fed induction generator based wind turbine system by means...

  8. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  9. Materials for Advanced Power Engineering 2014

    OpenAIRE

    2014-01-01

    The 10th Liege Conference on Materials for Advanced Power Engineering presents theachievements of international materials related research for high eciency, low-emissionpower plants. Furthermore the new demands of the transition of electricity supply towardsmore and more regenerative power sources are reported.Resource preservation and maximization of economic success by improved plant e-ciency were the driving forces in past materials and power plant technology development.Fossil fuels will ...

  10. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...... price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators....

  11. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  12. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  13. Advanced power cycles with mixture as the working fluid

    OpenAIRE

    Jonsson, Maria

    2003-01-01

    The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventiona...

  14. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  15. Cogeneration power plant concepts using advanced gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Huettenhofer, K.; Lezuo, A. [Siemens Power Generation, Erlangen (Germany)

    2001-07-01

    Cogeneration of heat and power (CHP) is undeniably the environmentally most favourable way of making efficient use of energy in the power generation industry. Cogeneration is also particularly appreciated by political decision makers because of its high yield from primary energy sources, and thus its contribution to the protection of the environment and the conservation of resources. Advanced gas turbines, along with an intelligent power plant design consisting of pre-engineered, modular power plant items, will help cogeneration to play an important role in future energy markets also from an economic point of view. (orig.)

  16. Distributed Generation and Resilience in Power Grids

    CERN Document Server

    Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

    2012-01-01

    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

  17. Decentralized power generation from biogas

    International Nuclear Information System (INIS)

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW

  18. Saving Energy Through Advanced Power Strips (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.

    2013-10-01

    Advanced Power Strips (APS) look just like ordinary power strips, except that they have built-in features that are designed to reduce the amount of energy used by many consumer electronics. There are several different types of APSs on the market, but they all operate on the same basic principle of shutting off the supply power to devices that are not in use. By replacing your standard power strip with an APS, you can signifcantly cut the amount of electricity used by your home office and entertainment center devices, and save money on your electric bill. This illustration summarizes the different options.

  19. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Directly driven generators for wind power applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampola, P. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Electromechanics

    1995-12-31

    The article deals with an analysis of directly driven, low-speed wind generators. The generators studied were a permanent-magnet synchronous machine and an asynchronous machine. The machines were compared with a typical generator of a wind power plant. The electromagnetic optimization of the machines was done by the finite element method. The rated power of the generators was 500 kW and the rotational speed was 40 rpm. (author)

  1. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control......Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...

  2. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  3. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  4. Electric power generation by wind

    Energy Technology Data Exchange (ETDEWEB)

    Argand, A.

    1982-01-01

    The paper recalls the investigations carried out into wind climate and describes the history of the large aerogenerators that have been realized or projected. It concludes by stressing the attraction that installations of high power, above 10 MW, would hold.

  5. On Maximal Power Point of Photovoltaic Power Generation System

    OpenAIRE

    Setiawan, Eko; Hodaka, Ichijo

    2012-01-01

    Numerous studies have been developed to get the maximum power of photovoltaic (PV). Most of the studies assume that the maximum power will be reached when the PV works at the maximum power point (MPP). Since the real target is maximizing power at the load-side, that assumption should be clarified. This paper presents an analysis of photovoltaic power generation system. Some numerical value is applied to realize the value. Based on the analysis, difference value of photovoltaic MPP and load MP...

  6. Power Quality Improvement of a Distributed Generation Power System

    Directory of Open Access Journals (Sweden)

    Panga Harish

    2016-06-01

    Full Text Available The aim of this work is to improve the power quality for Distributed Generation (DG with power storage system. Power quality is the combination of voltage quality and current quality. Power quality is the set of limits of electrical properties that allows electrical systems to function in their intended manner without significant loss of performance or life. The electrical power quality is more concerned issue. The main problems are stationery and transient distortions in the line voltage such as harmonics, flicker, swells, sags and voltage asymmetries. Distributed Generation (DG also called as site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from the many small energy sources. In recent years, micro electric power systems such as photovoltaic generation systems, wind generators and micro gas turbines, etc., have increased with the deregulation and liberalization of the power market. Under such circumstances the environment surrounding the electric power industry has become ever more complicated and provides high-quality power in a stable manner which becomes an important topic. Here DG is assumed to include Wind power Generation (WG and Fuel Cells (FC, etc. Advantages of this system are constant power supply, constant voltage magnitude, absence of harmonics insupply voltage, un-interrupted power supply. In this project the electric power qualities in two cases will be compared. Case I: With the storage battery when it is introduced. Case II: Without the storage battery. The storage battery executes the control that maintains the voltage in the power system. It will be found that the Electric power quality will be improved, when storage battery is introduced. The model system used in this Project work is composed of a Wind Turbine, an Induction Generator, Fuel Cells, An Inverter and a Storage Battery. A miniature Wind Power Generator is

  7. Cycloidal tidal power generation - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the findings of a project investigating the economic and technical viability of a cycloidal tidal stream generator and developing a performance prediction model to assess the applicability of cycloidal turbines to power generation. The concept of cycloidal power generation is described along with the use of the model to examine the performance of six designs in the tidal flow off the west coast of Scotland. Details are given of the estimated power generated and cost reductions using optimised designs. Areas to be examined for design optimisation are listed.

  8. Probabilistic Evaluation of Wind Power Generation

    Science.gov (United States)

    Muhamad Razali, N. M.; Misbah, Muizzuddin

    2013-06-01

    The power supplied by wind turbine generators (WTG) is widely random following the stochastic nature of weather conditions. For planning and decision making purposes, understanding and evaluation of the behaviour and distribution of WTG's output power are crucial. Monte Carlo simulation enables the realization of artificial futures by generating a huge number of sample paths of outcomes to perform this analysis. The paper presents an algorithm developed for a random wind speed generator governed by the probability density function of Weibull distribution and evaluates the WTG's output by using the power curve of wind turbines. The method may facilitate assessment of suitable turbine site as well as generator selection and sizing.

  9. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  10. Solar energy thermally powered electrical generating system

    Science.gov (United States)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  11. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  12. Repowering flexibility of coal-based advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, R.A.; Bechtel, T.F.; Schmidt, D.K.; Wimer, J.G.

    1995-03-01

    The Department of Energy`s (DOE`s) Morgantown Energy Technology Center (METC) helps enhance the economic competitiveness, environmental quality, and national well-being of the U.S. by developing advanced power-generation systems. The potential market for advanced power-generation systems is large. In the U.S., electric demand is estimated to grow at about 1 percent per year through the year 2010. The total power generation market also includes new-capacity as well as replacement of existing power plants as they age. Thus, the market for power systems over the next 15 years is estimated to be about 279,000 megawatts (MW), but could range from as much as 484,000 MW to as little as 153,000 MW. These predictions are summarized. Over the next 15 years, the replacement market is potentially much larger than the expansion market because of the large base of aging power plants in the U.S.

  13. Power Generation Using Piezoelectric Transducer

    Directory of Open Access Journals (Sweden)

    Tanu Chouhan

    2016-05-01

    Full Text Available The most basic need of today’s world is energy which is non-renewable source of energy available on earth. The need is increasing day by day, to overcome this there is requirement of energy harvesting. This paper attempts to show how man has been utilizing and optimizing kinetic energy. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal. “The idea of energy harvesting is applicable to sensors as well as transducers that are placed and operated on some entities for a long time to replace the sensor module batteries. Such sensors are commonly called self-powered sensors.” Embarked piezoelectric transducer, which is an electromechanical converter, undergoes mechanical vibrations therefore produce electricity. This power source has many applications as in agriculture, home application and street lighting and as energy source for sensors in remote locations.

  14. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  15. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  16. Management Innovations in Power Generation Groups

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Since the institutional reform of power industry in 2002,power sectors,in particularelectrity generation enterprises in China have been grently changed, not only in institutionand industrial pattern but also in operational environment.The year2006is a turning point of tense power supply lasting for three years and a half .The change of power supply situationin the 11th Five-Year Plan period and in-depth reform of power institutional systm haveplaced serious challenges in front of power genration groups.In this new historical era,powergeneration groups can keep undefeated only by carrying out actively mangement innovations.

  17. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  18. Power: towards a third generation definition

    Directory of Open Access Journals (Sweden)

    J. Zaaiman

    2007-07-01

    Full Text Available Power is a well-established concept in the social sciences especially in the political sciences. Although it is widely used in scientific discourse, different definitions and perspectives prevail with regard to it. This article aims to explore the possibilities of taking the debate further towards a third generation definition of social power. Although first generation definitions (associated with Weber and Dahl and second generation definitions (associated with inter alia Giddens and Morriss are still widely used in the academic field, they do not reflect the depth of the continuous debate on the concept of power. Viewpoints, especially with regard to agency and freedom, are not reflected in current definitions. To this can also be added the important dynamic relationship between power and change. This article summarises the important aspects of power debates relevant for defining power and discusses possible ways in which this can be accommodated in a definition of power. The current debate on the relationship between power and change is also reinterpreted with regard to defining social power. The article concludes by proposing necessary aspects of a third generation definition of power and suggests such a definition.

  19. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  20. Liberation of electric power and nuclear power generation

    International Nuclear Information System (INIS)

    In Japan, as the Rule on Electric Business was revised after an interval of 35 years in 1995, and a competitive bid on new electric source was adopted after 1996 fiscal year, investigation on further competition introduction to electric power market was begun by establishment of the Basic Group of the Electric Business Council in 1997. By a report proposed on January, 1999 by the Group, the Rule was revised again on March, 1999 to start a partial liberation or retail of the electric power from March, 2000. From a viewpoint of energy security and for solution of global environmental problem in Japan it has been decided to positively promote nuclear power in future. Therefore, it is necessary to investigate how the competition introduction affects to development of nuclear power generation and what is a market liberation model capable of harmonizing with the development on liberation of electric power market. Here was elucidated on effect of the introduction on previous and future nuclear power generation, after introducing new aspects of nuclear power problems and investigating characteristic points and investment risks specific to the nuclear power generation. And, by investigating some possibilities to development of nuclear power generation under liberation models of each market, an implication was shown on how to be future liberation on electric power market in Japan. (G.K.)

  1. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  2. Development of micro power generators - A review

    Energy Technology Data Exchange (ETDEWEB)

    Chou, S.K.; Yang, W.M.; Chua, K.J.; Li, J. [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Zhang, K.L. [Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue (China)

    2011-01-15

    The demand for energy sources that are compact, lightweight and powerful has significantly increased in recent years. Traditional chemical batteries which are highly developed are unable to meet the demand for high energy intensity. This gap is expected to widen in the future as electronic devices need more power to support enhanced functionalities. Hydrocarbon fuels have energy densities much greater than the best batteries. Therefore, taking advantage of the high energy density of chemical fuels to generate power becomes an attractive technological alternative to batteries. To address the growing demand for smaller scale and higher energy density power sources, various combustion-based micro power generators are being developed around the world. This review paper provides an update on recent progresses and developments in micro-scale combustion and micro power generators. The paper, broadly divided into four main sections, begins with a review of various methods to enhance and stabilize the combustion at micro-scale, subsequently improving the efficiency. This is followed by a description of various micro-thermophotovoltaic power generators. The third section focuses on MEMS based solid propellant micro-propulsion system. Lastly, a brief review is made to other micro power generators. (author)

  3. Development of micro power generators - A review

    International Nuclear Information System (INIS)

    The demand for energy sources that are compact, lightweight and powerful has significantly increased in recent years. Traditional chemical batteries which are highly developed are unable to meet the demand for high energy intensity. This gap is expected to widen in the future as electronic devices need more power to support enhanced functionalities. Hydrocarbon fuels have energy densities much greater than the best batteries. Therefore, taking advantage of the high energy density of chemical fuels to generate power becomes an attractive technological alternative to batteries. To address the growing demand for smaller scale and higher energy density power sources, various combustion-based micro power generators are being developed around the world. This review paper provides an update on recent progresses and developments in micro-scale combustion and micro power generators. The paper, broadly divided into four main sections, begins with a review of various methods to enhance and stabilize the combustion at micro-scale, subsequently improving the efficiency. This is followed by a description of various micro-thermophotovoltaic power generators. The third section focuses on MEMS based solid propellant micro-propulsion system. Lastly, a brief review is made to other micro power generators.

  4. Sustainable Power Generation by Plasma Physics

    Directory of Open Access Journals (Sweden)

    Anyaegbunam F. N. C. (Ph.D.

    2013-08-01

    Full Text Available One of the greatest challenges of developing countries today is electric power generation. The demand for Electric power is far above generation and distribution capacities. For instance, only about 4000MW of electricity is available for nearly 170 million people in Nigeria today. On the other hand, the cities are littered with municipal solid wastes in open dumps which are dangerous to health and environment. Sustainable and successful waste management should be safe, effective, environmentally friendly and economically viable.Application of plasma Physics in waste to energy can be one of the novel ways of sustainable power generation. In plasma gasifying cupola, the organic waste materials are gasified to generate a syngas and steam which can be used to generate electricity by integrated gasification combine circle. The inorganic part of the waste is vitrified to a benign residue used for construction. This paper describes the physics and technology involved, reviews the power situation in Nigeria and the benefits of implementation of this technology in waste to electric power generation. This might be an environmentally Safe and sustainable economic solution for waste management and alternative clean power generation

  5. Power and the future generation

    International Nuclear Information System (INIS)

    In this keynote address, the author, who was acting president of AECL at the time of the conference, emphasizes the importance of nuclear energy to Canada, and its future importance to the developing countries. In 1992, nuclear energy supplied 15% of Canada's electricity, employed 30,000 people in Canada, created at least 10,000 jobs in other sectors, generated federal tax revenues of C$700 million, and by supplanting coal and gas imports saved about C$1 billion. Export sales prospects in China, Korea, Turkey, the Philippines, Indonesia and Thailand are indicated. AECL is presently undergoing reorganization for greater efficiency. A public opinion poll indicated about 70% Canadian public support for nuclear energy

  6. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    Science.gov (United States)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  7. Sustainable Power Generation by Plasma Physics

    OpenAIRE

    Anyaegbunam F. N. C. (Ph.D.)

    2013-01-01

    One of the greatest challenges of developing countries today is electric power generation. The demand for Electric power is far above generation and distribution capacities. For instance, only about 4000MW of electricity is available for nearly 170 million people in Nigeria today. On the other hand, the cities are littered with municipal solid wastes in open dumps which are dangerous to health and environment. Sustainable and successful waste management should be safe, effective, environmen...

  8. Bike-powered electricity generator

    Directory of Open Access Journals (Sweden)

    ŞTEFAN MOCANU

    2015-02-01

    Full Text Available Finding new energy sources is an important challenge of our times. A lot of research focuses on identifying such sources that can also be exploited with relatively simple and efficient systems. These sources can be either new materials that can be used to generate energy, or solutions to scavenge already existing forms of energy. Part of the latter class of solutions, the system presented in this paper converts the energy consumed by many people in gyms (or even at home, during exercise into electric energy. This energy exists anyway, because people want to be healthier or to look better. Currently, this significant (in our opinion amount of energy is actually wasted and transformed into heat. Instead, in this study, a prototype scavenging system (dedicated to fitness/stationary bikes to collect and (reuse this energy is presented. Specifically, we depict the design of a low-budget system that uses existing, discrete components and is able to scavenge some of the energy spent by the biker. The experimental results show that the system is functional, but its efficiency is limited by (mechanical losses before the collection.

  9. Advanced LVDC Electrical Power Architectures and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Vasquez, Juan Carlos; Guerrero, Josep M.;

    2014-01-01

    Current trends indicate that worldwide electricity distribution networks are experiencing a transformation towards direct-current (DC) at both generation and consumption level. This tendency is powered by the outburst of various electronic loads and, at the same time, with the struggle to meet...

  10. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... response of VHF converters, on/off control schemes are often used for their output control. The options presented so far demonstrated excellent performance, but with very strict timing constraints on all functional blocks in the feedback loop. Therefore, an on/off control method is proposed which allows...

  11. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  12. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  13. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  14. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y. [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T. [Aston Univ. Birmingham (United Kingdom); Beckman, D. [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  15. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  16. Synchrophasor Applications for Wind Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  17. Solar driven liquid metal MHD power generator

    Science.gov (United States)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  18. Power Generation and Distribution via Distributed Coordination Control

    OpenAIRE

    Kim, Byeong-Yeon; Oh, Kwang-Kyo; Ahn, Hyo-Sung

    2014-01-01

    This paper presents power coordination, power generation, and power flow control schemes for supply-demand balance in distributed grid networks. Consensus schemes using only local information are employed to generate power coordination, power generation and power flow control signals. For the supply-demand balance, it is required to determine the amount of power needed at each distributed power node. Also due to the different power generation capacities of each power node, coordination of pow...

  19. Conditional prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Pinson, Pierre; Kariniotakis, Georges

    2010-01-01

    A generic method for the providing of prediction intervals of wind power generation is described. Prediction intervals complement the more common wind power point forecasts, by giving a range of potential outcomes for a given probability, their so-called nominal coverage rate. Ideally they inform...... on the characteristics of prediction errors for providing conditional interval forecasts. By simultaneously generating prediction intervals with various nominal coverage rates, one obtains full predictive distributions of wind generation. Adapted resampling is applied here to the case of an onshore Danish wind farm...... to the case of a large number of wind farms in Europe and Australia among others is finally discussed....

  20. Optimal prediction intervals of wind power generation

    DEFF Research Database (Denmark)

    Wan, Can; Wu, Zhao; Pinson, Pierre;

    2014-01-01

    Accurate and reliable wind power forecasting is essential to power system operation. Given significant uncertainties involved in wind generation, probabilistic interval forecasting provides a unique solution to estimate and quantify the potential impacts and risks facing system operation with wind...... penetration beforehand. This paper proposes a novel hybrid intelligent algorithm approach to directly formulate optimal prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization. Prediction intervals with Associated confidence levels are generated through...... conducted. Comparing with benchmarks applied, experimental results demonstrate the high efficiency and reliability of the developed approach. It is therefore convinced that the proposed method provides a new generalized framework for probabilistic wind power forecasting with high reliability and flexibility...

  1. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  2. Tidal power generation. A sustainable energy source?

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.A. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia (Canada)

    2004-07-01

    The Annapolis Tidal Generating Station is the first and only active tidal generating station in North America. Located in Eastern Canada on the Bay of Fundy, the station takes advantage of the world's highest tides (up to 9 m) to generate 32 GWh of electricity per year. Structures used to direct tidal water flows for electricity generation influence biological activity and alter water levels in tidal basins. Economic and ecological sustainability factors are discussed for three tidal power stations: Annapolis, La Rance, and Kislaya Guba. At Annapolis, improvements in construction and operation have reduced ecological disruption compared to previous tidal power plants. Annapolis has been in continuous operation for 17 years, producing clean, emission-free electricity. The station demonstrates that tidal generation is both feasible and sustainable.

  3. Economics of power generation from imported biomass

    International Nuclear Information System (INIS)

    Attention is paid to the economics of import of biomass to the Netherlands, and subsequent utilisation for power generation, as a means to reduce dependence on (imported) fossil fuels and to reduce CO2 emission. Import of wood to the extent of 40 PJ or more from Baltic and South American states seems to be readily achievable. Import of biomass has various advantages, not only for the European Union (reduced CO2 emissions) but also for the countries of origin (employment creation). However, possible disadvantages or risks should be taken into account. With that in mind, import of biomass from Baltic states seems very interesting, although it should be noted that in some of those countries the alternative of fuel-switching to biomass seems to be more cost-effective than import of biomass from those countries. Given the expected increase in inland biomass consumption in the Baltic countries and the potential substantial future demand for biomass in other Western European countries it is expected that the biomass supply from Baltic countries will not be sufficient to fulfill the demand. An early focus on import from other countries seems advisable. Several power generation options are available with short to medium term potential and long term potential. The margin between costs of biomass-fuelled power and of coal fired power will be smaller, due to substantial improvements in power generating efficiency and reductions of investment costs of options for power generation from biomass, notably Biomass Gasification Combined Cycle. 18 refs

  4. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  5. Flywheel-powered X-ray generator

    Science.gov (United States)

    Siedband, M. P.

    1984-01-01

    The use of a small flywheel appears to be a practical alternative to other power sources for mobile X-ray system applications. A 5 kg flywheel has been constructed which runs at 10 krpm and stores 30 KJ while requiring less than 500 W to bring the system up to speed. The wheel is coupled to an aircraft alternator and can yield pulsed power levels over 50 KWp. The aircraft alternator has the advantage of high frequency output which has also permitted the design of smaller high voltage transformers. A series of optical sensors detecting shaft position function as an electronic commutator so that the alternator may operate as a motor to bring the wheel up to operating speed. The system permits the generation of extremely powerful X-rays from a variety of low power sources such as household power outlets, automobile batteries or sources of poorly regulated electrical power such as those found in third world countries.

  6. Wind power, distrubted generation and transmission

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    the possibilities for integration of even more wind power using new power balancing strategies that exploit the possibilities given by the existence of CHP plants as well as the impact of heat pumps for district heating. The analyses demonstrate that it is possible to accommodate 50% or more wind power without......Denmark has the World?s highest penetration of wind power in electricity generation with a share of 15.0% of total domestic demand in 2002 (DEA, 2004). This is unevenly distributed in the two electricity systems of Denmark giving a share as high as 20.7% in Western Denmark in 2003 up from 18...... power balancing strategies are not applied, costly grid expansions will follow expansions in installed wind power capacity....

  7. Microfabricated thermoelectric power-generation devices

    Science.gov (United States)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  8. Thermoelectric fabrics: toward power generating clothing.

    Science.gov (United States)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  9. Recent advances in nuclear power plant simulation

    International Nuclear Information System (INIS)

    The field of industrial simulation has experienced very significant progress in recent years, and power plant simulation in particular has been an extremely active area. Improvements may be recorded in practically all simulator subsystems. In Europe, the construction of new full- or optimized-scope nuclear power plant simulators during the middle 1990's has been remarkable intense. In fact, it is possible to identify a distinct simulator generation, which constitutes a new de facto simulation standard. Thomson Training and Simulation has taken part in these developments by designing, building, and validation several of these new simulators for Dutch, German and French nuclear power plants. Their characteristics are discussed in this paper. The following main trends may be identified: Process modeling is clearly evolving towards obtaining engineering-grade performance, even under the added constraints of real-time operation and a very wide range of operating conditions to be covered; Massive use of modern graphic user interfaces (GUI) ensures an unprecedented flexibility and user-friendliness for the Instructor Station; The massive use of GUIs also allows the development of Trainee Stations (TS), which significantly enhance the in-depth training value of the simulators; The development of powerful Software Development Environments (SDE) enables the simulator maintenance teams to keep abreast of modifications carried out in the reference plants; Finally, simulator maintenance and its compliance with simulator fidelity requirements are greatly enhanced by integrated Configuration Management Systems (CMS). In conclusion, the power plant simulation field has attained a strong level of maturity, which benefits its approximately forty years of service to the power generation industry. (author)

  10. Hydropower generator and power system interaction

    OpenAIRE

    Bladh, Johan

    2012-01-01

    After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Im...

  11. High-Performance Constant Power Generation in Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    An advanced power control strategy by limiting the maximum feed-in power of PV systems has been proposed, which can ensure a fast and smooth transition between maximum power point tracking and Constant Power Generation (CPG). Regardless of the solar irradiance levels, high-performance and stable...

  12. On reliability optimization for power generation systems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reliability level of a power generation system is an important problem which is concerned by both electricity producers and electricity consumers. Why? It is known that the high reliability level may result in additional utility cost, and the low reliability level may result in additional consumer's cost, so the optimum reliability level should be determined such that the total cost can reach its minimum. Four optimization models for power generation system reliability are constructed, and the proven efficient solutions for these models are also given.

  13. Mechanism of power generation - the MHD way

    International Nuclear Information System (INIS)

    The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)

  14. Globally Secured Power Generation through Vibration

    Directory of Open Access Journals (Sweden)

    Nimika Aggarwal

    2012-09-01

    Full Text Available Global security is an important basis of the entire human security system. Since Industry revolution, human began to suffer from many kinds of pollution and ecosystem degradation, such as air pollution, water pollution, soil loss and degradation, etc. The need to generate power (or say electricity is the demand for today’s life because of the fact that even if there is a lot of medium to generate power then there are lot of medium for pollution as well so there would still be a shortage of clean electricity. Comparison of different forms of commercial power generation by use of the fuel cycle methods developed in European studies shows that the health burdens are extreme in areas where power stations (based on coal, Ignite, and oil are situated as they pollute the outdoor air to large extent therefore one has to overcome this state. This paper reviews the state of knowledge regarding the generation of electricity by pressure or vibration produced by our footsteps which make the generation eco-friendly and easy.

  15. Autonomous Underwater Vehicle Thermoelectric Power Generation

    Science.gov (United States)

    Buckle, J. R.; Knox, A.; Siviter, J.; Montecucco, A.

    2013-07-01

    Autonomous underwater vehicles (AUVs) are a vital part of the oceanographer's toolbox, allowing long-term measurements across a range of ocean depths of a number of ocean properties such as salinity, fluorescence, and temperature profile. Buoyancy-based gliding, rather than direct propulsion, dramatically reduces AUV power consumption and allows long-duration missions on the order of months rather than hours or days, allowing large distances to be analyzed or many successive analyses of a certain area without the need for retrieval. Recent versions of these gliders have seen the buoyancy variation system change from electrically powered to thermally powered using phase-change materials, however a significant battery pack is still required to power communications and sensors, with power consumption in the region of 250 mW. The authors propose a novel application of a thermoelectric generation system, utilizing the depth-related variation in oceanic temperature. A thermal energy store provides a temperature differential across which a thermoelectric device can generate from repeated dives, with the primary purpose of extending mission range. The system is modeled in Simulink to analyze the effect of variation in design parameters. The system proves capable of generating all required power for a modern AUV.

  16. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  17. Power generation alternatives for the XXI century

    International Nuclear Information System (INIS)

    Forecasts from different specialized sources indicate that the power consumption in the world will continue to increase. In Argentina it is expected that for the year 2020 the consumption will double the present values. In 2003, in our country, fossil fuels - carbon, oil, gas - contributed approximately 48% to the power generation, while hydroelectricity was 43% and nuclear power 9%. Fossil fuels have some advantages, main ones are present low cost and easy transport, but they have also many disadvantages in terms of contamination, environmental effects and non-renewable resources. The Carbon Dioxide (CO2), that is produced when burning fossil fuels, is considered as one of the major sources of global warming in earth (Greenhouse effect), with devastating climate consequences in certain regions as dry seasons, floods etc. In Argentina total CO2 emissions in year 1998 (last measured) were 114 million Tons. Although absolute emission values are not high, when compared with those of certain developed countries, some mitigation measures could be adopted. Emissions due to transport are diminishing thanks to a strong reconversion of public and private vehicles to run on natural gas instead of gasoline or diesel. But what are we going to do to optimize Power Generation lowering fossil fuels consumption? Some environmental NGO's insist that the only solution is to use the 'so called' renewable energies - Solar, Wind, Biomas, Geothermal - but these sources contribute only with less than 0,03% to Power Generation in our country. Figures provided by the World Energy Council shows that only 2% of Power used commercially all around the world comes from 'renewables'. Although this output could be increased in the future, WEC estimates very difficult to reach even 5% for year 2020 Solar energy is employed successfully in some countries to heat water for household purposes or to produce little amount of electricity for specific purposes. It is tempting to think that wind and sun

  18. PEOPLE - The cutting edge in power generation

    International Nuclear Information System (INIS)

    As competition for the United States power consumer increases, generating companies must seek new ways to do business. One way to keep up with the pace of change is to implement unique ideas into various areas of daily operation at the generating station. From subtle new management styles to ambitious employee education programs, changes in operating the management techniques can produce valuable results over time. An educated confident workforce is capable of vast improvement in efficiency and technical competence. We become empowered

  19. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  20. Green power perspectives on sustainable electricity generation

    CERN Document Server

    Neiva de Figueiredo, Joao

    2014-01-01

    Green Power: Perspectives on Sustainable Electricity Generation; João Neiva de Figueiredo and Mauro GuillénAn Overview of Electricity Generation Sources; Akhil Jariwala and Saumil JariwalaGermany's Energy Revolution; José Carlos Thomaz, Jr. and Sean MichalsonChina's Energy Profile and the Importance of Coal; Julia Zheng and Xiaoting ZhengChina's Search for Cleaner Electricity Generation Alternatives; Julia Zheng and Xiaoting ZhengRenewable Energy in Spain: A Quest for Energy Security; José Normando Bezerra, Jr.Renewable Energy in French Polynesia: From Unpredictable to Energy Independence? Dia

  1. Plasma plume MHD power generator and method

    Science.gov (United States)

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  2. Electric power generation the changing dimensions

    CERN Document Server

    Tagare, D M

    2011-01-01

    "This book offers an analytical overview of established electric generation processes, along with the present status & improvements for meeting the strains of reconstruction. These old methods are hydro-electric, thermal & nuclear power production. The book covers climatic constraints; their affects and how they are shaping thermal production. The book also covers the main renewable energy sources, wind and PV cells and the hybrids arising out of these. It covers distributed generation which already has a large presence is now being joined by wind & PV energies. It covers their accommodation in the present system. It introduces energy stores for electricity; when they burst upon the scene in full strength are expected to revolutionize electricity production. In all the subjects covered, there are references to power marketing & how it is shaping production. There will also be a reference chapter on how the power market works"--Provided by publisher.

  3. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  4. Feasibility of wind power generation in Ghana

    International Nuclear Information System (INIS)

    Technical appraisal, cost-benefit analysis, energy payback time and energy ratio have been examined to assess the feasibility of wind power generation in Ghana. At a site of average wind speed of 6.23 m/s and a height of 30 m, a 7.5 kW turbine of up-wind horizontal rotor of 6.3 m diameter produced 17.65 MW-h of energy. For payback period of 10 years, the projected cost of the energy produced by a single turbine was estimated to be GHC 0.30 (∼ 20 cents) per kWh (compared to 14 cents/kWh for photovoltaic generation and 10 cents/kWh for solar thermal), which therefore makes large scale optimized wind power generation competitive in Ghana (each renewable energy conversion system requires very high initial capital investment). For the wind aero-generation system of 20 years life span, the energy ratio estimated was 2.1; indicating that wind power generation is a feasible investment project. A computer code was developed for the financial analysis and to predict the net present value of the investment depending on the prevailing cost indices. (au)

  5. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  6. Improvement of power quality using distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Munoz, A.; Lopez-Rodriguez, M.A.; Flores-Arias, J.M.; Bellido-Outerino, F.J. [Universidad de Cordoba, Departamento A.C., Electronica y T.E., Escuela Politecnica Superior, Campus de Rabanales, E-14071 Cordoba (Spain); de-la-Rosa, J.J.G. [Universidad de Cadiz, Area de Electronica, Dpto. ISA, TE y Electronica, Escuela Politecnica Superior Avda, Ramon Puyol, S/N, E-11202-Algeciras-Cadiz (Spain); Ruiz-de-Adana, M. [Universidad de Cordoba, Departamento de Quimica Fisica y Termodinamica Aplicada, Campus de Rabanales, E-14071 Cordoba (Spain)

    2010-12-15

    This paper addresses how Distributed Generation (DG), particularly when configured in Combined Heat and Power (CHP) mode, can become a powerful reliability solution in highlight automated factories, especially when integrated with complimentary Power Quality (PQ) measures. The paper presents results from the PQ audit conducted at a highly automated plant over last year. It was found that the main problems for the equipment installed were voltage sags. Among all categories of electrical disturbances, the voltage sag (dip) and momentary interruption are the nemeses of the automated industrial process. The paper analyzes the capabilities of modern electronic power supplies and the convenience of embedded solution. Finally it is addressed the role of the DG/CHP on the reliability of digital factories. (author)

  7. Power Consideration in a Piezoelectric Generator

    Directory of Open Access Journals (Sweden)

    Rémi Tardiveau

    2013-01-01

    Full Text Available A piezoelectric generator converts mechanical energy into electricity and is used in energy harvesting devices. In this paper, synchronisation conditions in regard to the excitation vibration are studied. We show that a phase shift of ninety degrees between the vibration excitation and the bender’s displacement provides the maximum power from the mechanical excitation. However, the piezoelectric material is prone to power losses; hence the bender’s displacement amplitude is optimised in order to increase the amount of power which is converted into electricity. In the paper, we use active energy harvesting to control the power flow, and all the results are achieved at a frequency of 200 Hz which is well below the generator’s resonant frequency.

  8. Electrical power systems for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, T.A.; Huval, S.J. [Stewart & Stevenson Services, Inc., Houston, TX (United States)

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  9. Power oscillation damping by a converter-based power generation device

    OpenAIRE

    Andresen, Bjørn; Frydensbjerg, Michael Nørtoft; Knüppel, Thyge

    2012-01-01

    There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical output power to the power output. The power generation park further comprises a controller being configured for receiving an oscillation indicating signal indicative of a power oscillation in the el...

  10. Decontamination techniques for BWR power generation plant

    International Nuclear Information System (INIS)

    The present report describes various techniques used for decontamination in BWR power generation plants. Objectives and requirements for decontamination in BWR power plants are first discussed focusing on reduction in dose, prevention of spread of contamination, cleaning of work environments, exposure of equipment parts for inspection, re-use of decontaminated resources, and standards for decontamination. Then, the report outlines major physical, chemical and electrochemical decontamination techniques generally used in BWR power generation plants. The physical techniques include suction of deposits in tanks, jet cleaning, particle blast cleaning, ultrasonic cleaning, coating with special paints, and flushing cleaning. The chemical decontamination techniques include the use of organic acids etc. for dissolution of oxidized surface layers and treatment of secondary wastes such as liquids released from primary decontamination processes. Other techniques are used for removal of penetrated contaminants, and soft and hard cladding in and on equipment and piping that are in direct contact with radioactive materials used in nuclear power generation plants. (N.K.)

  11. Power performance of circular piezoelectric diaphragm generators

    Institute of Scientific and Technical Information of China (English)

    Kehong TANG; Junwu KAN; Taijiang PENG; Zhigang YANG; Guangming CHENG

    2008-01-01

    Energy generation performance of a piezo-electric generator depends mainly on several elements such as the structural style, boundary conditions, geo-metry parameters, materials, vibration-source frequency, and external load. To obtain the optimal energy-harvest-ing device, the Raleigh method is used to establish the analysis model of circular piezoelectric composite dia-phragms. Simply supported and clamped boundary con-ditions were considered. The relationships between the output power and the structural parameters of piezo-electric composite diaphragms, and the external load res-istance and frequency were shown. Given the correlative material parameters and boundary conditions, the output power, using structural parameters, external load, or vibrating frequency as variables, can be calculated. Simulation results show that there are optimal structural parameters and load for a composite diaphragm to achieve the maximum output power. A piezoelectric dia-phragm generator with given dimensions tends to achieve higher output power under clamped boundary conditions than that under simply supported boundary conditions.

  12. Prospect of laser fusion power generation

    International Nuclear Information System (INIS)

    Inertial fusion ignition, burn and energy gain are expected to be achieved within the first decade of next century with new Megajoule laser facilities which are under construction in the USA and France. Fusion reactor design studies indicate that Inertial Fusion Energy(IFE) power plants are technically feasible and have attractive safety and environmental features. The recent progress on implosion physics and relevant technologies require us to consider a strategic approach toward IFE development. The design study for a laser fusion power plant KOYO has been conducted as a joint program of universities, national laboratories and industries in Japan and also with international collaborations. The progress of high power laser technology gives us feasible project toward a laser driven IFE Power Plant. The technical breakthrough in the field of diode pumped solid state laser (DPSSL) has opened wide application of power laser to industrial technologies. Laser fusion energy development will be proceeded jointly with industrial photonics research and development. International collaborations are also promoted for efficient progress and activation of R and D on advanced technologies which are required for IFE and also useful for modern industries. (author). 7 refs., 1 tab., 7 figs

  13. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    Science.gov (United States)

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  14. Solar power generation technology, new concepts & policy

    CERN Document Server

    Reddy, P Jayarama

    2012-01-01

    This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives i

  15. Methods for generating hydroelectric power development alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shoou-yuh; Liaw, Shu-liang; Sale, M.J.; Railsback, S.F.

    1989-01-01

    Hydropower development on large rivers can result in a number of environmental impacts, including potential reductions in dissolved oxygen (DO) concentrations. This study presents a methodology for generating different hydropower development alternatives for evaluation. This methodology employs a Streeter-Phelps model to simulate DO, and the Bounded Implicit Enumeration algorithm to solve an optimization model formulated to maximize hydroelectric energy production subject to acceptable DO limits. The upper Ohio River basin was used to illustrate the use and characteristics of the methodology. The results indicate that several alternatives which meet the specified DO constraints can be generated efficiently, meeting both power and environmental objectives. 17 refs., 2 figs., 1 tab.

  16. Unregulated generation relationships at Niagara Mohawk Power Corporation

    International Nuclear Information System (INIS)

    This paper examines the contractual and mandated power generation pricing relationships between an electric utility and unregulated power generation stations. The topics of the paper include types of generation facilities, current capacity of unregulated generators, rights to power markets, utility planning, responding to a changing market, power purchase agreement relationships, enforcement and renegotiation

  17. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-01

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs. PMID:24595200

  18. Heat Management in Thermoelectric Power Generators

    CERN Document Server

    Zebarjadi, Mona

    2015-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show that if Bi1, it lowers the conversion efficiency.

  19. Heat Management in Thermoelectric Power Generators.

    Science.gov (United States)

    Zebarjadi, M

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one.

  20. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  1. Modern power station practice: incorporating modern power system practice. V. J: Nuclear power generation. 3. ed.

    International Nuclear Information System (INIS)

    The contents of this new edition of the nuclear volume of Modern Power Station Practice reflect the considerable expansion and development of nuclear power generation in the UK since the initial volume was published in 1964. During that period the Advanced Gas-cooled Reactor (AGR) programme has been completed, the approval of Sizewell B launches a new generation of Pressurized Water Reactor (PWR) stations and the first of the Magnox has completed its useful life. Thus the current volume presents a comprehensive picture of the design, development and operation of the majority of the nuclear station designs currently being operated throughout the world. Four independent but complementary chapters cover Nuclear physics and basic technology; Nuclear station design; Nuclear station operation and Nuclear safety. Although each chapter is complete within itself, some overlap of technical matter between the chapters is inevitable and indeed essential, reflecting the co-operation of widely differing technical disciplines necessary to ensure the safe and economic design and operation of nuclear stations. (Author)

  2. Utility interconnection issues for wind power generation

    Science.gov (United States)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  3. Power generation from refuse derived fuel

    International Nuclear Information System (INIS)

    Full text: The beginning of the third millennium has been characterized by a progressive increase in the demand for fossil fuels, which has caused a steep rise in oil price. At the same time, several environmental disasters have increased the sensitivity of world-wide public opinion towards the effect that environmental pollution has on human health and climate change. These conditions have fostered a renewed interest in renewable energy like solar energy, wind energy, biomass and solid wastes. In addition, the disposal of municipal solid waste (MSW) has become a critical and costly problem. The traditional landfill method requires large amounts of land and contaminates air, water and soil. The increase in socio-economic condition during the past ten years has also significantly increased the amount of solid waste generated. There are around 1200 tons of municipal solid waste (MSW) generated daily, of which the combustibles namely plastics, paper and textile waste represent 28%, and with the present generation rate, the landfill will be filled by 2012. The study was, therefore, initiated to assess the potential of power generation from refused derived fuels (RDF) from municipal solid waste (MSW) in order to reduce the dependency on fossil fuels. There are 336 tons which is equivalent to 12 tons/ h of RDF that can be generated daily from the MSW and this would generate 19.2 MW power. There will be 312 kg/ h of ash that would be generated and the NOx and SO2 concentration were found to be 395.5 and 43.3 mg/ Nm3 respectively. It was also found that the amount of non-biogenic CO2 produced was 471 g/ kWhe. (author)

  4. Nuclear Power and Ghana's Future Electricity Generation

    International Nuclear Information System (INIS)

    One of the major challenges facing Ghana in her developmental efforts is the generation of adequate and affordable electricity to meet increasing demand. Problems with the dependency on hydro power has brought insecurity in electricity supply due to periodic droughts. Thermal power systems have been introduced into the electricity generation mix to complement the hydro power supply but there are problems associated with their use. The high price of crude oil on the international market has made them expensive to run and the supply of less expensive gas from Steps are being taken to run the thermal plants on less expensive gas from Nigeria has delayed due to conflicts in the Niger Delta region and other factors. The existing situation has therefore called for the diversification of the electricity generation mix so as to ensure energy security and affordable power supply. This paper presents the nuclear option as a suitable alternative energy source which can be used to address the energy supply problems facing the nation as well the steps being taken towards its introduction in the national energy mix. In addition, electricity demand projections using the MAED model as well as other studies are presented. The expected electricity demand of 350000 GWh (4000MWyr) in 2030, exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Also presented is a technological assessment on the type of nuclear reactor to be used. The technological assessment which was done based on economics, grid size, technological maturity, passive safety and standardization of reactor design, indicate that a medium sized pressurized water reactor (i.e. a PWR with capacity 300MW to 700MW) is the most favourable type of reactor. In addition the challenges facing the implementation of the nuclear power programme in Ghana are presented. (author)

  5. Young people's view of power generation and power supply

    International Nuclear Information System (INIS)

    Asked about what they think are the most urgent political problems, the young people ranked unemployment and environmental pollution higher (80 pic) than the problems of energy generation and supply, which are in the third place together with peaceful policy and terrorism (55% priority for each). Young people's problem awareness in the energy sector rather concentrates on nuclear power generation and its hazards than on aspects of future energy supplies. In fact, currently only 38% of the young people expect any electricity supply shortages in the FRG, as compared to 47% in 1982. But as in 1982, seven per cent of the young people today assume that power consumption in the FRG will continue to rise. (orig.)

  6. Research on Low Power Marine Current Power Generation System

    Directory of Open Access Journals (Sweden)

    Dongkai Peng

    2013-09-01

    Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.

  7. Using thermoelectric nuclear power generators in spacecraft power-generation propulsion complexes

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, P.V.; Galkin, A.Ya.; Gryaznov, G.M. [and others

    1994-04-01

    Power-generation and propulsion complexes for spacecraft, universal space platforms (US) which combine a power unit and high- and low-thrust propulsion unions, make it possible to efficiently solve problems involved in creating satellite communication systems, environmental monitoring systems, industrial technology platforms, interorbital shuttles, etc. Electrical power consumed by prospective spacecraft designed for communication or environmental monitoring may be as high as 20-30 kW. Manufacturing of semiconductors and biological materials in space may require electrical power of 30-l00 kW in the coming decades. The power required to transport loads between orbits using ion-plasma jet engines will amount to tens to hundreds of kilowatts. For all these missions, nuclear power units have important advantages over solar photoelectric power units in their mass, size, cost, and performance characteristics. There is a good reason to consider the use of thermoelectric Nuclear Power Generators (NPG) for USPs due to their small bulk, their capacity for generating greatly increased power in the high-power mode during 15-20% of the total length of the mission, and minimal disturbance of the motion of the spacecraft.

  8. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob;

    2016-01-01

    in research interests and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely microgrid....... At present, the research of dc microgrid has investigated and developed a series of advanced methods in control, management and objective-oriented optimization, which would found the technical interface enabling the future applications in multiple industrial areas, such as smart buildings, electric vehicles...

  9. Advanced nuclear power plants for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J. [BNFL, Inc. (United States)

    1996-10-01

    This paper examines, following four issues: capacity; the closure of the fuel cycle; deregulation; and the need to maintain the development of the advanced systems. Demand is a governing parameter: if one doesn`t need the power then there is no need to increase generating capacity. However, there is no question but that the population is growing. All predictions are that new generating capacity will be needed -- the questions are when and how? Until the various issues involved in deregulation are played through it is not clear what form markets will take for the longer term or how investment in large-capital-cost facilities will fit into the financial structure. Deregulation needs the time to throw light on these matters and to gain some experience in the various financial options. The lack of closure of the fuel cycle is both a cost and public perception issue. The US program, as a result of a cold-war paranoia against recycling the partially used fuel, is based upon the final disposal of useful supplies of energy. However, the program itself is plagued with poor management, delays, and uncertainties that are due, in no small measure, to half-uttered thoughts by all concerned, that this is the wrong policy. Current efforts to rethink the policy, and its implementing projects, are welcome. Finally, if it is important to keep design options for advanced nuclear power plants open for the future, then it necessary to maintain valid research and development programs for those designs. Current US policy is damaging to a number of the more advanced options. This paper discusses the candidate systems: LWR, ALMR, HTGR, and CANDU systems for the special contributions they may each provide in an ideal electrical generating industry of the mid-twenty-first century, and makes suggestions for the future. (J.P.N.)

  10. Vigorous Generation of Electric Power by Implementing Lunar Power System

    Directory of Open Access Journals (Sweden)

    I. Kumaraswamy

    2014-04-01

    Full Text Available This Paper gives an approach to the implementation of Lunar Solar Power (LSP generation. The LSP System is a reasonable alternative to supply earth’s needs for commercial energy without the undesirable characteristics of current options. The long term exploration and colonization of the solar system for scientific research and commercial interest depends critically on the availability of electrical energy. In this paper first we discuss about the present power scenario and to improve the power necessity for the future decades, the construction of LSP station, transmits electricity produced in moon to the earth, preferring microwave for transmitting the electricity, At last we discuss about the cost of installing the project and how to minimize the installation cost.

  11. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management

  12. Directions for advanced use of nuclear power in century XXI

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C E

    1999-05-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

  13. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  14. Thermodynamic analysis of the advanced zero emission power plant

    Science.gov (United States)

    Kotowicz, Janusz; Job, Marcin

    2016-03-01

    The paper presents the structure and parameters of advanced zero emission power plant (AZEP). This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i) oxygen separation from the air through the membrane, (ii) combustion of the fuel, and (iii) heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC) through the main heat recovery steam generator (HRSG). Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  15. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley; Symons, Philip C.; Butler, Paul C.; Corey, Garth P.

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  16. Agent Based Control of Electric Power Systems with Distributed Generation

    DEFF Research Database (Denmark)

    Saleem, Arshad

    Distributed generation, decentralized and local control, self organization and autonomy are evident trends of today's electric power systems focusing on innovative control architectures such as MicroGrids, Virtual Power Plants, Cell based systems, plug-in electric vehicles and real time markets...... and subsystems that are able to coordinate, communicate, cooperate, adapt to emerging situations and self organize in an intelligent way. At the same time, rapid development in information and and communication technologies (ICT) have brought new opportunities and elucidations. New Technologies and standards...... have been developed particularly in the area of communication and distributed control. Electric power industry is eager to explore, evaluate and adopt these new advancements in ICT for improving its current practices of automation and control in order to cope with above mentioned challenges...

  17. Powering Kuwait into the 21. century: Alternatives for power generation

    International Nuclear Information System (INIS)

    Kuwait is facing a surge in the consumption of power. The current power fuel mix, based on oil, appears unsustainable. Yet Kuwait has a large number of assets. The power fuel mix can be optimized and diversified to include alternatives to oil such as gas or renewables, so as to benefit from the opportunity cost of oil (the price at which this oil could be sold on international market). The country has gas reserves and a good potential in renewable technologies. If energy efficiency can be considered as a potential resource, then much can be achieved in this area as well, given Kuwait's current power and water per capita consumption rates, which are among the highest in the world. The present tendency has been to go for step-by-step fixes, adding emergency power plants which have increased power generation costs and a non-optimized system. Kuwait is on the verge of defining a new power fuel mix, with more gas, and developing new R and D projects. In this context, this memorandum looks at alternatives, and concludes that in the long term a diversified power mix has to be developed. The current gas glut at the world level, resulting both from the production of unconventional gas resources and the economic recession hitting Europe, offers a sizable opportunity for gas imports. A transition strategy for the power sector could make use of gas imports. In the longer term, however, Kuwait should not make a one-way bet and develop its domestic gas resources. This paper urges the adoption of a common gas strategy integrated into a power sector strategy, through consultation with all actors. It would include reserves, costs, feasibility and potential uses, as well as economic opportunities. As the region is facing gas shortages and Kuwait ranks independence of supply among its policy priorities, renewable, and in particular solar have their own place in the power mix. The country indeed disposes of substantial and relatively predictable renewable energy resources. Those are

  18. Fireside corrosion of superheaters/reheaters in advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Syed, A.U.; Simms, N.J.; Oakey, J.E. [Cranfield Univ. (United Kingdom). Energy Technology Centre

    2010-07-01

    The generation of increasing amounts of electricity while simultaneously reducing environmental emissions (CO{sub 2}, SO{sub 2}, NO{sub x} particles, etc) has become a goal for the power industry worldwide. Co-firing biomass and coal in new advanced pulverised fuel power plants is one route to address this issue, since biomass is regarded as a CO{sub 2} neutral fuel (i.e. CO{sub 2} uptake during its growth equals the CO{sub 2} emissions produced during its combustion) and such new advanced power plants operate at higher efficiencies than current plants as a result of using steam systems with high temperatures and pressures. However, co-firing has the potential to cause significant operational challenges for such power plants as amongst other issues, it will significantly change the chemistry of the deposits on the heat exchanger surfaces and the surrounding gas compositions. As a result these critical components can experience higher corrosion rates, and so shorter lives, causing increased operational costs, unless the most appropriate materials are selected for their construction. This paper reports the results of a series of 1000 hour laboratory corrosion tests that have been carried out in controlled atmosphere furnaces, to assess the effect of biomass/coal co-firing on the fireside corrosion of superheaters/reheaters. The materials used for the tests were one ferritic alloy (T92), two austenitic alloys (347HFG and HR3C) and one nickel based alloy (alloy 625). Temperatures of 600 and 650 C were used to represent the metal temperatures in advanced power plants. During these exposures, traditional mass change data were recorded as the samples were recoated with the simulated deposits. After these exposures, cross-sections through samples were prepared using standard metallographic techniques and then analysed using SEM/EDX. Pre-exposure micrometer and post-exposure image analyser measurements were used so that the metal wastage could be calculated. These data are

  19. Miniature Gas-Turbine Power Generator

    Science.gov (United States)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  20. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-03-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  1. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  2. Impact of fuel properties on advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  3. Optical fibers and solar power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kribus, Abraham; Zik, Ory; Karni, Jacob [Weizmann Inst. of Science, Environmental Sciences and Energy Research Dept., Rehovot (Israel)

    2000-07-01

    A study of the potential use of optical fibers for solar thermal power generation is presented. The main performance characteristics (numerical aperture and attenuation) and typical costs of currently available fibers are discussed. Several approaches to the application of fibers are presented, for centralised (tower, central receiver) and distributed (dish-engine) systems. The overall system design-point efficiency and overall system cost are estimated. A scaling relation between system size and the cost of the fiber component is identified, which severely limits the applicability of fibers to small systems only. The overall system cost for centralised systems is found to be higher than the currently competitive range, even under optimistic assumptions of mass production of major components. A significant reduction in fiber cost is required before the use of fibers for centralised solar power generation can become competitive. In distributed generation using dish/engine systems, however, the use of fibers does achieve competitive performance and costs, comparable to the costs for conventional dish systems. (Author)

  4. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  5. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  6. Nuclear power and Ghana's future electricity generation

    International Nuclear Information System (INIS)

    Full text: One of the major challenges facing Ghana in her developmental efforts is how to meet the increasing electricity demand. Ghana's electricity generation system depends heavily on hydro power which accounts for 68% of total installed capacity. The remaining is taken by thermal power systems. The heavy dependency on hydro systems has led to shortfall in power supply in case of drought. To deal with this situation the necessary steps are being taken to build more thermal plants to complement the hydro systems. The thermal plants currently run on imported light crude oil but steps are being taken to run them on less expensive gas imported from Nigeria through the West African gas pipeline. The conflicts in the Niger Delta, the source of the gas has threatened the security of gas supply and this coupled with the fact that gas price is indexed to that of crude oil have raised concerns about the supply of gas from Nigeria. This paper presents the results of the assessment made in the Ghana electricity generation system and the role of nuclear power in Ghana's energy mix using MAED projections and the MESSAGE model. This assessment forms part of the IAEA-TC project 'Planning for Sustainable Energy Development in Ghana' which is meant among other things to develop a sustainable energy mix for the country. Energy projections made by using the MAED model have shown that Ghana's electricity demand expected to increase to about 4000MWyr in 2030. This expected electricity demand far exceeds the total electricity supply capability of the existing hydropower system, untapped hydro resources and the maximum amount of gas that can be imported from Nigeria through the West Africa pipeline. Technological assessment on the suitability of the various nuclear power technologies has been done based on the grid size, technological maturity, passivity and standardization of reactor designs and it has been found that a water cooled SMR with capacity not exceeding 400MW(e) is the

  7. Advanced On Board Inert Gas Generation System (OBBIGS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Valcor Engineering Corporation proposes to develop an advanced On Board Inert Gas Generation System, OBIGGS, for aircraft fuel tank inerting to prevent hazardous...

  8. Advanced Space Power Systems (ASPS): Advanced Energy Storage Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of high specific energy devices will enable NASA’s future robotic and human-exploration missions.  The need for advances in energy...

  9. Integrated control of next generation power system

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  10. Corrosion products in power generating systems

    International Nuclear Information System (INIS)

    The important mechanisms of corrosion and corrosion product movement and fouling in the heat transport systems of thermal electric generating stations are reviewed. Oil- and coal-fired boilers are considered, along with nuclear power systems - both direct and indirect cycle. Thus, the fireside and waterside in conventional plants, and the primary coolant and steam-raising circuits in water-cooled reactors, are discussed. Corrosion products in organic- and liquid-metal-cooled reactors also are shown to cause problems if not controlled, while their beneficial effects on the cooling water side of condensers are described. (auth)

  11. Distributed power generation using biogas fuelled microturbines

    International Nuclear Information System (INIS)

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects

  12. Cycloidal tidal power generation - phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report describes the second phase of a study aimed at addressing the technical and economic viability of cycloidal tidal power generation with the objective of examining design optimisation, the building and testing a scale model, and the use of an enhanced model to estimated the overall system economic performance. Details are given of the analytical and physical modelling studies, the use of Computational Fluid Dynamics (CDF) analysis to understand the fluid flow through the cycloidal unit, the optimisation of the turbine blades, and performance predictions.

  13. Distributed power generation using biogas fuelled microturbines

    Energy Technology Data Exchange (ETDEWEB)

    Pointon, K.; Langan, M.

    2002-07-01

    This research sought to analyse the market for small scale biogas fuelled distributed power generation, to demonstrate the concept of a biogas fuelled microturbine using the Capstone microturbine in conjunction with an anaerobic digester, and undertake a technico-economic evaluation of the biogas fuelled microturbine concept. Details are given of the experimental trials using continuous and batch digesters, and feedstocks ranging from cow and pig slurries to vegetable wastes and municipal solid waste. The yields of methane are discussed along with the successful operation of the microturbine with biogas fuels, and anaerobic digestion projects.

  14. Explosive-generator-powered vacuum-power-flow experiment

    International Nuclear Information System (INIS)

    The authors have fielded an explosive-generator-powered, vacuum-power-flow experiment. The purpose of this test was to qualify this assembly for future tests that would power live loads for times ≥ 1 μs. A 13.2-cm x 52.8-cm, plate generator was energized with an initial current of --1.8 MA and reached a final current of --6.8 MA before burning out after its 14 μs run. The magnetically-insulated transmission line (MIT-Line) was connected to the generator via a detonator-actuated switch (closed at 12 μs) and a 7.5:1 step-up transformer. This MIT-Line had a center conductor with a diameter of 33.6 cm and an outer conductor with an inner diameter of 39.3 cm. A 20-cm-wide band of velvet was placed around and very near the end of the cathode. The purpose of the velvet was to start emission from the end of the cathode and guarantee magnetic insulation along the length of the MIT-Line at the earliest time in the discharge. During this experiment, a maximum voltage of --360 kV was delivered to the MIT-Line with a duration of ≥2 μs for the voltage above 100 kV. After the first 1.2 μs, the MIT-Line experienced a streamer instability which disrupted uniform current flow. However, the subsequent discharge was sufficiently pinched that the reflected impedance of the vacuum load remained close to the 2.5 Ω of the early MIT-Line performance

  15. Department of Energy power generation programs for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, R.A.

    1995-04-01

    The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.

  16. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    Directory of Open Access Journals (Sweden)

    Yassine Allani

    2000-12-01

    Full Text Available

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS. This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a the ISCCS (Integrated Solar Combined Cycle System that integrates the parabolic trough into a fossil fired combined cycle, which allows a larger exergy potential of the fuel to be converted. b the HSTS (Hybrid Solar Tower System which uses high concentration optics (via a power tower generator and high temperature air receivers to drive the combined cycle power plant. In the latter case, solar energy is used at a higher exergy level as a heat source of the topping cycle. This paper presents the results of a thermoeconomic investigation of an ISCCS envisaged in Tunisia. The study is realized in two phases. In the first phase, a mixed approach, based on pinch technology principles coupled with a mathematical optimization algorithm, is used to minimize the heat transfer exergy losses in the steam generators, respecting the off design operating conditions of the steam turbine (cone law. In the second phase, an economic analysis based on the Levelized Electricity Cost (LEC approach was carried out for the configurations, which provided the best concepts during the first phase. A comparison of ISCCS with pure fossil fueled plants (CC+GT is reported for the same electrical power load. A sensitivity analysis based on the relative size of the solar field is presented.

    •  This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000

  17. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    OpenAIRE

    Altab Md. Hossain; Ataur Rahman; Mozasser Rahman; SK. Hasan; Jakir Hossen

    2009-01-01

    Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The mo...

  18. 46 CFR 111.10-4 - Power requirements, generating sources.

    Science.gov (United States)

    2010-10-01

    ... services include cooking, heating, air conditioning (where installed), domestic refrigeration, mechanical... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  19. Method of an integrated and advanced evaluation of vulnerability. Conceptional-methodical fundamentals and examplary implementation for the water household, power generation and energetic utilisation of wood under climatic change; Methode einer integrierten und erweiterten Vulnerabilitaetsbewertung. Konzeptionell-methodische Grundlagen und exemplarische Umsetzung fuer Wasserhaushalt, Stromerzeugung und energetische Nutzung von Holz unter Klimawandel

    Energy Technology Data Exchange (ETDEWEB)

    Weisz, Helga; Koch, Hagen; Lasch, Petra [Potsdam-Institut fuer Klimafolgenforschung e.V. (Germany)] [and others

    2013-07-15

    Actually, in Germany there are more than hundred investigations on the consequences of the climatic change. It is difficult to evaluate the vulnerability of Germany against the climatic change. Under this aspect, the authors of the contributions report on a method of an integrated and advanced evaluation of vulnerability: Conceptional-methodical fundamentals and exemplary implementation for water household, power generation and energetic utilization of wood under climatic change.

  20. Power supply controlled for plasma torch generation

    International Nuclear Information System (INIS)

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named 'Destruction of hazard wastes by thermal plasma' actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR's; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author)

  1. A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses

    OpenAIRE

    Qi-Xun Zhang; Hai-Ye Yu; Qiu-Yuan Zhang; Zhong-Yuan Zhang; Cheng-Hui Shao; Di Yang

    2015-01-01

    In this study we design and test a novel solar tracking generation system. Moreover, we show that this system could be successfully used as an advanced solar power source to generate power in greenhouses. The system was developed after taking into consideration the geography, climate, and other environmental factors of northeast China. The experimental design of this study included the following steps: (i) the novel solar tracking generation system was measured, and its performance was analyz...

  2. Generation mechanism of power line harmonic radiation

    Science.gov (United States)

    Kostrov, Alexander; Gushchin, Mikhail; Korobkov, Sergei

    The questions concerning the generation of power line harmonic radiation (PLHR) and magne-tospheric line radiation (MLR) are discussed, including the effective source of high harmonics of 50/60 Hz, and fine dynamic structure of the frequency spectrum of PLHR and MLR. It is shown, that thyristor-based power regulators used by large electrical power consumers produce the periodic sequences of current pulses with duration of about 10 microseconds in a power line. The repetition rate of these pulses is typically 100/120 Hz; the bandwidth is as broad as 100 kHz. For high harmonics of 50/60 Hz, the power line represents an effective traveling-wave (or Beverage) antenna, especially in a frequency range of several kHz corresponding to VLF whistler band in Earth ionosphere and magnetosphere. For the fixed length of the power line, which acts as antenna, radiation directivity diagram in relation to horizon depends of frequency. Hence the spatial separation of whistlers emitted at various frequencies (1-10 kHz in a consid-ered case) is possible, with subsequent propagation of whistlers with different frequencies along different L-shells. Estimations show that the efficiency of power line as travelling-wave antenna can be changed by variations of its load, but not more than twice ("weekend effect"). Since the PLHR can represent the sequence of short electromagnetic bursts, then careful se-lection of frequency-time resolution of the data acquisition equipment is needed. Typically, the time constant of the data recording and processing is too large, and the spectra of PLHR or MLR are characterized by a well-known line structure. At the same time, original bursty structure of PLHR can not be defined. Fine structure of MLR is also discussed. Frequency drift of MLR can be explained by the perturbations of the magnetospheric plasma by intense ULF waves and particle flows affecting the propagation of PLHR. Hence the physical nature of PLHR and MLR is the same, excepting the

  3. Advance Power Technology Demonstration on Starshine 3

    Science.gov (United States)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  4. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  5. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO2 emission, as well as economical-financial aspects, are explored. (author)

  6. Power oscillation damping by a converter-based power generation device

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a power generation park comprising a power output for providing electrical output power to an electricity network . A power generation device comprises a converter device configured for receiving input power from a power generator and providing, in response hereto, the electrical...... in response to the oscillation indicating signal; the converter device being configured for modulating the electrical output power in response to the damping control signal so as to damp the power oscillation in the electricity network....

  7. Framatome advanced nuclear power-benefits for our clients from the new company

    International Nuclear Information System (INIS)

    Framatome ANP (Advanced Nuclear Power) merges the complementary strengths of two global nuclear industry leaders Framatome and Siemens - offering clients the best technological solutions for safe, reliable and economical plant performance. With a combined workforce of 13,300 skilled individuals, Framatome ANP is now the nuclear industry's leading supplier. Serving as Original Equipment Manufacturer (OEM) for more than 90 reactors that provide about 30% of the world's total installed nuclear power capacity, our experienced resources remain focused on the local needs of individual clients, wherever in the world they may be. The Company main business used to be turnkey construction of complete Nuclear Power plants, BWR and PWR capabilities, heavy equipment manufacturing, comprehensive I and C capabilities, and also expertise and knowledge of VVER. Framatome ANP will benefit in all of its fields of activity of the experience gained through Framatome and Siemens' collaboration on the next generation reactor, the EPR, as well as on steam generators replacements and or modernization of VVER. Framatome ANP nuclear fuel designs for both PWR and BWR plants provide innovative features and world-leading performance. Framatome ANP is organized according a matrix organization with: - 4 Business Groups (Project and Engineering, Service, Nuclear Fuel, Mechanical Equipment) - 3 Regional Divisions (Framatome Advanced Nuclear Power S.A.S., France; Framatome Advanced Nuclear Power GmbH, Germany; Framatome Advanced Nuclear Power Inc., USA). By 30th January 2001 Siemens Nuclear Power GmbH, founded in 2000 as successor of the Nuclear Division of Siemens Power Generation Group (KWU), was renamed to Framatome Advanced Nuclear Power GmbH forming the German part of the world wide acting company. Over the past 40 years 23 nuclear power plants all around the world - not only pressurized and boiling water reactors, but also two heavy-watermoderated reactors have been designed, constructed and

  8. Development of a portable thermophotovoltaic power generator

    Science.gov (United States)

    Becker, Frederick E.; Doyle, Edward F.; Shukla, Kailash

    1997-03-01

    A 150 Watt thermophotovoltaic (TPV) power generator is being developed. The technical approach taken in the design focused on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a selective emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the initial prototype system, fibrous ytterbia emitters radiating in a band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The system has been operated with air preheat temperatures up to 1350K. The design of the system and development status are presented.

  9. 43 CFR 418.16 - Using water for power generation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to releases charged against Project diversions, precautionary...

  10. Nuclear power generation of electricity in Sri Lanka?

    International Nuclear Information System (INIS)

    Brief description of how nuclear power is used to generate electricity, advantages and disadvantages of nuclear power, and the main factors that should be taken into consideration in dividing to use nuclear power in Sri Lanka

  11. Power-efficient computer architectures recent advances

    CERN Document Server

    Själander, Magnus; Kaxiras, Stefanos

    2014-01-01

    As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture.Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Sp

  12. 18 CFR 801.12 - Electric power generation.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  13. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    promise shorter construction times and lower capital costs could help to promote a new era of nuclear power. About one-fifth of the world's energy consumption is used for electricity generation. Most of the world's energy consumption is for heat and transportation. Nuclear energy has considerable potential to penetrate these energy sectors now served by fossil fuels that are characterized by price volatility and finite supply. Advanced applications of nuclear energy include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production. In addition, since nuclear electricity is generally produced in a base load mode at stable prices, there is considerable near-term potential for nuclear power to contribute to the transportation sector as a carbon-free source of electricity for charging electric and plug-in hybrid vehicles. This collaborative assessment was recommended by the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR). The objective has been to identify opportunities and challenges for water cooled reactors to capture a substantial share of the above mentioned advanced applications. For each application, the opportunities, market context, challenges and potential solutions are addressed

  14. AC power generation from microbial fuel cells

    Science.gov (United States)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  15. Smart Generation : powering Ontario with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Etcheverry, J.; Gipe, P.; Kemp, W.; Samson, R.; Vis, M.; Eggertson, B.; McMonagle, R.; Marchildon, S.; Marshall, D.

    2004-10-01

    This report describes how Ontario can develop renewable energy sources to replace fossil fuels currently used for heating and cooling homes. A switch to renewable energy to power the electricity system would promote energy efficiency and conservation and would add $9 billion to the Ontario economy by 2010. An added benefit would be a more reliable electricity system and cleaner air. The economic benefits of the 5 main sources of renewable energy were discussed. These included wind, hydropower, biomass, geothermal and solar energy. Specific policy recommendations for rebuilding Ontario's electricity system with these renewable energy sources were presented. The report showed how Ontario could install 8,000 MW of wind power by 2012 and generate 9 per cent of current electricity demand. Farmers view wind energy as a new cash crop because they can earn thousands of dollars per year by installing wind turbines on their farms. The Ontario government has responded to public concerns about air pollution by promising to close down five coal-fired power plants by 2007. The closures will result in an imbalance between electricity supply and demand. The imbalance of about 7,500 MW can be filled with cheaper and more reliable renewable energy. Canada's first full-scale solar manufacturing plant was built in Cambridge, Ontario and was operational in June 2004. The report suggests that Ontario can install more than 12,000 MW of renewable energy by 2020, enough to phase out coal plants in Ontario. The economic benefits of installing 8,000 MW of wind energy are in the order of $14 billion. refs., tabs., figs.

  16. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Science.gov (United States)

    2013-05-30

    ... Energy Regulatory Commission Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power... Commission's (Commission) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company,...

  17. Recent developments of thermoelectric power generation

    Institute of Scientific and Technical Information of China (English)

    LUAN Weiling; TU Shantung

    2004-01-01

    One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, TEPG possesses the salient features of being compact, light-weighted,noiseless in operation, highly reliable, free of carbon dioxide emission and radioactive substances. Low current conversion efficiency and high cost, however, are some of the disadvantages. Use of TEPG is therefore justified to hightech applications associated with aerospace, military operation,tel-communication and navigation, instrumentation of unmanned vehicles monitored from remote locations. Moreover, TEPG does not contribute to the depletion of natural resource and pollution of the environment such as climate warming that has been a concern in recent times. This work is concerned with providing an overview of the state of the art of TEPG with emphases placed on assessing its current and potential application. Pointed out are the ways to fabricate high performance thermoelectric material, a hurdle to overcome for the enhancement of TEPG device efficiency.

  18. A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses

    Directory of Open Access Journals (Sweden)

    Qi-Xun Zhang

    2015-07-01

    Full Text Available In this study we design and test a novel solar tracking generation system. Moreover, we show that this system could be successfully used as an advanced solar power source to generate power in greenhouses. The system was developed after taking into consideration the geography, climate, and other environmental factors of northeast China. The experimental design of this study included the following steps: (i the novel solar tracking generation system was measured, and its performance was analyzed; (ii the system configuration and operation principles were evaluated; (iii the performance of this power generation system and the solar irradiance were measured according to local time and conditions; (iv the main factors affecting system performance were analyzed; and (v the amount of power generated by the solar tracking system was compared with the power generated by fixed solar panels. The experimental results indicated that compared to the power generated by fixed solar panels, the solar tracking system generated about 20% to 25% more power. In addition, the performance of this novel power generating system was found to be closely associated with solar irradiance. Therefore, the solar tracking system provides a new approach to power generation in greenhouses.

  19. Prospect of advanced generation technologies in a competitive market place

    Energy Technology Data Exchange (ETDEWEB)

    Guha, M.; Singh, A.

    1999-07-01

    The US Electric utility industry is undergoing tremendous changes for meeting the challenge of deregulation and customer demands for a free competitive market. Two major forces are driving this market: the deregulation of the industry and customer demands for achieving the lowest cost for electricity, forcing utility companies to position themselves as the low-cost producers. This paper will briefly discuss the status of various advanced generation technologies with respect to their costs, applicability and limitations, where these technologies are expected to be cost-effective and how they compare with the combined cycle plants. Advanced generation technologies may benefit as the environment regulations are tightened. This paper will examine how, when and where the advanced generation technologies would play a role in penetrating the market on their own merits.

  20. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  1. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  2. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  3. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  4. The Satellite Nuclear Power Station - An option for future power generation.

    Science.gov (United States)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  5. The central government power generating capacity- reforms and the future

    International Nuclear Information System (INIS)

    The alarming resource gap that the states were facing in 1970's has prompted the Central Government to augment the resources for power generation by creating two new entities in November 1975 viz the National Thermal Power Corporation (NTPC) and National Hydro Power Corporation (NHPC). Few other organisations also exist in central sector which are engaged in power generation like Nuclear Power Corporation (NPC). NTPC being the leading player in the power sector, it can neither be indifferent nor dissociate itself from the reforms sweeping the sector today. The article describes the Central Government's role in power generation, reforms and NTPC and further prospects of NTPC

  6. Economics issues - nuclear power generation in North America

    International Nuclear Information System (INIS)

    The structure of the US utility industry is in transition. Political, social, and economic factors are contributing to a rapid shift from a monopoly structure (captive markets, cost-plus prices, negotiated rate of return on capital) to a highly competitive one (choices for customers, prices determined by the market place, earnings based on market price less cost). The rate of change has been accelerating. For example, what just two years ago would have been thought of as highly unlikely -- competition for the individual electric customer -- is now part of the plan in California and other states. In our view, technology is at the root of many of these structural changes with more to come. Yet another round of technological change is afoot, involving even more efficient gas turbines, new methods of utilizing transmission lines, distributed generation, and new opportunities for electricity use and service. It can be argued that the restructuring of the marketplace reflects, in some measure, anticipation for these advances. For the foreseeable future, nuclear energy will continue to play a significant role in the generating grid of North America. However, new nuclear generation will be held to standards of competition that are dictated by market forces, and by advances in competing technologies for base load generation. It is important to understand these forces, and devise a response which ensures that nuclear energy will continue to provide a viable, competitive, and environmentally superior option for generating electricity in the 21st century. The EPRI Nuclear Power program is focused on achieving these goals. (author)

  7. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  8. Finite Generation of Algebras Associated to Powers of Ideals

    OpenAIRE

    Cutkosky, Steven Dale; Herzog, Juergen; Srinivasan, Hema

    2008-01-01

    We study generalized symbolic powers and form ideals of powers of ideals and compare their growth with the growth of ordinary powers, and we discuss the question of when the graded rings attached to symbolic powers or to form ideals of powers are finitely generated.

  9. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lifeng [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)], E-mail: lifeng_zhao@ksg.harvard.edu; Xiao Yunhan [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China); Gallagher, Kelly Sims [Energy Technology Innovation Policy, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy Street, Cambridge, MA 02138 (United States); Wang Bo; Xu Xiang [Key Laboratory of Advanced Energy and Power, Chinese Academy of Sciences, Institute of Engineering Thermophysics, 11 Beisihuan West Road, Beijing 100190 (China)

    2008-07-15

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China.

  10. Innovative gasification technology for future power generation

    Energy Technology Data Exchange (ETDEWEB)

    Mahajan, K.; Shadle, L.J. [Dept. of Energy, Morgantown, WV (United States); Sadowski, R.S. [Jacobs-Sirrine Engineers, Inc., Greenville, SC (United States)

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  11. Cascade Failures from Distributed Generation in Power Grids

    OpenAIRE

    Scala, Antonio; Pahwa, Sakshi; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustn...

  12. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  13. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  14. Power Generation From Low- Temperature Heat Source

    OpenAIRE

    Lakew, Amlaku Abie

    2012-01-01

    The potential of low-temperature heat sources for power production has been discussed for decades. The diversity and availability of low-temperature heat sources makes it interesting for power production. The thermodynamic power cycle is one of the promising technologies to produce electricity from low-temperature heat sources. There are different working fluids to be used in a thermodynamic power cycle. Working fluid selection is essential for the performance of the power cycle. Over the las...

  15. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  16. The electric power engineering handbook electric power generation, transmission, and distribution

    CERN Document Server

    Grigsby, Leonard L

    2012-01-01

    Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: * Electric Power Generation: Nonconventional Methods * Electric Power Generation

  17. Power Generating Coverings and Casings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in structured heterogeneity together with nanomaterials tailoring has made it possible to create thermoelectrics using high temperature, polymer...

  18. Carpet Specifiers Guide. Ultron, Advanced Generation Nylon Carpet Fiber.

    Science.gov (United States)

    Monsanto Textiles Co., Atlanta, GA.

    The purpose of this guide is to assist specifiers in properly specifying carpet made of Monsanto Ultron advanced generation nylon fiber. The guide describes a variety of conditions that should be considered in arriving at the proper selection and provides reference information and data, ranging from varying regulatory requirements, performance and…

  19. The changing face of international power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I. [World Energy Council, London (United Kingdom)

    1997-12-31

    The author limits his remarks to a discussion of the international generator`s marketplace, especially aimed at the developing countries. He discusses future global electricity demand, generating capacity build, its financing issues, and to the commercial generating opportunities which now abound outside the US.

  20. Research on Comparisons of New Clean Power Generation Technologies

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    On the basis of introducing clean power generation technologies, the author calculated and analyzed the investment, economy and environmental protection of these technologies, posed his views of giving the priorities to the development of supercritical and ultra-supercritical pressure coal-fired power generation technologies and taking vigorous action to nuclear power generation technology within the following 5-10 years, exploiting wind power within the following 10-15 years, and suggested that the installed capacity of nuclear power reach 80-100 GW and that of wind power reach 50-80 GW by 2020.

  1. Design Analysis of a Novel Synchronous Generator for Wind Power Generation

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Higuchi

    2014-08-01

    Full Text Available A novel synchronous generator is proposed for wind power generation. The field flux is generated by the half-wave rectified excitation method. The generator does not require slip rings and brushes for field power supply, as well as permanent magnets. In this paper, the excitation method is explained, and then, the basic characteristics are calculated using the finite element method analysis. Furthermore, the generator is designed for increasing the output power and efficiency.

  2. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  3. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  4. Concentrating solar power (CSP) power cycle improvements through application of advanced materials

    Science.gov (United States)

    Siefert, John A.; Libby, Cara; Shingledecker, John

    2016-05-01

    Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.

  5. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  6. Advanced nuclear power plant solidification system

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M. [Hitachi Ltd., Tokyo (Japan); Hirayama, S.; Nishi, T. [Hitachi Ltd., Ibaraki (Japan); Huang, C. T. [Institute of Nuclear Energy Research, Lungtan (Taiwan)

    2003-07-01

    'Slim-Rad' is an advanced radioactive waste treatment system reflecting Hitachi's long experience as a supplier of nuclear plants. The system utilizes new technologies such as a hollow fiber filter, high-performance cement solidification and laundry and shower drain treatment. By adopting this Slim-Rad system, not only the final waste volume but also the number of radwaste tanks can be reduced 1/8 and 1/2, respectively, compared with previous Hitachi radwaste treatment systems. Moreover, release of radioactivity into the environment from the treated waste is reduced effectively. This paper outlines the system and describes its features, as well as the features of the key technology such as volume reduction and solidification technology.

  7. Managing strategic alliances in the power generation industry

    DEFF Research Database (Denmark)

    Kumar, Rajesh

    2003-01-01

    Highlights the challenges for power development developers in initiating alliances in the power generation industry. Importance of strategic alliances in the industry; Nature of the alliances in the independent power industry; Strategies for creating and sustaining value in global power development......; Management of tensions inherent in internal and external alliances....

  8. Renewable energy power generation projects started construction in Tibet

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On March 19, the construction of a 10-MW photovoltaic power plant and a 1 000-kW new type geothermal power generation project were started by Guodian Longyuan Group in Yanbajing Town, Dangxiong County of Tibet.

  9. Generating Functions for the Powers of Fibonacci Sequences

    Science.gov (United States)

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  10. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  11. A Robust Adaptive Hydraulic Power Generation System for Jet Engines

    OpenAIRE

    Ronco, Pierantonio; Sorli, Massimo; Mornacchi, Andrea; Jacazio, Giovanni

    2013-01-01

    The paper presents an innovative hydraulic power generation system able to enhance performance, reliability and survivability of hydraulic systems used in military jet engines, as well as to allow a valuable power saving. This is obtained by a hydraulic power generation system architecture that uses variable pressure, smart control, emergency power source and suitable health management procedures. A key issue is to obtain all these functions while reducing to a minimum the number of additiona...

  12. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  13. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  14. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... several potential converter topologies and power semiconductor devices for the future wind power application are presented in respect to the advantages/drawbacks. And then the criteria for evaluating the wind power converter are generally discussed, where the importance of thermal stress in the power...

  15. Circuit Simulation of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator could be divided into the following parts, a Marx generator consisting of 12 spark gap switches and 24 low inductance capacitors (Maxwell Corporation products)

  16. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    need for substantial research. As we consider I and C systems in Generation IV reactors, we have the opportunity to take a much less 'timid' design philosophy than was taken in the design of I and C systems in the ALWRs. We need to make use of advanced technology to design an I and C system for the Generation IV multi-unit plant designs currently being considered. Such a design should accomplish the following: 1. provides for multi-unit control; 2. contributes to a plant design objective of a very low core damage frequency; 3. maximizes plant thermal efficiency (>50%); 4. maximizes plant capacity factor (>90%); 5. optimizes operability; 6. maximizes maintainability; 7. provides for on-line monitoring, calibration, and diagnostics; 8. provides optimum response to disturbances; 9. provides excellent load-following capability. When we consider the current situation in operating Generation I and II nuclear power plants and even Generation III ALWR design, we conclude that Generation IV reactors should employ at least Generation II measurement systems. Let us first consider data transmission, which is a form of communication, and ask the question: Do new communication-transferring methods by electrons flow in copper wires? The obvious answer is no. Virtually all new communication systems are using some electromagnetic method, such as light, microwaves, HF or VHF radio signals, and virtually no copper wires. When we envision Generation IV nuclear power plants, we should minimize the use of copper wires for data transmission. We should transmit data primarily by fiber optics and various wireless methods, some of which can penetrate thick barriers. Now let us consider sensors. If we use light for data transmission, then we should also use optical-based sensors. We should also take advantage of microprocessors, which provide opportunities to embed 'intelligence' in the sensor that can be used to increase accuracy, stability, and tolerance to external stressors (i.e., radiation

  17. Software Framework for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  18. A Maximum Power Tracker for Improved Thermophotovoltaic Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS...

  19. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; Hassanzadeh, F.

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  20. New generation of reactors for space power

    International Nuclear Information System (INIS)

    Space nuclear reactor power is expected to enable many new space missions that will require several times to several orders of magnitude anything flown in space to date. Power in the 100-kW range may be required in high earth orbit spacecraft and planetary exploration. The technology for this power system range is under development for the Department of Energy with the Los Alamos National Laboratory responsible for the critical components in the nuclear subsystem. The baseline design for this particular nuclear sybsystem technology is described in this paper; additionally, reactor technology is reviewed from previous space power programs, a preliminary assessment is made of technology candidates covering an extended power spectrum, and the status is given of other reactor technologies

  1. Comparative cost analysis of wind and photovoltaic power generation

    International Nuclear Information System (INIS)

    Power generation from wind power and solar radiation is at present - and this can be described as generally accepted consent of energy economy - considered as the electricity generation option which is characterized by the lowest environmental loads. Greatest disadvantage of energy generation by using these renewable energy sources are - compared to conventional power generation options - the still to high production costs for electric power. Therefore government promotional programs have been initiated (e.g. 250 MW wind program and 1000-roof program) in order to attain cost reductions and thus to make a broader use of these energy sources possible. Against this background this study aims at presenting and discussing the production costs of power generation from wind power and solar radiation with and without government promotion under the meteorological conditions in the FRG. (orig.)

  2. Thermodynamic irreversibility and performance characteristics of thermoelectric power generator

    International Nuclear Information System (INIS)

    Thermodynamic irreversibility and performance characteristics of a thermoelectric power generator are investigated. The influence of the external load parameter, the thermal conductivity ratio, the figure of Merit, and the conductance ratio on the efficiency, the output power, and the entropy generation rate is predicted for various device operating parameters. It is found that the device efficiency increases to reach its maximum at the critical value of the output power and operating the device beyond the critical output power lowers the thermal efficiency and enhances the entropy generation rate significantly in the device. - Highlights: • The thermodynamic irreversibility in thermoelectric generator is studied. • Thermodynamic characteristics of thermoelectric device are investigated. • Influence of various parameters on performance is presented. • The device efficiency reaches its maximum at a critical output power. • The entropy generation increases beyond the critical output power

  3. Self power generating piezoelectric elements applied to switching circuits

    International Nuclear Information System (INIS)

    In this study, we focused on lead zirconate titanate (PZT) as a power generating piezoelectric element. Niobium was added to each of the PZT elements to improve their power generation characteristics. The purpose of the study was to develop a high-efficiency PZT generator element that utilizes the vibration loads in the support members of a structure. We have previously reported the power generation characteristics of laminated PZT elements under vibration loads. Effect of vibration load, vibration frequency and number of PZT layers on generation characteristics of PZT elements was evaluated in the vibration test. We evaluate the power generation of laminated PZT elements and present the results of an experiment using a switching circuit as a load circuit in order to confirm the suitability of the laminated PZT element as a power source

  4. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  5. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M.; Yokoyama, R.; Yasuda, K. [Tokyo Metropolitan Univ. (Japan); Sasaki, H. [Hiroshima Univ. (Japan); Ogimoto, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  6. Power generation from tidal energy. Chosekiter dot choryu hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    Kiho, S. (Nihon University, Tokyo (Japan). College of Science and Technology)

    1992-05-20

    Both the tidal height difference and current power generations are generally explained to make the tide as an energy source. Because of lowness in density of tidal energy, what has been put to practical use is only one 240000kW power station in France and all the others are still at the stage of demonstration. The tidal height difference power generation is a system to generate the power through rotating the water wheel by the difference in seawater level at the entrance to a bay, large in difference between the tidal rise and fall. In Japan, there is no place where such a tidal height difference may be considerably good for the power generation. Judging for the economical performance from an example in the tidal power station in Rance, France, the tidal power generation, as high in embankment construction cost for the dam, is about twice as costly as the hydraulic power generation in general. As utilizing the phenomenon for the tidal current velocity to be high at a narrow entrance to the bay, the tidal current power generation is to generate the power from the current as natural without embankment and other constructions. Japan{prime}s tidal current energy in total is estimated to be 60TWh in annually generated quantity of power. The highest tidal current velocity is about 4m/sec in Japan, which estimates 6.4 to 12.8kW. In the tidal current power generation, the efficiency of water wheel is an important element. 5 refs., 16 figs., 3 tabs.

  7. Entropy-generated power and its efficiency

    DEFF Research Database (Denmark)

    Golubeva, N.; Imparato, A.; Esposito, M.

    2013-01-01

    We propose a simple model for a motor that generates mechanical motion by exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological paramet...

  8. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    Science.gov (United States)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  9. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  10. Nanostructured electrodes for Solar Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key to achieving high-power solar arrays for NASA applications is the development of high-efficiency, thin-film solar cells that can be fabricated directly on...

  11. The importance of collaboration in the advancement of current and next generation reactors

    International Nuclear Information System (INIS)

    The sections of the contribution are as follows: Tradition of innovation. Growing demand for nuclear power; Collaboration drivers; Responses. Knowledge transfer and management is critical. What kind of focus? Equipment reliability. Advanced repair, replacement and construction approaches. Materials. Plant safety margins. Spent fuel management. Examples of European collaboration. Zorita materials examination. Collaboration in the development of next generation reactors; Westinghouse R and D priorities; A look to the future. (P.A.)

  12. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    OpenAIRE

    Elsied, Ahmed M. M.; Hafz, Nasr A. M.; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Jie ZHANG

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized...

  13. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    Science.gov (United States)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  14. Power-conditioning system for the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector

  15. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    Science.gov (United States)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  16. Refurbishment Status of Light Ⅱ-A Pulsed Power Generator

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The Light Ⅱ-A pulsed power generator, formerly used to pump KrF laser, was updated around the year 2000 from the original Light Ⅱ, a pulsed power generator built in 1980s at CIAE. This machine was

  17. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed in this...

  18. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  19. 43 CFR 431.6 - Power generation estimates.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall submit annually on or before April 15 to Western and Contractors, an estimated annual operation schedule for...

  20. Application of Artificial Neural Networks for Predicting Generated Wind Power

    Directory of Open Access Journals (Sweden)

    Vijendra Singh

    2016-03-01

    Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.

  1. A Proposed Method to Generate Electricity through Power Stair

    OpenAIRE

    Arvind Upadhyaya; Shweta Upadhyaya

    2016-01-01

    We are using the non-renewable energy sources such as petroleum as well as renewable sources like solar, wind, tidal power etc., but still we couldn’t overcome our power needs. So we have to generate electricity through each and every possible ways. Power can be generated through we are stepping on the stairs; the generated power will be stored and can be used for domestic purposes. This system can be installed at homes, colleges, railway stations, where the people move around the clock. The ...

  2. Gas-fired Power Generation in India: Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    India's fast growing economy needs to add 100,000 MW power generating capacity between 2002-2012. Given limitations to the use of coal in terms of environmental considerations, quality and supply constraints, gas is expected to play an increasingly important role in India's power sector. This report briefs NMC Delegates on the potential for gas-fired power generation in India and describes the challenges India faces to translate the potential for gas-fired power generation into reality.

  3. Power generation from conductive droplet sliding on electret film

    Science.gov (United States)

    Yang, Zhaochu; Halvorsen, Einar; Dong, Tao

    2012-05-01

    Generating electrical power from low frequency vibration to power portable devices is a challenge that potentially can be met by nonresonant electrostatic energy harvesters. We propose a generator employing a conductive droplet sliding on a microfabricated electret film which is sputtered onto an interdigital electrode and charged already during deposition. Droplet motion causes a capacitance variation that is used to generate electric power. A prototype of the fluidic energy harvester demonstrated a peak output power at 0.18 µW with a single droplet having a diameter of 1.2 mm and sliding on a 2 -µm thick electret film.

  4. Advanced nanoparticle generation and excitation by lasers in liquids.

    Science.gov (United States)

    Barcikowski, Stephan; Compagnini, Giuseppe

    2013-03-01

    Today, nanoparticles are widely implemented as functional elements onto surfaces, into volumes and as nano-hybrids, resulting for example in bioactive composites and biomolecule conjugates. However, only limited varieties of materials compatible for integration into advanced functional materials are available: nanoparticles synthesized using conventional gas phase processes are often agglomerated into micro powders that are hard to re-disperse into functional matrices. Chemical synthesis methods often lead to impurities of the nanoparticle colloids caused by additives and precursor reaction products. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment, and conjugate a large variety of nanostructures in a scalable and clean manner. This editorial briefly highlights selected recent advancements and critical aspects in the field of pulsed laser-based nanoparticle generation and manipulation, including exemplary strategies to harvest the unique properties of the laser-generated nanomaterials in the field of biomedicine and catalysis. The presented critical aspects address future assignments such as size control and scale-up.

  5. Advanced nanoparticle generation and excitation by lasers in liquids.

    Science.gov (United States)

    Barcikowski, Stephan; Compagnini, Giuseppe

    2013-03-01

    Today, nanoparticles are widely implemented as functional elements onto surfaces, into volumes and as nano-hybrids, resulting for example in bioactive composites and biomolecule conjugates. However, only limited varieties of materials compatible for integration into advanced functional materials are available: nanoparticles synthesized using conventional gas phase processes are often agglomerated into micro powders that are hard to re-disperse into functional matrices. Chemical synthesis methods often lead to impurities of the nanoparticle colloids caused by additives and precursor reaction products. In the last decade, laser ablation and nanoparticle generation in liquids has proven to be a unique and efficient technique to generate, excite, fragment, and conjugate a large variety of nanostructures in a scalable and clean manner. This editorial briefly highlights selected recent advancements and critical aspects in the field of pulsed laser-based nanoparticle generation and manipulation, including exemplary strategies to harvest the unique properties of the laser-generated nanomaterials in the field of biomedicine and catalysis. The presented critical aspects address future assignments such as size control and scale-up. PMID:23138867

  6. Advanced pulsed and CW high-power fiber lasers

    OpenAIRE

    Nilsson, J.; Grudinin, A.B.; Turner, P.W.

    2000-01-01

    We examine design issues for high-energy pulsed as well as for high-power cw fiber lasers. Power handling and pump scalability are primary issues for kilowatt fiber lasers. Special core designs are needed for high-energy pulse generation.

  7. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  8. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  9. Conceptual survey of Generators and Power Electronics for Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.; Ritchie, E.; Munk-Nielsen, S.; Bindner, H.; Soerensen, P.; Bak-Jensen, B.

    2001-12-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent system operators as well as manufactures of generators and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: State of the art on generators and power electronics; future concepts and technologies within generators and power electronics; market needs in the shape of requirements to the grid connection, and; consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generator and power electronic concepts was carried out in co-operation between Aalborg University and Risoe National Laboratory in the scope of the research programme Electric Design and Control. (au)

  10. Power generation from fuelwood by the Nicaraguan sugar mills

    NARCIS (Netherlands)

    Carneiro de Miranda, R.; Broek, R. van den

    2002-01-01

    With new concept development for the sugar industry and with new power market opportunities, two sugar mills in Nicaragua initiated projects aimed at becoming power plants during the sugar cane off-season. Basically the idea is to use more efficient boilers and turbines, and generate power beyond th

  11. Environmental and Safety Concerns for Nuclear Power Generation in Ghana

    OpenAIRE

    Emmanuel Ampomah-Amoako; Edward H. K. Akaho; Nyarko, Benjamin J. B.; Isaac Ennison; Odoi, Henry C.; Abrefah, Rex G.; Sogbadji, Robert B. M.; Birikorang, Sylvester A.; Aboh, Innocent J. K.; Kwaku A. Danso; Ekua Mensimah; Kwame Gyamfi

    2011-01-01

    Misconception about nuclear reactor safety has led several nuclear power projects to be abandoned. Safety was taken into consideration even before the first fission chain reaction was initiated. These safety precautions coupled with half a century of experience in nuclear power generation have made nuclear power the best choice for base load electricity generation in several countries across the globe. The storage of nuclear waste has been extensively studied over the years and several opport...

  12. Energy situation and role of nuclear power generation in Italy

    International Nuclear Information System (INIS)

    The increase of electric power demand in Italy slowed down during the last several years, but the maximum load continued to increase steadily. The electrical power consumption in Italy is 2375 kwh per person in 1974, which is much less than that in Germany, England and other countries in Europe. The energy resources in Italy consists of hydraulic power generation which has the capability about 11 x 103 MWe in operation in 1975, thermal power generation including both steam power and gas turbine with about 19 x 103 MWe and 0.4 MWe, respectively, and the geothermal power generation that is a special resource in Italy with the capacity of about 1/3 in the world. Research has not been carried out in the field of tidal power generation, but solar energy is developed in Italy. ENEL has exerted its best effort to scale up the thermal power generation since 1960s with the standardization of plant capacity into 160 MWe, 320 MWe and 660 MWe. The multiformity of fuel is considered in these thermal power generating plants recently, and coal is also looked for again. As for the nuclear power generation, about 600 MWe is now in operation. It is considered about the nuclear power generation that safety and financial problems exist which are connected to the public sense of unease with no ground, the solution of social economy problem around the sites, the necessity of much funds, and the licensing problem. Much effort is concentrated in the standardization of the plants, considering safety improvement and technical development. The lead time in the construction of a nuclear power plant is very long, and it is necessary to establish the siting law, promote the technical development and secure the public acceptance. (Nakai, Y.)

  13. Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    OpenAIRE

    Sattler, Christian; Agrafiotis, Christos; Roeb, Martin; Tescari, Stefania; Wong, Bunsen

    2015-01-01

    Recent developments in solar-thermal power generation aim as well to achieve higher temperatures to increase the efficiencies of the power cycles as to store the solar energy to enable baseload power generation from a transient energy source. Thermochemical redox processes are an option to store large amounts of solar energy in a compact storage system. The enthalpy effects of these reversible chemical reactions can be exploited. Oxides of multivalent metals in particular, capable of being...

  14. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  15. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    Directory of Open Access Journals (Sweden)

    Jingqi Sun

    2014-01-01

    Full Text Available As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China’s energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China.

  16. Hybrid biomass-wind power plant for reliable energy generation

    International Nuclear Information System (INIS)

    Massive implementation of renewable energy resources is a key element to reduce CO2 emissions associated to electricity generation. Wind resources can provide an important alternative to conventional electricity generation mainly based on fossil fuels. However, wind generators are greatly affected by the restrictive operating rules of electricity markets because, as wind is naturally variable, wind generators may have serious difficulties on submitting accurate generation schedules on a day ahead basis, and on complying with scheduled obligations in real-time operation. In this paper, an innovative system combining a biomass gasification power plant, a gas storage system and stand-by generators to stabilize a generic 40 MW wind park is proposed and evaluated with real data. The wind park power production model is based on real data about power production of a Spanish wind park and a probabilistic approach to quantify fluctuations and so, power compensation needs. The hybrid wind-biomass system is analysed to obtain main hybrid system design parameters. This hybrid system can mitigate wind prediction errors and so provide a predictable source of electricity. An entire year cycle of hourly power compensations needs has been simulated deducing storage capacity, extra power needs of the biomass power plant and stand-by generation capacity to assure power compensation during critical peak hours with acceptable reliability. (author)

  17. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  18. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  19. Interagency Advanced Power Group -- Steering group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-18

    This document contains the draft meeting minutes of the Steering Group of the Interagency Advanced Power Group. Included are the discussions resulting from the presentation of working group reports and the results of a discussion of IAPG policies and procedures. In the appendix are the reports of the following working groups: Electrical, Mechanical, Solar, and Systems.

  20. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  1. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  2. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  3. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  4. FY2009 Annual Progress Report for Advanced Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States)

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  5. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  6. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  7. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    Science.gov (United States)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  8. Protective, Modular Wave Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  9. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems

    Science.gov (United States)

    Hennessy, Michael J.

    2014-01-01

    NASA is investigating advanced turboelectric aircraft propulsion systems that use superconducting motors to drive multiple distributed turbofans. Conventional electric motors are too large and heavy to be practical for this application; therefore, superconducting motors are required. In order to improve aircraft maneuverability, variable-speed power converters are required to throttle power to the turbofans. The low operating temperature and the need for lightweight components that place a minimum of additional heat load on the refrigeration system open the possibility of incorporating extremely efficient cryogenic power conversion technology. This Phase II project is developing critical components required to meet these goals.

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  11. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never

  12. The competitiveness of wind power compared to existing methods of electricity generation in Iran

    International Nuclear Information System (INIS)

    In Iran, there are more than 15,000 MW of wind power potential, but only about 90 MW have been installed since 2009. Because fuel costs are the main part of fuel-consumed power generation costs and fossil resource costs are highly subsidized in Iran, renewable energies such as wind power have yet to be fully developed. This analysis sets out to evaluate the total generating costs of wind power and conventional power plants in Iran. A levelized cost approach was conducted that included investment costs, O and M costs, fuel costs and external costs of emissions for each type of technology. Comparison of cost assessments of power generation show that by taking into account global fuel prices and incorporating air pollutant externalities, wind power can be as competitive as conventional power plants. This paper suggests that a subsidies targeting law would significantly affect the development of the Iranian wind power industry in the future. - Highlights: ► Although wind energy requires no fuel consumption costs, the investment costs of wind power plants are considerably higher than those for the other technologies. ► With a rapidly growing market, advancing technology and significant drops in capital requirements over time, it is expected that the competitiveness of wind power will increase over fuel-consumed power plants. ► Execution of the Economic Development Plan and increases in the prices of natural gas, mazout and gasoline could affect the attractiveness of developing wind power plants. ► Sensitivity analysis confirms when natural gas price reach about 31 cent per m3, wind plant will as the lowest-cost source of power generation among conventional power plants. ► Sensitivity analysis by changing wind plant’ capacity factor shows that wind farms with high capacity factor will have generation cost less than fossil fuel plants.

  13. The Korean strategy and experience in developing nuclear power generation capability

    International Nuclear Information System (INIS)

    The Korean nuclear energy development program and future prospects are discussed. Korea has achieved the substantial level of nuclear power plant localization through Korean Standard Nuclear Power (KSNP) Plant approach. The KSNP approach includes plant standardization, equipment, fuel and service localization and codes and standards development. Korea could develop her own decision making capability as Korea took the total project management responsibility in the KSNP approach. Current Korean nuclear R and D program includes next generation nuclear power plant development and advanced fuel development. The PWR-CANDU symbiosis is carefully considered to improve the nuclear power economy

  14. The EU power plant conceptual study - neutronic design analyses for near term and advanced reactor models

    International Nuclear Information System (INIS)

    A power plant conceptual study (PPCS) has been conducted in the framework of the European fusion programme with the main objective to demonstrate the safety and environmental advantages and the economic viability of fusion power. Power plant models with limited (''near term concepts'') and advanced plasma physics and technological extrapolations (''advanced concepts'') were considered. Two near term plant models were selected, one employing a water cooled lithium-lead (WCLL), and the other one a helium cooled pebble bed (HCPB) blanket. Two variants were also considered for the advanced power plant models, one adopting a liquid metal blanket with a self-cooled lithium-lead breeder zone and a helium cooled steel structure (''dual coolant lithium lead'', DCLL), and the other one a self-cooled lithium-lead (SCLL) blanket with SiCf/SiC composite as structural material. This report provides a detailed documentation of the neutronics design analyses performed as part of the PPCS study for both the near term and advanced power plant models. Main issues are the assessment of the tritium breeding capability, the evaluation of the nuclear power generation and its spatial distribution, and the assessment and optimisation of the shielding performance. The analyses were based on three-dimensional Monte Carlo calculations with the MCNP code using suitable torus sector models developed for the different PPCS plant variants. (orig.)

  15. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  16. Optimized power generation in offshore wind parks

    NARCIS (Netherlands)

    Oliveira Filho, J. de; Papp, Z.

    2011-01-01

    Electricity generation on offshore wind parks has an increasing economic importance - the European Commission foresees that 12% of the wind energy will be produced on offshore installations by 2020, and this share is likely to increase further in the following years. However, the continuously varyin

  17. RF power generation for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fowkes, W.R.; Allen, M.A.; Callin, R.S.; Caryotakis, G.; Eppley, K.R.; Fant, K.S.; Farkas, Z.D.; Feinstein, J.; Ko, K.; Koontz, R.F.; Kroll, N.; Lavine, T.L.; Lee, T.G.; Miller, R.H.; Pearson, C.; Spalek, G.; Vlieks, A.E.; Wilson, P.B.

    1990-06-01

    The next linear collider will require 200 MW of rf power per meter of linac structure at relatively high frequency to produce an accelerating gradient of about 100 MV/m. The higher frequencies result in a higher breakdown threshold in the accelerating structure hence permit higher accelerating gradients per meter of linac. The lower frequencies have the advantage that high peak power rf sources can be realized. 11.42 GHz appears to be a good compromise and the effort at the Stanford Linear Accelerator Center (SLAC) is being concentrated on rf sources operating at this frequency. The filling time of the accelerating structure for each rf feed is expected to be about 80 ns. Under serious consideration at SLAC is a conventional klystron followed by a multistage rf pulse compression system, and the Crossed-Field Amplifier. These are discussed in this paper.

  18. High power microwave generation in vircators

    International Nuclear Information System (INIS)

    Vircator as high-power microwave source has recently become an intensive area of research. It is the device in which own beams fields dominate. Triod with reflex cathode investigated by H. Barkhausen and K. Kurz has been considered as low current analog of vircator. It is shown that such analogy is not correct, but parametric amplifier which is based on triod with reflex cathode is real analog of vircator. The theory of vircator is developed for broad range of electron velocities

  19. Gasification CFD Modeling for Advanced Power Plant Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  20. Power generation from fuelwood by the Nicaraguan sugar mills

    OpenAIRE

    Carneiro de Miranda, R.; Broek, R. van den

    2002-01-01

    With new concept development for the sugar industry and with new power market opportunities, two sugar mills in Nicaragua initiated projects aimed at becoming power plants during the sugar cane off-season. Basically the idea is to use more efficient boilers and turbines, and generate power beyond the mill's needs fueled by bagasse during the sugar cane crushing season ,and by fuelwood from eucalyptus plantations during the sugar cane off season. The surplus power in both seasons will be sold ...

  1. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  2. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    LU Qiang; HE GuangYu; MEI ShengWei; SUN YingYun; RUAN QianTu; WANG Wei; ZHANG WangJun; YU XuFeng

    2008-01-01

    To meet the demand of high stability, high quality, and low losses of power systems, the advanced energy management system (AEMS) is established and revealed in this bulletin, which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea, theory, method, software, and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closedloop control of power systems. Based on an "event-driven" strategy, the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS, as well as its implementation in Shanghai power system.

  3. Advanced EMS and its trial operation in Shanghai power system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To meet the demand of high stability,high quality,and low losses of power systems,the advanced energy management system (AEMS) is established and revealed in this bulletin,which has been put into trial operation in Shanghai power system for almost half a year. The AEMS is novel from all aspects covering idea,theory,method,software,and engineering. The essence of AEMS is exercising the hybrid automatic control theory and technology to realize multi-objective optimal closed-loop control of power systems. Based on an "event-driven" strategy,the AEMS transforms multi-objective optimal control problems into event identification and elimination by defining the unsatisfactory states of a power system as events. This bulletin concisely presents the theory and main advantages of AEMS,as well as its implementation in Shanghai power system.

  4. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    Science.gov (United States)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  5. A mechatronic power boosting design for piezoelectric generators

    Science.gov (United States)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-10-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  6. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  7. A mechatronic power boosting design for piezoelectric generators

    International Nuclear Information System (INIS)

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation

  8. Conceptual survey of generators and power electronics for wind turbines

    DEFF Research Database (Denmark)

    Hansen, L.H.; Helle, L.; Blaabjerg, F.;

    2002-01-01

    This report presents a survey on generator concepts and power electronic concepts for wind turbines. The report is aimed as a tool for decision-makers and development people with respect to wind turbine manufactures, utilities, and independent systemoperators as well as manufactures of generators...... and power electronics. The survey is focused on the electric development of wind turbines and it yields an overview on: - State of the art on generators and power electronics. - future concepts andtechnologies within generators and power electronics. - market needs in the shape of requirements to the grid...... connection, and - consistent system solutions, plus an evaluation of these seen in the prospect of market needs. This survey on of generatorand power electronic concepts was carried out in co-operation between Aalborg University and Risø National Laboratory in the scope of the research programme Electric...

  9. Combined fuel and air staged power generation system

    Science.gov (United States)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  10. Optimization of power generation from shrouded wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis (United States)

    2013-07-01

    In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD) software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable {kappa}-{epsilon} model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT) of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  11. Hydrogen-based power generation from bioethanol steam reforming

    International Nuclear Information System (INIS)

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint

  12. Hydrogen-based power generation from bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, Postal code: 400028, Cluj-Napoca (Romania)

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  13. Hydrogen-based power generation from bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  14. Optimization of power generation from shrouded wind turbines

    Directory of Open Access Journals (Sweden)

    Tudor Foote, Ramesh Agarwal

    2013-01-01

    Full Text Available In past several years, several studies have shown that the shrouded wind turbines can generate greater power compared to bare turbines. The objective of this study is to determine the potential of shrouded wind turbines for increased power generation by conducting numerical simulations. An analytical/computational study is performed by employing the well-known commercial Computational Fluid Dynamics (CFD software FLUENT. An actuator disc model is used to model the turbine. The incompressible Navier-Stokes equations and a two equation realizable k – ε model are employed in the calculations. The power coefficient Cp and generated power are calculated for a large number of cases for horizontal axis wind turbines (HAWT of various diameters and wind speeds for both bare and shrouded turbines. The design of the shroud is optimized by employing a single objective genetic algorithm; the objective being the maximization of the power coefficient Cp. It was found that the shroud indeed increases the Cp beyond the Betz’s limit significantly and as a result the generated power; this effect is consistent with that found in the recent literature that the shrouded wind-turbines can generate greater power than the bare turbines. The optimized shape of the shroud or diffuser further increases the generated power and Cp.

  15. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  16. Cascade Failures from Distributed Generation in Power Grids

    CERN Document Server

    Scala, Antonio; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  17. Holographic window for solar power generation

    Science.gov (United States)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-08-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  18. Advances in production of realistic cracks to NDT development and qualification purposes of steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Virkkunen, I.; Kemppainen, M. [Truflaw Ltd., Espoo (Finland); Tchilian, J.-M. [AREVA Nuclear Power Plant Sector, Saskatoon, Saskatchewan (Canada); Martens, J. [AREVA NP Intercontrole (France)

    2009-07-01

    Realistic defects are needed for steam generator tube inspections when developing new NDT methods or assessing the performance and reliability of methods and procedures used. Furthermore, realistic defects give the most reliable results in assessing service-related reliability of steam generator tubes by, for example, burst or leak tests. It is crucial to have representative defects as the defect characteristics has marked effect on the results both in NDE, burst and leak tests. Representativeness should be to the actual service-induced defects, and the evaluation should be based on the essential defect characteristics. In this paper real world application cases are presented about crack production to steam generator tubes. Crack production technique used is based on controlled thermal fatigue process creating natural cracks. Such cracks have been produced in Alloy 690 and austenitic stainless steel steam generator tubes. These cracks have been used, for example, for advanced NDT qualification purposes of a new build nuclear power plant. Paper presents results of the destructive tests performed after validation tests of the crack manufacturing in the Alloy 690 and austenitic stainless steel. These results are shown for both of the materials with measured essential crack characteristics. In addition to metallographic analysis, the paper presents the results of performed NDT inspections for the Alloy 690. Results have been obtained with an advanced inspection technique developed and used for today's inspections of steam generator tubes in nuclear power plants. (author)

  19. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Choi, Young Myung; Kim, Hwa Sup; Lee, Man Ki; Moon, Kee Hwan; Kim, Seung Su; Chae, Kyu Nam

    1996-12-01

    The major contents in this study are as follows : (1) Efforts are made to examine the role of nuclear energy considering environmental regulation. An econometric model for energy demand and supply including carbon tax imposition is established. (2) Analysis for the learning effect of nuclear power plant operation is performed. The study is focused to measure the effect of technology homogeneity on the operation performance. (3) A preliminary capital cost of the KALIMER is estimated by using cost computer program, which is developed in this study. (author). 36 refs.,46 tabs., 15 figs.

  20. Power transmission from offshore wind generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, P.J.; Gardner, G.E.

    1981-01-01

    Since wind power appears to be one of the more cost effective alternative energy sources the problems of integrating it into the supply system are being examined in some detail. A basic array is considered which has 14*14 aerogenerators with down and cross wind spacings of 10 propeller diameters thereby covering an area of 64 km/sup 2/, giving an average energy recovery efficiency for the array of 81%. The electrical connections are examined, and the stability of the systems to faults within the cluster is discussed. 3 refs.

  1. Modeling and Simulation of Generator Side Converter of Doubly Fed Induction Generator-Based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Blaabjerg, Frede

    2010-01-01

    A real wind power generation system is given in this paper. SVM control strategy and vector control is applied for generator side converter and doubly fed induction generator respectively. First the mathematical models of the wind turbine rotor, drive train, generator side converter are described...

  2. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States); Butt, Darryl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well as spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.

  3. Fuel cells for electric power generation

    International Nuclear Information System (INIS)

    After having first briefly illustrated the basic design, construction and operating principles of fuel cells, this paper assesses the progress that has been achieved to date in the development of the phosphoric acid (PAFC), molten carbonate (MCFC) and solid oxide (SOFC) fuel cells. Special attention is given to the design, performance and cost characteristics of the phosphoric acid fuel cells. For example, the paper cites the IFC/Toshiba 4.8 and 11.0 MW models, which have attained efficiencies of 37.5 and 41.0% respectively, and points out that these fuel cells, with efficiencies comparable to those of conventional poly-fuelled and combined cycle power plants, offer the advantages of compact size and better environmental compatibility with respect to the latter. However, fuel cells cannot yet compete with the lower per kWh costs of fossil fuel power plants. The paper concludes with an assessment of Italian fuel cell commercialization efforts, especially those centered around the use of methane fuelled PAFC's, and reviews the status of coordinated international research programs involving Japan, the USA and Italy

  4. Optimal generator bidding strategies for power and ancillary services

    Science.gov (United States)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  5. Oxygen Generation from Carbon Dioxide for Advanced Life Support

    Science.gov (United States)

    Bishop, Sean; Duncan, Keith; Hagelin-Weaver, Helena; Neal, Luke; Sanchez, Jose; Paul, Heather L.; Wachsman, Eric

    2007-01-01

    The partial electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied. However, complete reduction of metabolically produced CO2 (into carbon and oxygen) has the potential of reducing oxygen storage weight for life support if the oxygen can be recovered. Recently, the University of Florida devel- oped novel ceramic oxygen generators employing a bilayer elec- trolyte of gadolinia-doped ceria and erbia-stabilized bismuth ox- ide (ESB) for NASA's future exploration of Mars. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. The strategy discussed here for advanced life support systems employs a catalytic layer com- bined with a COG cell so that CO2 is reduced all the way to solid carbon and oxygen without carbon buildup on the COG cell and subsequent deactivation.

  6. Novel power electronic interface for grid-connected fuel cell power generation system

    International Nuclear Information System (INIS)

    Highlights: • A fuel cell power generation system was composed of a DC–DC power converter and a DC–AC inverter. • A voltage doubler based topology was adopted to configure the DC–DC power converter. • A dual buck power converter and a full-bridge power converter were applied to the DC–AC inverter. • The DC–AC inverter outputs a five-level voltage. • The DC–AC inverter performs the functions of DC–AC power conversion and active power filter. - Abstract: A novel power electronic interface for the grid-connected fuel cell power generation system is proposed in this paper. This power electronic interface is composed of a DC–DC power converter and a DC–AC inverter. A voltage doubler based topology is adopted to configure the DC–DC power converter to perform high step-up gain for boosting the output voltage of the fuel cell to a higher voltage. Moreover, the input current ripple of the fuel cell is suppressed by controlling the DC–DC power converter. The DC–AC inverter is configured by a dual buck power converter and a full-bridge power converter to generate a five-level AC output voltage. The DC–AC inverter can perform the functions of DC–AC power conversion and active power filtration. A 1.2 kW hardware prototype is developed to verify the performance of the proposed power electronic interface for the grid-connected fuel cell power generation system. The experimental results show that the proposed power electronic interface for the grid-connected fuel cell power generation system has the expected performance

  7. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  8. An ABC analysis for power generation project

    Directory of Open Access Journals (Sweden)

    Batool Hasani

    2013-07-01

    Full Text Available One of the primary concerns on performance measurement is to know how much a particular project cost. However, using traditional method on project-based products often leads to inappropriate results. In this paper, we re-examine this issue by comparing the cost of a power station construction project using ABC versus traditional method. The results of survey show that ABC method is capable of providing better estimates for overhead costs compared with traditional method. In other words, ABC method helps reduce some of the unnecessary overhead cost items and increase on some other cost components. This helps increase the relative efficiency of the system by reducing total cost of project.

  9. Stochastic Electric Power Generation Unit Commitment in Deregulated Power Market Environment

    OpenAIRE

    F. Gharehdaghi; H. Jamali; M. Deysi; A. Khalili

    2012-01-01

    Utilities participating in deregulated markets observe increasing uncertainty in load (i.e., demand for electric power) and prices for fuel and electricity on spot and contract markets. This study proposes a new formulation of the unit commitment problem of electric power generators in a restructured electricity market. Under these conditions, an electric power generation company will have the option to buy or sell from a power pool in addition to producing electricity on its own. The unit co...

  10. MODELING AND STUDY OF HYDROELECTRIC GENERATING SETS OF SMALL HYDRO POWER PLANTS WITH FREQUENCY-CONTROLLED PERMANENT MAGNET SYNCHRONOUS GENERATORS

    Directory of Open Access Journals (Sweden)

    R. I. Mustafayev

    2016-01-01

    Full Text Available Currently, the hydroelectric generating sets of small HPPs with Pelton turbines employ as their generating units conventional synchronous generators with electromagnetic excitation. To deal with the torque pulsatile behaviour, they generally install a supplementary flywheel on the system shaft that levels the pulsations. The Pelton turbine power output is adjusted by the needle changing water flow in the nozzle, whose advancement modifies the nozzle area and eventually – the flow. They limit the needle full stroke time to 20–40 sec. since quick shutting the nozzle for swift water flow reduction may result in pressure surges. For quick power adjustment so-called deflectors are employed, whose task is retraction of water jets from the Pelton turbine buckets. Thus, the mechanical method of power output regulation requires agreement between the needle stroke inside the turbine nozzles and the deflector. The paper offers employing frequency-controlled synchronous machines with permanent magnets qua generating units for the hydroelectric generating sets of small HPPs with Pelton turbines. The developed computer model reveals that this provides a higher level of adjustability towards rapid-changing loads in the grid. Furthermore, this will replace the power output mechanical control involving the valuable deflector drive and the turbine nozzle needles with electrical revolution rate and power output regulation by a frequency converter located in the generator stator circuit. Via frequency start, the controllable synchronous machine ensures stable operation of the hydroelectric generating set with negligibly small amount of water (energy carrier. Finally, in complete absence of water, the frequency-relay start facilitates shifting the generator operation to the synchronous capacitor mode, which the system operating parameter fluctograms obtained through computer modeling prove. 

  11. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  12. 76 FR 36914 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC..., 2011, Astoria Generating Company, NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

  13. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  14. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede;

    2015-01-01

    estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement...

  15. Advanced Control of Permanent Magnet Synchronous Generators for Variable Speed Wind Energy Conversion Systems

    Science.gov (United States)

    Hostettler, Jacob

    Various environmental and economic factors have lead to increased global investment in alternative energy technologies such as solar and wind power. Although methodologies for synchronous generator control are well researched, wind turbines present control systems challenges not presented by traditional generation. The varying nature of wind makes achieving synchronism with the existing electrical power grid a greater challenge. Departing from early use of induction machines, permanent magnet synchronous generators have become the focus of power systems and control systems research into wind energy systems. This is due to their self excited nature, along with their high power density. The problem of grid synchronism is alleviated through the use of high performance power electronic converters. In achievement of the optimal levels of efficiency, advanced control systems techniques oer promise over more traditional approaches. Research into sliding mode control, and linear matrix inequalities with nite time boundedness and Hinfinity performance criteria, when applied to the dynamical models of the system, demonstrate the potential of these control methodologies as future avenues for achieving higher levels of performance and eciency in wind energy.

  16. Low Power Microrobotics Utilizing Biologically Inspired Energy Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Description: building a small microrover that employs energy generated by a bacterial source Objective: investigate the usability of a microbial fuel cell to power...

  17. Power generation from piezoelectric lead zirconate titanate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shiyou; Shi, Yong, E-mail: yong.shi@stevens.ed [Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07029 (United States)

    2009-04-21

    PZT nanotubes were fabricated by the template-assisted method and power generation from these nanotubes was demonstrated experimentally. The PZT nanotubes obtained had high aspect ratios, and were dense, straight and continuous. A pure perovskite phase with strong [1 1 0] preferred crystallographic orientation was obtained at 650 {sup 0}C. The diameters of these nanotubes ranged from 190 to 210 nm, while the length was around 58 {mu}m, corresponding to the diameters and height of the nanopores in the anodic aluminium oxide template. The dielectric constant of the PZT nanotubes was determined to be about 470. These nanotubes could generate up to 469 mV voltage when a stainless-steel nugget was dropped on the electrode of the nanotubes. The power generation could be explained by the basic piezoelectric principles. This power generating mechanism had the potential to convert mechanical and vibration energy to electric power for nanodevices or integrated nanosytems.

  18. APPLICATION OF MEMBRANE TECHNOLOGY TO POWER GENERATION WATERS

    Science.gov (United States)

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment waste...

  19. Local Control of Reactive Power by Distributed Photovoltaic Generators

    CERN Document Server

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  20. A Scenario Generation Method for Wind Power Ramp Events Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ming-Jian; Ke, De-Ping; Sun, Yuan-Zhang; Gan, Di; Zhang, Jie; Hodge, Bri-Mathias

    2015-07-03

    Wind power ramp events (WPREs) have received increasing attention in recent years due to their significant impact on the reliability of power grid operations. In this paper, a novel WPRE forecasting method is proposed which is able to estimate the probability distributions of three important properties of the WPREs. To do so, a neural network (NN) is first proposed to model the wind power generation (WPG) as a stochastic process so that a number of scenarios of the future WPG can be generated (or predicted). Each possible scenario of the future WPG generated in this manner contains the ramping information, and the distributions of the designated WPRE properties can be stochastically derived based on the possible scenarios. Actual data from a wind power plant in the Bonneville Power Administration (BPA) was selected for testing the proposed ramp forecasting method. Results showed that the proposed method effectively forecasted the probability of ramp events.

  1. Power microwave pulse generation of resonant relativistic backward wave tube with power supply based on explosive magnetocumulative generators

    International Nuclear Information System (INIS)

    High-power microwave radiation has been generated using a resonant relativistic backward wave oscillator (BWO) powered by a high voltage source comprising an inductive energy storage and an electric-explosion current switch, the results of the experiment are provided. The high voltage source and the BWO magnetic system are energy pumped by explosive magnetocumulative generators. In the experiments the setup generated 30-ns single-mode radiation pulses with a carrier frequency of 3.6 GHz at a peak power of 0.75 GW

  2. Space photovoltaic power generation. Uchu taiyo hatsuden ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I. (Electrotechnical Laboratory, Tsukuba (Japan))

    1993-07-20

    Introduction is made of space photovoltaic power generation which is the ultimate clean energy source. This is a system to obtain electric energy from the solar cells placed on a geostatic orbit and transmit the power onto the earth by microwave. The US formulates a plan of placing 60[times]5GW power generation satellites to obtain 300GW power on the earth in 2000. As for the scale of space structure, the array of solar cells is dimensionally 10km[times]5km and the power transmitting antenna is 1km in diameter. The electric energy is amplified to microwave and power-transmitted by wireless onto the earth. The ground rectenna which receives it is dimensionally 10km[times]13km. The biggest difficulty consists in transportation of construction materials onto the orbit. In Japan, activity comprises three matters, which are research committee organized three years ago by the Agency of Industrial Science and technology, 10MW class model conceptually designed by the Institute of Space and Astronautical Science, and experiment conducted by Kyoto University on the power transmission by wireless. Pertaining to the research on the space power generation, the following two points are judged still unclarified: Reason for which the electric power companies did not apply the power transmission by wireless regarded as high in transmission efficiency. Influence of the microwave on the ionosphere and biosystem. 7 refs., 4 figs.

  3. Gasification combined cycle power generation - process alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Korhonen, M.

    1988-01-01

    Interest in Integrated Gasification Combined Cycle (IGCC) power plants has recently increased also in Finland. The IGCC systems offer the potential of superior efficiency and environmental performance over conventional pulverized coal or peat fired boilers. Potential applications are both large-scale electricity production from coal and medium-scale combined heat and electricity production. In the latter case, the gasification process should also be applicable to peat and wood. Several IGCC processes have been developed in USA and in Europe. These processes differ from each other in many respects. Nearest to commercialization are processes, which employ oxygen gasification and cold gas cleanup. The Cool Water plant, which was brought into operation in 1984 in USA, has demonstrated the feasibility of an IGCC system using Texaco entrained-bed gasifier. Several pressurized fluidized-bed and fixed-bed gasification processes have also reached a pilot or demonstration stage with a wide variety of coals from lignite to hard coal. Pressurized fluidized-bed gasification of peat (Rheinbraun-HTW-process) will also be demonstrated at the peat ammonia plant of Kemira Oy, which will be commissioned in 1988 in Oulu, Finland. Oxygen gasification and cold gas cleanup are, however, economically viable only in large-scale applications. Technology is being developed to simplify the IGCC system, in order to reduce its capital costs and increase its efficiency. Air gasification combined with ho gas cleanup seems to have a great potential of improving the competitiveness of the IGCC system.

  4. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  5. FEM Simulation of Small Wind Power Generating System Using PMSG

    Science.gov (United States)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  6. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-23

    ... Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC..., Astoria Gas Turbine Power ] LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, and......

  7. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Science.gov (United States)

    2011-06-14

    ... Energy Regulatory Commission Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC... Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor......

  8. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  9. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  10. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  11. Thermal Power: Focusing on Efficient and Clean Generation

    Institute of Scientific and Technical Information of China (English)

    Han Wei; Li Jialu

    2009-01-01

    @@ History review Before the foundation of New China, there was no thermal power equipment manufacturing industry in China at all. China imported the manufacturing technology of 6-MW and 12-MW thermal power units from the former Czechoslovakia in 1952, and imported the manufacturing technology of 6-MW and 50-MW thermal power units from the former Soviet Union in 1953. At that time, the thermal power equipment manufacturing industry in China started to develop. Before the reform and opening up, China had been able to independently develop 6-300-MW thermal power units of high-pressure, super high-pressure and sub-critical utility boiler, impulse turbine, dual internal water cooling or water-hydrogen-hydrogen turbogenerator, among which the 100-MW, 125-MW,200-MW and 300-MW thermal power units had become the main parts in power grids, and three large-scale power generation equipment manufacturing bases of Harbin, Shanghai and Dongfang had been established simultaneously.

  12. Power generation from wind turbines in a solar chimney

    Energy Technology Data Exchange (ETDEWEB)

    Foote, Tudor [Graduate Student, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States); Agarwal, Ramesh K. [William Palm Professor, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    Recent studies have shown that shrouded wind turbines can generate greater power compared to bare turbines. A solar chimney generates an upward draft of wind inside a tower and a shroud around the wind turbine. There are numerous empty silos on farms in the U.S. that can be converted to solar chimneys with minor modifications at modest cost. The objective of this study is to determine the potential of these silos/chimneys for generating wind power. The study is conducted through analytical/computational approach by employing the commercial Computational Fluid Dynamics (CFD) software. Computations are performed for five different geometric configurations consisting of a turbine, a cylindrical silo, and/or a venturi and/or a diffuser using the dimensions of typical silos and assuming Class 3 wind velocity. The incompressible Navier-Stokes equations with the Boussinesq approximation and a two equation realizable {kappa}-{epsilon} model are employed in the calculations, and the turbine is modeled as an actuator disk. The power coefficient (Cp) and generated power are calculated for the five cases. Consistent with recent literature, it was found that the silos with diffusers increase the Cp beyond Betz’s limit significantly and thus the generated power. It should be noted that Cp is calculated by normalizing it by the turbine area swept by the wind. This study shows the potential of using abandoned silos in the mid-west and other parts of the country for localized wind power generation.

  13. Amplified spontaneous emission pulses for high-power supercontinuum generation

    Directory of Open Access Journals (Sweden)

    Huan Huan Liu

    2016-03-01

    Full Text Available The authors demonstrate an incoherent light source based on a reflective semiconductor optical amplifier as pump for high-power supercontinuum generation for the first time. The obtained power level is about 160 mW and 20 dB spectral bandwidth is around 170 nm.

  14. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  15. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...

  16. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...

  17. Active screening of magnetic field near power stations generator buses

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2013-12-01

    Full Text Available An experimental study technique for a prototyping system of active screening of power-frequency magnetic field distortions near power station generator buses via controllable magnetic field sources is presented. Results of experimental research on a proto-typing active screening system with different control algorithms are given.

  18. Market power and technological bias in electricity generation markets

    International Nuclear Information System (INIS)

    It is difficult or very costly to avoid all market power in electricity markets. A recurring response is that a limited amount of market power is accepted with the justification that it is necessary to produce revenues to cover some of the fixed costs. It is assumed that all market participants benefit equally from the increased prices. However, this assumption is not satisfied if different production technologies are used. We assess the case of a generation mix of conventional generation and intermittent generation with exogenously varying production levels. If all output is sold in the spot market, then intermittent generation benefits less from market power than conventional generation. If forward contracts or option contracts are signed, then market power might be reduced but the bias against returns to intermittent generators persists. Thus allowing some level of market power as a means of encouraging investment in new generation may result in a bias against intermittent technologies or increase the costs of strategic deployment to achieve renewable quotas. (Author)

  19. Injector power supplies reliability improvements at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, A.; Pasky, S.; Sereno, N.; Soliday, R.; Wang, J.

    2006-01-01

    Operational goals for the Advanced Photon Source (APS) facility include 97% availability and a mean time between unscheduled beam losses (faults) of 70 hours, with more than 5000 user hours of scheduled beam per year. To meet this objective, our focus has been maximizing the mean time between faults (MTBF). We have made various hardware and software improvements to better operate and monitor the injector power supply systems. These improvements have been challenging to design and implement in light of the facility operating requirements but are critical to maintaining maximum reliability and availability of beam for user operations. This paper presents actions taken as well as future plans to continue improving injector power supply hardware and software to meet APS user operation goals. The Advanced Photon Source (APS) has two major components. The storage ring (SR) accelerator is the primary accelerator that delivers X-ray beams to users and uses over 1,400 power supplies. The injector accelerators provide beam to the SR and use 361 different supplies. The control system ranges from the standard VME-IOC and Allen Bradley to GESPAC with additional mini-PLCs for monitoring. Injector power supplies range from {approx}30 watts DC to a ramped peak of 4.6 megawatts in 250 ms. Finally, all accelerators use pulsed supplies, and some of them deliver peak power in megawatts. In the SR, each multipole and corrector magnet is separately powered, with only the main dipole magnets on a common bus. Independent power supplies provide increased flexibility, but place additional demands on power supply reliability. The APS reliability goals are 97% availability and 70 hours mean time to unscheduled beam loss. There are 5,129 user hours scheduled per year, 1,315 hours used for machine studies, and the remaining 2,316 hours used for maintenance. The present annual operating schedule provides for three user runs (typically 10 to 12 weeks long), and three machine shutdowns (typically

  20. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit;

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC...

  1. Vircator experiments on repetitive pulsed power generator 'ETIGO-IV'

    International Nuclear Information System (INIS)

    A new configuration of virtual cathode oscillator is proposed and tested experimentally. A resonant cavity is used to enhance the field feedback to the virtual cathode oscillation. The experiments were carried out on repetitive pulsed power generator 'ETIGO-IV' (400 kV, 13 kA, 120 ns, 1 Hz). The diagnostic results have shown the peak microwave output power of ∼ 450 MW, giving peak-to-peak microwave power efficiency of ∼ 9%

  2. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  3. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  4. Sensor-Based Trajectory Generation for Advanced Driver Assistance System

    Directory of Open Access Journals (Sweden)

    Christopher James Shackleton

    2013-03-01

    Full Text Available This paper investigates the trajectory generation problem for an advanced driver assistance system that could sense the driving state of the vehicle, so that a collision free trajectory can be generated safely. Specifically, the problem of trajectory generation is solved for the safety assessment of the driving state and to manipulate the vehicle in order to avoid any possible collisions. The vehicle senses the environment so as to obtain information about other vehicles and static obstacles ahead. Vehicles may share the perception of the environment via an inter-vehicle communication system. The planning algorithm is based on a visibility graph. A lateral repulsive potential is applied to adaptively maintain a trade-off between the trajectory length and vehicle clearance, which is the greatest problem associated with visibility graphs. As opposed to adaptive roadmap approaches, the algorithm exploits the structured nature of the environment for construction of the roadmap. Furthermore, the mostly organized nature of traffic systems is exploited to obtain orientation invariance, which is another limitation of both visibility graphs and adaptive roadmaps. Simulation results show that the algorithm can successfully solve the problem for a variety of commonly found scenarios.

  5. Motor-Generator powering the PS (Proton Synchrotron) main magnets

    CERN Multimedia

    1983-01-01

    This motor-generator,30 MW peak, 1500 r.p.m.,pulsed power supply for the PS main magnet replaced in 1968 the initial 3000 r.p.m. motor-generator-flywheel set which had served from the PS start-up in 1959 until end 1967. See also photo 8302337 and its abstract.

  6. Synchronization Methods for Three Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian Vasile; Teodorescu, Remus; Blaabjerg, Frede;

    2005-01-01

    Nowadays, it is a general trend to increase the electricity production using Distributed Power Generation Systems (DPGS) based on renewable energy resources such as wind, sun or hydrogen. If these systems are not properly controlled, their connection to the utility network can generate problems...

  7. Applications and real life spectra in the power generation industry

    International Nuclear Information System (INIS)

    Loading spectra encountered in various structures, machines, and components in the Power Generation Industry are presented from the viewpoint of fatigue analysis and structural integrity assessment. Although particular attention is paid to loading transients in turbo-generators, other items such as pressure vessels, pumped storage, nuclear plant pressure circuitry and wind turbines are also considered. (author)

  8. User's manual for levelized power generation cost using a microcomputer

    International Nuclear Information System (INIS)

    Microcomputer programs for the estimation of levelized electrical power generation costs are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost. Programs are written in Pascal and are run on an Apple II Plus microcomputer

  9. Potential use of dry cooling in support of advanced energy generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, D.W.; Arnold, E.M.; Allemann, R.T.

    1979-09-01

    Advanced energy technologies were investigated for filling the energy supply and demand gap, including fuel cells, thermionic converters, and fusion. Technologies that have the potential for supplying energy in the future are solar, geothermal, coal gasification and liquefaction, clean solid fuel from coal, and oil shale. Results are presented of an analysis of the advanced energy generation systems, the potential for using dry cooling, and the waste heat generation characteristics of the advanced technologies. The magnitude of the waste heat expected to be generated indicates the following percentages of total cooling requirements would be needed by advanced energy technologies: (a) 1% to 2% in 1985, (b) 17% to 40% in 2000, and (c) 24% to 76% in 2025. Dry cooling could be required for flashed steam and dry steam geothermal plants if balancing withdrawal and reinjection of the geothermal fluid becomes a requirement. Binary cycle geothermal plants and plants using the hot dry rocks geothermmal resource are even more likely to require dry cooling since these plants will need an outside source of water. Solar central tower plants have a high potential for the use of dry cooling since they are likely to be located in the Southwest where water availability problems are already apparent. The high water consumption associated with the projected synthetic fuel production levels indicates that dry cooling will be desirable, perhaps even mandatory, to achieve a high level of synthetic fuel production. In the year 2000, between 2.5 and 13 GW of electrical energy produced by advanced power generation systems may require dry cooling. In the year 2025, this requirement may increase to between 4.5 and 81 GW/sub e/.

  10. Advanced Techniques for Power System Identification from Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block

  11. Network power flux control of a wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Aouzellag, D.; Ghedamsi, K. [Department of Electrical Engineering, A. Mira University, 06000 Bejaia (Algeria); Berkouk, E.M. [Control Process Laboratory, E.N.P, Algiers (Algeria)

    2009-03-15

    In this paper, a network power flux control of a variable speed wind generator is investigated. The wind generator system consists of a doubly fed induction generator (DFIG) connected to the network associated to a flywheel energy storage system (FESS). The dynamic behaviour of a wind generator, including the models of the wind turbine, the doubly fed induction generator, the back-to-back AC/AC converter, the converter control and the power control of this system, is studied. Is also investigated a control method of the FESS system which consists of the classical squirrel-cage induction machine (IM) supplied off the variable speed wind generator (VSWG). In order to verify the validity of the proposed method, a dynamic model of the proposed system has been simulated, for different operating points, to demonstrate the performance of the system. (author)

  12. Grid-connected inverter for wind power generation system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; RUAN Yi; SHEN Huan-qing; TANG Yan-yan; YANG Ying

    2009-01-01

    In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on PI-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.

  13. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  14. Next generation geothermal power plants. Draft final report

    Energy Technology Data Exchange (ETDEWEB)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  15. Overview of global development of advanced nuclear power plants

    International Nuclear Information System (INIS)

    Nuclear power has proven its viability as an energy source in many countries. Nuclear power technology is mature, and has achieved tremendous progress in the last decades. Like any other progressing technology, it continues to pursue improvements. The accumulated experience, which now exceeds 14,000 reactor-years of operation, is being used to develop advanced nuclear power plant designs. This development is proceeding for all reactor lines (water-cooled reactors, gas-cooled reactors, and liquid metal-cooled reactors) so that nuclear power can play an important and increasing role in global energy supply in the future. Improved economic competitiveness and a very high level of safety are common goals for advanced designs. To achieve economic competitiveness for new plants, proven means for achieving cost efficiency are being applied and new approaches are being pursued. There is also considerable potential for nuclear energy to expand beyond production of electricity to other applications such as sea-water desalination and hydrogen production. (author)

  16. Fuel cell - An alternative for power and heat generating

    International Nuclear Information System (INIS)

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  17. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    CERN Document Server

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  18. Pulsed power generator by an inductive energy storage system

    International Nuclear Information System (INIS)

    A pulsed power generator using an inductive energy storage system has been constructed. The pulsed power generator, named ASO-I, is extremely compact and light in comparison with a conventional pulsed power generator which consists of a Marx bank and a water pulse forming line. The ASO-I has a two-staged opening switch, consisting of fuses in water and a plasma erosion opening switch, and can be operated hundreds of times a day at the output power of 300kV and 40kA. The plasma erosion opening switch is successfully operated as a second opening switch, and the rise time of the current through the short-circuit load decreases from 250nsec to about 10nsec. (author)

  19. Rankine engine solar power generation. I - Performance and economic analysis

    Science.gov (United States)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  20. The Hydroelectric Business Unit of Ontario Power Generation Inc

    International Nuclear Information System (INIS)

    The focus of this presentation was on the generation and sale of electricity. Prior to deregulation, companies that generated electricity had a readily available customer base to whom the electricity could be sold. The author discussed some of the changes affecting the industry as a result of deregulation of the electricity market in Ontario: the increasing number of companies, as well as the increased number of generators supplying power within the province. Currently 85 per cent of the generation in Ontario is met by Ontario Power Generation (OPG) and this percentage will decrease through de-control. De-control can be achieved in a variety of ways, either through the sale of assets, leases, asset swaps. The market rules dictate that OPG not control in excess of 35 per cent of the generation supply in Ontario, OPG is examining the situation. New supply being constructed or new interconnections with neighboring markets could affect the total assets that would have to be de-controlled. OPG has a mix of generation that includes hydroelectric, fossil, and nuclear, as well as a single wind turbine. Green power, defined as electricity generation deemed less intrusive environmentally than most traditional generation, includes wind, water, landfill gas, solar and others, and could affect the mix of generation. It is expected that there will be a niche market for green power, especially when one considers the reduction in emissions. It could represent a viable option for smaller startup companies, as less capital is required. The options for selling the power, either to the spot market or by entering into a bilateral contract with another customer, were explained

  1. Generation Expansion Planning with High Penetration of Wind Power

    Science.gov (United States)

    Sharan, Ishan; Balasubramanian, R.

    2016-08-01

    Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.

  2. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  3. Pluto/Kuiper Missions with Advanced Electric Propulsion and Power

    Science.gov (United States)

    Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.

    2001-01-01

    In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.

  4. Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation Systems Considering Reactive Power Provision

    DEFF Research Database (Denmark)

    Baohua, Zhang; Hu, Weihao; Chen, Zhe

    2014-01-01

    formula for the control reference is explicitly deduced in this paper considering the losses of the generator, the power electronic devices and the filter. Three control strategies are compared with the proposed method under different wind speeds and different reactive power references. The simulation......The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame. The...

  5. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus;

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results in...

  6. A Thermoelectric Generation System and Its Power Electronics Stage

    Science.gov (United States)

    Gao, Junling; Sun, Kai; Ni, Longxian; Chen, Min; Kang, Zhengdong; Zhang, Li; Xing, Yan; Zhang, Jianzhong

    2012-06-01

    The electricity produced by a thermoelectric generator (TEG) must satisfy the requirements of specific loads given the signal level, stability, and power performance. In the design of such systems, one major challenge involves the interactions between the thermoelectric power source and the power stage and signal-conditioning circuits of the load, including DC-DC conversion, the maximum power point tracking (MPPT) controller, and other power management controllers. In this paper, a survey of existing power electronics designs for TEG systems is presented first. Second, a flat, wall-like TEG system consisting of 32 modules is experimentally optimized, and the improved power parameters are tested. Power-conditioning circuitry based on an interleaved boost DC-DC converter is then developed for the TEG system in terms of the tested power specification. The power electronics design features a combined control scheme with an MPPT and a constant output voltage as well as the low-voltage and high-current output characteristics of the TEG system. The experimental results of the TEG system with the power electronics stage and with purely resistive loads are compared. The comparisons verify the feasibility and effectiveness of the proposed design. Finally, the thermal-electric coupling effects caused by current-related heat source terms, such as the Peltier effect etc., are reported and discussed, and the potential influence on the power electronics design due to such coupling is analyzed.

  7. Use of thermoelectric generators for improve power dependability over grid power

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Jack [Global Thermoelectric, Calgary (Canada)

    2005-07-01

    A natural gas transportation company was experiencing extensive pipeline corrosion on some sections of their pipeline protected by impressed current using grid power and rectifiers. After determining that grid power was being interrupted on the affected sections, the gas transporter began looking for a more dependable power supply and chose thermoelectric generators. Since installing thermoelectric generators in 2002, the pipeline potentials have stabilized and transporter was able to experience 100% operational time on affected sections. (author)

  8. Control of a Power Generation System Based on a Dual Star Induction Generator

    OpenAIRE

    Marouani, K; Nounou, K; Benbouzid, Mohamed; Tabbache, B; Alloui, H

    2015-01-01

    This paper presents a control scheme of a power generation system based on a dual star squirrel-cage induction machine operating as an induction generator. The operating mode based on an excitation control scheme is chosen to ensure a controlled magnitude and frequency of the generator output voltage. Some preliminary simulation and experimental test results, carried out on a prototype of dual star induction machine operating as generator and supplying various loads under different conditions...

  9. Background submission to the Royal Commission on Nuclear Power Generation

    International Nuclear Information System (INIS)

    The Royal Commission on Nuclear Power Generation in New Zealand is required to inquire into and report upon the likely consequences of a nuclear power programme. The New Zealand Electricity Department would have prime responsibilty for implementing the construction, operation and maintenance of nuclear power plants should the need be established and should this be acceptable to the Government. In this submission the Department has attempted to present the issues raised by the introduction of nuclear power in relatively simple terms on the assumption that elaboration can be provided later if necessary

  10. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  11. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    International Nuclear Information System (INIS)

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts on the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements

  12. The California power crisis: the role for distributed generation

    International Nuclear Information System (INIS)

    This article examines the impact of the California power crisis on cogeneration and the on-site generation market, and highlights the plight of independent power generators including cogeneration facilities who have typically long-term contracts with the cash-strapped state electric utilities and have to defer maintenance due to unpaid bills. The move towards distributed generation, the efforts to increase backup diesel-fired generation during blackouts, and the government's efforts to encourage distributed energy are discussed along with the concerns of air quality regulators with on-site generation emissions, and the impact of the California crisis on the future of distributed energy. The growing role of distributed energy in meeting demand and holding down costs is explored, and the expanding market for microturbines is noted

  13. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are a clear task related architecture with adaptable redundancy, a consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all function to initiated automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, advanced and likewise economical plant automation and man-machine-interfaces can be implemented into Nuclear Power Plant, assuring compliance with the relevant international safety standards. (author). 10 figs

  14. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  15. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfeld, S. [Los Alamos National Lab., NM (United States)

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  16. Resource Needs for Nuclear Power Generation in Ghana

    Directory of Open Access Journals (Sweden)

    Benjamin J. B. Nyarko

    2011-06-01

    Full Text Available Nuclear power is a proven technology that has served humanity for the past fifty years. It has provided electricity for several countries and shall continue to serve as a viable base load source of electric power. The need for skilled human resources for nuclear practice cannot be overlooked in the quest of any nation to adopt the technology. The Ghana Atomic Energy Commission and the University of Ghana in collaboration with the International Atomic Energy Agency have thus started a Graduate School of Nuclear and Allied Sciences to provide the human resources needed for nuclear power generation in Ghana. The School currently offers second degree courses as well as doctor of philosophy courses. Financial, land and water resource needs for nuclear power generation have been discussed. Availability of the national grid due to the deregulation of the electric power sector has also been discussed. Nuclear Fuel availability has been discussed along with the steps Ghana has to go through to obtain the technology to her development. The legal and legislative framework for nuclear power generation has also been presented. The programs currently available from the IAEA to assist Ghana to develop nuclear power have also been discussed. Conclusions have been drawn based on the discussions made.

  17. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  18. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  19. Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    Science.gov (United States)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.; Chase, Jordan R.; Fleurial, Jean-Pierre; Hendricks, Terry J.

    2012-06-01

    There is enormous military and commercial interest in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. In the design and development of this portable TE power system using a JP-8 combustor as a high-temperature heat source, optimal process flows depend on efficient heat generation, transfer, and recovery within the system. The combustor performance and TE subsystem performance were coupled directly through combustor exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation and design optimization of this TE power system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed TE converter thermal/mechanical modeling. To this end, this paper reports integration of system-level process flow simulations using CHEMCAD™ commercial software with in-house TE converter and module optimization, and heat exchanger analyses using COMSOL™ software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem-level conversion efficiencies exceeding 10%. These TE advances are integrated with a high-performance microtechnology combustion reactor based on recent advances at Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation approach lead directly to system efficiency-power maps defining potentially available optimal system operating conditions and regimes. Further, it is shown that, for a given fuel flow rate, there exists a combination of recuperative effectiveness and hot-side heat exchanger effectiveness that provides a higher specific power output from

  20. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  1. Fixed pitch wind turbine control to generate the maximum power

    Science.gov (United States)

    Martinez Rodrigo, Fernando

    This Doctoral Thesis firstly shows the state of the art about wind power, wind turbines and alternating current generators. A part is intended for the state of the art of the commercial small wind turbines: their applications, the technology used, the elements topology according to the application type, the investigation lines in this field, the political respects that have an influence in using or not small turbines, and lastly it analyses in detail four commercial small turbines. One chapter contains the models and equations of the alternating current generators used in the Doctoral Thesis, which are the induction generator and the permanent magnets generator. Other chapter explains some methods to control the alternating current generators speed. Chapter 7 is oriented to the induction machines speed estimators. These estimators will let to eliminate the generators speed sensor. In the Thesis, some of them are simulated to test their behaviour. It presents an original analysis, which is oriented to choose the most right estimators for such an application as small wind turbines. Chapter 8 introduces the control systems developed for wind turbines. They let to extract the maximum power for every wind speed. The base of all of them is the algorithm proposed in the Thesis. Some control systems are proposed for squirrel cage induction generators and permanent magnets generators, which use voltage source and current source schemes. Some of them use generator speed sensors and others use speed estimators. The schemes do not need wind speed sensor.

  2. Prediction of Chiller Power Consumption: An Entropy Generation Approach

    KAUST Repository

    Saththasivam, Jayaprakash

    2016-06-21

    Irreversibilities in each component of vapor compression chillers contribute to additional power consumption in chillers. In this study, chiller power consumption was predicted by computing the Carnot reversible work and entropy generated in every component of the chiller. Thermodynamic properties namely enthalpy and entropy of the entire refrigerant cycle were obtained by measuring the pressure and temperature at the inlet and outlet of each primary component of a 15kW R22 water cooled scroll chiller. Entropy generation of each component was then calculated using the First and Second Laws of Thermodynamics. Good correlation was found between the measured and computed chiller power consumption. This irreversibility analysis can be also effectively used as a performance monitoring tool in vapor compression chillers as higher entropy generation is anticipated during faulty operations.

  3. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U3O8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  4. Complete Study of the Phase Advancing in the Switched Reluctance Motor/Standalone Generator

    Directory of Open Access Journals (Sweden)

    Majid Asgar

    2014-12-01

    Full Text Available The switched reluctance motor is a singly excited, doubly salient machine which can be used in the generation mode by selecting the proper firing angles of the phases. Due to its robustness, it has the potential and the ability to become one of the generators to be used in the harsh environment. This paper briefly discusses the energy conversion by a switched reluctance generator (SRG when two switches per phase converter circuit and discrete position sensors are employed. It is well known fact that, as the generator’s speed increases by a prime mover and the shape of the current waveform changes in such a way that limits the production of generating voltage. At high speeds, it is possible for the phase current never reaches the desired value to produce enough back-EMF for sufficient voltage generation, therefore, the output power falls off. In order to remedy this problem, the phase turn on angle is advanced in a way that the phase commutation begins sooner. Since one of the advantages of this type of generator is its variable speed then, the amount of advancing for the turn on angle should be accomplished automatically to obtain the desired output voltage according to the speed of the generator, meaning, as the generator speed increases so should the turn on angle and vice versa. In this respect, this paper introduces an electronic circuit in conjunction with time reshaping of the command pulses obtained from position sensors and the drive converter to achieve this task for a desired output voltage when a SRG feeding a resistive load. To evaluate the generator performance, two types of analysis, namely numerical technique and experimental studies have been utilized on a 6 by 4, 30 V, SRG. In the numerical analysis, due to the highly non-linear nature of the motor, a three dimensional finite element analysis is employed to calculate some of motor parameters and then using these parameter, current shape and magnitude are computed, whereas in

  5. Development and validation of advanced oxidation protective coatings for super critical steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.B.; Scheefer, M. [Alstom Power Ltd., Rugby (United Kingdom); Agueero, A. [Instituto Nacional de Tecnica Aerospacial (INTA) (Spain); Allcock, B. [Monitor Coatings Ltd. (United Kingdom); Norton, B. [Indestructible Paints Ltd. (United Kingdom); Tsipas, D.N. [Aristotle Univ. of Thessaloniki (Greece); Durham, R. [FZ Juelich (Germany); Xiang, Z. [Northumbria Univ. (United Kingdom)

    2006-07-01

    Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO{sub 2}. In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures in excess of 600 C, such that these materials are being exploited to construct a new generation of advanced coalfired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising environment. To enable the full potential of the new steels to be achieved, it is vital that protective coatings are developed, validated under high temperature steam and applied to candidate components from the steam path. This paper reviews recent work conducted within the Framework V project ''Coatings for Supercritical Steam Cycles'' (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coatings capable of providing steam oxidation protection at temperatures in excess of 620 C and up to 300 bar. The programme of work has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application work packages needed to develop and establish this technology for new and retrofit plant. (orig.)

  6. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    Science.gov (United States)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  7. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  8. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner;

    1996-01-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetise the external effects in the production of energy, especially in relation to renewable energy...... technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared...... to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...

  9. Renewable Energy Based Floating Power Generator (Rivers and Canals

    Directory of Open Access Journals (Sweden)

    Dr. J.R.Gandhi

    2016-02-01

    Full Text Available We have developed a stand alone, (river and canal water stream floating power generator system for village electrification, agriculture water pumping, bridge street lights and such other utilities. The system is the unique one of its kind as per our knowledge and various surveys. The physical structure of the system is made of the non corrosive and unbreakable materials like mild steel, fiber glass etc. It works, as it rotates in the water flow. It does not require any kind of the external electric grid power for its working. As the water flows, the specially designed blades of the system rotate in the direction of the flow and ultimately the consistent power is generated, this power can be used directly or it may be stored in battery and the utilized as and when required. No permanent installation, No pollution and environment friendly floating Pico turbine. The observations taken from the sight are tabulated and accordingly results are discussed.

  10. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  11. A review of studies on low-level vibrations as a source of electric power generation

    OpenAIRE

    RAHMATİAN, Mohammad Ali; RAHMATİAN, Mohammad Rasoul; RAHİMZADEH, Hamed

    2015-01-01

    Abstract. Recent advances in low power VLSI design, with a low duty cycle has been able to resolve wireless sensor problems. In addition, researchers are looking to generate electrical energy from vibrations. The present paper discusses the low level vibration sources and their use in piezoelectric circuit for the production of electrical energy. The simulation results show that this scheme can convert low-level vibrations in nature, home environment, workplace, etc. into electrical energy.

  12. BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research

    Science.gov (United States)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2016-09-01

    Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  13. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  14. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF6-cables, polyethylene cables, cryoresistive and superconducting cables. (orig.)

  15. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  16. PowerPivot for advanced reporting and dashboards

    CERN Document Server

    Bosco, Robert

    2013-01-01

    A step-by-step tutorial with focused examples that builds progressively from basic to advanced topics and helps you create business intelligence reports and dashboards quickly and efficiently using the PowerPivot add-in.This book is ideal for data analysts, reporting and MIS professionals, business analysts, managers, dashboard makers, business intelligence professionals, self-service business intelligence personnel, and students. It is assumed that you have basic data analysis skills and intermediate level Excel skills. Familiarity with Pivot Tables as well as basic knowledge of VBA scripting

  17. Contribution to MPC coordination of distributed and power generation systems

    OpenAIRE

    Sandoval Moreno, John Anderson

    2014-01-01

    This thesis is mainly about coordination of distributed systems, with a special attention to multi-energy electric power generation ones. For purposes of optimality, as well as constraint enforcement, Model Predictive Control (MPC) is chosen as the underlying tool, while wind turbines, fuel cells, photovoltaic panels, and hydroelectric plants are mostly considered as power sources to be controlled and coordinated. In the first place, an application of MPC to a micro-grid system is proposed, i...

  18. Stability of power systems with large amounts of distributed generation

    OpenAIRE

    Knazkins, Valerijs

    2004-01-01

    This four-part dissertation is essentially concerned with some theoretical aspects of the stability studies of power systems with large penetration levels of distributed generation. In particular, in Parts I and II the main emphasis is placed upon the transient rotor angle and voltage stability. The remaining two parts are devoted to some system-theoretic and practical aspects of identification and modeling of aggregate power system loads, design of auxiliary robust control, and a general qua...

  19. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    OpenAIRE

    Eileen Tortora; Franco Rispoli; Domenico Borello; Alessandro Corsini

    2013-01-01

    The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP) Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting tran...

  20. Microcombustor-thermoelectric power generator for 10-50 watt applications

    Science.gov (United States)

    Marshall, Daniel S.; Cho, Steve T.

    2010-04-01

    Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.

  1. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  2. Tackling investment challenges in power generation - in IEA countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    In most IEA countries a new investment cycle in power generation is looming. A window of opportunity now exists to push for a cleaner and more efficient generation portfolio that could transform the power sector and help to build a more sustainable infrastructure lasting over the next 40-50 years. What are the recent trends and prospects for investment in power generation? What are the main drivers and barriers? This book assesses these issues and gives special emphasis to the question of how uncertainties may affect investment decisions. Uncertainties on CO{sub 2} constraints, on power plant licensing, on acceptability of nuclear power, on local opposition to any new energy infrastructure, on government support for specific generation technologies and on government policies on energy efficiency are particularly disturbing. Market liberalisation can also be a key uncertainty, but this may be greatly reduced and deliver considerable benefits if liberalisation is implemented whole-heartedly and backed by on-going government commitment. Government action is urgently needed: to reduce regulatory uncertainty for investors, to establish effective competitive markets and to give firm policy directions in those areas where markets fall short, such as in taking environmental costs and security of supply into account.

  3. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  4. Dynamics of Flexible Wind Power Generator with Unbalanced Rotor

    Directory of Open Access Journals (Sweden)

    Venelin Jivkov

    2016-08-01

    Full Text Available The paper deals with dynamic analysis of a wind power generator as a large flexible structure with high speed rotating machines and considerable masses. The dynamic model is considered as a multibody system of rigid and flexible bodies. Nonstationary and transitional processes caused because of eccentricity of the high speed rotating machines, as well as, of the propeller vibrations are simulated and analyzed. Analytical method is applied for dynamic simulation. The results are verified by numerical procedures. Example of wind power generator with three propellers is presented.

  5. HTS technology - Generating the future of offshore wind power

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens

    2010-09-15

    Superconductive generator design is going to become a real competitive alternative in the future. In general, superconductor design is the most competitive out of Direct Drive Systems and best fulfils the needs of the upcoming market - especially in the offshore market, where WECs with higher nominal power up to 10MW are required. Low weight, high reliability and the very good grid behaviour are the main advantages of the superconductor generator design and will lead to lower costs. The other systems are restricted to a smaller energy output range and / or onshore wind power production business.

  6. Modeling the economics and market adoption of distributed power generation

    International Nuclear Information System (INIS)

    After decades of power generating units increasing in size, there is currently a growing focus on distributed generation, power generation close to energy loads. Investments in large-scale units have been driven by economy of scale, but recent technological improvements on small generating plants have made it possible to exploit the benefits of local power generation to a larger extent than previously. Distributed generation can improve power system efficiency because heat can be recovered from thermal units to supply heat and thermally activated cooling, and because small-scale renewables have a promising end-user market. Further benefits of distributed generation include improved reliability, deferral of often controversial and costly grid investments and reduction of grid losses. The new appeal of small-scale power generation means that there is a need for new tools to analyze distributed generation, both from a system perspective and from the perspective of potential developers. In this thesis, the focus is on the value of power generation for end-users. The thesis identifies how an end-user can find optimal distributed generation systems and investment strategies under a variety of economic and regulatory scenarios. The final part of the thesis extends the analysis with a bottom up model of how the economics of distributed generation for a representative set of building types can transfer to technology diffusion in a market. Four separate research papers make up the thesis. In the first paper, Optimal Investment Strategies in Decentralized Renewable Power Generation under Uncertainty, a method for evaluation of investments in renewable power units under price uncertainty is presented. It is assumed the developer has a building with an electricity load and a renewable power resource. The case study compares a set of wind power systems with different capacity and finds that capacity depends on the electricity price and that there under uncertain prices can be a

  7. Recent advances in phosphate laser glasses for high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  8. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  9. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation

    OpenAIRE

    Heide, Dominik; Greiner, Martin; von Bremen, Lüder; Hoffmann, Clemens

    2011-01-01

    The storage and balancing needs of a simplified European power system, which is based on wind and solar power generation only, are derived from an extensive weather-driven modeling of hourly power mismatches between generation and load. The storage energy capacity, the annual balancing energy and the balancing power are found to depend significantly on the mixing ratio between wind and solar power generation. They decrease strongly with the overall excess generation. At 50% excess generation ...

  10. Recent advances in high power RF systems of Indus synchrotron

    International Nuclear Information System (INIS)

    In Indus accelerator complex at Raja Ramanna Centre for Advanced Technology, three major RF systems namely booster synchrotron RF system, Indus-1 Storage ring RF System and Indus-2 Storage ring RF System were commissioned and are running in round the clock operation mode for beam line users. High Power RF amplifier system of a particle accelerator required for energizing the Resonating structures is complex in nature and to run it smoothly with better performance various up gradations are needed. Booster and Indus-1 RF system operating at 31.6 MHz were conventional tetrode tube based system and were being used for more than 10 years. Indus-2 RF system consists of four Klystron based amplifier system with maximum output power of 64 kW each at 505.8 MHz. With recent advances in solid state RF amplifying devices and its inherent advantages like graceful degradation, low maintenance, better quality of signal, absence of high voltage points as compared to traditional tube based RF amplifiers, SSPAs of several tens of kW of RF power level are being successfully deployed in RF systems of Indus synchrotron. Booster RF system and Indus-1 RF system has been already replaced by Solid State RF amplifier system and is working satisfactorily. Presently three Klystron based RF systems for Indus-2 are already replaced with Solid State RF amplifier system with total installed power of 200 kW. In particle accelerators the beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, FPGA based digital LLRF control system development work was taken up. In this paper recent up gradation in RF Systems of Indus Synchrotron will be presented. (author)

  11. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  12. Power plant project success through total productive generation

    Energy Technology Data Exchange (ETDEWEB)

    Kaivola, R.; Tamminen, L.

    1996-11-01

    The Total Productive Generation concept (TPG) defines the lines of action adopted by IVO Generation Services Ltd (IGS) for the operation and maintenance of power plants. The TPG concept is based on procedures tested in practice. The main idea of TPG is continuous development of quality, which is a joint effort of the entire staff. Its objective is to benefit IGS`s own staff and, in particular, the company`s customers. (orig.)

  13. Powerful nanosecond pulsed generators for linear induction accelerators at JINR

    International Nuclear Information System (INIS)

    The paper presents a review of nanosecond pulse generator schemes for LIA developed at the JINR. The main feature of these schemes consists in the use of relatively low-voltage generators (V∼20-50 kV) with low-resistance output impedance (R∼0.5 Ω). A high power in nanosecond pulses (W∼1 GW) is produced by nonlinear compression schemes with distributed parameters which compress electromagnetic energy in time

  14. Intelligent control of energy-saving power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyuan; Zhang, Guoqing; Guo, Zhizhong [Harbin Institute of Technology, Harbin (China). Dept. of Electrical Engineering

    2013-07-01

    Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind of city science and technology innovation, which has the characteristics of environmental protection and sustainable utilization. Making full use of vehicle impact speed control humps, we design a new kind of highway speed control humps combined with solar electric generation system integration. Developing green energy, energy saving and environment protection can be achieved.

  15. Electric Power Quality and Distributed Generation in Cuba

    Directory of Open Access Journals (Sweden)

    Miguel Castro Fernández

    2010-10-01

    Full Text Available Diesel engine generator (RM is one of the most used technologies on distributed generation (DG. The presence of RM, no manner its operation form need an analysis about differents problems: one of them is related with power quality (PQ. First results obained inside one study directed to obtain answers about differents perturbations for the RM presence like shortcircuit and voltage variation on RM termianls and rejected charge are presented in this paper.

  16. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    OpenAIRE

    Mustafa ENGİN; Metin ÇOLAK

    2005-01-01

    In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussi...

  17. Development of low grade waste heat thermoelectric power generator

    OpenAIRE

    Suvit Punnachaiya; Paiboon Kovitcharoenkul; Decho Thong-aram

    2010-01-01

    This research aimed to develop a 50 watt thermoelectric power generator using low grade waste heat as a heat source,in order to recover and utilize the excess heat in cooling systems of industrial processes and high activity radioisotope sources. Electricity generation was based on the reverse operation of a thermoelectric cooling (TEC) device. The TEC devices weremodified and assembled into a set of thermal cell modules operating at a temperature less than 100°C. The developed powergenerator...

  18. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    International Nuclear Information System (INIS)

    Management; Ex-Vessel Debris Coolability and Steam Explosion: Theory and Modeling; Ex-Vessel Debris Coolability and Steam Explosion: Experiments and Supporting Analysis; PRA and Risk-informed Decision Making: Methodology; PRA and Risk-informed Decision Making: Advances in Practice; Use of CFD in Plant Safety Assessment and Related Regulatory Issues; Development and Application of Severe Accident Analysis Code); 6 - Thermal Hydraulic Analysis and Testing (Advances in Two-Phase Flow and Heat Transfer; Advances in CHF and Rod Bundle Thermal Hydraulics; CFD Applications to Water, Liquid Metal, and Gas Reactors; Separate Effects Thermal Hydraulic Experiments and Analysis; Integral Systems Thermal Hydraulic Experiments; Benchmark Analysis and Assessment; Natural Circulation Thermal Hydraulics; Thermal Striping and Thermal Stratification Studies); 7 - Core and Fuel Cycle Concepts and Experiments (Innovations in Core Designs; Advances in Core Design Methodology and Experimental Benchmarking; Advanced Fuel Cycles, Recycling, and Actinide Transmutation; Out of Core Fuel Cycle Issues); 8 - Material and Structural Issues (Structural and Materials Modeling and Analysis; Testing and Analysis of Structures and Materials; Advanced Issues in Welding and Materials; Fuel Design and Irradiation Issues for Next Generation Plants; Materials' Issues for Next Generation Plants); 9 - Nuclear Energy and Sustainability Including Hydrogen, Desalination, and Other Applications (Nuclear Energy Sustainability and Desalination; Nuclear Energy Application - Hydrogen); 10 - Space Power and Propulsion (Space Nuclear Power and Propulsion Systems; Nuclear Thermal Propulsion Concepts; Test and Design Methods; Instrumentation for Space Nuclear Reactors; Materials for Space Reactor Concepts)

  19. Stand-alone excitation synchronous wind power generators with power flow management strategy

    Directory of Open Access Journals (Sweden)

    Tzuen-Lih Chern

    2014-09-01

    Full Text Available This study presents a stand-alone excitation synchronous wind power generator (SESWPG with power flow management strategy (PFMS. The rotor speed of the excitation synchronous generator tracks the utility grid frequency by using servo motor tracking technologies. The automatic voltage regulator governs the exciting current of generator to achieve the control goals of stable voltage. When wind power is less than the needs of the consumptive loading, the proposed PFMS increases motor torque to provide a positive power output for the loads, while keeping the generator speed constant. Conversely, during the periods of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The advantage of the proposed SESWPG is that the generator can directly output stable alternating current (AC electricity without using additional DC–AC converters. The operation principles with software simulation for the system are described in detail. Experimental results of a laboratory prototype are shown to verify the feasibility of the system.

  20. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-09-01

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern; thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).