WorldWideScience

Sample records for advanced photon source

  1. Advanced Photon Source (APS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratoryprovides this nation's (in fact, this hemisphere's) brightest storage...

  2. Status of the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, J.

    1996-12-31

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m{sup 2} experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed.

  3. Advanced Photon Source research: Volume 1, Number 1, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  4. The Advanced Photon Source: Performance and results from early operation

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, D.E. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-10-01

    The Advanced Photon Source at Argonne National Laboratory is now providing researchers with extreme-brilliance undulator radiation in the hard x-ray region of the spectrum. All technical facilities and components are operational and have met design specifications. Fourteen research teams, occupying 20 sectors on the APS experiment hall floor, are currently installing beamline instrumentation or actively taking data. An overview is presented for the first operational years of the Advanced Photon Source. Emphasis is on the performance of accelerators and insertion devices, as well as early scientific results and future plans.

  5. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.;

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  6. Sixth users meeting for the Advanced Photon Source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

  7. Information technology security at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Sidorowicz, K. V.; McDowell, W.; APS Engineering Support Division

    2007-01-01

    The proliferation of 'botnets,' phishing schemes, denial-of-service attacks, root kits, and other cyber attack schemes designed to capture a system or network creates a climate of concern for system administrators, especially for those managing accelerator and large experimental-physics facilities, as they are very public targets. This paper will describe the steps being taken at the Advanced Photon Source (APS) to protect the infrastructure of the overall network with emphasis on security for the APS control system.

  8. Automated tuning of the advanced photon source booster synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S.G.; Milton, S.V.

    1997-08-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance.

  9. Poster session: Fifth users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology.

  10. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  11. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  12. Automated Tuning of the Advanced Photon Source Booster Synchrotron

    Science.gov (United States)

    Biedron, S. G.; Carwardine, J. A.; Milton, S. V.

    1997-05-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 250 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. Ramped-magnet tracking errors can also lead to losses during the acceleration cycle. In order to simplify daily operation, automated tuning methods have been developed. Through the use of empirically determined response functions, transfer line corrector magnets, and beam position monitor readings, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. An automated version of this correction technique has been implemented using the feedback-based program sddscontrollaw. Further automation is used to adjust and minimize tracking errors between the five main ramped power supplies. These tuning algorithms and their implementation are described here along with an evaluation of their! performance.

  13. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  14. Charged-particle beam diagnostics for the advanced photon source

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1993-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e -, e +) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest X-ray sources in the 10-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV injector synchrotron (IS), 7-GeV storage ring (SR), and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  15. Injector power supplies reliability improvements at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Hillman, A.; Pasky, S.; Sereno, N.; Soliday, R.; Wang, J.

    2006-01-01

    Operational goals for the Advanced Photon Source (APS) facility include 97% availability and a mean time between unscheduled beam losses (faults) of 70 hours, with more than 5000 user hours of scheduled beam per year. To meet this objective, our focus has been maximizing the mean time between faults (MTBF). We have made various hardware and software improvements to better operate and monitor the injector power supply systems. These improvements have been challenging to design and implement in light of the facility operating requirements but are critical to maintaining maximum reliability and availability of beam for user operations. This paper presents actions taken as well as future plans to continue improving injector power supply hardware and software to meet APS user operation goals. The Advanced Photon Source (APS) has two major components. The storage ring (SR) accelerator is the primary accelerator that delivers X-ray beams to users and uses over 1,400 power supplies. The injector accelerators provide beam to the SR and use 361 different supplies. The control system ranges from the standard VME-IOC and Allen Bradley to GESPAC with additional mini-PLCs for monitoring. Injector power supplies range from {approx}30 watts DC to a ramped peak of 4.6 megawatts in 250 ms. Finally, all accelerators use pulsed supplies, and some of them deliver peak power in megawatts. In the SR, each multipole and corrector magnet is separately powered, with only the main dipole magnets on a common bus. Independent power supplies provide increased flexibility, but place additional demands on power supply reliability. The APS reliability goals are 97% availability and 70 hours mean time to unscheduled beam loss. There are 5,129 user hours scheduled per year, 1,315 hours used for machine studies, and the remaining 2,316 hours used for maintenance. The present annual operating schedule provides for three user runs (typically 10 to 12 weeks long), and three machine shutdowns (typically

  16. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...... dots in ultrathin photonic wires 2) the control of the linear polarization of the single photons by photonic wires with an elliptical section, 3) the joint observation (unlike-cavity-based devices) of a record high efficiency and pure single photon emission process in a photonic wire single photon...

  17. Mini-beam collimator applications at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shenglan, E-mail: sxu@anl.gov [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keefe, Lisa J.; Mulichak, Anne [IMCA CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Yan Lifen; Alp, Ercan E.; Zhao Jiyong [X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fischetti, Robert F. [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-{mu}m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-{mu}m pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  18. Bunch cleaning strategies and experiments at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Sereno, N. S.

    1999-04-15

    The Advanced Photon Source (APS) design incorporated a positron accumulator ring (PAR) as part of the injector chain. In order to increase reliability and accommodate other uses of the injector, APS will run with electrons, eliminating the need for the PAR, provided another method of eliminating rf bucket pollution in the APS is found. Satellite bunches captured from an up to 30-ns-long beam from the linac need to be removed in the injector synchrotron and storage ring. The bunch cleaning method considered here relies on driving a stripline kicker with an amplitude modulated (AM) carrier signal where the carrier is at a revolution harmonic sideband corresponding to the vertical tune. The envelope waveform is phased so that all bunches except a single target bunch (eventually to be injected into the storage ring) are resonated vertically into a scraper. The kicker is designed with a large enough shunt impedance to remove satellite bunches from the injection energy of 0.4 GeV up to 1 GeV. Satellite bunch removal in the storage ring relies on the single bunch current tune shift resulting from the machine impedance. Small bunches remaining after initial preparation in the synchrotron may be removed by driving the beam vertically into a scraper using a stripline kicker operating at a sideband corresponding to the vertical tune for small current bunches. In this paper both design specifications and bunch purity measurements are reported for both the injector synchrotron and storage ring.

  19. Insertion device operating experience at the Advanced Photon Source

    Science.gov (United States)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  20. Proceedings of the fourth users meeting for the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  1. Proceedings of the Fifth Users Meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Fifth Users Meeting for the Advanced Photon Source (APS) was held on October 14--15, 1992, at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, funding opportunities, advances in synchrotron radiation applications, and technical developments at the APS. In addition, the 15 Collaborative Access Teams that have been approved to date participated in a poster session, and several vendors displayed their wares. The actions taken at the 1992 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  2. 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  3. Proceedings of the third users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  4. A closed-loop photon beam control study for the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.

  5. One-way data transfer for PLC to VME status reporting at the Advanced Photon Source

    Science.gov (United States)

    Stein, S. J.

    1994-12-01

    The Personnel Safety System for the experimental beamlines at the Advanced Photon Source will use a large number of Allen Bradley Programmable Logic Controllers (PLC) to replace conventional relay logic. PLCs allow for the design of a very advanced safety system that can handle a large number of I/O points. Certain situations require monitoring of the safety system from various locations around the storage ring via the EPICS OPI (operator interface) consoles. This presentation covers the chosen method for transferring data from the Personnel Safety System into an EPICS database. Specifications on PLC ladder design, EPICS database design and hardware selection are also discussed.

  6. The magnetic and diagnostics systems for the Advanced Photon Source self-amplified spontaneously emitting FEL

    CERN Document Server

    Gluskin, E; Dejus, Roger J; Hartog, P K D; Deriy, B N; Makarov, O A; Milton, S V; Moog, E R; Ogurtsov, V I; Trakhtenberg, E; Robinson, K E; Vasserman, I B; Vinokurov, N A; Xu, S

    1999-01-01

    A self-amplified spontaneously emitting (SASE) free-electron laser (FEL) for the visible-to-ultraviolet spectral range is under construction at the Advanced Photon Source at Argonne National Laboratory. The amplifier part of the FEL consists of twelve identical 2.7-m-long sections. Each section includes a 2.4-m-long, 33-mm-period hybrid undulator, a quadrupole lens, and a set of electron beam and radiation diagnostics equipment. The undulators will operate at a fixed magnetic gap (approx. 9.3 mm) with K=3.1. The electron beam position will be monitored using capacitive beam position monitors, YAG scintillators with imaging optics, and secondary emission detectors. The spatial distribution of the photon beam will be monitored by position sensitive detectors equipped with narrow-band filters. A high-resolution spectrograph will be used to observe the spectral distribution of the FEL radiation.

  7. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A; Berenc, T G; Borland, M; Brajuskovic, B; Bromberek, D J; Carwardine, J; Decker, G; Emery, L; Fuerst, J D; Grelick, A E; Horan, D; Kaluzny, J; Lenkszus, F; Lill, R M; Liu, J; Ma, H; Sajaev, V; Smith, T L; Stillwell, B K; Waldschmidt, G J; Wu, G; Yang, B X; Yang, Y; Zholents, A; Byrd, J M; Doolittle, L R; Huang, G; Cheng, G; Ciovati, G; Dhakal, P; Eremeev, G V; Feingold, J J; Geng, R L; Henry, J; Kneisel, P; Macha, K; Mammosser, J D; Matalevich, J; Palczewski, A D; Rimmer, R A; Wang, H; Wilson, K M; Wiseman, M; Li, Z

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.

  8. Towards the ultimate storage ring: the lattice design for Beijing Advanced Photon Source

    CERN Document Server

    Gang, Xu

    2013-01-01

    A storage ring-based light source, Beijing Advanced Photon Source (BAPS) is proposed to store 5-GeV low-emittance electron beam and to provide high-brilliance coherent radiation. In this paper, we report our efforts of pushing down the emittance of BAPS to approach the so-called ultimate storage ring, while fixing the circumference to about 1200 m. To help dealing with the challenge of beam dynamics associated with the intrinsic very strong nonlinearities in an ultralow-emittance ring, a combination of several progressive technologies is used in the linear optics design and nonlinear optimization, such as modified theoretical minimum emittance cell with small-aperture magnets, quasi-3rd-order achromat, theoretical analyzer based on Lie Algebra and Hamiltonian analysis, multi-objective genetic algorithm, and frequency map analysis. These technologies enable us to obtain satisfactory beam dynamics in one lattice design with natural emittance of 75 pm.

  9. Generation of Short X-Ray Pulses Using Crab Cavities at the Advanced Photon Source

    CERN Document Server

    Harkay, Katherine C; Chae, Yong-Chul; Decker, Glenn; Dejus, Roger J; Emery, Louis; Guo, Weiming; Horan, Douglas; Kim, Kwang-Je; Kustom, Robert; Mills, Dennis M; Milton, Stephen; Pile, Geoffery; Sajaev, Vadim; Shastri, Sarvjit D; Waldschmidt, Geoff J; White, Marion; Yang Bing Xin; Zholents, Alexander

    2005-01-01

    There is growing interest within the user community to utilize the pulsed nature of synchrotron radiation from storage ring sources. Conventional third-generation light sources can provide pulses on the order of 100 ps but typically cannot provide pulses of about 1 ps that some users now require to advance their research programs. However, it was recently proposed by A. Zholents et al. to use rf orbit deflection to generate subpicosecond X-ray pulses.* In this scheme, two crab cavities are used to deliver a longitudinally dependent vertical kick to the beam, thus exciting longitudinally correlated vertical motion of the electrons. This makes it possible to spatially separate the radiation coming from different longitudinal parts of the beam. An optical slit can then be used to slice out a short part of the radiation pulse, or an asymetrically cut crystal can be used to compress the radiation in time. In this paper, we present a feasibility study of this method applied to the Advanced Photon Source. We find th...

  10. Pulsed sextupole injection for Beijing Advanced Photon Source with ultralow emittance

    CERN Document Server

    Yi, JIAO

    2013-01-01

    In this paper we present the physical design of the pulsed sextupole injection system for Beijing Advanced Photon Source (BAPS) with an ultralow emittance. The BAPS ring lattice is designed in such a way that two options of pulsed sextupole injection are allowed, i.e., with septum and pulsed sextupole in different drift spaces or in the same drift space. We give the magnetic parameters of the injection system and the optimal condition of the optical functions for both options. In addition, we find that the pulsed sextupole induces position-dependent dispersive effect and causes non-ignorable effect on the injection efficiency in a storage ring with a relatively small acceptance, which should be well considered.

  11. Proceedings of the first users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

  12. Proceedings of the second users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The second national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory -- held March 9--10, 1988, at Argonne -- brought scientists and engineers from industry, universities, and national laboratories together to review the status of the facility and expectations for its use. Presented papers and status reports in these proceedings include the current status of the APS with respect to accelerator systems, experimental facilities, and conventional facilities; scientific papers on frontiers in synchrotron applications summaries of reports on workshops held by users in certain topical groups; reports in research and development activities in support of the APS at other synchrotron facilities; and noted from a discussion of APS user access policy. In addition, actions taken by the APS Users Organization and its Executive Committee are documented in this report.

  13. Status of the advanced photon source and its accelerator control system

    Science.gov (United States)

    McDowell, W.; Knott, M.; Kraimer, M.

    1994-12-01

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-Windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level, using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  14. Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Stephen R.; Lanzirotti, Antonio; Newville, Matthew; Rivers, Mark L.; Eng, Peter; Lefticariu, Liliana

    2017-01-01

    X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.

  15. 7-GeV advanced photon source beamline initiative: Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

  16. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-08-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 {times} 10{sup {minus}9} m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of {approximately}2 {pi} mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces.

  17. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Votaw, A.; Wang, X.; Chung, Y.

    1992-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  18. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-08-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-), e(+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  19. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  20. Fiber diffraction using the BioCAT undulator beamline at the Advanced Photon Source

    Science.gov (United States)

    Irving, T. C.; Fischetti, R.; Rosenbaum, G.; Bunker, G. B.; Biophysics Collaborative Access Team (BioCAT)

    2000-06-01

    The BioCAT undulator-based beamline at the Advanced Photon Source, Argonne IL, USA is designed to be a state-of-the-art instrument for biological non-crystalline diffraction and X-ray absorption spectroscopy. The optics consist of double crystal monochromators with sagitally focussing second crystals followed by a vertically focussing mirror which allow independent focussing of the beam in the vertical and horizontal directions virtually anywhere along the length of the 12 m experimental enclosure. When configured for a 2 m fiber diffraction camera, a focal spot of less than 40×200 μm (FWHM) has been observed which contained essentially all of the 1.5-2.5×10 13 ph/s delivered by the cryogenically-cooled Si(1 1 1) double crystal monochromator. This combination of highly demagnifying optics and the very low divergence of the very small source have yielded excellent quality patterns from various muscle specimens and collagen-containing tissues. Detectors available include a Fuji BAS2500 image plate scanner and a 1 k×1 k CCD detector optimized for small-angle applications. Future developments will include, in vacuum beam monitoring, longer camera lengths (6-8 m), and optimizations to improve first-order resolution in small-angle applications.

  1. Fiber diffraction using the BioCAT undulator beamline at the Advanced Photon Source

    CERN Document Server

    Irving, T C; Rosenbaum, G; Bunker, G B

    2000-01-01

    The BioCAT undulator-based beamline at the Advanced Photon Source, Argonne IL, USA is designed to be a state-of-the-art instrument for biological non-crystalline diffraction and X-ray absorption spectroscopy. The optics consist of double crystal monochromators with sagitally focussing second crystals followed by a vertically focussing mirror which allow independent focussing of the beam in the vertical and horizontal directions virtually anywhere along the length of the 12 m experimental enclosure. When configured for a 2 m fiber diffraction camera, a focal spot of less than 40x200 mu m (FWHM) has been observed which contained essentially all of the 1.5-2.5x10 sup 1 sup 3 ph/s delivered by the cryogenically-cooled Si(1 1 1) double crystal monochromator. This combination of highly demagnifying optics and the very low divergence of the very small source have yielded excellent quality patterns from various muscle specimens and collagen-containing tissues. Detectors available include a Fuji BAS2500 image plate sc...

  2. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  3. Towards the ultimate storage ring: The lattice design for Beijing Advanced Photon Source

    Institute of Scientific and Technical Information of China (English)

    XU Gang; JIAO Yi

    2013-01-01

    A storage ring-based light source,Beijing Advanced Photon Source (BAPS),is proposed to store a 5 GeV low-emittance electron beam and to provide high-brilliance coherent radiation.In this paper,we report our efforts of pushing down the emittance of BAPS to approach the so-called ultimate storage ring,while fixing the circumference to about 1200 m.To help deal with the challenge of beam dynamics associated with the intrinsic,very strong nonlinearities in an ultralow-emittance ring,a combination of several progressive technologies is used in the linear optics design and nonlinear optimization,such as a modified theoretical minimum emittance cell with smallaperture magnets,quasi-3rd-order achromat,theoretical analyzer based on Lie Algebra and Hamiltonian analysis,multi-objective genetic algorithm and frequency map analysis.These technologies enable us to obtain satisfactory beam dynamics in one lattice design with natural emittance of 75 pm.

  4. Commissioning of experimental enclosures (Hutches) at the Advanced Photon Source - A to Z ALARA.

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, J.; Job, P. K.; Rauchas, A.; Justus, A.; Veluri, V. R.

    2000-11-01

    The Advanced Photon Source (APS), 7 GeV electron Storage Ring at the Argonne National Laboratory is designed to be a major national user facility providing high-brilliance x-ray beams. Figure 1 shows a plan view of the APS. At completion, APS will have 35 bending magnet (BM) beamlines and 35 insertion device (ID) beamlines. A typical x-ray beamline at APS comprises of a front end (FE) that confines the beam; a first optics enclosure (FOE) which houses optics to filter and monochromatize the beam; and beam transports, additional optics, and the experiment stations. Figure 2 shows a section of the storage ring with the layout of the ID and BM beamlines and typical experiment stations. The first x-ray beam was delivered to an experiment station in 1995. Ever since, to date, over 120 experimental stations (hutches) have been commissioned and are receiving intense x-ray beams of varying energies for various experiments. This paper describes in some detail the steps involved in the process of commissioning experimental stations and the implementation of the ALARA at each step.

  5. Standards and the design of the Advanced Photon Source control system

    Science.gov (United States)

    McDowell, W. P.; Knott, M. J.; Lenkszus, F. R.; Kraimer, M. R.; Daly, R. T.; Arnold, N. D.; Anderson, M. D.; Anderson, J. B.; Zieman, R. C.; Cha, Ben-Chin K.

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  6. High-Pressure Experimental Studies on Geo-Liquids Using Synchrotron Radiation at the Advanced Photon Source

    Institute of Scientific and Technical Information of China (English)

    Yanbin Wang; Guoyin Shen

    2014-01-01

    We review recent progress in studying silicate, carbonate, and metallic liquids of geo-logical and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combina-tion of experimental techniques that allow researchers to investigate structure, density, elasticity, vis-cosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.

  7. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  8. The Advanced LIGO photon calibrators

    Science.gov (United States)

    Karki, S.; Tuyenbayev, D.; Kandhasamy, S.; Abbott, B. P.; Abbott, T. D.; Anders, E. H.; Berliner, J.; Betzwieser, J.; Cahillane, C.; Canete, L.; Conley, C.; Daveloza, H. P.; De Lillo, N.; Gleason, J. R.; Goetz, E.; Izumi, K.; Kissel, J. S.; Mendell, G.; Quetschke, V.; Rodruck, M.; Sachdev, S.; Sadecki, T.; Schwinberg, P. B.; Sottile, A.; Wade, M.; Weinstein, A. J.; West, M.; Savage, R. L.

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 1 0-18m /√{Hz } with accuracy and precision of better than 1%.

  9. Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Sah, R.C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which has been proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most or all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  10. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source

    Science.gov (United States)

    Shu, D.; Lee, P. L.; Preissner, C.; Ramanathan, M.; Beno, M.; Von Dreele, R. B.; Wang, J.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B. H.

    2007-09-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  11. Upgrade of IMCA-CAT Bending Magnet Beamline 17-BM for Macromolecular Crystallography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, I.; Huang, R.; Graber, T.; Meron, M.; Muir, J.L.; Lavender, W.; Battaile, K.; Mulichak, A.M.; Keefe, L.J. (UC)

    2007-05-15

    Pharmaceutical research depends on macromolecular crystallography as a tool in drug design and development. To solve the de novo three-dimensional atomic structure of a protein, it is essential to know the phases of the X-rays scattered by a protein crystal. Experimental phases can be obtained from multiwavelength anomalous dispersion (MAD) experiments. Dedicated to macromolecular crystallography, the IMCA-CAT bending magnet beamline at sector 17 of the Advanced Photon Source (APS) was upgraded to provide the energy resolution required to successfully perform synchrotron radiation-based MAD phasing of protein crystal structures. A collimating mirror was inserted into the beam path upstream of a double-crystal monochromator, thus increasing the monochromatic beam throughput in a particular bandwidth without sacrificing the energy resolution of the system. The beam is focused horizontally by a sagittally bent crystal and vertically by a cylindrically bent mirror, delivering a beam at the sample of 130 {micro}m (vertically) x 250 {micro}m (horizontally) FWHM. As a result of the upgrade, the beamline now operates with an energy range of 7.5 x 17.5 keV, delivers 8 x 10{sup +11} photons/sec at 12.398 keV at the sample, and has an energy resolution of {delta}E/E = 1.45 x 10{sup -4} at 10 keV, which is suitable for MAD experiments.

  12. Simulating single photons with realistic photon sources

    Science.gov (United States)

    Yuan, Xiao; Zhang, Zhen; Lütkenhaus, Norbert; Ma, Xiongfeng

    2016-12-01

    Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.

  13. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  14. Photonic Crystal Fiber Based Entangled Photon Sources

    Science.gov (United States)

    2014-03-01

    new entanglement source is to make sure the source can provide an efficient and scalable quantum information processor . They are usually generated...multiple scattering on the telecom wavelength photon-pair. Our findings show that quantum correlation of polarization-entangled photon-pairs is...Fiber, Quantum communication, Keyed Communication in Quantum Noise (KCQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18

  15. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basdogan, I.; Shu, Deming; Kuzay, T.M. [Argonne National Lab., IL (United States); Royston, T.J.; Shabana, A.A. [Univ. of Illinois, Chicago, IL (United States)

    1996-08-01

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities.

  16. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    Science.gov (United States)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  17. Time-resolved X-ray scattering program at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Rodricks, B.

    1994-08-01

    The Time-Resolved Scattering Program`s goal is the development of instruments and techniques for time-resolved studies. This entails the development of wide bandpass and focusing optics, high-speed detectors, mechanical choppers, and components for the measurement and creation of changes in samples. Techniques being developed are pump-probe experiments, single-bunch scattering experiments, high-speed white and pink beam Laue scattering, and nanosecond to microsecond synchronization of instruments. This program will be carried out primarily from a white-beam, bend-magnet source, experimental station, 1-BM-B, that immediately follows the first optics enclosure (1-BM-A). This paper will describe the experimental station and instruments under development to carry out the program.

  18. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  19. Profile coating for KB mirror applications at the Advanced Photon Source

    Science.gov (United States)

    Liu, Chian; Assoufid, L.; Macrander, Albert T.; Ice, Gene E.; Tischler, J. Z.

    2002-12-01

    For microfocusing x-ray mirrors, an ellipse shape is desirable for aberration-free optics. However, it is difficult to polish elliptical mirrors to x-ray quality smoothness. A differential coating method to convert a cylindrical mirror to an elliptical one has been previously reported The differential coating was obtained by varying the sputter source power while the mirror was passed through. Here we report a new method of profile coating to achieve the same goal more effectively. In the profile coating, the sputter source power is kept constant, while the substrate is passed over a contoured mask at a constant speed. The mask is placed very close to the substrate level (within 1.0 mm) on a shield-can over the sputter gun. Four-inch-diameter Si wafers were coated through a 100-mm-long by 152-mm-wide aperture on the top of the shield-can. The thickness distribution was then obtained using a spectroscopic ellipsometer with computer-controlled X-Y translation stages. A model has been developed to fit the measured thickness distribution of stationary growth. The relative thickness weightings are then digitized at every point 1 mm apart for the entire open area of the aperture. When the substrate is moving across the shield-can during a deposition, the film thickness is directly proportional to the length of the opening on the can along the moving direction. By equating the summation of relative weighting to the required relative thickness at the same position, the length of the opening at that position can be determined. By repeating the same process for the whole length of the required profile, a contour can be obtained for a desired thickness profile. The contoured mask is then placed on the opening of the shield-can. The number of passes and the moving speed of the substrate are determined according to the required thickness and the growth-rate calibration. The mirror coating profile is determined from the ideal surface figure of a focus ellipse and that obtained

  20. Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

    1996-12-31

    APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam (<0.1 mrad), APS is well suited for producing high-aspect-ratio microstructures in thick resist films (> 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (< 1 {mu}m) control of the sample, allowing full use of the highly collimated beam for lateral accuracy and control of sidewall slopes during exposure of thick resists, as well as generation of conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

  1. Perovskite photonic sources

    Science.gov (United States)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  2. Brillouin Scattering With Simultaneous X-Ray Diffraction at GSECARS, Advanced Photon Source: Toward Determination of Absolute Pressure Scales

    Science.gov (United States)

    Bass, J. D.; Sinogeikin, S. V.; Lakshtanov, D. L.; Prakapenka, V. B.; Shen, G.; Sanchez-Valle, C.; Perrillat, J.; Wang, J.; Chen, B.

    2006-12-01

    As one of the primary goals of the Elasticity Grand Challenge initiative and a COMPRES Infrastructure Development Project, a Brillouin spectrometer has been designed and installed at a synchrotron beam line (GSECARS, Sector 13 of the Advanced Photon Source). This facility allows one to simultaneously measure sound velocities (by Brillouin scattering) and density (by synchrotron X-ray diffraction measurements of the volume) on small single crystals at high pressure and/or temperature. One of the main motivations for this work was to perform measurements at high pressure on a variety of materials that would be useful as pressure standards for high-pressure research. It is now well known that through simultaneous velocity and density measurements at high pressure, one can solve for the pressure without resort to secondary standards such as the ruby pressure scale. Such measurements have thus far been carried out with several potential standards, such as NaCl and MgO. Single-crystal samples were loaded into diamond anvil cells along with ruby chips, and samples of standard metals such as Pt and Au. For NaCl and MgO, Brillouin spectra recording the longitudinal and transverse sound velocities, and simultaneous XRD were performed up to pressures of about 30 GPa. In addition, the velocities and density of polycrystalline B2 phase of NaCl were measured to >70 GPa. In this talk we describe this new facility and the measurements made thus far on NaCl and MgO. We further discuss the implications of our results on existing pressure scales.

  3. Compact Photon Source Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Degtyarenko, Pavel V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wojtsekhowski, Bogdan B. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  4. Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source

    Energy Technology Data Exchange (ETDEWEB)

    Cilento, F., E-mail: federico.cilento@elettra.eu [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Crepaldi, A. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Manzoni, G.; Sterzi, A. [Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); Zacchigna, M. [C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Bugnon, Ph.; Berger, H. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Parmigiani, F. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); International Faculty, University of Köln, 50937 Köln (Germany)

    2016-02-15

    The quest for investigating the non-equilibrium dynamics of the band structure of strongly-correlated materials over their entire Brillouin zone is a primary objective. However, the actual ultrafast UV light sources are not suitable for addressing several critical questions in the field. Here we report on a novel light source generating sub-250 fs, 9.3 eV photon energy light pulses at 250 kHz repetition rate, obtained via third-harmonic generation in Xe of frequency-doubled 50 fs laser pulses at 1.55 eV. By reporting the measured band dispersion of a Cu(111) crystal and the non-equilibrium dynamics of the Bi{sub 2}Se{sub 3} topological insulator, we prove that this source is suitable for studying the non-equilibrium dynamics of the entire Fermi surface of several complex materials, with high signal statistics and limited space-charge effect.

  5. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    Science.gov (United States)

    Ramanathan, M.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Cowan, P. L.; Montano, P. A.

    1995-02-01

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics.

  6. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  7. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.;

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  8. Photonic MEMS tunable laser sources

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-qun

    2009-01-01

    This article covers laser configurations, design and experiments of photonic microelectromechanical systems (MEMS) tunable laser sources. Three different types of MEMS tunable lasers such as MEMS coupled-cavity lasers, injection-locked laser systems and dual-wavelength tunable lasers are demonstrated as examples of natural synergy of MEMS with photonics. The expansion and penetration of the MEMS technology to silicon optoelectronic creates on-chip optical systems at an unprecedented scale of integration. While producing better integration with robustness and compactness, MEMS improves the functionalities and specifications of laser chips. Additionally, MEMS tunable lasers are featured with small size, high tuning speed, wide tuning range and CMOS compatible integration, which broaden their applications to many fields.

  9. X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source.

    Science.gov (United States)

    Barrea, R A; Antipova, O; Gore, D; Heurich, R; Vukonich, M; Kujala, N G; Irving, T C; Orgel, J P R O

    2014-09-01

    The small source sizes of third-generation synchrotron sources are ideal for the production of microbeams for diffraction studies of crystalline and non-crystalline materials. While several such facilities have been available around the world for some time now, few have been optimized for the handling of delicate soft-tissue specimens under cryogenic conditions. Here the development of a new X-ray micro-diffraction instrument at the Biophysics Collaborative Access Team beamline 18-ID at the Advanced Photon Source, and its use with newly developed cryo-diffraction techniques for soft-tissue studies, are described. The combination of the small beam sizes delivered by this instrument, the high delivered flux and successful cryo-freezing of rat-tail tendon has enabled us to record data to better than 4 Å resolution. The ability to quickly raster scan samples in the beam allows selection of ordered regions in fibrous samples for markedly improved data quality. Examples of results of experiments obtainable using this instrument are presented.

  10. Advanced Light Source (ALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Light Source (ALS), a world leader in soft x-ray science, generates light in the wavelengths needed for examining the atomic and electronic structure of...

  11. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, Irina; Huang, Rong; Graber, Timothy; Meron, Mati; Muir, J. Lewis; Lavender, William; Battaile, Kevin; Mulichak, Anne M.; Keefe, Lisa J.; (IIT); (UC)

    2009-09-02

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and delivers to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.

  12. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source.

    Science.gov (United States)

    Koshelev, Irina; Huang, Rong; Graber, Timothy; Meron, Mati; Muir, J Lewis; Lavender, William; Battaile, Kevin; Mulichak, Anne M; Keefe, Lisa J

    2009-09-01

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10(11) photons s(-1) at 1 A wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 microrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) deltaE/E = 1.5 x 10(-4) (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and delivers to the sample focused beam of size (FWHM) 240 microm (horizontally) x 160 microm (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.

  13. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria.

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. L.; Yun, W.

    1999-09-30

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  14. Single photon source characterization with a superconducting single photon detector

    CERN Document Server

    Hadfield, R H; Miller, A J; Mirin, R P; Nam, S W; Schwall, R E; Stevens, M J; Gruber, Steven S.; Hadfield, Robert H.; Miller, Aaron J.; Mirin, Richard P.; Nam, Sae Woo; Schwall, Robert E.; Stevens, Martin J.

    2005-01-01

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons on demand at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2) (tau). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  15. On-chip entangled photon source

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel B. S.; Bisson, Scott E.

    2016-11-22

    Various technologies pertaining to an on-chip entangled photon source are described herein. A light source is used to pump two resonator cavities that are resonant at two different respective wavelengths and two different respective polarizations. The resonator cavities are coupled to a four-wave mixing cavity that receives the light at the two wavelengths and outputs polarization-entangled photons.

  16. Advanced positron sources

    Energy Technology Data Exchange (ETDEWEB)

    Variola, A., E-mail: variola@lal.in2p3.fr

    2014-03-11

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e{sup +} sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R and D experiments and the futuristic proposals for positron sources will reviewed.

  17. Advances in information optics and photonics

    CERN Document Server

    Friberg, Ari T

    2008-01-01

    This volume is the sixth in a series of books initiated in 1989 by the International Commission for Optics (ICO). These books highlight the advances and trends in the research and development of optical sciences, technologies, and applications at the time of their publication. In this age of the photon, information optics and photonics represent the key technologies to sustain our knowledge-based society. New concepts in classical and quantum-entangled light, coherent interaction with matter, and novel materials and processes have led to remarkable advances in today's information science and t

  18. Compact Photon Source for Polarized Target Experiments

    Science.gov (United States)

    Niculescu, Gabriel; Wojtsekhowski, Bogdan

    2017-01-01

    High energy photon beams are one of the tools of choice in nuclear and particle physics. However, most of the current techniques used for producing such beams have substantial drawbacks that limit their usefulness (low intensity, large beam size, mixed electron-photon beams). In this presentation we will outline the design of a Compact Photon Source (CPS) capable of providing narrow ( 1 mm) untagged photon beams of an intensity suitable for carrying out polarized target experiments. Compared with existing technology the CPS will provide a substantial (10-100) increase in the figure-of-merit. While optimized for a Wide Angle Compton Scattering experiment proposed at JLab, the source described here can be used in a variety of photon-induced physics experiments as well as for industrial applications.

  19. Advances and new functions of VCSEL photonics

    Science.gov (United States)

    Koyama, Fumio

    2014-11-01

    A vertical cavity surface emitting laser (VCSEL) was born in Japan. The 37 years' research and developments opened up various applications including datacom, sensors, optical interconnects, spectroscopy, optical storages, printers, laser displays, laser radar, atomic clock and high power sources. A lot of unique features have been already proven, such as low power consumption, a wafer level testing and so on. The market of VCSELs has been growing up rapidly and they are now key devices in local area networks based on multi-mode optical fibers. Optical interconnections in data centers and supercomputers are attracting much interest. In this paper, the advances on VCSEL photonics will be reviewed. We present the high-speed modulation of VCSELs based on a coupled cavity structure. For further increase in transmission capacity per fiber, the wavelength engineering of VCSEL arrays is discussed, which includes the wavelength stabilization and wavelength tuning based on a micro-machined cantilever structure. We also address a lateral integration platform and new functions, including high-resolution beam scanner, vortex beam creation and large-port free space wavelength selective switch with a Bragg reflector waveguide.

  20. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  1. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  2. Linear-optic heralded photon source

    Science.gov (United States)

    Ferreira da Silva, Thiago; Amaral, Gustavo C.; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-09-01

    We present a heralded photon source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function [ g2(0 )=0.556 ]. The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The technique presents yield comparable to state-of-the-art spontaneous parametric down-conversion-based sources, with high coherence and fiber-optic quantum communication compatibility.

  3. Photonic crystal laser sources for chemical detection

    OpenAIRE

    Lončar, Marko; Scherer, Axel; Qiu, Yueming

    2003-01-01

    We have realized photonic crystal lasers that permit the introduction of analyte within the peak of the optical field of the lasing mode. We have explored the design compromises for developing such sensitive low-threshold spectroscopy sources, and demonstrate the operation of photonic crystal lasers in different ambient organic solutions. We show that nanocavity lasers can be used to perform spectroscopic tests on femtoliter volumes of analyte, and propose to use these lasers for high-resolut...

  4. Bright Solid State Source of Photon Triplets

    CERN Document Server

    Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2015-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...

  5. Broadband source of polarization entangled photons.

    Science.gov (United States)

    Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V

    2012-06-01

    A broadband source of polarization entangled photons based on type-II spontaneous parametric down conversion from a chirped PPKTP crystal is presented. With numerical simulation and experimental evaluation, we report a source of broadband polarization entangled states with a bandwidth of approximately 125 nm for use in quantum interferometry. The technique has the potential to become a basis for the development of flexible broadband sources with designed spectral properties.

  6. Linear-Optic Heralded Photon Source

    OpenAIRE

    da Silva, Thiago Ferreira; Amaral, Gustavo C; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-01-01

    We present a Heralded Photon Source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function ($g^2\\left(0\\right)=0.556$). The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The techniqu...

  7. Advanced Photonic and Electronic Systems WILGA 2010

    CERN Document Server

    Romaniuk, R S

    2010-01-01

    SPIE – PSP WILGA Symposium gathers two times a year in January and in May new adepts of advanced photonic and electronic systems. The event is oriented on components and applications. WILGA Symposium on Photonics and Web Engineering is well known on the web for its devotion to “young research” promotion under the eminent sponsorship of international engineering associations like SPIE and IEEE and their Poland Sections or Counterparts. WILGA is supported by the most important national professional organizations like KEiT PAN and PSP-Photonics Society of Poland. The Symposium is organized since 1998 twice a year. It has gathered over 4000 young researchers and published over 2000 papers mainly internationally, including more than 900 in 10 published so far volumes of Proc. SPIE. This paper is a digest of WILGA Symposium Series and WILGA 2010 summary. Introductory part treats WILGA Photonics Applications characteristics over the period 1998-2010. Following part presents a short report on the XXVth and XXVI...

  8. Narrowband Photon Pair Source for Quantum Networks

    CERN Document Server

    Monteiro, F; Sanguinetti, B; Zbinden, H; Thew, R T

    2013-01-01

    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

  9. Photon pair source via two coupling single quantum emitters

    Institute of Scientific and Technical Information of China (English)

    彭勇刚; 郑雨军

    2015-01-01

    We study the two coupling two-level single molecules driven by an external field as a photon pair source. The proba-bility of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source.

  10. Control system for Siam photon source

    CERN Document Server

    Apiwatwaja, R; Isoyama, G; Ishii, T; Pairsuwan, W

    2003-01-01

    A new computer control system has been developed for Siam photon source, which is the first synchrotron light source in Thailand, personal computers and PLC's have been employed which are connected together through Ethernet. Man Machine Interface Stations (MMIS) at the front end act as a graphical user interface within Windows environment. The monitoring and controlling of individual devices is handled through several pairs of digital control station and the device interface located in each part of the synchrotron complex. The installation of the control system has been completed. The commissioning test of the control system is underway and the reliability of the system is on the positive side. Details of commissioning tests as well as characteristics of this newly built control system for the Siam photon source are described in this report.

  11. Cosmogenic photons strongly constrain UHECR source models

    Directory of Open Access Journals (Sweden)

    van Vliet Arjen

    2017-01-01

    Full Text Available With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT’s IGRB, as long as their number density is not strongly peaked at recent times.

  12. Cosmogenic photons strongly constrain UHECR source models

    CERN Document Server

    van Vliet, Arjen

    2016-01-01

    With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR) propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB) by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT's IGRB, as long as their number density is not strongly peaked at recent times.

  13. Cosmogenic photons strongly constrain UHECR source models

    Science.gov (United States)

    van Vliet, Arjen

    2017-03-01

    With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR) propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB) by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT's IGRB, as long as their number density is not strongly peaked at recent times.

  14. Sub-megahertz linewidth single photon source

    Science.gov (United States)

    Rambach, Markus; Nikolova, Aleksandrina; Weinhold, Till J.; White, Andrew G.

    2016-12-01

    We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666 ±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ =0 to be gs,s (2 )(0 ) = 0.016 ±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  15. Sub-megahertz linewidth single photon source

    Directory of Open Access Journals (Sweden)

    Markus Rambach

    2016-12-01

    Full Text Available We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ=0 to be gs,s(2(0= 0.016±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  16. Advancement of photonic interconnects for spaceborne systems

    Science.gov (United States)

    Bristow, Julian P.; Lehman, John A.; Morgan, Robert A.; Deruiter, John L.

    1997-07-01

    Optical interconnects have long promised significant advantages over their electrical counterparts. Specific advantages include increased bandwidths at long (ten meters or more) interconnection distances, immunity to EMI effects, negligible crosstalk, reduced size, and lower weight. Optical interconnects have been developed for, and are being used in, a range of ground based and aircraft applications, however they are only now beginning to gain acceptance in spaceborne systems. In addition to the maturity demanded from components destined for ground-based applications and the wider temperature excursions characteristic of airborne applications, spaceborne components must also be able to survive the radiation environments associated with their intended applications. The additional qualification required has resulted in delayed introduction of photonic interconnects. We describe the tradeoffs involved in implementing for the first time a spaceborne fiber optic data bus with a clock speed of 1.2 Gbps. The tradeoffs include emitter, detectors, fiber, connectors and packaging. We have selected a series of commercial grade optoelectronic devices which were then qualified for use in spaceborne environments and have developed a space quantifiable packaging scheme. We have designed and implemented the optoelectronic subsystem of the data bus and have simulated its operation. We also describe recent advances in Vertical Cavity Surface Emitting Lasers (VCSELs) for spaceborne databuses. VCSELs also offer advantages in simplicity of packaging and electronic control. We summarize available initial radiation data on these devices and project their impact on spaceborne photonic interconnects.

  17. Photonic crystal fibre source of photon pairs for quantum information processing

    CERN Document Server

    Fulconis, J; O'Brien, J L; Rarity, J G; Wadsworth, W J; Alibart, Olivier; Brien, Jeremy L. O'; Fulconis, Jeremie; Rarity, John G.; Wadsworth, William J.

    2006-01-01

    We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a $\\chi^{(3)}$ four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.

  18. Proceedings of the first symposium on advanced photon research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report consists of 76 contributed papers of the First Symposium on Advanced Photon Research, which was held at Keihanna Plaza and JAERI Advanced Photon Research Center in Kyoto on November 8-9, 1999. The numbers of oral presentations including a special invited talk and poster presentations were 14 and 68, respectively. (J.P.N.)

  19. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  20. Integrated spatial multiplexing of heralded single photon sources

    CERN Document Server

    Collins, Matthew J; Rey, Isabella H; Vo, Trung D; He, Jiakun; Shahnia, Shayan; Reardon, Christopher; Steel, M J; Krauss, Thomas F; Clark, Alex S; Eggleton, Benjamin J

    2013-01-01

    The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols.

  1. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  2. All-fiber photon-pair source at telecom wavelengths

    DEFF Research Database (Denmark)

    Christensen, Erik Nicolai; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    Single photon sources are a key element for quantum computing, quantum key distribution (QKD) and quantum communications. In particular, producing single photons at telecommunications wavelengths is valuable for QKD protocols and would enable realizing the quantum internet. The preferred method...

  3. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Science.gov (United States)

    2012-04-02

    ... COMMISSION Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant Technologies Corporation, 4C Controls, Inc., and 2-Track Global, Inc.; Order of Suspension of Trading March 29... information concerning the securities of Advanced BioPhotonics, Inc. because it has not filed any...

  4. Single-photon source characterization with infrared-sensitive superconducting single-photon detectors

    CERN Document Server

    Hadfield, R H; Nam, S W; Stevens, M J; Hadfield, Robert H.; Mirin, Richard P.; Nam, Sae Woo; Stevens, Martin J.

    2006-01-01

    Single-photon sources and detectors are key enabling technologies in quantum information processing. Nanowire-based superconducting single-photon detectors (SSPDs) offer single-photon detection from the visible well into the infrared with low dark counts, low jitter and short dead times. We report on the high fidelity characterization (via antibunching and spontaneous emission lifetime measurements) of a cavity-coupled single-photon source at 902 nm using a pair of SSPDs. The twin SSPD scheme reported here is well-suited to the characterization of single-photon sources at telecom wavelengths (1310 nm, 1550 nm).

  5. [Recent advancement of photonic-crystal-based analytical chemistry].

    Science.gov (United States)

    Chen, Yun; Guo, Zhenpeng; Wang, Jinyi; Chen, Yi

    2014-04-01

    Photonic crystals are a type of novel materials with ordered structure, nanopores/channels and optical band gap. They have hence important applications in physics, chemistry, biological science and engineering fields. This review summarizes the recent advancement of photonic crystals in analytical chemistry applications, with focus on sensing and separating fields happening in the nearest 5 years.

  6. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num......Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined...

  7. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  8. Broadband Purcell enhancement in highly efficient photonic nanowire-based single-photon sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; McCutcheon, Dara; Mørk, Jesper;

    2016-01-01

    The photonic nanowire single-photon source design approach allows for efficient broadband coupling between a quantum dot and a 1D photonic environment. In this work, we introduce weak cavity effects to the design by implementing a distributed Bragg reflector in the inverted taper. This leads to b...

  9. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  10. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented...... in this thesis addresses these two fundamental properties in both hollow core photonic crystal fibers and solid photonic bandgap fibers. Transmission loss in hollow core photonic crystal fibers is dominated by light scattering at the silica surfaces inside the fiber. In the current work it has been...... experimentally demonstrated that the minimum loss wavelength is located in the spectral region around 2000 nm, where the transmission loss in these fibers is significantly lower than in conventional solid silica fibers. Additionally it has been shown that transmission loss can be lowered roughly 40...

  11. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  12. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  13. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  14. Compact Tunable High-Efficiency Entangled Photon Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  15. High performance guided-wave asynchronous heralded single photon source

    OpenAIRE

    Alibart, Olivier; Ostrowsky, Daniel Barry; Baldi, Pascal; Tanzilli, Sébastien

    2005-01-01

    International audience; We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with a high probability of 0.38. At the same time the multi-photon emission probability is reduce...

  16. High-Fidelity Down-Conversion Source for Secure Communications Using On-Demand Single Photons

    Science.gov (United States)

    Roberts, Tony

    2015-01-01

    AdvR, Inc., has built an efficient, fully integrated, waveguide-based source of spectrally uncorrelated photon pairs that will accelerate research and development (R&D) in the emerging field of quantum information science. Key to the innovation is the use of submicron periodically poled waveguides to produce counter propagating photon pairs, which is enabled by AdvR's patented segmented microelectrode poling technique. This novel device will provide a high brightness source of down-conversion pairs with enhanced spectral properties and low attenuation, and it will operate in the visible to the mid-infrared spectral region. A waveguide-based source of spectrally and spatially pure heralded photons will contribute to a wide range of NASA's advanced technology development efforts, including on-demand single photon sources for high-rate spaced-based secure communications.

  17. Hong-Ou-Mandel interference between two independent all fiber photon sources

    CERN Document Server

    Zhou, Zhi-Yuan; Xu, Zhao-Huai; Wang, Shuang; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Guided-wave platforms such as fiber and silicon-on-insulator waveguide show great advances over traditional free space implementations in quantum information technology for significant advantages of low transmission loss, low cost, integrability and compatible with mature fiber communication systems. Interference between independent photon sources is the key to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. In this work, we report Hong-Ou-Mandel interference between two independent all fiber photon pair sources over two 100GHz dense wave division multiplexing channels, the visibility reaches 53.2(8.4)% (82.9(5.3)%) without (with) back ground counts subtracted. In addition, we give a general theoretical description of the purity of the photon pair generation in dispersion shifted fiber and obtain the optimized condition for high purity photon pair generation. We also obtain a maximum coincidence to back ground ratio of...

  18. A photonics design tool for advanced CMOS nodes

    CERN Document Server

    Alloatti, Luca; Stojanovic, Vladimir; Popovic, Milos; Ram, Rajeev Jagga

    2015-01-01

    Recently, we have demonstrated large-scale integrated systems with several million transistors and hundreds of photonic elements. Yielding such large-scale integrated systems requires a design-for-manufacture rigor that is embodied in the 10000 to 50000 design rules that these designs must comply within advanced CMOS manufacturing. Here, we present a photonic design automation (PDA) tool which allows automatic generation of layouts without design-rule violations. Our tool is written in SKILL, the native language of the mainstream electric design automation (EDA) software, Cadence. This allows seamless integration of photonic and electronic design in a single environment. The tool leverages intuitive photonic layer definitions, allowing the designer to focus on the physical properties rather than on technology-dependent details. Removal of design-rule violations - based on Manhattan discretization, Boolean and sizing operations - occurs during data preparation from the initial photonic layers to the final mask...

  19. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper;

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors...... are used to tailor the far-field emission pattern. This non-resonant approach relaxes the demands to fabrication perfection, allowing for record-high measured efficiency of fabricated nanowire single-photon sources. We review recent progress in photonic nanowire technology and present next generation...

  20. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    Science.gov (United States)

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-01-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090

  1. High-yield entangled single photon source

    Science.gov (United States)

    Soh, Daniel B. S.; Bisson, Scott E.

    2016-10-11

    The various technologies presented herein relate to utilizing photons at respective idler and signal frequencies to facilitate generation of photons at a pump frequency. A strong pump field can be applied at the .omega..sub.i and the .omega..sub.s frequencies, with the generated idler and signal pulses being utilized to generate a photon pair at the .omega..sub.p frequency. Further, the idler pump power can be increased relative to the signal pump power such that the pump power P.sub.i>pump power P.sub.s. Such reversed operation (e.g., .omega..sub.i+.omega..sub.s.fwdarw..omega..sub.p1+.omega..sub.p2) can minimize and/or negate Raman scattering effects. By complying with an energy conservation requirement, the .omega..sub.i and .omega..sub.s photons interacting with the material through the four-wave mixing process facilitates the entanglement of the .omega..sub.p1 and .omega..sub.p2 photons. The .omega..sub.i and .omega..sub.s photons can be respectively formed in different length waveguides with a delay utilized to facilitate common timing between the .omega..sub.i and .omega..sub.s photons.

  2. Experimental demonstration of a predictable single photon source with variable photon flux

    Science.gov (United States)

    Vaigu, Aigar; Porrovecchio, Geiland; Chu, Xiao-Liu; Lindner, Sarah; Smid, Marek; Manninen, Albert; Becher, Christoph; Sandoghdar, Vahid; Götzinger, Stephan; Ikonen, Erkki

    2017-04-01

    We present a predictable single-photon source (SPS) based on a silicon vacancy centre in nanodiamond which is optically excited by a pulsed laser. At an excitation rate of 70~\\text{MHz} the source delivers a photon flux large enough to be measured by a low optical flux detector (LOFD). The directly measured photon flux constitutes an absolute reference. By changing the repetition rate of the pulsed laser, we are able to change the photon flux of our SPS in a controllable way which in turn can act as a reference. The advantage of our method is that it does not require precise knowledge of the source efficiency, but the source is calibrated by the LOFD and can be used for detector responsivity characterizations at the few-photon level.

  3. A Bright Single Photon Source Based on a Diamond Nanowire

    CERN Document Server

    Babinec, T; Khan, M; Zhang, Y; Maze, J; Hemmer, P R; Loncar, M

    2009-01-01

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including fast and stable photon generation, efficient collection of photons, and room temperature operation. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, nanowires, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a posit...

  4. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances

    Science.gov (United States)

    Diaspro, Alberto

    2001-11-01

    Confocal and Two-Photon Microscopy Foundations, Applications, and Advances Edited by Alberto Diaspro Confocal and two-photon fluorescence microscopy has provided researchers with unique possibilities of three-dimensional imaging of biological cells and tissues and of other structures such as semiconductor integrated circuits. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances provides clear, comprehensive coverage of basic foundations, modern applications, and groundbreaking new research developments made in this important area of microscopy. Opening with a foreword by G. J. Brakenhoff, this reference gathers the work of an international group of renowned experts in chapters that are logically divided into balanced sections covering theory, techniques, applications, and advances, featuring: In-depth discussion of applications for biology, medicine, physics, engineering, and chemistry, including industrial applications Guidance on new and emerging imaging technology, developmental trends, and fluorescent molecules Uniform organization and review-style presentation of chapters, with an introduction, historical overview, methodology, practical tips, applications, future directions, chapter summary, and bibliographical references Companion FTP site with full-color photographs The significant experience of pioneers, leaders, and emerging scientists in the field of confocal and two-photon excitation microscopy Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances is invaluable to researchers in the biological sciences, tissue and cellular engineering, biophysics, bioengineering, physics of matter, and medicine, who use these techniques or are involved in developing new commercial instruments.

  5. Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures

    Science.gov (United States)

    Lukishova, S. G.; Winkler, J. M.; Bissell, L. J.; Mihaylova, D.; Liapis, Andreas C.; Shi, Z.; Goldberg, D.; Menon, V. M.; Boyd, R. W.; Chen, G.; Prasad, P.

    2014-10-01

    Results are presented here towards robust room-temperature SPSs based on fluorescence in nanocrystals: colloidal quantum dots, color-center diamonds and doped with trivalent rare-earth ions (TR3+). We used cholesteric chiral photonic bandgap and Bragg-reflector microcavities for single emitter fluorescence enhancement. We also developed plasmonic bowtie nanoantennas and 2D-Si-photonic bandgap microcavities. The paper also provides short outlines of other technologies for room-temperature single-photon sources.

  6. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh;

    2010-01-01

    The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...... with carefully tailored ends13. Under optical pumping, we demonstrate a record source efficiency of 0.72, combined with pure single-photon emission. This non-resonant approach also provides broadband spontaneous emission control, thus offering appealing novel opportunities for the development of single...

  7. Advanced Light Source control system

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs.

  8. Characterizing heralded single-photon sources with imperfect measurement devices

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, M; Soellner, I; Bocquillon, E; Couteau, C; Laflamme, R; Weihs, G [Institute for Quantum Computing, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1 (Canada)], E-mail: mrazavi@iqc.ca

    2009-06-14

    Any characterization of a single-photon source is not complete without specifying its second-order degree of coherence, i.e., its g{sup (2)} function. An accurate measurement of such coherence functions commonly requires high-precision single-photon detectors, in whose absence only time-averaged measurements are possible. It is not clear, however, how the resulting time-averaged quantities can be used to properly characterize the source. In this paper, we investigate this issue for a heralded source of single photons that relies on continuous-wave parametric down-conversion. By accounting for major shortcomings of the source and the detectors-i.e., the multiple-photon emissions of the source, the time resolution of photodetectors and our chosen width of coincidence window-our theory enables us to infer the true source properties from imperfect measurements. Our theoretical results are corroborated by an experimental demonstration using a PPKTP crystal pumped by a blue laser that results in a single-photon generation rate about 1.2 millions per second per milliwatt of pump power. This work takes an important step towards the standardization of such heralded single-photon sources.

  9. A wavelength tunable photon source with sealed inner volume

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented a method of providing a wavelength tunable photon source (200), comprising bonding a first element (101) with a first mirror (106), a second element (102) with a second mirror (108) and a third element (103) with a photon emitter together in a structure enclosing an inner volume...... (214) being a sealed volume, and forming a bonding interface (212) which is gas-tight, so that the first mirror (106) is placed in the inner volume (214) so the first mirror (106) may move within the inner volume (214). The method provides a relatively simple way of obtaining a tunable photon source...

  10. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  11. Highly retrievable spin-wave-photon entanglement source.

    Science.gov (United States)

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  12. Operation and Recent Developments of the Photon Factory Advanced Ring

    CERN Document Server

    Miyajima, Tsukasa; Ebihara, Kiyokazu; Haga, Kaiichi; Harada, Kentaro; Hori, Yoichiro; Ieiri, Takao; Isagawa, Shigeru; Kageyama, Tatsuya; Kasuga, Toshio; Katoh, Tadahiko; Kawata, Hiroshi; Kikuchi, Mitsuo; Kobayashi, Yukinori; Kudo, Kikuo; Mitsuhashi, Toshiyuki; Nagahashi, Shinya; Nakamura, Tatsuro; Nakanishi, Hiroshi; Nogami, Takashi; Obina, Takashi; Ohsawa, Yasunobu; Ono, Masaaki; Ozaki, Toshiyuki; Sakai, Hiroshi; Sakamoto, Yutaka; Sakanaka, Shogo; Sato, Masayuki; Satoh, Masato; Shioya, Tatsuro; Suetake, Masaaki; Sugahara, Ryuhei; Tadano, Mikito; Takahashi, Takeshi; Takasaki, Seiji; Tanimoto, Yasunori; Tejima, Masaki; Tsuchiya, Kimichika; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Xing Cheng, Wei; Yamamoto, Noboru; Yamamoto, Shigeru; Yoshimoto, S

    2005-01-01

    The Photon Factory Advanced Ring (PF-AR) is a synchrotron light source dedicated to X-ray research. The PF-AR is usually operated at a beam energy of 6.5 GeV, but a 5.0 GeV mode is also available for medical application. In 6.5 GeV mode the typical lifetime of 15 hrs and the beam current of 60 mA with a single-bunch have been archived. Almost full-time single-bunch operation for pulse X-ray characterize the PF-AR. However, single-bunch high-current caused several problems to be solved, including the temperature rise of the some of the vacuum component, a pressure increase in the ring, and a sudden drop in lifetime. In order to avoid these issues the developments of new methods have been continued. In this paper, the status and the recent developments of the PF-AR will be presented. It concerns: the successful operation with two-bunch high-current in 5.0 GeV mode; varying the vertical beam size for the medical application; modulating the RF acceleration phase in order to elongate the length of bunch; stabilizi...

  13. Advanced packaging technology for high frequency photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Armendariz, M.G.; Hadley, G.R.; Warren, M.E.

    1996-03-01

    An advanced packaging concept has been developed for optical devices. This concept allows multiple fibers to be coupled to photonic integrated circuits, with no fiber penetration of the package walls. The principles used to accomplish this concept involves a second-order grating to couple light in or out of the photonic circuit, and a binary optic lens which receives this light and focuses it into a single-mode optical fiber. Design, fabrication and electrical/optical measurements of this packaging concept are described.

  14. Supercontinuum Lightwave Sources for Photonic Networks

    Institute of Scientific and Technical Information of China (English)

    Kunihiko Mori

    2003-01-01

    WDM optical sources based on supercontinuum (SC) generation are reviewed. The design of an SC lightwave source is described that uses a scaling rule among the parameters in an SC generating fiber and a seed optical pulse. Finally,recent efforts to apply SC lightwave source to optical network systems are mentioned.

  15. Supercontinuum Lightwave Sources for Photonic Networks

    Institute of Scientific and Technical Information of China (English)

    Kunihiko; Mori

    2003-01-01

    WDM optical sources based on supercontinuum (SC) generation are reviewed. The design of an SC lightwave source is described that uses a scaling rule among the parameters in an SC generating fiber and a seed optical pulse. Finally, recent efforts to apply SC lightwave source to optical network systems are mentioned.

  16. The photonic nanowire: An emerging platform for a highly efficient quantum light source

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.;

    The single-photon source capable of emitting single indistinguishable photons on demand represents a key component in quantum information applications. The photonic nanowire represents an attractive platform to construct a source with near-unity eciency......The single-photon source capable of emitting single indistinguishable photons on demand represents a key component in quantum information applications. The photonic nanowire represents an attractive platform to construct a source with near-unity eciency...

  17. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...... emitter, e.g. a nitrogen-vacancy center or a semiconductor quantum dot (QD), embedded in a solid-state semiconductor host material appears as an attractive platform for generating such single photons. However, for a QD in bulk material, the large index contrast at the semiconductor-air interface leads...

  18. An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems

    CERN Document Server

    Harris, Nicholas C; Simbula, Angelica; Pant, Mihir; Galli, Matteo; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk; Bajoni, Daniele; Galland, Christophe

    2014-01-01

    We demonstrate the generation of quantum-correlated photon-pairs combined with the spectral filtering of the pump field by more than 95dB using Bragg reflectors and electrically tunable ring resonators. Moreover, we perform demultiplexing and routing of signal and idler photons after transferring them via a fiber to a second identical chip. Non-classical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS process, paves the way toward truly large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.

  19. Efficient room-temperature source of polarized single photons

    Science.gov (United States)

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  20. Advances in Photonics Design and Modeling for Nano- and Bio-photonics Applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2010-01-01

    In this invited paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. We will first discuss the application of a traditional formulation of the FDTD...... approach to the modeling of sub-wavelength photonics structures. Next, a modified total/scattered field FDTD approach will be applied to the modeling of biophotonics applications including Optical Phase Contrast Microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) as well as its potential...

  1. A silicon carbide room-temperature single-photon source

    Science.gov (United States)

    Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T.

    2014-02-01

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s-1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

  2. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël;

    be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...

  3. Advanced time-correlated single photon counting techniques

    CERN Document Server

    Becker, Wolfgang

    2005-01-01

    Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range.

  4. The Advanced Light Source (ALS) Radiation Safety System. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies.

  5. Design and simulations of highly efficient single-photon sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Mørk, Jesper

    The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges in the si......The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges...

  6. Spectrally engineered broadband photon source for two-photon quantum interferometry

    CERN Document Server

    Thomas, Abu; Minaeva, Olga; Simon, David; Sergienko, Alexander V

    2016-01-01

    We present a new approach to engineering broadband sources of entangled photon pairs for quantum interferometry. The source is based on quasi-phase-matched spontaneous parametric down conversion in a titanium diffused periodically poled lithium niobate waveguide with a strongly-chirped poling period. The proposed non-standard asymmetric poling mitigates phase distortions associated with the process of chirping. Asymmetric poling significantly broadens the entangled source bandwidth while preserving high visibility quantum interferometric sensing.

  7. Photonic nanowire-based single-photon source with polarization control

    CERN Document Server

    Gregersen, Niels

    2016-01-01

    This document describes a modal method for optical simulations of structures with elliptical cross sections and its application to the design of the photonic nanowire (NW)-based single-photon source (SPS). The work was carried out in the framework of the EMRP SIQUTE project ending May 31st 2016. The document summarizes the new method used to treat the elliptical cross section in an efficient manner and additionally presents design parameters for the photonic NW SPS with elliptical cross section for polarization control. The document does not introduce the new method and the elliptical photonic NW SPS design in the context of existing literature but instead dives directly into the equations. Additionally, the document assumes that the reader possess expert knowledge of general modal expansion techniques. The presented formalism does not implement Li's factorization rules nor the recently proposed open boundary geometry formalism with fast convergence towards the open geometry limit but instead relies on (older...

  8. Compton sources for the observation of elastic photon-photon scattering events

    Science.gov (United States)

    Micieli, D.; Drebot, I.; Bacci, A.; Milotti, E.; Petrillo, V.; Conti, M. Rossetti; Rossi, A. R.; Tassi, E.; Serafini, L.

    2016-09-01

    We present the design of a photon-photon collider based on conventional Compton gamma sources for the observation of elastic γ γ scattering. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton backscattering with two high energy lasers. The elastic photon-photon scattering is analyzed by start-to-end simulations from the photocathodes to the detector. A new Monte Carlo code has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary gamma yield, obtained by using the parameters of existing or approved Compton devices, a discussion of the feasibility of the experiment and of the nature of the background are presented.

  9. Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review.

    Science.gov (United States)

    Cunningham, B T; Zhang, M; Zhuo, Y; Kwon, L; Race, C

    2016-05-15

    Photonic crystal surfaces that are designed to function as wavelength-selective optical resonators have become a widely adopted platform for label-free biosensing, and for enhancement of the output of photon-emitting tags used throughout life science research and in vitro diagnostics. While some applications, such as analysis of drug-protein interactions, require extremely high resolution and the ability to accurately correct for measurement artifacts, others require sensitivity that is high enough for detection of disease biomarkers in serum with concentrations less than 1 pg/ml. As the analysis of cells becomes increasingly important for studying the behavior of stem cells, cancer cells, and biofilms under a variety of conditions, approaches that enable high resolution imaging of live cells without cytotoxic stains or photobleachable fluorescent dyes are providing new tools to biologists who seek to observe individual cells over extended time periods. This paper will review several recent advances in photonic crystal biosensor detection instrumentation and device structures that are being applied towards direct detection of small molecules in the context of high throughput drug screening, photonic crystal fluorescence enhancement as utilized for high sensitivity multiplexed cancer biomarker detection, and label-free high resolution imaging of cells and individual nanoparticles as a new tool for life science research and single-molecule diagnostics.

  10. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  11. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  12. Advances in FDTD computational electrodynamics photonics and nanotechnology

    CERN Document Server

    Oskooi, Ardavan; Johnson, Steven G

    2013-01-01

    Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...

  13. A Search for Point Sources of EeV Photons

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pe¸kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Auger Collaboration102, The Pierre

    2014-01-01

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic r

  14. Applications of circularly polarized photons at the ALS with a bend magnet source

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  15. A search for point sources of EeV photons

    Energy Technology Data Exchange (ETDEWEB)

    Aab, A. [Universität Siegen, Siegen (Germany); Abreu, P.; Andringa, S. [Laboratório de Instrumentação e Física Experimental de Partículas (LIP) and Instituto Superior Técnico (IST), Universidade de Lisboa (Portugal); Aglietta, M. [Osservatorio Astrofisico di Torino (INAF), Università di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Al Samarai, I. [Institut de Physique Nucléaire d' Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay (France); Albuquerque, I. F. M. [Universidade de São Paulo, Instituto de Física, São Paulo, SP (Brazil); Allekotte, I. [Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Universidad Tecnológica Nacional—Facultad Regional Buenos Aires, Buenos Aires (Argentina); Castillo, J. Alvarez [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico); Alvarez-Muñiz, J. [Universidad de Santiago de Compostela (Spain); Batista, R. Alves [Universität Hamburg, Hamburg (Germany); Ambrosio, M.; Aramo, C. [Università di Napoli " Federico II" and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain); Collaboration: Pierre Auger Collaboration102; and others

    2014-07-10

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10{sup 17.3} eV to 10{sup 18.5} eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm{sup –2} s{sup –1}, and no celestial direction exceeds 0.25 eV cm{sup –2} s{sup –1}. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  16. A Search for Point Sources of EeV Photons

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Auger Collaboration102, The Pierre

    2014-07-01

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm-2 s-1, and no celestial direction exceeds 0.25 eV cm-2 s-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  17. A search for point sources of EeV photons

    CERN Document Server

    Aab, A; Aglietta, M; Ahlers, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fuji, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Islo, K; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, A J; Matthews, J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pękala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Peters, C; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Rühle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Thao, N T; Theodoro, V M; Tiffenberg, J; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Whelan, B J; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2014-01-01

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\\deg} to +20{\\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  18. Advanced controls for light sources

    Science.gov (United States)

    Biedron, S. G.; Edelen, A. L.; Milton, S. V.

    2016-09-01

    We present a summary of our team's recent efforts in developing adaptive, artificial intelligence-inspired techniques specifically to address several control challenges that arise in machines/systems including those in particle accelerator systems. These techniques can readily be adapted to other systems such as lasers, beamline optics, etc… We are not at all suggesting that we create an autonomous system, but create a system with an intelligent control system, that can continually use operational data to improve itself and combines both traditional and advanced techniques. We believe that the system performance and reliability can be increased based on our findings. Another related point is that the controls sub-system of an overall system is usually not the heart of the system architecture or design process. More bluntly, often times all of the peripheral systems are considered as secondary to the main system components in the architecture design process because it is assumed that the controls system will be able to "fix" challenges found later with the sub-systems for overall system operation. We will show that this is not always the case and that it took an intelligent control application to overcome a sub-system's challenges. We will provide a recent example of such a "fix" with a standard controller and with an artificial intelligence-inspired controller. A final related point to be covered is that of system adaptation for requirements not original to a system's original design.

  19. Hyperbolic Metamaterial Nano-Resonators Make Poor Single Photon Sources

    CERN Document Server

    Axelrod, Simon; Wong, Herman M K; Helmy, Amr S; Hughes, Stephen

    2016-01-01

    We study the optical properties of quantum dipole emitters coupled to hyperbolic metamaterial nano-resonators using a semi-analytical quasinormal mode approach. We show that coupling to metamaterial nano-resonators can lead to significant Purcell enhancements that are nearly an order of magnitude larger than those of plasmonic resonators with comparable geometry. However, the associated single photon output $\\beta$-factors are extremely low (around 10%), far smaller than those of comparable sized metallic resonators (70%). Using a quasinormal mode expansion of the photon Green function, we describe how the low $\\beta$-factors are due to increased Ohmic quenching arising from redshifted resonances, larger quality factors and stronger confinement of light within the metal. In contrast to current wisdom, these results suggest that hyperbolic metamaterial nano-structures make poor choices for single photon sources.

  20. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...

  1. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  2. An electrically injected photon-pair source at room temperature

    CERN Document Server

    Boitier, Fabien; Autebert, Claire; Lemaître, Aristide; Galopin, Elisabeth; Manquest, Christophe; Sirtori, Carlo; Favero, Ivan; Leo, Giuseppe; Ducci, Sara

    2013-01-01

    One of the main challenges for future quantum information technologies is miniaturization and integration of high performance components in a single chip. In this context, electrically driven sources of non-classical states of light have a clear advantage over optically driven ones. Here we demonstrate the first electrically driven semiconductor source of photon pairs working at room temperature and telecom wavelength. The device is based on type-II intracavity Spontaneous Parametric Down-Conversion in an AlGaAs laser diode and generates pairs at 1.57 $\\mu$m. Time-correlation measurements of the emitted pairs give an internal generation efficiency of $7 \\times 10^{-11}$ pairs/injected electron. The capability of our platform to support generation, manipulation and detection of photons opens the way to the demonstration of massively parallel systems for complex quantum operations.

  3. Multiplexed entangled photon sources for all fiber quantum networks

    CERN Document Server

    Zhou, Yin-Hai Li Zhi-Yuan; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advantage of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all f...

  4. Extreme environmental testing of a rugged correlated photon source

    CERN Document Server

    Grieve, James A; Ling, Alexander

    2015-01-01

    Experiments in long distance quantum key distribution have motivated the development of ruggedised single photon sources, capable of producing useful correlations even when removed from the warm, nurturing environment found in most optics laboratories. As part of an ongoing pro- gramme to place such devices into low earth orbit (LEO), we have developed and built a number of rugged single photon sources based on spontaneous parametric downconversion. In order to evalu- ate device reliability, we have subjected our design to various thermal, mechanical and atmospheric stresses. Our results show that while such a device may tolerate launch into orbit, operation in orbit and casual mishandling by graduate students, it is probably unable to survive the forcible disassembly of a launch vehicle at the top of a ball of rapidly expanding and oxidising kerosene and liquid oxygen.

  5. The photon pair source that survived a rocket explosion

    CERN Document Server

    Tang, Zhongkan; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander

    2015-01-01

    We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfi?nder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff?, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems.

  6. The photon pair source that survived a rocket explosion.

    Science.gov (United States)

    Tang, Zhongkan; Chandrasekara, Rakhitha; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander

    2016-05-10

    We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfinder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems.

  7. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  8. Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Science.gov (United States)

    Kaiser, F.; Ngah, L. A.; Issautier, A.; Delord, T.; Aktas, D.; D'Auria, V.; De Micheli, M. P.; Kastberg, A.; Labonté, L.; Alibart, O.; Martin, A.; Tanzilli, S.

    2014-09-01

    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in Kaiser et al. (Laser Phys. Lett. 10 (2013) 045202).

  9. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    Science.gov (United States)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  10. Optimizing Photon Collection from Point Sources with Adaptive Optics

    Science.gov (United States)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  11. e+e- Plasma Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Hartouni, Ed P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-06

    This note addresses the idea of a photon source that is based on an e+e- plasma created by co-propagating beams of e+ and e-. The plasma has a well-defined temperature, and the thermal distribution of the charged particles is used to average over the relative velocity cross section multiplied by the relative velocity. Two relevant cross sections are the direct “free-free” annihilation of e+e- pairs in the plasma, and the radiative recombination of e+e- pairs into positronium (Ps) which subsequently undergoes annihilation.

  12. Conceptual Designs of Magnet Systems for the Taiwan Photon Source

    CERN Document Server

    Chang, Cheng-Hsiang; Chia Su, Hui; Fan, Tai-Ching; Huang, Ming-Hsiung; Hwang, Ching-Shiang; Jan, J C; Li, W P; Lin, Fu-Yuan

    2005-01-01

    The National Synchrotron Radiation Research Center (NSRRC) at Taiwan is designing a 3.0 GeV energy with ultra-low emittance storage ring for new Taiwan Photon Source (TPS) project. The storage has a circumference of 514 m with 24 periods of double-bend achromatic magnet system. The conceptual designs for each magnet family for the storage ring are optimize for operation of electron energy at 3.0- 3.3 GeV. This paper reviews the preliminary design and the key accelerator magnet issues.

  13. Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique

    Science.gov (United States)

    Berger, Vincent; Gérard, Jean-Michel

    2003-07-01

    A large number of scientific proposals in recent years are based on transport and manipulation of information using single quantum objects. Although very impressive theoretical perspectives have been envisaged, experimental demonstrations are still limited due to technological difficulties with present state-of-the-art devices. This paper presents various approaches aiming at efficient single or twin photons semiconductor sources. The emergence of these devices will be an important technological breakthrough in the field of quantum information. To cite this article: V. Berger, J.-M. Gérard, C. R. Physique 4 (2003).

  14. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  15. Pulsed energy-time entangled twin-photon source for quantum communication

    CERN Document Server

    Brendel, J; Tittel, W; Zbinden, H

    1999-01-01

    A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptography, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.

  16. Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves

    CERN Document Server

    Gonoskov, A; Bastrakov, S; Efimenko, E; Ilderton, A; Kim, A; Marklund, M; Meyerov, I; Muraviev, A; Sergeev, A

    2016-01-01

    One aim of upcoming high-intensity laser facilities is to provide new high-flux gamma-ray sources. Electromagnetic cascades may serve for this, but are known to limit both field strengths and particle energies, restricting efficient production of photons to sub-GeV energies. Here we show how to create a directed GeV photon source, enabled by a controlled interplay between the cascade and anomalous radiative trapping. Using advanced 3D QED particle-in-cell (PIC) simulations and analytic estimates, we show that the concept is feasible for planned peak powers of 10 PW level. A higher peak power of 40 PW can provide $10^9$ photons with GeV energies in a well-collimated 3 fs beam, achieving peak brilliance ${9 \\times 10^{24}}$ ph s$^{-1}$mrad$^{-2}$mm$^{-2}$/0.1${\\%}$BW. Such a source would be a powerful tool for studying fundamental electromagnetic and nuclear processes.

  17. Efficiency and Coherence of Quantum-Dot Single-Photon Sources

    DEFF Research Database (Denmark)

    Madsen, Marta Arcari

    The main goal of the project has been to realize an efficient source of coherent single photons by coupling a self-assembled quantum dot to a photonic crystal waveguide. Such a source would have a wide range of applications in the field of quantum information processing. By studying the coupling...... in a Hong-Ou-Mandel experiment. Finally, we demonstrate that a coherent quantum dot coupled to a photonic crystal waveguide is not only a promising single-photon source, but also a highly nonlinear system sensitive at the single-photon level. By performing resonant transmission measurements through...

  18. Effcient and pure femtosecond-pulse-length source of polarization-entangled photons

    CERN Document Server

    Weston, Morgan M; Wollmann, Sabine; Boston, Allen; Ho, Joseph; Shalm, Lynden K; Verma, Varun B; Allman, Michael S; Nam, Sae Woo; Patel, Raj B; Slussarenko, Sergei; Pryde, Geoff J

    2016-01-01

    We present a source of polarization entangled photon pairs based on spontaneous parametric downconversion engineered for frequency uncorrelated telecom photon generation. Our source provides photon pairs that display, simultaneously, the key properties for high-performance quantum information and fundamental quantum science tasks. Specifically, the source provides for high heralding efficiency, high quantum state purity and high entangled state fidelity at the same time. Among different tests we apply to our source we observe almost perfect non-classical interference between photons from independent sources with a visibility of $(100\\pm5)\\%$.

  19. On-chip low loss heralded source of pure single photons

    CERN Document Server

    Spring, Justin B; Metcalf, Benjamin J; Humphreys, Peter C; Moore, Merritt; Thomas-Peter, Nicholas; Barbieri, Marco; Jin, Xian-Min; Langford, Nathan K; Kolthammer, W Steven; Booth, Martin J; Walmsley, Ian A

    2013-01-01

    A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.

  20. Parametric down-conversion photon pair source on a nanophotonic chip

    CERN Document Server

    Guo, Xiang; Schuck, Carsten; Jung, Hojoong; Cheng, Risheng; Tang, Hong X

    2016-01-01

    Quantum photonic chips, which integrate quantum light sources alongside active and passive optical elements, as well as single photon detectors, show great potential for photonic quantum information processing and quantum technology. Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity. Second order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming part of linear optic experiments using bulk components but integration with waveguide circuitry on a nanophotonic chip proved to be challenging. Here we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second order nonlinearity in an Aluminum nitride microring resonator. We show the potential of our source for quantum information processing by measuring high-visibility antibunching of heralded single photons with nearly ideal state purity. Our down conversion source operates with high ...

  1. Chemical Dynamics at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.; Berrah, N.; Fadley, C.; Moore, C.B.; Neumark, D.M.; Ng, C.Y.; Ruscic, B.; Smith, N.V.; Suits, A.G.; Wodtke, A.M.

    1999-02-02

    A day-long retreat was held January 15, 1999 to chart the future directions for chemical dynamics studies at the Advanced Light Source. This represents an important period for the Chemical Dynamics Beamline, as the hardware is well-developed, most of the initial experimental objectives have been realized and the mission is now to identify the future scientific priorities for the beamline and attract users of the highest caliber. To this end, we have developed a detailed scientific program for the near term; identified and prioritized the long range scientific opportunities, identified essential new hardware, and outlined an aggressive outreach program to involve the chemical physics community.

  2. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred;

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...

  3. Fully integrated quantum photonic circuit with an electrically driven light source

    Science.gov (United States)

    Khasminskaya, Svetlana; Pyatkov, Felix; Słowik, Karolina; Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Hennrich, Frank; Kappes, Manfred M.; Gol'Tsman, G.; Korneev, A.; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P.

    2016-11-01

    Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.

  4. A bright on-demand source of indistinguishable single photons at telecom wavelengths

    CERN Document Server

    Kim, Je-Hyung; Richardson, Christopher J K; Leavitt, Richard P; Waks, Edo

    2015-01-01

    Long-distance quantum communication relies on the ability to efficiently generate and prepare single photons at telecom wavelengths. In many applications these photons must also be indistinguishable such that they exhibit interference on a beamsplitter, which implements effective photon-photon interactions. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. The cavity enhances the quantum dot emission, resulting in a nearly Gaussian transverse mode profile with high out-coupling efficiency exceeding 46%, leading to detected photon count rates that would exceed 1.5 million counts per second. We also observe Purcell enhanced spontaneous emission rate as large as 4. Using this source, we generate linearly polarized, high purity single photons at telecom-wavelength and demonstrate the indistinguishable nature o...

  5. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    CERN Document Server

    Daveau, Raphaël S; Pregnolato, Tommaso; Liu, Jin; Lee, Eun H; Song, Jin D; Verma, Varun; Mirin, Richard; Nam, Sae Woo; Midolo, Leonardo; Stobbe, Søren; Srinivasan, Kartik; Lodahl, Peter

    2016-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % $\\pm$ 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, ...

  6. All-fibre multiplexed source of high-purity heralded single photons

    CERN Document Server

    Francis-Jones, Robert J A; Mosley, Peter J

    2016-01-01

    Single photon sources based on spontaneous photon-pair generation have enabled pioneering experiments in quantum optics. However, their non-determinism presents a bottleneck to scaling up photonic and hybrid quantum-enhanced technologies. Furthermore, photon pairs are typically emitted into many correlated frequency modes, producing an undesirable mixed state on heralding. Here we present a complete fibre-integrated heralded single photon source that addresses both these difficulties simultaneously. We use active switching to provide a path to deterministic operation by multiplexing separate spontaneous sources, and dispersion engineering to minimise frequency correlation for high-purity single photon generation. All the essential elements -- nonlinear material with dispersion control, wavelength isolation, optical delay, and fast switching -- are incorporated in a low-loss alignment-free package that heralds photons in telecoms single-mode fibre. Our results demonstrate a scalable approach to delivering pure...

  7. Group IV Light Sources to Enable the Convergence of Photonics and Electronics

    Directory of Open Access Journals (Sweden)

    Shinichi eSaito

    2014-09-01

    Full Text Available Group IV lasers are expected to revolutionize chip-to-chip optical communications in terms of cost, scalability, yield, and compatibility to the existing infrastructure of silicon industries for mass production. Here, we review the current state-of-the-art developments of silicon and germanium light sources towards monolithic integration. Quantum confinement of electrons and holes in nano-structures has been the primary route for light emission from silicon, and we can use advanced silicon technologies using top-down patterning processes to fabricate these nano-structures, including fin-type vertical multiple quantum wells. Moreover, the electromagnetic environment can also be manipulated in a photonic crystal nano-cavity to enhance the efficiency of light extraction and emission by the Purcell effect. Germanium is also widely investigated as an active material in Group IV photonics, and novel epitaxial growth technologies are being developed to make a high quality germanium layer on a silicon substrate. To develop a practical germanium laser, various technologies are employed for tensile-stress engineering and high electron doping to compensate the indirect valleys in the conduction band. These challenges are aiming to contribute towards the convergence of electronics and photonics on a silicon chip.

  8. Heralded single-photon source in a III-V photonic crystal.

    Science.gov (United States)

    Clark, Alex S; Husko, Chad; Collins, Matthew J; Lehoucq, Gaelle; Xavier, Stéphane; De Rossi, Alfredo; Combrié, Sylvain; Xiong, Chunle; Eggleton, Benjamin J

    2013-03-01

    In this Letter we demonstrate heralded single-photon generation in a III-V semiconductor photonic crystal platform through spontaneous four-wave mixing. We achieve a high brightness of 3.4×10(7) pairs·s(-1) nm(-1) W(-1) facilitated through dispersion engineering and the suppression of two-photon absorption in the gallium indium phosphide material. Photon pairs are generated with a coincidence-to-accidental ratio over 60 and a low g(2) (0) of 0.06 proving nonclassical operation in the single photon regime.

  9. An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band

    CERN Document Server

    Li, X; Kumar, P; Lee, K F; Liang, C; Voss, P L; Chen, Jun; Kumar, Prem; Lee, Kim Fook; Li, Xiaoying; Liang, Chuang; Voss, Paul L.

    2006-01-01

    We demonstrate an optical-fiber based source of polarization entangled photon-pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550\\,nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally-polarized pump pulses, one propagating in the clockwise and the other in the counter-clockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon-pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contamination of the entangled photon-pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal/idler ba...

  10. Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits

    CERN Document Server

    Schaeff, Christoph; Lapkiewicz, Radek; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-01-01

    Integrated photonic circuits offer the possibility for complex quantum optical experiments in higher-dimensional photonic systems. However, the advantages of integration and scalability can only be fully utilized with the availability of a source for higher-dimensional entangled photons. Here, a novel fiber integrated source for path-entangled photons in the telecom band at 1.55\\mum using only standard fiber technology is presented. Due to the special design the source shows good scalability towards higher-dimensional entangled photonic states (quNits), while path entanglement offers direct compatibility with on-chip path encoding. We present an experimental realization of a path-entangled two-qubit source. A very high quality of entanglement is verified by various measurements, i.a. a tomographic state reconstruction is performed leading to a background corrected fidelity of (99.45+-0.06)%. Moreover, we describe an easy method for extending our source to arbitrarily high dimensions.

  11. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  12. A bright triggered twin-photon source in the solid state

    CERN Document Server

    Thoma, Alexander; Schlehahn, Alexander; Gschrey, Manuel; Schnauber, Peter; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Carmele, Alexander; Knorr, Andreas; Reitzenstein, Stephan

    2016-01-01

    A non-classical light source emitting pairs of identical photons represents a versatile resource of interdisciplinary importance with applications in quantum optics and quantum biology. Emerging research fields, which benefit from such type of quantum light source, include quantum-optical spectroscopy or experiments on photoreceptor cells sensitive to photon statistics. To date, photon twins have mostly been generated using parametric downconversion sources, relying on Poissonian number distributions, or atoms, exhibiting low emission rates. Here, we propose and experimentally demonstrate the efficient, triggered generation of photon twins using the energy-degenerate biexciton-exciton radiative cascade of a single semiconductor quantum dot. Deterministically integrated within a microlens, this nanostructure emits highly-correlated photon pairs, degenerate in energy and polarization, at a rate of up to (2.8 $\\pm$ 0.4) MHz. Two-photon interference experiments reveal a significant degree of indistinguishability ...

  13. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland;

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  14. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D.W.; Perera, R.C.C. (eds.)

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  15. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D.W.; Perera, R.C.C. [eds.

    1991-12-31

    This report discusses the following topics: Mother nature`s finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  16. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  17. Advanced active quenching circuits for single-photon avalanche photodiodes

    Science.gov (United States)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  18. Bright quantum dot single photon source based on a low Q defect cavity

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, A.;

    2014-01-01

    The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023.......The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023....

  19. SIMEX: Simulation of Experiments at Advanced Light Sources

    CERN Document Server

    Fortmann-Grote, C; Briggs, R; Bussmann, M; Buzmakov, A; Garten, M; Grund, A; Hübl, A; Hauff, S; Joy, A; Jurek, Z; Loh, N D; Rüter, T; Samoylova, L; Santra, R; Schneidmiller, E A; Sharma, A; Wing, M; Yakubov, S; Yoon, C H; Yurkov, M V; Ziaja, B; Mancuso, A P

    2016-01-01

    Realistic simulations of experiments at large scale photon facilities, such as optical laser laboratories, synchrotrons, and free electron lasers, are of vital importance for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of highly excited matter. Traditional photon science modelling takes into account only isolated aspects of an experiment, such as the beam propagation, the photon-matter interaction, or the scattering process, making idealized assumptions about the remaining parts, e.g.\\ the source spectrum, temporal structure and coherence properties of the photon beam, or the detector response. In SIMEX, we have implemented a platform for complete start-to-end simulations, following the radiation from the source, through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and its registration in...

  20. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien;

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement ...

  1. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...... be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed...... the light emission profile and the possibilities of tailoring it as well as the mechanisms governing the coherence are elucidated. The major design strategies pursued to optimize the single-photon source performance and the remaining challenges are reviewed....

  2. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  3. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal

    CERN Document Server

    Jin, H; Luo, X W; Leng, H Y; Gong, Y X; Zhu, S N

    2013-01-01

    Photonic entangled states lie at the heart of quantum science for the demonstrations of quantum mechanics foundations and supply as a key resource for approaching various quantum technologies. An integrated realization of such states will certainly guarantee a high-degree of entanglement and improve the performance like portability, stability and miniaturization, hence becomes an inevitable tendency towards the integrated quantum optics. Here, we report the compact realization of steerable photonic path-entangled states from a monolithic quadratic nonlinear photonic crystal. The crystal acts as an inherent beam splitter to distribute photons into coherent spatial modes, producing the heralded single-photon even appealing beamlike two-photon path-entanglement, wherein the entanglement is characterized by quantum spatial beatings. Such multifunctional entangled source can be further extended to high-dimensional fashion and multi-photon level as well as involved with other degrees of freedom, which paves a desir...

  4. Down-conversion source of positively spectrally correlated and decorrelated photon pairs at telecom wavelength

    CERN Document Server

    Lutz, Thomas; Jennewein, Thomas

    2012-01-01

    The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a Beta-Barium Borate (BBO) crystal cut for type-II phase matching at 1550 nm which emits photons with the positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.

  5. Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks.

    Science.gov (United States)

    Fekete, Julia; Rieländer, Daniel; Cristiani, Matteo; de Riedmatten, Hugues

    2013-05-31

    We report on a source of ultranarrow-band photon pairs generated by widely nondegenerate cavity-enhanced spontaneous down-conversion. The source is designed to be compatible with Pr(3+) solid state quantum memories and telecommunication optical fibers, with signal and idler photons close to 606 nm and 1436 nm, respectively. Both photons have a spectral bandwidth around 2 MHz, matching the bandwidth of Pr(3+) doped quantum memories. This source is ideally suited for long distance quantum communication architectures involving solid state quantum memories.

  6. Entanglement and non-locality of independent photons from mixed quantum and semiquantum sources

    CERN Document Server

    Wiegner, R; Agarwal, G S

    2010-01-01

    Following the lead experiment by Pittman and Franson [Phys. Rev. Lett. 90, 240401 (2003)] on the violations of CHSH inequalities by mixed quantum and classical sources, we quantitatively investigate violations of CHSH inequalities and Cauchy-Schwarz inequalities for a whole new class of mixed quantum and classical sources at the quantum-classical boundary. These include photon added thermal and coherent sources experimentally investigated recently by Zavatta et al. [Phys. Rev. Lett. 103, 140406 (2009)]. The key quantity in our investigation is the visibility of the corresponding photon-photon correlation function. We also resolve the question of the appropriate photon-photon correlation function to be used in the CHSH inequalities. This is crucial as in contrast to polarization degrees of freedom our signals do not involve dichotomic variables.

  7. Guided wave technology for a telecom wavelength heralded single photon source

    CERN Document Server

    Alibart, O; Ostrowsky, D B; Baldi, P; Alibart, Olivier; Tanzilli, Sebastien; Ostrowsky, Daniel Barry; Baldi, Pascal

    2004-01-01

    We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with the best probability to date of 0.38. The multi-photon emission probability is reduced by a factor of 10 compared to poissonian light sources. Relying on guided wave technologies such as integrated optics and fiber optics components, our source offers stability, compactness and efficiency and can serve as a paradigm for guided wave devices applied to quantum communication and computation using existing telecom networks.

  8. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  9. Demonstration of spectral correlation control in a source of polarization entangled photon pairs at telecom wavelength

    CERN Document Server

    Lutz, Thomas; Jennewein, Thomas

    2013-01-01

    Spectrally correlated photon pairs can be used to improve performance of long range fiber based quantum communication protocols. We present a source based on spontaneous parametric down-conversion producing polarization entangled photons without spectral filtering. In addition, the spectral correlation within the photon pair can be controlled by changing the pump pulse duration or coupled spatial modes characteristics. The spectral and polarization correlations were characterized. The generated photon pairs feature both positive spectral correlations, no correlations, or negative correlations and polarization entanglement with the fidelity as high as 0.97 (no background subtraction) with the expected Bell state.

  10. High Fidelity Down-Conversion Source for Secure Communications using On-Demand Single Photons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase II effort, AdvR will design and build an efficient, fully integrated, waveguide based, source of spectrally uncorrelated photon pairs that...

  11. Deterministic Single-Phonon Source Triggered by a Single Photon

    CERN Document Server

    Söllner, Immo; Lodahl, Peter

    2016-01-01

    We propose a scheme that enables the deterministic generation of single phonons at GHz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on-chip in an opto-mechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new opto-mechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nano-fabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.

  12. Dynamically reconfigurable directionality of plasmon-based single photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Lodahl, Peter; Koenderink, A. Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict...... that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication....

  13. Dynamically reconfigurable directionality of plasmon-based single photon sources

    CERN Document Server

    Chen, Yuntian; Koenderink, A Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication.

  14. Super-resolving multi-photon interferences with independent light sources

    CERN Document Server

    Oppel, Steffen; Kok, Pieter; von Zanthier, Joachim

    2012-01-01

    Multi-photon interferences with indistinguishable photons from independent light sources are at the focus of current research owing to their potential in optical quantum computing, creating remote entanglement for quantum computation and communication, and quantum metrology. The paradigmatic states for multi-photon interference are the highly entangled NOON states, which can be used to achieve increased resolution in spectroscopy, interferometry, lithography, and microscopy. Multi-photon interferences from independent, uncorrelated emitters can also lead to enhanced resolution in metrology and imaging. So far, such interferences have been observed with maximally two independent emitters. Here, we report multi-photon interferences with up to five independent emitters, displaying interference patterns equivalent to those of NOON states. Experimental results with independent thermal light sources confirm this NOON-like modulation. The experiment is an extension of the landmark measurement by Hanbury Brown and Tw...

  15. High photon flux XUV and soft x-ray sources enabled by high harmonic generation of high power fiber lasers

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas

    2015-07-01

    This contribution reports on the recent advances in high harmonic generation (HHG) with high power femtosecond fiber lasers at high repetition rates. The capabilities of high power fiber lasers, the challenges of phase matching in the tight-focusing regime and recent experimental results will be discussed. In particular, post compressed pules as short as 30 fs, with ~150 μJ pulse energy at 0.6 MHz repetition rate have been used for efficient HHG into the XUV. Despite the tight focusing phase matching is ensured by providing the target gas with adequately high density. A conversion efficiency in excess of 10-6 at ~30 eV has been achieved in xenon gas. This resulted in more than 100μW of average power (>1013 photons per second), which represents the highest photon flux achieved by any HHG source in this spectral region so far. In addition, further pulse compression yielded few-cycle pulses at high average power that have enabled efficient soft Xray generation in neon and helium. HHG in neon provided more than 3·109 photons/s within a 1% bandwidth at 120 eV and helium allowed for HHG up to the water window spectral region beyond 283 eV. These compact sources provide highest photon flux on a table-top and will enable exciting applications such as nanometer-resolution imaging or coincidence spectroscopy in the near future.

  16. Constraints on the photon charge based on observations of extragalactic sources

    CERN Document Server

    Kobychev, V V

    2004-01-01

    Using modern high-resolution observations of extragalactic compact radio sources we obtain an estimate of the upper bound on a photon electric charge at the level $e_{\\gamma} \\lesssim 3 \\cdot 10^{-33}$ of elementary charge (assuming the photon charge to be energy independent). This is three orders of magnitude better than the limit obtained with radio pulsar timing. Also we set a limit on a photon charge in the gamma-ray band (energies about 0.1 MeV). In future the estimate made for extragalactic sources can be significantly improved.

  17. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  19. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  20. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  1. Plug-in to Eclipse environment for VHDL source code editor with advanced formatting of text

    Science.gov (United States)

    Niton, B.; Pozniak, K. T.; Romaniuk, R. S.

    2011-10-01

    The paper describes an idea and realization of a smart plug-in to the Eclipse software environment. The plug-in is predicted for editing of the VHDL source code. It extends considerably the capabilities of the VEditor program, which bases on the open license. There are presented the results of the formatting procedures performed on chosen examples of the VHDL source codes. The work is a part of a bigger project of building smart programming environment for design of advanced photonic and electronic systems. The examples of such systems are quoted in references.

  2. Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires

    DEFF Research Database (Denmark)

    Gerard, Jean-Michel; Claudon, Julien; Bleuse, Joel;

    2014-01-01

    . By placing a tip-shaped or trumpet-like tapering at the output end of the wire, a highly directional Gaussian far-field emission pattern is obtained. More generally, a photonic wire containing a quantum dot appears as an attractive template to explore and exploit in a solid-state system the unique optical...

  3. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  4. A review on single photon sources in silicon carbide

    Science.gov (United States)

    Lohrmann, A.; Johnson, B. C.; McCallum, J. C.; Castelletto, S.

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  5. Hybrid microfiber-lithium-niobate nanowaveguide structures as high-purity heralded single-photon sources

    Science.gov (United States)

    Main, Philip; Mosley, Peter J.; Ding, Wei; Zhang, Lijian; Gorbach, Andrey V.

    2016-12-01

    We propose a compact, fiber-integrated architecture for photon-pair generation by parametric downconversion with unprecedented flexibility in the properties of the photons produced. Our approach is based on a thin-film lithium niobate nanowaveguide, evanescently coupled to a tapered silica microfiber. We demonstrate how controllable mode hybridization between the fiber and waveguide yields control over the joint spectrum of the photon pairs. We also investigate how independent engineering of the linear and nonlinear properties of the structure can be achieved through the addition of a tapered, proton-exchanged layer to the waveguide. This allows further refinement of the joint spectrum through custom profiling of the effective nonlinearity, drastically improving the purity of the heralded photons. We give details of a source design capable of generating heralded single photons in the telecom wavelength range with purity of at least 0.95, and we provide a feasible fabrication methodology.

  6. Cavity-QED entangled photon source based on two truncated Rabi oscillations

    CERN Document Server

    Garcia-Maraver, R; Corbalán, R; Mompart, J

    2006-01-01

    We discuss a cavity-QED scheme to deterministically generate entangled photons pairs by using a three-level atom successively coupled to two single longitudinal mode high-Q cavities presenting polarization degeneracy. The first cavity is prepared in a well defined Fock state with two photons with opposite circular polarizations while the second cavity remains in the vacuum state. A half-of-a-resonant Rabi oscillation in each cavity transfers one photon from the first to the second cavity, leaving the photons entangled in their polarization degree of freedom. The feasibility of this implementation and some practical considerations are discussed for both, microwave and optical regimes. In particular, Monte Carlo wave function simulations have been performed with state-of-the-art parameter values to evaluate the success probability of the cavity-QED source in producing entangled photon pairs as well as its entanglement capability.

  7. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    Energy Technology Data Exchange (ETDEWEB)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr., C.R.; Schmid, A.W.; Marshall, K.L.

    2006-08-18

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time.

  8. Advanced Light Source activity report 1996/97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  9. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  10. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  11. Deep UV Semiconductor Sources for Advanced Planetary Science Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for miniature, narrow-linewidth, deep UV optical sources that operate at very low ambient temperatures for use in advanced in situ...

  12. New results in atomic physics at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  13. A gallium nitride single-photon source operating at 200 K.

    Science.gov (United States)

    Kako, Satoshi; Santori, Charles; Hoshino, Katsuyuki; Götzinger, Stephan; Yamamoto, Yoshihisa; Arakawa, Yasuhiko

    2006-11-01

    Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III-V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

  14. Narrow bandwidth Thomson photon source development using Laser-Plasma Accelerators

    Science.gov (United States)

    Geddes, C. G. R.; van Tilborg, J.; Tsai, H.-E.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Rykovanov, S. G.; Grote, D. P.; Friedman, A.; Leemans, W. P.

    2016-10-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs). An independent scattering laser with controlled pulse shaping in frequency and amplitude can be used together with laser guiding to realize high photon yield and narrow bandwidth. Simulations are presented on production of controllable narrow bandwidth sources using the beam and plasma capabilities of LPAs. Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV Thomson sources. Design of experiments and laser capabilities to combine these elements will be presented, towards a compact photon source system. A dedicated facility under construction will be described. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  15. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures

    Science.gov (United States)

    Fedyanin, D. Yu; Agio, M.

    2016-07-01

    The recently demonstrated electroluminescence of color centers in diamond makes them one of the best candidates for room temperature single-photon sources. However, the reported emission rates are far off what can be achieved by state-of-the-art electrically driven epitaxial quantum dots. Since the electroluminescence mechanism has not yet been elucidated, it is not clear to what extent the emission rate can be increased. Here we develop a theoretical framework to study single-photon emission from color centers in diamond under electrical pumping. The proposed model comprises electron and hole trapping and releasing, transitions between the ground and excited states of the color center as well as structural transformations of the center due to carrier trapping. It provides the possibility to predict both the photon emission rate and the wavelength of emitted photons. Self-consistent numerical simulations of the single-photon emitting diode based on the proposed model show that the photon emission rate can be as high as 100 kcounts s-1 at standard conditions. In contrast to most optoelectronic devices, the emission rate steadily increases with the device temperature achieving of more than 100 Mcount s-1 at 500 K, which is highly advantageous for practical applications. These results demonstrate the potential of color centers in diamond as electrically driven non-classical light emitters and provide a foundation for the design and development of single-photon sources for optical quantum computation and quantum communication networks operating at room and higher temperatures.

  16. Light source design using Kagome-lattice hollow core photonic crystal fibers

    Science.gov (United States)

    Hossain, Md. Anwar; Namihira, Yoshinori

    2014-09-01

    Supercontinuum (SC) light source is designed using high pressure Xe-filled hollow core Kagome-lattice photonic crystal fiber. Using finite element method with perfectly matched layer, SC spectra in normal chromatic dispersion region have been generated using picosecond optical pulses from relatively less expensive laser sources.

  17. Photon flux and spectrum of {gamma}-rays Compton sources

    Energy Technology Data Exchange (ETDEWEB)

    Petrillo, V., E-mail: Petrillo@mi.infn.it [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Bacci, A. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Ben Ali Zinati, R. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Chaikovska, I. [LAL Universite Paris-Sud IN2P3/CNRS, Orsay-Ville (France); Curatolo, C. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Ferrario, M. [LNF, INFN Via E.Fermi, 40 Frascati, Roma (Italy); Maroli, C. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Ronsivalle, C. [ENEA Via E.Fermi, 45 Frascati, Roma (Italy); Rossi, A.R.; Serafini, L. [INFN Milano, Via Celoria, 16 20133 Milano (Italy); Tomassini, P. [Universita degli Studi di Milano, Via Celoria, 16 20133 Milano (Italy); Vaccarezza, C. [LNF, INFN Via E.Fermi, 40 Frascati, Roma (Italy); Variola, A. [LAL Universite Paris-Sud IN2P3/CNRS, Orsay-Ville (France)

    2012-11-21

    We analyze the characteristics of the {gamma} radiation produced by Compton back-scattering of a high brightness electron beam produced by a photoinjector and accelerated in a linac up to energies of 360-720 MeV and a laser operated at about 500 nm, by comparing classical and quantum models and codes. The interaction produces {gamma} rays in the range 4.9-18.8 MeV. In view of the application to nuclear resonance fluorescence a relative bandwidth of few 10{sup -3} is needed. The bandwidth is reduced by taking advantage of the frequency-angular correlation typical of the phenomenon and selecting the radiation in an angle of tens of {mu}rads. The foreseen spectral density is 20-6 photons per eV in a single shot, a number that can be increased by developing multi-bunch techniques and laser recirculation. In this way a final value of 10{sup 4} photon per eV per second can be achieved.

  18. Photon flux and spectrum of γ-rays Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Ben Alì Zinati, R.; Chaikovska, I.; Curatolo, C.; Ferrario, M.; Maroli, C.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Variola, A.

    2012-11-01

    We analyze the characteristics of the γ radiation produced by Compton back-scattering of a high brightness electron beam produced by a photoinjector and accelerated in a linac up to energies of 360-720 MeV and a laser operated at about 500 nm, by comparing classical and quantum models and codes. The interaction produces γ rays in the range 4.9-18.8 MeV. In view of the application to nuclear resonance fluorescence a relative bandwidth of few 10-3 is needed. The bandwidth is reduced by taking advantage of the frequency-angular correlation typical of the phenomenon and selecting the radiation in an angle of tens of μrads. The foreseen spectral density is 20-6 photons per eV in a single shot, a number that can be increased by developing multi-bunch techniques and laser recirculation. In this way a final value of 104 photon per eV per second can be achieved.

  19. Tuneable on-demand single-photon source in the microwave range

    Science.gov (United States)

    Peng, Z. H.; de Graaf, S. E.; Tsai, J. S.; Astafiev, O. V.

    2016-08-01

    An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65-80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing.

  20. A micrometer-scale integrated silicon source of time-energy entangled photons

    CERN Document Server

    Grassani, Davide; Liscidini, Marco; Galli, Matteo; Strain, Michael J; Sorel, Marc; Sipe, J E; Bajoni, Daniele

    2014-01-01

    Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip but the sources demonstrated so far require millimeter lengths and pump powers of the order of hundreds of mWs to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been demonstrated. Here we report the first demonstration of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell's inequality by as much as 11 standard deviations. The source is integrated on a silicon chip, operates at sub-mW pump power, emits in the telecom band with a pair generation rate exceeding 10$^7$ Hz per $nm$, and outputs into a photonic waveguide. These are all essential features of an entangled states emitter for a quantum photonic networks.

  1. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    Science.gov (United States)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  2. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    Science.gov (United States)

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  3. Development and design of advanced two-photon microscope used in neuroscience

    Science.gov (United States)

    Doronin, M. S.; Popov, A. V.

    2016-08-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners.

  4. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  5. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  6. Automatic Quenching of High Energy gamma-ray Sources by Synchrotron Photons

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, Lukasz; /KIPAC, Menlo Park /SLAC /Jagiellonian U., Astron. Observ.; Kirk, John; /Heidelberg, Max Planck Inst.

    2007-02-02

    Here we investigate evolution of a magnetized system, in which continuously produced high energy emission undergoes annihilation on a soft photon field, such that the synchrotron radiation of the created electron-positron pairs increases number density of the soft photons. This situation is important in high energy astrophysics, because, for an extremely wide range of magnetic field strengths (nano to mega Gauss), it involves {gamma}-ray photons with energies between 0.3GeV and 30TeV. We derive and analyze the conditions for which the system is unstable to runaway production of soft photons and ultrarelativistic electrons, and for which it can reach a steady state with an optical depth to photon-photon annihilation larger than unity, as well those for which efficient pair loading of the emitting volume takes place. We also discuss the application of our analysis to a realistic situation involving astrophysical sources of a broad-band {gamma}-ray emission and briefly consider the particular case of sources close to active supermassive black holes.

  7. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip.

    Science.gov (United States)

    Silverstone, J W; Santagati, R; Bonneau, D; Strain, M J; Sorel, M; O'Brien, J L; Thompson, M G

    2015-08-06

    Entanglement--one of the most delicate phenomena in nature--is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale.

  8. Bright source of spectrally pure polarization-entangled photons with nearly single-mode emission

    CERN Document Server

    Evans, P G; Bennink, R S; Grice, W P; Humble, T S

    2010-01-01

    We present results of a bright entangled photon source operating at 1552 nm via type-II collinear degenerate spontaneous parametric down-conversion in periodically poled KTP crystal. We report a conservative inferred pair generation rate of 44,000/s/mW into collection modes. Minimization of spectral and spatial entanglement was achieved by group velocity matching the pump, signal and idler modes and through properly focusing the pump beam. By utilizing a pair of calcite beam displacers, we are able to overlap photons from adjacent collinear sources to obtain polarization-entanglement visibility of 94.7 +/- 1.1% with accidentals subtracted.

  9. Quantum key distribution system in standard telecommunications fiber using a short wavelength single-photon source

    CERN Document Server

    Collins, R J; Fernandez, V; Gordon, K J; Makhonin, M N; Timpson, J A; Tahraoui, A; Hopkinson, M; Fox, A M; Skolnick, M S; Buller, G S; 10.1063/1.3327427

    2010-01-01

    A demonstration of the principles of quantum key distribution is performed using a single-photon source in a proof of concept test-bed over a distance of 2 km in standard telecommunications optical fiber. The single-photon source was an optically-pumped quantum dot in a microcavity emitting at a wavelength of 895 nm. Characterization of the quantum key distribution parameters was performed at a range of different optical excitation powers. An investigation of the effect of varying the optical excitation power of the quantum dot microcavity on the quantum bit error rate and cryptographic key exchange rate of the system are presented.

  10. Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    CERN Document Server

    Li, X; Sharping, J E; Kumar, P; Li, Xiaoying; Voss, Paul L.; Sharping, Jay E.; Kumar, Prem

    2005-01-01

    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.

  11. Practical non-orthogonal decoy state quantum key distribution with heralded single photon source

    Institute of Scientific and Technical Information of China (English)

    Mi Jing-Long; Wang Fa-Qiang; Lin Qing-Qun; Liang Rui-Sheng

    2008-01-01

    Recently the performance of the quantum key distribution (QKD) is substantially improved by the decoy state method and the non-orthogonal encoding protocol, separately. In this paper, a practical non-orthogonal decoy state protocol with a heralded single photon source (HSPS) for QKD is presented. The protocol is based on 4 states with different intensities, i.e. one signal state and three decoy states. The signal state is for generating keys; the decoy states arc for detecting the eavesdropping and estimating the fraction of single-photon and two-photon pulses. We have discussed three cases of this protocol, i.e. the general case, the optimal case and the special case. Moreover, the final key rate over transmission distance is simulated. For the low dark count of the HSPS and the utilization of the two-photon pulses, our protocol has a higher key rate and a longer transmission distance than any other decoy state protocol.

  12. Ultrafast room temperature single-photon source from nanowire-quantum dots.

    Science.gov (United States)

    Bounouar, S; Elouneg-Jamroz, M; Hertog, M den; Morchutt, C; Bellet-Amalric, E; André, R; Bougerol, C; Genuist, Y; Poizat, J-Ph; Tatarenko, S; Kheng, K

    2012-06-13

    Epitaxial semiconductor quantum dots are particularly promising as realistic single-photon sources for their compatibility with manufacturing techniques and possibility to be implemented in compact devices. Here, we demonstrate for the first time single-photon emission up to room temperature from an epitaxial quantum dot inserted in a nanowire, namely a CdSe slice in a ZnSe nanowire. The exciton and biexciton lines can still be resolved at room temperature and the biexciton turns out to be the most appropriate transition for single-photon emission due to a large nonradiative decay of the bright exciton to dark exciton states. With an intrinsically short radiative decay time (≈300 ps) this system is the fastest room temperature single-photon emitter, allowing potentially gigahertz repetition rates.

  13. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    Science.gov (United States)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  14. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

    NARCIS (Netherlands)

    Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E.

    2012-01-01

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4V, with 30 % PDP at wavelengths from 520

  15. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    Science.gov (United States)

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  16. Photon-monitoring attack on continuous-variable quantum key distribution with source in middle

    Science.gov (United States)

    Wang, Yijun; Huang, Peng; Guo, Ying; Huang, Dazu

    2014-12-01

    Motivated by a fact that the non-Gaussian operation may increase entanglement of an entangled system, we suggest a photon-monitoring attack strategy in the entanglement-based (EB) continuous-variable quantum key distribution (CVQKD) using the photon subtraction operations, where the entangled source originates from the center instead of one of the legal participants. It shows that an eavesdropper, Eve, can steal large information from participants after intercepting the partial beams with the photon-monitoring attach strategy. The structure of the proposed CVQKD protocol is useful in simply analyzing how quantum loss in imperfect channels can decrease the performance of the CVQKD protocol. The proposed attack strategy can be implemented under current technology, where a newly developed and versatile no-Gaussian operation can be well employed with the entangled source in middle in order to access to mass information in the EB CVQKD protocol, as well as in the prepare-and-measure (PM) CVQKD protocol.

  17. Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

    Science.gov (United States)

    Benedikter, Julia; Kaupp, Hanno; Hümmer, Thomas; Liang, Yuejiang; Bommer, Alexander; Becher, Christoph; Krueger, Anke; Smith, Jason M.; Hänsch, Theodor W.; Hunger, David

    2017-02-01

    Single-photon sources are an integral part of various quantum technologies, and solid-state quantum emitters at room temperature appear to be a promising implementation. We couple the fluorescence of individual silicon-vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single-photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as 3.4 λ3 and a quality factor of 1.9 ×1 04 and observe an effective Purcell factor of up to 9.2. Furthermore, we study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single-photon rates beyond 1 GHz.

  18. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs

    CERN Document Server

    Herrmann, Harald; Thomas, Abu; Poppe, Andreas; Sohler, Wolfgang; Silberhorn, Christine

    2013-01-01

    We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating -- consisting of an interlaced bi-periodic structure -- is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of $B=7\\times10^3$ pairs/(s mW GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95% and a violation of the Bell inequality with $S=2.57\\pm0.06$ could be demonstrated.

  19. A high-temperature single-photon source from nanowire quantum dots.

    Science.gov (United States)

    Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak

    2008-12-01

    We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

  20. Plasmonic resonators for enhanced diamond NV- center single photon sources

    OpenAIRE

    Bulu, Irfan; Babinec, Thomas; Hausmann, Birgit; Choy, Jennifer T.; Loncar, Marko

    2011-01-01

    We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp ~ 50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30nm), and ...

  1. High intensity polarization entangled source with a 2D nonlinear photonic crystal

    DEFF Research Database (Denmark)

    Wang, Qin

    2009-01-01

    We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...

  2. QUANTUM CRYPTOGRAPHY SYSTEM WITH A SINGLE PHOTON SOURCE BASED ON THE SPONTANEOUS PARAMETRIC SCATTERING EFFECT

    Directory of Open Access Journals (Sweden)

    V. I. Egorov

    2012-01-01

    Full Text Available A scheme of a single photon source for quantum informatics applications based on the spontaneous parametric scattering effect is proposed and a quantum cryptography setup using it is presented. The system is compared to the alternative ones that operate with attenuated classic light.

  3. Faint laser pulses versus a single-photon source in free space quantum cryptography

    Science.gov (United States)

    Molotkov, S. N.; Potapova, T. A.

    2016-03-01

    In this letter we present estimates for the distance of secret key transmission through free space for three different protocols of quantum key distribution: for BB84 and phase time-coding protocols in the case of a strictly single-photon source, and for the relativistic quantum key distribution protocol in the case of faint laser pulses.

  4. Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications

    Science.gov (United States)

    Jiang, Qianqing; Li, Wuxia; Tang, Chengchun; Chang, Yanchun; Hao, Tingting; Pan, Xinyu; Ye, Haitao; Li, Junjie; Gu, Changzhi

    2016-11-01

    Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source. Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.

  5. U60 Undulator: An Insertion Device for the Siam Photon Source

    OpenAIRE

    Thananchai DASRI

    2011-01-01

    Properties of insertion device, undulators, for the synchrotron light source are reviewed. Undulators are magnetic devices installed in the storage ring to improve the properties of the synchrotron light. First, the ideal simulated undulator fields will be discussed. Later the simulated fields produced by a defective undulator will be shown. Last, their effects on the stored electron beam are presented. The U60 undulator of the Siam Photon Source is used as an example.

  6. U60 Undulator: An Insertion Device for the Siam Photon Source

    Directory of Open Access Journals (Sweden)

    Thananchai DASRI

    2011-01-01

    Full Text Available Properties of insertion device, undulators, for the synchrotron light source are reviewed. Undulators are magnetic devices installed in the storage ring to improve the properties of the synchrotron light. First, the ideal simulated undulator fields will be discussed. Later the simulated fields produced by a defective undulator will be shown. Last, their effects on the stored electron beam are presented. The U60 undulator of the Siam Photon Source is used as an example.

  7. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  8. Laser-plasma accelerator and femtosecond photon sources-based ultrafast radiation chemistry and biophysics

    Science.gov (United States)

    Gauduel, Y. A.

    2017-02-01

    The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm‑2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5–150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10‑14–10‑11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011–1013 Gy s‑1) can be used to investigate early radiation processes in native ionization tracks, down to 10‑12 s and 10‑9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of

  9. Advances in Multi-Pixel Photon Counter technology: First characterization results

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G., E-mail: gbonanno@oact.inaf.it [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M.C. [INAF, Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G. [INAF, Istituto di Astrofisica Spaziale e Fisica cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo Italy (Italy)

    2016-01-11

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280–320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  10. Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation

    CERN Document Server

    Rashidinejad, Amir; Weiner, Andrew M

    2015-01-01

    This paper reviews recent advances in photonic-assisted radio-frequency arbitrary waveform generation (RF-AWG), with emphasis on programmable ultrabroadband microwave and millimeter-wave waveforms. The key enabling components in these techniques are programmable optical pulse shaping, frequency-to-time mapping via dispersive propagation, and high-speed photodetection. The main advantages and challenges of several different photonic RF-AWG schemes are discussed. We further review some proof-of-concept demonstrations of ultrabroadband RF-AWG applications, including high-resolution ranging and ultrabroadband non-line-of-sight channel compensation. Finally, we present recent progress toward RF-AWG with increased time aperture and time-bandwidth product.

  11. A high-brightness source of polarization-entangled photons optimized for applications in free space

    CERN Document Server

    Steinlechner, Fabian; Jofre, Marc; Weier, Henning; Perez, Daniel; Jennewein, Thomas; Ursin, Rupert; Rarity, John; Mitchell, Morgan W; Torres, Juan P; Weinfurter, Harald; Pruneri, Valerio; 10.1364/OE.20.009640

    2012-01-01

    We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.

  12. Electrically Driven InAs Quantum-Dot Single-Photon Sources

    Institute of Scientific and Technical Information of China (English)

    XIONG Yong-Hua; NIU Zhi-Chuan; DOU Xiu-Ming; SUN Bao-Quan; HUANG She-Song; NI Hai-Qiao; DU Yun; XIA Jian-Bai

    2009-01-01

    Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AIGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by Ⅰ-Ⅴ curve and electroluminescence, and a single sharp exciton emission line at 966 nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80 K

  13. Advanced Light Source Activity Report 1997/1998

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Annette (ed.)

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  14. Advanced light source, User`s Handbook, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  15. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  16. A Transformative Imaging Capability Using Laser Driven Multi MeV Photon Sources

    Science.gov (United States)

    Gautier, Donald; Espy, Michelle; Palaniyappan, Sasi; Mendez, Jacob; Nelson, Ronald; Hunter, James; Fernandez, Juan; los alamos national laboratory Team

    2016-10-01

    Recent results from the LANL Trident Laser demonstrate the practical use of a laser of this class ( 70 J, 600 fs) as a multi MeV photon source. The utilization of novel targets operating in the relativistic transparency regime of laser-plasmas has enabled this development. The electron population made from these targets, when coupled to a suitable high-Z converter foil placed near the laser target, produces an intense >1 MeV photon source with a small source size compared to conventional sources. When coupled with efficient imaging detectors, this laser-driven hard x-ray source provides new capabilities to address current non-destructive and dynamic testing problems that require a quantum jump in resolution. ``Flash'' (pulse picosecond) photon imaging, micro-focus resolution enhancement, good object penetration, and magnification (4x) with sufficient dose (>10 Rad/sr) for practical application have all been demonstrated at the LANL Trident Laser, as summarized in this presentation.

  17. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  18. Boîtes quantiques II-VI comme sources de photons uniques

    Science.gov (United States)

    Couteau, C.; Moehl, S.; Tinjod, F.; Suffczynski, J.; Romestain, R.; Vial, J.-C.; Gérard, J.-M.; Kheng, K.; Poizat, J.-P.

    2004-11-01

    Dans le cadre de l'information et de la communication quantique, la nécessité d'avoir des photons uniques monomodes et à la demande se révèle cruciale. De récents travaux théoriques ont montré la possibilité de réaliser des portes logiques quantiques n'utilisant que de l'optique linéaire. C'est dans ce contexte que s'insère notre travail sur l'élaboration et l'utilisation de boîtes quantiques semi-conductrices II-VI comme “pistolet” à photons. Des expériences de dégroupement et d'interférences à 2 photons sont les premiers pas nécessaires pour caractériser notre source.

  19. Towards a deterministic single-photon source by Rydberg FWM effect in a thermal microcell

    Science.gov (United States)

    Chen, Yi-Hsin; Ripka, Fabian; Löw, Robert; Pfau, Tilman

    2015-05-01

    The generation and manipulation of single photons are the key ingredients for the photonic-based quantum security communication and information processing. One promising candidate to realize the on-demand single-photon source is based on the combination of four-wave-mixing (FWM) and Rydberg blockade effects in a micrometer scale thermal microcell. Similar to our past studies of coherent Rydberg dynamics and van-der Waals interaction in a three-level system, we implement a pulsed FWM scheme to observe both coherent dynamics and effects of dephasing due to Rydberg-Rydberg interaction. Furthermore, we investigate the effects of the excitation volume by use of low- and high- NA optics and spatial confinement. We discuss prospects for the generation of non-classical light. AvH; ERC; BMBF.

  20. Advances in the FDTD design and modeling of nano- and bio-photonics applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Tuchin, Valery; Cheben, Pavel

    2011-01-01

    In this paper we focus on the discussion of two recent unique applications of the finite-difference time-domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology...... to the modeling of biophotonics applications including optical phase contrast microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) as well as its potential application as a modality for in vivo flow cytometry configurations. The conclusion provides a justification for the selection of the two...

  1. Theory of single photon on demand from a single molecule source.

    Science.gov (United States)

    He, Yong; Barkai, Eli

    2006-11-21

    We consider the theory of single photon on demand from a two level atom or molecule source. Using optical Bloch equations and the generating function formalism we investigate three approaches to single photon control: (i) the square laser pulse; (ii) the square modulation of absorption frequency; and (iii) the rapid adiabatic following approach investigated in the experiments of Brunel et al., Phys. Rev. Lett., 1999, 83, 2722. We discuss the conditions for obtaining the maximum of the probability of emission of a single photon and a pair of photons, under the constrains of finite field strength and finite interaction time with excitation field. We obtain analytical expression for the probability of emitting zero, one, and two photons for the square pulse, and discuss semi-classical and strongly quantum limiting cases. Numerical results obtained from the generating function formalism are compared with experimental results showing that the two level system approach is suitable for the description of cryogenic temperature single molecules, and that experiments were conducted very close to the optimal conditions.

  2. Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources

    Science.gov (United States)

    Barbier, M.; Zaquine, I.; Delaye, P.

    2015-05-01

    We experimentally demonstrate, for the first time to our knowledge, the generation of correlated photon pairs in a liquid-core photonic crystal fiber. Moreover, we show that, thanks to the specific Raman properties of liquids, the Raman noise (which is the main limitation of the performance of silica-core fiber-based correlated photon pair sources) is highly reduced. With a demonstrated coincident-to-accidental ratio equal to 63 and a pair generation efficiency of about 10-4 per pump pulse, this work contributes to the development of high-quality correlated photon pair sources for quantum communications.

  3. Spontaneous four-wave mixing in liquid-core fibers: Towards fibered Raman-free correlated photon sources

    CERN Document Server

    Barbier, M; Delaye, P

    2015-01-01

    We experimentally demonstrate, for the first time to our knowledge, the generation of correlated photon pairs in a liquid-core photonic crystal fiber. Moreover, we show that, thanks to the specific Raman properties of liquids, the Raman noise (which is the main limitation of the performance of silica-core fiber-based correlated photon pair sources) is highly reduced. With a demonstrated coincident-to-accidental ratio equal to 63 and a pair generation efficiency of about 10$^{-4}$ per pump pulse, this work opens the way for the development of high quality correlated photon pair sources for quantum communications.

  4. Photonic forces in the near field of statistically homogeneous fluctuating sources

    CERN Document Server

    Aunon, Juan Miguel

    2012-01-01

    Electromagnetic sources, as e.g. lasers, antennas, diffusers or thermal sources, produce a wavefield that interacts with objects to transfer them its momentum. We show that the photonic force exerted on a small particle in the near field of a planar statistically homogeneous fluctuating source uniquely depends and acts along the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent components of the emitted field, its sign being opposite to that of the real part of the particle polarizability. The non-conservative force part is uniquely due to the propagating components, being repulsive and constant. Also, the source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons in the source surface drastically enhances the gradient force. Hence, partially coherent wavefields from fluctuating sources constitute new concepts for particle manipulation at the subwavelength scale

  5. AREAL test facility for advanced accelerator and radiation source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Amatuni, G.A.; Amirkhanyan, Z.G.; Aslyan, L.V.; Avagyan, V.Sh.; Danielyan, V.A.; Davtyan, H.D.; Dekhtiarov, V.S.; Gevorgyan, K.L.; Ghazaryan, N.G.; Grigoryan, B.A.; Grigoryan, A.H.; Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutiunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Ivanyan, M.I.; Khachatryan, V.G.; Laziev, E.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Manukyan, P.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Margaryan, I.N.; Markosyan, T.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); and others

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  6. Analysis of arbitrary defects in photonic crystals by use of the source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2004-07-01

    A novel method derived from the source-model technique is presented to solve the problem of scattering of an electromagnetic plane wave by a two-dimensional photonic crystal slab that contains an arbitrary defect (perturbation). In this method, the electromagnetic fields in the perturbed problem are expressed in terms of the field due to the periodic currents obtained from a solution of the corresponding unperturbed problem plus the field due to yet-to-be-determined correction current sources placed in the vicinity of the perturbation. Appropriate error measures are suggested, and a few representative structures are presented and analyzed to demonstrate the versatility of the proposed method and to provide physical insight into waveguiding and defect coupling mechanisms typical of finite-thickness photonic crystal slabs.

  7. ESRF-type lattice design and optimization for the High Energy Photon Source

    Science.gov (United States)

    Xu, Gang; Jiao, Yi; Peng, Yue-Mei

    2016-02-01

    A new generation of storage ring-based light sources, called diffraction-limited storage rings (DLSRs), with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices, has attracted extensive studies worldwide. Among various DLSR proposals, the hybrid multi-bend achromat concept developed at the European Synchrotron Radiation Facility (ESRF) predicts an effective way of minimizing the emittance while keeping the required chromatic sextupole strengths to an achievable level. For the High Energy Photon Source planned to be built in Beijing, an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm·rad with a circumference of about 1296 m. Sufficient dynamic aperture, allowing vertical on-axis injection, and moderate momentum acceptance are achieved simultaneously for a promising ring performance. Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

  8. Tunable Ultrafast Photon Source and Imaging System for Studying Carrier Dynamics in Graphene Devices

    Science.gov (United States)

    2015-07-23

    Tunable ultrafast photon source and imaging system for studying carrier dynamics in graphene devices This project enabled the acquisition of a...and imaging system for studying carrier dynamics in graphene devices Report Title This project enabled the acquisition of a optical parametric...carrier dynamics in graphene devices As discussed below the focus of this DURIP project was on understanding the interaction between electrons, holes

  9. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  10. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  11. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    CERN Document Server

    Schunk, Gerhard; Strekalov, Dmitry V; Förtsch, Michael; Sedlmeir, Florian; Schwefel, Harald G L; Göbelt, Manuela; Christiansen, Silke; Leuchs, Gerd; Marquardt, Christoph

    2015-01-01

    Photon-atom coupling, in particular for proposed quantum repeater schemes, requires pure and versatile sources of quantum light. Here we demonstrate coupling to alkali dipole transitions in the near-infrared with a tunable source of photon pairs generated via spontaneous parametric down-conversion in a whispering-gallery mode resonator (WGMR). We have developed novel wavelength tuning mechanisms, which allow for a coarse step-wise central wavelength tuning from 790 nm to 1630 nm as well as continuous tuning with MHz resolution. We demonstrate the compatibility of our source with atomic transitions, such as the D1 line of rubidium at 795 nm (idler at 1608 nm) and cesium at 895\\,nm (idler at 1312 nm). At the cesium D1 transition, we exemplarily show a continuous scanning of the signal wavelength over the Doppler-broadened absorption line, and finally a heralded single photon spectroscopy of the atomic decay. Providing this flexibility in connecting various atomic transitions with telecom wavelengths, we demonst...

  12. Intense Combined Source of Neutrons and Photons for Interrogation Based on Compact Deuteron RF Accelerator

    Science.gov (United States)

    Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.

    Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (108/s at 2.5 MeV, 1010/s at 14.1 MeV) and of photons (>1012/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n)12C(γ15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target. The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements [Taddeucci et al. (2007)], indicate that the required fluxes of both neutrons and photons can be achieved at ∼1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full- system implementation.

  13. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  14. Large-scale photonic integration for advanced all-optical routing functions

    Science.gov (United States)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  15. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  16. Multiplexed entangled photon-pair sources for all-fiber quantum networks

    Science.gov (United States)

    Li, Yin-Hai; Zhou, Zhi-Yuan; Xu, Zhao-Huai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-10-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multichannel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.

  17. Multiplexed entangled photon-pair sources for all-fiber quantum networks

    Science.gov (United States)

    Zhou, Zhi-Yuan; Li, Yin-Hai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-11-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multi-channel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.

  18. Deep-blue supercontinuum light sources based on tapered photonic crystal bres

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft

    in the deep-blue by optimising the fibre structure. To this end, we fabricate the first single-mode high air-fill fraction photonic crystal fibre for blue-extended supercontinuum sources. The mechanisms of supercontinuum broadening are highly sensitive to noise, and the inherent shot-to-shot variations...... of the noise across the spectrum. We further investigate the possibilities of reducing the spectral noise by modulating the pump with a weak seed, which makes the broadening dynamics increasingly deterministic rather than driven by noisy modulation instability. Particular attention is paid to the commercially...... relevant high power regime. Finally, we examine passive noise reduction in photonic crystal fibres with longitudinally varying air hole structures....

  19. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons

    CERN Document Server

    Autebert, Claire; Martin, Anthony; Lemaître, Aristide; Carbonell, Carmen Gomez; Favero, Ivan; Leo, Giuseppe; Zbinden, Hugo; Ducci, Sara

    2015-01-01

    The generation of nonclassical states of light in miniature chips is a crucial step towards practical implementations of future quantum technologies. Semiconductor materials are ideal to achieve extremely compact and massively parallel systems and several platforms are currently under development. In this context, spontaneous parametric down conversion in AlGaAs devices combines the advantages of room temperature operation, possibility of electrical injection and emission in the telecom band. Here we report on a chip-based AlGaAs source, producing indistinguishable and energy-time entangled photons with a brightness of $7.2\\times10^6$ pairs/s and a signal-to-noise ratio of $141\\pm12$. Indistinguishability between the photons is demonstrated via a Hong-Ou-Mandel experiment with a visibility of $89\\pm3\\%$, while energy-time entanglement is tested via a Franson interferometer leading to a value for the Bell parameter $ S=2.70\\pm0.10$.

  20. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    Science.gov (United States)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  1. Mission analysis and performance comparison for an Advanced Solar Photon Thruster

    Science.gov (United States)

    Dachwald, Bernd; Wurm, Patrick

    2011-12-01

    The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT), which does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. After having presented the equations that describe the force on the ASPT and after having performed a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: an Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large change in orbital eccentricity is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2 mm/s 2. Our results show that an SPT is not superior to the flat solar sail unless very idealistic assumptions are made.

  2. Free-Space Quantum Key Distribution with a High Generation Rate Potassium Titanyl Phosphate Waveguide Photon-Pair Source

    Science.gov (United States)

    Wilson, Jeffrey D.; Chaffee, Dalton W.; Wilson, Nathaniel C.; Lekki, John D.; Tokars, Roger P.; Pouch, John J.; Roberts, Tony D.; Battle, Philip; Floyd, Bertram M.; Lind, Alexander J.; Cavin, John D.; Helmick, Spencer R.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The fully integrated photon-pair source consists of a 1064-nanometer pump diode laser, fiber-coupled to a dual element waveguide within which a pair of 1064-nanometer photons are up-converted to a single 532-nanometer photon in the first stage. In the second stage, the 532-nanometer photon is down-converted to an entangled photon-pair at 800 nanometer and 1600 nanometer which are fiber-coupled at the waveguide output. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. This is a significant step towards the long term goal of developing sources for high-rate Quantum Key Distribution (QKD) to enable Earth-space secure communications. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  3. Advances and challenges in cryo ptychography at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J. [Applied Physics, Northwestern University, Evanston IL 60208 (United States); Vine, D. J.; Chen, S.; Vogt, S. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Nashed, Y. S. G.; Peterka, T. [Mathematics and Computing Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Jin, Q. [Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208 (United States); Jacobsen, C. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics & Astronomy and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States)

    2016-01-28

    Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography.

  4. Advances and challenges in cryo ptychography at the Advanced Photon Source

    Science.gov (United States)

    Deng, J.; Vine, D. J.; Chen, S.; Nashed, Y. S. G.; Jin, Q.; Peterka, T.; Vogt, S.; Jacobsen, C.

    2016-01-01

    Ptychography has emerged as a nondestructive tool to quantitatively study extended samples at a high spatial resolution. In this manuscript, we report on recent developments from our team. We have combined cryo ptychography and fluorescence microscopy to provide simultaneous views of ultrastructure and elemental composition, we have developed multi-GPU parallel computation to speed up ptychographic reconstructions, and we have implemented fly-scan ptychography to allow for faster data acquisition. We conclude with a discussion of future challenges in high-resolution 3D ptychography. PMID:27293302

  5. Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium

    Directory of Open Access Journals (Sweden)

    Wang Lihong V

    2004-05-01

    Full Text Available Abstract Background The bioluminescent enzyme firefly luciferase (Luc or variants of green fluorescent protein (GFP in transformed cells can be effectively used to reveal molecular and cellular features of neoplasia in vivo. Tumor cell growth and regression in response to various therapies can be evaluated by using bioluminescent imaging. In bioluminescent imaging, light propagates in highly scattering tissue, and the diffusion approximation is sufficiently accurate to predict the imaging signal around the biological tissue. The numerical solutions to the diffusion equation take large amounts of computational time, and the studies for its analytic solutions have attracted more attention in biomedical engineering applications. Methods Biological tissue is a turbid medium that both scatters and absorbs photons. An accurate model for the propagation of photons through tissue can be adopted from transport theory, and its diffusion approximation is applied to predict the imaging signal around the biological tissue. The solution to the diffusion equation is formulated by the convolution between its Green's function and source term. The formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium can be obtained to accelerate the forward simulation of bioluminescent phenomena. Results The closed form solutions have been derived for the time-dependent diffusion equation and the steady-state diffusion equation with solid and hollow spherical sources in a homogeneous medium, respectively. Meanwhile, the relationship between solutions with a solid sphere source and ones with a surface sphere source is obtained. Conclusion We have formulated solutions for the diffusion equation with solid and hollow spherical sources in an infinite homogeneous medium. These solutions have been verified by Monte Carlo simulation for use in biomedical optical imaging studies. The closed form solution is highly accurate and more

  6. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    Science.gov (United States)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  7. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Science.gov (United States)

    Yang, Ming-Jay; Lin, Chun-Chi; Wu, Yu-Shu; Wang, Likarn; Na, Neil

    2017-03-01

    We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  8. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback

    Science.gov (United States)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)

    1995-01-01

    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  9. Compact and high-power broadband terahertz source based on femtosecond photonic crystal fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Lu Chai; Qirong Xing; Chingyue Wang; Weili Zhang; Xiaokun Hu; Jiang Li; Changlei Wang; Yi Li; Yanfeng Li; YoujianSong; Bowen Liu; Minglie Hu

    2011-01-01

    Terahertz (THz) waves,generally defined in the 0.1-10 THz range are finding growing applications in various important fields[1-4] such as imaging,food and pharmaceutical quality coutrol,security screening,and standoff detection of bio-threat species,among which THz timedomain spectroscopy (THz-TDS)[5] is particularly appealing.However,the low conversion efficiency and low power of typical broadband THz sources severely hinder the utility and realization of the full potential of THzTDS.Recently,there have been efforts to generate THz pulses using compact pump sources in fiber format[6,7].%We present a review of the development of a compact and high-power broadband terahertz (THz) source optically excited by a femtosecond photonic crystal fiber (PCF) amplifier. The large mode area of the PCF and the stretcher-free configuration make the pump source compact and very efficient. Broadband THz pulseg of 150 μW extending from 0.1 to 3.5 TH2 are generated from a 3-mm-thick GaP crystal through optical rectification of 12-W pump pulses with duration of 66 & and a repetition rate of 52 MHz. A strong saturation effect is observed, which is attributed to pump pulse absorption; a Z-scan measurement shows that three-photon absorption dominates the nonlinear absorption when the crystal is pumped by femtosecond pulses at 1040 run. A further scale-up of the THz source power is expected to find important applications in THz nonlinear optics and nonlinear THz spectroscope

  10. Advanced Spacecraft Navigation and Timing Using Celestial Gamma-Ray Sources Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed novel program will use measurements of the high-energy photon output from gamma-ray celestial sources to design a new, unique navigation system. This...

  11. Transmutation of nuclear wastes using photonuclear reactions triggered by Compton backscattering photons at the Shanghai laser electrongamma source

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-Gen; YUAN Ren-Yong; XU Jia-Qiang; YAN Zhe; FAN Gong-Tao; SHEN Wen-Qing; XU Wang; WANG Hong-Wei; GUO Wei; MA Yu-Gang; CAI Xiang-Zhou; LU Guang-Cheng; XU Yi; PAN Qiang-Yan

    2008-01-01

    Based on the facility of the Shanghai Laser Electron Gamma Source (SLEGS),the transmutation for nuclear wastes such as 137Cs and 129I is investigated.It is found that nuclear waste can be transmuted efficiently via photonuclear reaction triggered by gamma photons generated from Compton backscattering between CO2 laser photons and 3.5 GeV electrons.The nuclear activities of 137Cs and 129I are evaluated and compared with the results of transmutation triggered by bremsstrahlung gamma photons driven by ultra intense laser.Due to the better character of gamma photon spectrum as well as the high brightness of gamma photons,the transmutation rate of Compton backscattering method is much higher than that of the bremsstrahlung method.

  12. LIGHT SOURCE: Conceptual design of Hefei Advanced Light Source (HALS) injection system

    Science.gov (United States)

    Zhang, Shan-Cai; Wang, Lin; Feng, Guang-Yao; Wu, Cong-Feng; Li, Wei-Min; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The Hefei Advanced Light Source(HALS) is a super low emittance storage ring and has a very short beam life time. In order to run the ring stablely, top-up injection will be necessary. The injection system will greatly affect the quality of beam. This article first gives a physics design of the injecting system. Then the injecting system is tracked under different errors. The responses of storage beam and injecting beam are given in the article.

  13. Development and Characterization of a Periodically Poled Lithium Niobate Photon Pair Source

    Science.gov (United States)

    Krupa, Sean; Stinaff, Eric; Oesterling, Lee; Nippa, David

    2015-05-01

    A photon pair source made of Periodically Poled Lithium Niobate (PPLN) was developed for degenerate and non-degenerate type-0 Spontaneous Parametric Downconversion (SPDC) of 775-780 nm light to telecom wavelengths. Research consisting of characterization and an iterative design/development process resulted in a PPLN photon pair source suitable for commercial application. Focusing on losses and heralding efficiency, different waveguide geometries and manufacturing techniques were tested, characterized, and optimized. The best PPLN devices created feature insertion losses of 3 dB and heralding efficiencies of 70% making them exceptional for use in emerging quantum applications. Further integration of fiber optic components will be done to expand the capabilities of the devices. Other current research is focused on further characterization of the devices, specifically the SPDC spectra and a direct measurement of the effective nonlinear coefficient in the PPLN waveguides. These measurements will be discussed in detail as well an overview of the project. This work seeks to improve the performance of PPLN waveguides for use in quantum technologies.

  14. Exploitation of transverse spatial modes in spontaneous four wave mixing photon-pair sources

    Science.gov (United States)

    Cruz-Ramirez, Hector; Ramirez-Alarcon, Roberto; Cruz-Delgado, Daniel; Monroy-Ruz, Jorge; Ortiz-Ricardo, Erasto; Dominguez-Serna, Francisco; Garay-Palmett, Karina; U'Ren, Alfred B.

    2016-09-01

    We present a source for which multiple spontaneous four-wave mixing (SFWM) processes are supported in a few mode birefringent fiber, each process associated with a particular combination of transverse modes for the four participating waves. Within the weakly guiding regime, for which the propagation modes may be well approximated by linearly polarized (LP) modes, the departure from circular symmetry due to the fiber birefringence translates into orbital angular momentum (OAM) and parity conservation rules, i.e. reflecting elements from both azimuthal and rectangular symmetries. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. The present paper covers work presented in Refs.1 and.2

  15. Predicting induced radioactivity for the accelerator operations at the Taiwan Photon Source.

    Science.gov (United States)

    Sheu, R J; Jiang, S H

    2010-12-01

    This study investigates the characteristics of induced radioactivity due to the operations of a 3-GeV electron accelerator at the Taiwan Photon Source (TPS). According to the beam loss analysis, the authors set two representative irradiation conditions for the activation analysis. The FLUKA Monte Carlo code has been used to predict the isotope inventories, residual activities, and remanent dose rates as a function of time. The calculation model itself is simple but conservative for the evaluation of induced radioactivity in a light source facility. This study highlights the importance of beam loss scenarios and demonstrates the great advantage of using FLUKA in comparing the predicted radioactivity with corresponding regulatory limits. The calculated results lead to the conclusion that, due to fairly low electron consumption, the radioactivity induced in the accelerator components and surrounding concrete walls of the TPS is rather moderate and manageable, while the possible activation of air and cooling water in the tunnel and their environmental releases are negligible.

  16. Noise analysis in photonic true time delay systems based on broadband optical source and dispersion components.

    Science.gov (United States)

    Xue, Xiaoxiao; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Bingkun

    2009-02-01

    The noise in photonic true time delay systems based on broadband optical source and dispersion components is investigated. It is found that the beat noise induced by the optical source begins to dominate and grows far larger than other noise terms quickly, as long as the detected optical power is above some certain value P(thr). When the system dispersion is nonzero, the output carrier-to-noise ratio (CNR) will change periodically with the optical bandwidth due to the noise power increment and the dispersion induced radio frequency signal power degradation. The maximum CNR is the peak value of the first period. For a set of specified system conditions, the P(thr) is calculated to be -21 dBm, and the optimal optical bandwidth is 0.8 nm, at which the maximum CNR is 93.3 dB by considering the noise in a 1 Hz bandwidth. The results are verified experimentally.

  17. High on/off ratio ns laser pulses for a triggered single-photon source

    CERN Document Server

    Jin, Gang; He, Jun; Wang, Junmin

    2016-01-01

    852nm nano-second laser pulse chain with a high on/off ratio is generated via chopping a continuous-wave laser beam by using of a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). Detailed analysis and dependence of the on/off ratio on the splitting ratio, the co-splitting ratio, and the arms loss of MZ-EIOM are presented. By optimizing the polarization of incident laser beam and stabilizing MZ-EOIM temperature, the static on/off ratio of 12600:1 is achieved. Also the dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. This high on/off ratio ns pulsed laser system has served as the excitation pulse source for a triggered single-photon source based on trapped single cesium atom, which reveals a representative anti-bunching.

  18. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  19. STABILITY OF THE PHOTON INDICES IN Z-SOURCE GX 340+0 FOR SPECTRAL STATES

    Energy Technology Data Exchange (ETDEWEB)

    Seifina, Elena [Moscow State University/Sternberg Astronomical Institute, Universitetsky Prospect 13, Moscow 119992 (Russian Federation); Titarchuk, Lev; Frontera, Filippo, E-mail: seif@sai.msu.ru, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov, E-mail: frontera@fe.infn.it [Dipartimento di Fisica, Universita di Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2013-03-20

    We show an analysis of the spectral and timing properties of X-ray radiation from Z-source GX 340+0 during its evolution when the electron temperature of the transition layer (TL) kT{sub e} monotonically decreases from 21 to 3 keV. We analyze episodes observed with BeppoSAX and RXTE. We reveal that the X-ray broadband energy spectra during all spectral states can be reproduced by a physical model composed of a soft Blackbody component and two Comptonized components (both due to the presence of the TL that upscatters both seed photons of T{sub s1} {approx}< 1 keV coming from the disk (first component Comptb1), and seed photons of temperature T{sub s2} {approx}< 1.5 keV coming from the neutron star (second component Comptb2) and the iron-line (Gaussian) component. Spectral analysis using this model indicates that the photon power-law indices {Gamma}{sub com1} and {Gamma}{sub com2} of the Comptonized components are almost constant, {Gamma}{sub com1} and {Gamma}{sub com2} {approx} 2 when kT{sub e} changes from 3 to 21 keV along the Z-track. We interpret the detected quasi-stability of the indices of Comptonized components to be near a value of 2. Furthermore, this index stability now found for the Comptonized spectral components of Z-source GX 340+0 is similar to that previously established in the atoll sources 4U 1728-34 and GX 3+1, and earlier proposed for a number of X-ray neutron stars (NSs). This behavior of NSs both for atoll and Z-sources is essentially different from that observed in black hole binaries where {Gamma}{sub com} increases during a spectral evolution from the low state to the high state and ultimately saturates at a high mass accretion rate.

  20. Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction

    Science.gov (United States)

    Guo, Ying; Liao, Qin; Wang, Yijun; Huang, Duan; Huang, Peng; Zeng, Guihua

    2017-03-01

    A suitable photon-subtraction operation can be exploited to improve the maximal transmission of continuous-variable quantum key distribution (CVQKD) in point-to-point quantum communication. Unfortunately, the photon-subtraction operation faces solving the improvement transmission problem of practical quantum networks, where the entangled source is located in the third part, which may be controlled by a malicious eavesdropper, instead of in one of the trusted parts, controlled by Alice or Bob. In this paper, we show that a solution can come from using a non-Gaussian operation, in particular, the photon-subtraction operation, which provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that CVQKD with an entangled source in the middle (ESIM) from applying photon subtraction can well increase the secure transmission distance in both direct and reverse reconciliations of the EB-CVQKD scheme, even if the entangled source originates from an untrusted part. Moreover, it can defend against the inner-source attack, which is a specific attack by an untrusted entangled source in the framework of ESIM.

  1. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  2. NATO Advanced Study Institute on Physics of New Laser Sources

    CERN Document Server

    Arecchi, F; Mooradian, Aram; Sona, Alberto

    1985-01-01

    This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Physics of New Laser Sources", the twelfth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini" San Miniato, Tuscany, July 11-21, 1984. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or for those wishing to switch into this area after working previously in other areas. From the outset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, and Dr. D. Roess of Heraeus, Hanau. In 1981, Prof. H. Walther, University of Munich and Max-Planck Institut fur Quantenoptik joined as co-director. Each year the Directors choose a subj~ct of particular int...

  3. Unveiling the Gamma-ray Source Count Distribution below the Fermi Detection Limit with Photon Statistics

    CERN Document Server

    Zechlin, Hannes-S; Donato, Fiorenza; Fornengo, Nicolao; Vittino, Andrea

    2015-01-01

    The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. We employ statistical properties of the Fermi-LAT photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b|>30 deg) between 1 GeV and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into: (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6-year Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power-law of index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2x10^{-11} cm^{-2}s^{-1}, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken pow...

  4. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    Science.gov (United States)

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies.

  5. Preclinical evaluation of intraoperative low-energy photon radiotherapy using sphericalapplicators in locally advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    François eBuge

    2015-09-01

    Full Text Available Background: Surgery plus adjuvant radiotherapy is standard care for locally advanced prostatecancer (stage pT3R1. Intraoperative low-energy photon radiotherapy offers several advantages overexternal beam radiotherapy, and several systems are now available for its delivery, using sphericalapplicators which require only limited shielding. The aim of this study was to evaluate the feasibilityof this technique for the prostate bed.Materials & Methods: Applicators were assessed using MRI image data and cadavericdissection. In cadavers, targeted tissues, defined as a urethral section, both neurovascular bundlesections, the bladder neck and the beds of the seminal vesicles, were marked with metallic surgicalclips. Distances between clips and applicator were measured using CT. A dosimetric study of theapplication of 12 Gy at 5mm depth was performed using CT images of prostatectomized cadavers.Results: Using MRI images from 34 prostate cancer patients, we showed that the ideal applicatordiameter ranges from 45 to 70 mm. Using applicators of different sizes to encompass the prostate bedin nine cadavers, we showed that the distance between target tissues and applicator was less than 2mm for all target tissues except the upper extremity of the seminal vesicles (19 mm. Dosimetric studyshowed a good dose distribution in all target tissues in contact with the applicator, with a lowprobability of rectum and bladder complication.Conclusions: Intraoperative radiotherapy of the prostate bed is feasible, with good coverage oftargeted tissues. Clinical study of safety and efficacy is now required.

  6. A quantum entropy source on an InP photonic integrated circuit for random number generation

    CERN Document Server

    Abellan, Carlos; Domenech, David; Muñoz, Pascual; Capmany, Jose; Longhi, Stefano; Mitchell, Morgan W; Pruneri, Valerio

    2016-01-01

    Random number generators are essential to ensure performance in information technologies, including cryptography, stochastic simulations and massive data processing. The quality of random numbers ultimately determines the security and privacy that can be achieved, while the speed at which they can be generated poses limits to the utilisation of the available resources. In this work we propose and demonstrate a quantum entropy source for random number generation on an indium phosphide photonic integrated circuit made possible by a new design using two-laser interference and heterodyne detection. The resulting device offers high-speed operation with unprecedented security guarantees and reduced form factor. It is also compatible with complementary metal-oxide semiconductor technology, opening the path to its integration in computation and communication electronic cards, which is particularly relevant for the intensive migration of information processing and storage tasks from local premises to cloud data centre...

  7. Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?

    CERN Document Server

    Verma, Amit

    2009-01-01

    Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

  8. Tagged photon facility at Centre for Advanced Technology, Indore: Possible scenarios

    Indian Academy of Sciences (India)

    L M Pant

    2006-05-01

    Photoproduction of in nuclear medium with the ELSA facility at Bonn is discussed in the context of medium modification of hadronic properties. Utilization of Indus-2 at CAT, Indore for producing tagged bremsstrahlung photons and laser backscattered photons has been explored with a comparison between the two techniques for producing tagged high energy photons for the first time in the country with emphasis on the ADSS programme to have a precise information of (; ) reactions.

  9. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice; Source de photons uniques et interferences a un seul photon. De l'experience des fentes d'Young au choix retarde

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, V

    2007-11-15

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  10. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  11. Advanced neutron source reactor probabilistic flow blockage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  12. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  13. ESSenTIAL: EPIXfab services specifically targeting (SME) industrial takeup of advanced silicon photonics

    NARCIS (Netherlands)

    Pozo Torres, J.M.; Kumar, P.; Lo Cascio, D.M.R.; Khanna, A.; Dumon, P.; Delbeke, D.; Baets, R.; Fournier, M.; Fedeli, J.-M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Tian, H.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Zhang, X.; Gale, D.

    2012-01-01

    ePIXfab brings silicon photonics within reach of European small and medium sized enterprises, thereby building on its track record and its integration into Europractice. To this end, ePIXfab offers affordable access to standardized active and passive silicon photonic IC and packaging technology, a p

  14. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [Indiana Univ., Bloomington, IN (United States)

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  15. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    Science.gov (United States)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  16. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    Science.gov (United States)

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  17. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    Science.gov (United States)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Vittino, Andrea

    2016-08-01

    The source-count distribution as a function of their flux, {dN}/{dS}, is one of the main quantities characterizing gamma-ray source populations. We employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (| b| ≥slant 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6 yr Fermi-LAT data set (P7REP), we show that the {dN}/{dS} distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure {dN}/{dS} down to an integral flux of ˜ 2× {10}-11 {{cm}}-2 {{{s}}}-1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall {dN}/{dS} distribution is consistent with a broken power law, with a break at {2.1}-1.3+1.0× {10}-8 {{cm}}-2 {{{s}}}-1. The power-law index {n}1={3.1}-0.5+0.7 for bright sources above the break hardens to {n}2=1.97+/- 0.03 for fainter sources below the break. A possible second break of the {dN}/{dS} distribution is constrained to be at fluxes below 6.4× {10}-11 {{cm}}-2 {{{s}}}-1 at 95% confidence level. The high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ˜25% point sources, ˜69.3% diffuse Galactic foreground emission, and ˜6% isotropic diffuse background.

  18. Design and Experimental Demonstration of Cherenkov Radiation Source Based on Metallic Photonic Crystal Slow Wave Structure

    Science.gov (United States)

    Fu, Tao; Yang, Zi-Qiang; Ouyang, Zheng-Biao

    2016-11-01

    This paper presents a kind of Cherenkov radiation source based on metallic photonic crystal (MPC) slow-wave structure (SWS) cavity. The Cherenkov source designed by linear theory works at 34.7 GHz when the cathode voltage is 550 kV. The three-dimensional particle-in-cell (PIC) simulation of the SWS shows the operating frequency of 35.56 GHz with a single TM01 mode is basically consistent with the theoretically one under the same parameters. An experiment was implemented to testify the results of theory and PIC simulation. The experimental system includes a cathode emitting unit, the SWS, a magnetic system, an output antenna, and detectors. Experimental results show that the operating frequency through detecting the retarded time of wave propagation in waveguides is around 35.5 GHz with a single TM01 mode and an output power reaching 54 MW. It indicates that the MPC structure can reduce mode competition. The purpose of the paper is to show in theory and in preliminary experiment that a SWS with PBG can produce microwaves in TM01 mode. But it still provides a good experimental and theoretical foundation for designing high-power microwave devices.

  19. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  20. Photonic Analog-to-Digital Conversion of Time-Continuous Signals using a TDM Switching-Wavelength Sampling Source

    Institute of Scientific and Technical Information of China (English)

    K. L. Lee; M. P. Fok; C. Shu

    2003-01-01

    A 20 Gsample/s photonic analog-to-digital converter is constructed using a 4-switching-wavelength repetitive sampling pulse source. The signal-to-noise and distortion ratio (SINAD) is measured to be 44.5 dB and corresponds to 7 effective number of bits.

  1. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  2. On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types

    CERN Document Server

    Boiko, D L; Brauer, N; Sergio, M; Niclass, C; Beretta, G B; Charbon, E

    2009-01-01

    It is not widely appreciated that many subtleties are involved in the accurate measurement of intensity-correlated photons; even for the original experiments of Hanbury Brown and Twiss (HBT). Using a monolithic 4x4 array of single-photon avalanche diodes (SPADs), together with an off-chip algorithm for processing streaming data, we investigate the difficulties of measuring second-order photon correlations g2 in a wide variety of light fields that exhibit dramatically different correlation statistics: a multimode He-Ne laser, an incoherent intensity-modulated lamp-light source and a thermal light source. Our off-chip algorithm treats multiple photon-arrivals at pixel-array pairs, in any observation interval, with photon fluxes limited by detector saturation, in such a way that a correctly normalized g2 function is guaranteed. The impact of detector background correlations between SPAD pixels and afterpulsing effects on second-order coherence measurements is discussed. These results demonstrate that our monolit...

  3. Roadmap on silicon photonics

    Science.gov (United States)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  4. Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source.

    Science.gov (United States)

    Yokoyama, Hiroyuki; Tsubokawa, Hiroshi; Guo, Hengchang; Shikata, Jun-ichi; Sato, Ki-ichi; Takashima, Keijiro; Kashiwagi, Kaori; Saito, Naoaki; Taniguchi, Hirokazu; Ito, Hiromasa

    2007-01-01

    We developed a novel scheme for two-photon fluorescence bioimaging. We generated supercontinuum (SC) light at wavelengths of 600 to 1200 nm with 774-nm light pulses from a compact turn-key semiconductor laser picosecond light pulse source that we developed. The supercontinuum light was sliced at around 1030- and 920-nm wavelengths and was amplified to kW-peak-power level using laboratory-made low-nonlinear-effects optical fiber amplifiers. We successfully demonstrated two-photon fluorescence bioimaging of mouse brain neurons containing green fluorescent protein (GFP).

  5. Advances and Perspectives in Photonic Technology Research in the European Information Society Technologies Programme

    Science.gov (United States)

    Erasme, Didier; Minot, Christophe; Ohman, Filip; Tromborg, Bjarne; Ackaert, Ann; Demeester, Peter; Lagasse, Paul; Politi, Christina; O'Mahony, Mike; Saniter, Juergen; Patzak, Erwin; Rao, Sathya; Vogel, Paul

    2004-08-01

    The 5th framework programme, which the European Union launched in 1998, supported a wide range of industrial areas among which “Information Society Technologies (IST)” was one of the focus areas. The present paper presents a short overview of the research on photonic component technologies within the IST programme. It also presents the views on the future evolution of photonic component technologies for optical communications, which have emerged from a road map exercise within the thematic network OPTIMIST.

  6. MeV- and Sub-MeV-photon Sources Based on Compton Backscattering at Spring-8 and KPSI-JAEA

    Institute of Scientific and Technical Information of China (English)

    K.Kawase; M.Kando; T.Hayakawa; I.Daito; S.Kondo; T.Homma; T.Kameshima; H.Kotaki; L.Chen; Y.Fukuda; A.Faenov; Shizuma; S.V.Bulanov; T.Kimura; T.Tajima; M.Shoji; S.Suzuki; K.Tamura; H.Ohkuma; Y.Arimoto; T.Yorita; M.Fujiwara; S.Okajima

    2009-01-01

    Recently we have constructed two facilities for generating photon beams in the MeV and sub-MeV energy regions by means of the Compton backscattering with a laser and an electron beam at SPring-8 and at Kansai Photon Science Institute of Japan Atomic Energy Agency(KPSIJAEA).The MeV-photon source at SPring-8 consists of a continuous-wave optically-pumped far infrared laser with a wavelength of 118.8 μm and an 8 GeV stored electron beam.Present MeV-photon flux is estimated to be 1.3×10~3 photons/s.On the other hand,the sub-MeV-photon source at KPSI-JAEA consists of a pulse Nd:YAG laser with a wavelength of 1 064 nm and a 150 MeV electron beam accelerated by microtron.In the first trial of the photon production in this source,backscattered photon flux is estimated to be 20 photons/pulse.Both the Compton backscattered photon sources have possibilities to be used for new tools in various fields such as nuclear physics,materials science,and astronomy.

  7. Studies of photon spectra from a thallium-204 foil source as an aid to dosimetry and shielding

    CERN Document Server

    Francis, T M

    1976-01-01

    Beta ray foil sources incorporating nuclides such as thallium-204, promethium-147 and strontium-90 plus yttrium-90 ar increasingly used in industrial devices such as thickness gauges. These sources are so constructed that they give rise to complex photon spectra containing low energy Bremsstrahlung and X-rays characteristic of the constructional materials. The energy response of practical monitoring instruments is such that they are likely to underestimate the dose due to such spectra unless they are calibrated using appropriate spectra. This report describes a series of measurements carried out on a commercially available thallium-204 foil source and five commonly used shielding materials. The measurements made with a NaI(T1) spectrometer have been corrected for instrumental distortions to obtain the photon spectra in air. These spectra are presented and have been used to compute dose in air with the help of published data on mass energy-absorption coefficients. Also included in the report are data derived f...

  8. Proton Collision Event with 2 Photons (Actual Event) An animation of an actual ATLAS proton collision event in 2011. Photons are indicated by the clusters of energy shown in green. Source: http://www.atlas.ch/multimedia/2-photon-event.html

    CERN Multimedia

    ATLAS Experiment

    2011-01-01

    Proton Collision Event with 2 Photons (Actual Event) An animation of an actual ATLAS proton collision event in 2011. Photons are indicated by the clusters of energy shown in green. Source: http://www.atlas.ch/multimedia/2-photon-event.html

  9. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers.

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H

    2013-11-04

    We report a novel scheme of generating broadly tunable femtosecond mid-IR pulses based on difference frequency mixing the outputs from dual photonic crystal fibers (PCF). With a 1.3 W, 1035 nm, 300 fs and 40 MHz Yb fiber chirped pulse amplifier as the laser source, a PCF with single zero dispersion wavelength (ZDW) at the laser wavelength is employed to spectrally broaden a portion of the laser pulses. Facilitated by self-phase modulation, its output spectrum possesses two dominant outermost peaks that can be extended to 970 nm and 1092 nm. A different PCF with two closely spaced ZDWs around the laser wavelength is used to generate the intense Stokes pulses between 1240 - 1260 nm. Frequency mixing the dual PCFs outputs in an AgGaS(2) crystal results in mid-IR pulses broadly tunable from 4.2 μm to 9 μm with a maximum average power of 640 µW at 4.5 μm, corresponding to 16 pJ of pulse energy.

  10. Phase noise measurement of wideband microwave sources based on a microwave photonic frequency down-converter.

    Science.gov (United States)

    Zhu, Dengjian; Zhang, Fangzheng; Zhou, Pei; Pan, Shilong

    2015-04-01

    An approach for phase noise measurement of microwave signal sources based on a microwave photonic frequency down-converter is proposed. Using the same optical carrier, the microwave signal under test is applied to generate two +1st-order optical sidebands by two stages of electro-optical modulations. A time delay is introduced between the two sidebands through a span of fiber. By beating the two +1st-order sidebands at a photodetector, frequency down-conversion is implemented, and phase noise of the signal under test can be calculated thereafter. The system has a very large operation bandwidth thanks to the frequency conversion in the optical domain, and good phase noise measurement sensitivity can be achieved since the signal degradation caused by electrical amplifiers is avoided. An experiment is carried out. The phase noise measured by the proposed system agrees well with that measured by a commercial spectrum analyzer or provided by the datasheet. A large operation bandwidth of 5-40 GHz is demonstrated using the proposed system. Moreover, good phase noise floor is achieved (-123  dBc/Hz at 1 kHz and -137  dBc/Hz at 10 kHz at 10 GHz), which is nearly constant over the full measurement range.

  11. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  12. Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Qualtieri, Antonio; Morello, Giovanni; Todaro, Maria T; Stomeo, Tiziana; Martiradonna, Luigi; De Giorgi, Milena; Cingolani, Roberto; De Vittorio, Massimo [National Nanotechnology Laboratory (NNL) of CNR-INFM, Distretto Tecnologico ISUFI, Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Spinicelli, Piernicola; Bramati, Alberto; Hermier, Jean P [Laboratoire Kastler Brossel-Universite Paris 6, Ecole Normale Superieure et CNRS, UPMC case 74, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Quelin, Xavier; Buil, Stephanie [Groupe d' etude de la Matiere Condensee, CNRS UMR8635, Universite de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France)], E-mail: antonio.qualtieri@unile.it

    2009-03-15

    Secure quantum communication systems (QCS) based on the transmission of crucial information through single photons are among the most appealing frontiers for telecommunications, though their development is still hindered by the lack of cheap and bright single photon sources (SPSs) operating at room temperature (RT). In this paper, we show the occurrence of photon antibunching at RT from single colloidal CdSe/ZnS nanocrystals (NCs) inserted in a vertical microcavity. Moreover, by using high-resolution lithographic techniques, we conceived a general route for positioning single colloidal quantum dots in the microcavity. The findings and the technique presented here can be considered a first step towards the development of SPS devices operating at RT.

  13. Analysis of strictly bound modes in photonic crystal fibers by use of a source-model technique.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2004-06-01

    We describe a source-model technique for the analysis of the strictly bound modes propagating in photonic crystal fibers that have a finite photonic bandgap crystal cladding and are surrounded by an air jacket. In this model the field is simulated by a superposition of fields of fictitious electric and magnetic current filaments, suitably placed near the media interfaces of the fiber. A simple point-matching procedure is subsequently used to enforce the continuity conditions across the interfaces, leading to a homogeneous matrix equation. Nontrivial solutions to this equation yield the mode field patterns and propagation constants. As an example, we analyze a hollow-core photonic crystal fiber. Symmetry characteristics of the modes are discussed and exploited to reduce the computational burden.

  14. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    Science.gov (United States)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware

  15. Multiple-output microwave single-photon source using superconducting circuits with longitudinal and transverse couplings

    Science.gov (United States)

    Wang, Xin; Miranowicz, Adam; Li, Hong-Rong; Nori, Franco

    2016-11-01

    Single-photon devices at microwave frequencies are important for applications in quantum information processing and communication in the microwave regime. In this work we describe a proposal of a multioutput single-photon device. We consider two superconducting resonators coupled to a gap-tunable qubit via both its longitudinal and transverse degrees of freedom. Thus, this qubit-resonator coupling differs from the coupling in standard circuit quantum-electrodynamic systems described by the Jaynes-Cummings model. We demonstrate that an effective quadratic coupling between one of the normal modes and the qubit can be induced and this induced second-order nonlinearity is much larger than that for conventional Kerr-type systems exhibiting photon blockade. Assuming that a coupled normal mode is resonantly driven, we observe that the output fields from the resonators exhibit strong sub-Poissonian photon-number statistics and photon antibunching. Contrary to previous studies on resonant photon blockade, the first-excited state of our device is a pure single-photon Fock state rather than a polariton state, i.e., a highly hybridized qubit-photon state. In addition, it is found that the optical state truncation caused by the strong qubit-induced nonlinearity can lead to an entanglement between the two resonators, even in their steady state under the Markov approximation.

  16. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum

    Science.gov (United States)

    Finger, Martin A.; Iskhakov, Timur Sh.; Joly, Nicolas Y.; Chekhova, Maria V.; Russell, Philip St. J.

    2015-10-01

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ˜2500 photons per mode. The ultra-broadband (˜50 THz ) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  17. Raman-Free, Noble-Gas-Filled Photonic-Crystal Fiber Source for Ultrafast, Very Bright Twin-Beam Squeezed Vacuum.

    Science.gov (United States)

    Finger, Martin A; Iskhakov, Timur Sh; Joly, Nicolas Y; Chekhova, Maria V; Russell, Philip St J

    2015-10-02

    We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50  THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes. The presented source outperforms all previously reported squeezed-vacuum twin-beam sources in terms of brightness and low mode content.

  18. Evaluation of a photon-counting hybrid pixel detector array with a synchrotron X-ray source

    Science.gov (United States)

    Ponchut, C.; Visschers, J. L.; Fornaini, A.; Graafsma, H.; Maiorino, M.; Mettivier, G.; Calvet, D.

    2002-05-01

    A photon-counting hybrid pixel detector (Medipix-1) has been characterized using a synchrotron X-ray source. The detector consists of a readout ASIC with 64×64 independent photon-counting cells of 170×170 μm 2 pitch, bump-bonded to a 300 μm thick silicon sensor, read out by a PCIbus-based electronics, and a graphical user interface (GUI) software. The intensity and the energy tunability of the X-ray source allow characterization of the detector in the time, space, and energy domains. The system can be read out on external trigger at a frame rate of 100 Hz with 3 ms exposure time per frame. The detector response is tested up to more than 7×10 5 detected events/pixel/s. The point-spread response shows beam reveals no loss in sensitivity between adjacent pixels as could result from charge sharing in the silicon sensor. Photons down to 6 keV can be detected after equalization of the thresholds of individual pixels. The obtained results demonstrate the advantages of photon-counting hybrid pixel detectors and particularly of the Medipix-1 chip for a wide range of X-ray imaging applications, including those using synchrotron X-ray beams.

  19. EDITORIAL: Special Issue on advanced and emerging light sources Special Issue on advanced and emerging light sources

    Science.gov (United States)

    Haverlag, Marco; Kroesen, Gerrit; Ferguson, Ian

    2011-06-01

    -based light sources. However, the progress in the last few years in LED and OLED sources has been even greater. In the editorial for the LS-11 conference by previous guest editor David Wharmby, it was stated that most LED lighting was still mostly used for signalling and decorative sources. In the three years that have passed, things have changed considerably and we now see LED light sources entering every application, ranging from street lighting and parking lots to shop lighting and even greenhouses. Currently LED prices for traditional lighting applications are high, but they are dropping rapidly. The papers published in this special issue give some indications of things to come. The paper by Jamil et al deals with the possibility of using silicon wafers as substrate material instead of the now commonly used (but more expensive) sapphire substrates. This is attractive from a cost price point of view, but leads to an increased lattice mismatch and therefore strain-induced defects. In this paper it is shown that when using intermediate matching layers it is possible to retain the same electrical and optical properties as with structures on sapphire. Another aspect that directly relates to cost is efficiency and droop in green InGaN devices, which is addressed in the paper by Lee et al. They show that by providing a flow of trymethylindium prior to the growth of the quantum wells it is possible to significantly increase the internal quantum efficiency of green LEDs. Improvement of the optical out-coupling of InGaN LEDs is discussed by Mak et al, and it is found that localized plasmon resonance of metallic nanoparticles (and especially silver) can help to increase the optical out-coupling in the wavelength region of interest. Nanoparticles in the form of ZnO nanorods are described by Willander et al as a possibility for phosphor-free wavelength conversion on polymer (O)LEDs. More advanced functions besides light emission can be achieved with OLEDs and this is demonstrated in

  20. Fiber-integrated single photon source of high efficiency based on a concept of ultra-broadband optical antenna

    CERN Document Server

    Grosjean, T; Burr, G W; Baida, F I

    2016-01-01

    We theoretically demonstrate a fiber-integrated single photon source of unprecedented efficiency. This fiber single photon source is achieved by coupling optically a single quantum emitter to a monomode optical fiber with a new concept of ultra-broadband optical antenna. Such an optical antenna concept is the result of the transposition to optical frequencies of the well-known low-frequency horn antenna The optical horn antenna is here shown to be capable of directing the radiation from the emitter toward the optical fiber and efficiently phase-matching the photon emission with the fiber mode. Numerical results show that an optical horn antenna can funnel up to 85% of the radiation from a dipolar source within an emission cone semi-angle as small as 7 degrees (antenna directivity of 300). It is also shown that 50% of the emitted power from the dipolar source can be collected and coupled to an SMF-28 fiber mode over spectral ranges larger than 1000 nm, with a maximum energy transfer reaching 70 %. This approac...

  1. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ajemian, R.C. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1995-12-31

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  2. Quantum dot-micropillars: a bright source of coherent single photons

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; He, Yu-Ming; Maier, Sebastian

    2016-01-01

    We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability of consecut......We present the efficient generation of coherent single photons based on quantum dots in micropillars. We utilize a scalable lithography scheme leading to quantum dot-micropillar devices with 74% extraction efficiency. Via pulsed strict resonant pumping, we show an indistinguishability...... of consecutively emitted photons up to 98.5%....

  3. Modification of spontaneous emission rate of micrometer-sized light sources using hollow-core photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    Lu Jiao-Hua; Meng Zi-Ming; Liu Hai-Ying; Feng Tian-Hua; Dai Qiao-Feng; Wu Li-Jun; Gun Qi; Hu Wei; Lan Sheng

    2009-01-01

    We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometer. sized light sources embedded in a hollow-core photonic crystal fiber(HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by canillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.

  4. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

    Directory of Open Access Journals (Sweden)

    Thomas K. Gaylord

    2011-06-01

    Full Text Available Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI. With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL to accomplish subwavelength patterning. Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.

  5. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Science.gov (United States)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  6. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  7. Effect of temperature and phonons on the spectral properties of a multi-level semiconductor quantum dot single-photon source

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter;

    2009-01-01

    Since it was realized that efficient quantum computing can be performed using single photons and standard linear optics elements, immense international research activity has been aimed at developing semiconductor quantum dot (QD) single-photon sources (SPS). In order to optimise the design of SPS...

  8. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  9. Recent advances in gas and chemical detection by Vernier effect-based photonic sensors.

    Science.gov (United States)

    La Notte, Mario; Troia, Benedetto; Muciaccia, Tommaso; Campanella, Carlo Edoardo; De Leonardis, Francesco; Passaro, Vittorio M N

    2014-03-10

    Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD) of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10(-8) RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI) as sensing device instead of an add drop ring resonator.

  10. Recent Advances in Gas and Chemical Detection by Vernier Effect-Based Photonic Sensors

    Directory of Open Access Journals (Sweden)

    Mario La Notte

    2014-03-01

    Full Text Available Recently, the Vernier effect has been proved to be very efficient for significantly improving the sensitivity and the limit of detection (LOD of chemical, biochemical and gas photonic sensors. In this paper a review of compact and efficient photonic sensors based on the Vernier effect is presented. The most relevant results of several theoretical and experimental works are reported, and the theoretical model of the typical Vernier effect-based sensor is discussed as well. In particular, sensitivity up to 460 μm/RIU has been experimentally reported, while ultra-high sensitivity of 2,500 μm/RIU and ultra-low LOD of 8.79 × 10−8 RIU have been theoretically demonstrated, employing a Mach-Zehnder Interferometer (MZI as sensing device instead of an add drop ring resonator.

  11. Highly efficient heralding of entangled single photons.

    Science.gov (United States)

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  12. From advanced driver assistance to autonomous driving: perspectives for photonics sensors

    Science.gov (United States)

    Cochard, Jacques; Bouyé, Clémentine

    2016-03-01

    Optics components entered in the automotive vehicle one century ago with headlamps and since then move towards even more sophisticated designs in lighting functions. Photonics sensors are just entering now in this market through driver assistance, in complement of incumbent ultrasonic and radar technologies. Gain of market shares is expected for this components with autonomous driving, that was few years ago a nice dream and whose early results exceed surprisingly expectations of roadmaps and historic OEM have quickly joined the course launched by Google Company 5 years ago. Technological components, among them CMOS camera followed by Laser Scanners, cost-effective flash LIDAR are already experimenting their first miles in real condition and new consumers in South Asia plebiscite this new way to drive cars .The issue is still for photonics companies to move from well suited technological solution to mass-production components with corresponding cost reduction. MEMS components that follow the same curve 15 years ago (with market entries in airbags, tire pressure monitoring systems…) experimented the hard pressure on price for wide market adoption. Besides price, which is a CFO issue, photonic technologies will keep in place if they can both reassure OEM CEO and let CTO and designers dream. Reassurance will be through higher level of standardization and reliability of these components whereas dream will be linked to innovative sensing application, e.g spectroscopy.

  13. Integration of Single-Photon Sources and Detectors on GaAs

    Directory of Open Access Journals (Sweden)

    Giulia Enrica Digeronimo

    2016-10-01

    Full Text Available Quantum photonic integrated circuits (QPICs on a GaAs platform allow the generation, manipulation, routing, and detection of non-classical states of light, which could pave the way for quantum information processing based on photons. In this article, the prototype of a multi-functional QPIC is presented together with our recent achievements in terms of nanofabrication and integration of each component of the circuit. Photons are generated by excited InAs quantum dots (QDs and routed through ridge waveguides towards photonic crystal cavities acting as filters. The filters with a transmission of 20% and free spectral range ≥66 nm are able to select a single excitonic line out of the complex emission spectra of the QDs. The QD luminescence can be measured by on-chip superconducting single photon detectors made of niobium nitride (NbN nanowires patterned on top of a suspended nanobeam, reaching a device quantum efficiency up to 28%. Moreover, two electrically independent detectors are integrated on top of the same nanobeam, resulting in a very compact autocorrelator for on-chip g(2(τ measurements.

  14. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

    CERN Document Server

    Keil, Robert; Chen, Yan; Hoefer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G

    2016-01-01

    Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization entangled photon pairs. Despite remarkable progress in the last twenty years, many challenges still remain for this material, such as the extremely low yield (<1% quantum dots can emit entangled photons), the low degree of entanglement, and the large wavelength distribution. Here we show that, with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble (close to 100%) of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement (fidelity up to F=0.91, with a record high concurrence C=0.90), and ultra-narrow wavelength distribution at rubidium transitions. Therefore, a solid-state quantum...

  15. Advanced RF Sources Based on Novel Nonlinear Transmission Lines

    Science.gov (United States)

    2015-01-26

    crowding and therefore highest temperature due to joule heating, occurs at the constriction corner near the source side , which is point B in Fig. 4(c...Boltzmann transport equation in orifice and disk geometry,” Proc. Phys. Soc. 89, 927 (1966). [23] Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, “Analysis of

  16. Annual meeting of the Advanced Light Source Users` Association

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This report contains papers on the following topics: ALS Director`s Report; ALS Operations Update; Recent Results in Machine Physics; Progress in Beamline Commissioning and Overview of New Projects; The ALS Scientific Program; First Results from the SpectroMicroscopy Beamline; Soft X-ray Fluorescence Spectroscopy of Solids; Soft X-Ray Fluorescence Spectroscopy of Molecules; Microstructures and Micromachining at the ALS; High-Resolution Photoemission from Simple Atoms and Molecules; X-Ray Diffraction at the ALS; Utilizing Synchrotron Radiation in Advanced Materials Industries; Polymer Microscopy: About Balls, Rocks and Other ``Stuff``; Infrared Research and Applications; and ALS User Program.

  17. Evaluation of a photon-counting hybrid pixel detector array with a synchrotron X-ray source

    CERN Document Server

    Ponchut, C; Fornaini, A; Graafsma, H; Maiorino, M; Mettivier, G; Calvet, D

    2002-01-01

    A photon-counting hybrid pixel detector (Medipix-1) has been characterized using a synchrotron X-ray source. The detector consists of a readout ASIC with 64x64 independent photon-counting cells of 170x170 mu m sup 2 pitch, bump-bonded to a 300 mu m thick silicon sensor, read out by a PCIbus-based electronics, and a graphical user interface (GUI) software. The intensity and the energy tunability of the X-ray source allow characterization of the detector in the time, space, and energy domains. The system can be read out on external trigger at a frame rate of 100 Hz with 3 ms exposure time per frame. The detector response is tested up to more than 7x10 sup 5 detected events/pixel/s. The point-spread response shows <2% crosstalk between neighboring pixels. Fine scanning of the detector surface with a 10 mu m beam reveals no loss in sensitivity between adjacent pixels as could result from charge sharing in the silicon sensor. Photons down to 6 keV can be detected after equalization of the thresholds of individu...

  18. From single photons to milliwatt radiant power-electron storage rings as radiation sources with a high dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.; Thornagel, R.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Berlin (Germany)

    2010-10-15

    The spectral radiant intensity of synchrotron radiation from electron storage rings can be calculated from basic electrodynamic relations (Schwinger equation) and it is directly proportional to the stored electron beam current, i.e. the number of stored electrons. With the necessary equipment installed to measure and control the electron beam current over a wide dynamic range, the radiant intensity of the synchrotron radiation can be adjusted accordingly without changing the spectrum. This is done, e.g., at the Metrology Light Source (MLS), the dedicated electron storage ring of the Physikalisch-Technische Bundesanstalt. The MLS is operated as a primary radiation source standard from the near IR up to the soft x-ray region and its operational parameters can be adjusted and accurately measured in a wide range: the electron beam current can be varied from 1 pA (one stored electron) up to 200 mA and thus the radiant intensity can be changed by more than 11 decades. The photon flux or radiant power for typical angular acceptances can thus be varied from single photons to milliwatts. This is a very powerful tool, e.g., for the characterization of the linearity of the response of radiation detectors or for the calibration of photon counting detectors. In this article we present an overview of past, current and possible future activities exploiting this feature. (authors)

  19. Tunable cavity-enhanced photon pairs source in Hermite-Gaussian mode

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2015-01-01

    The spatial modes of light have grasped great research interests because of its great potentials in optical communications, optical manipulation and trapping, optical metrology and quantum information processing. Here we report on generating of photon pairs in Hermite-Gaussian (HG) mode in a type-I optical parametric oscillator (OPO) operated far below threshold. The bandwidths of the photon pairs are 11.4 MHz and 20.8MHz for two different HG modes respectively, which is capable to be stored in cold Rubidium atomic ensembles. From correlation measurements, non-classical properties of HG modes in different directions are verified by tuning the cavity. Our study provides an effective way to generate photon pairs with narrow bandwidth in high order spatial modes for high dimensional quantum communication.

  20. Photon pair sources in AlGaAs: from electrical injection to quantum state engineering

    Science.gov (United States)

    Autebert, C.; Boucher, G.; Boitier, F.; Eckstein, A.; Favero, I.; Leo, G.; Ducci, S.

    2015-11-01

    Integrated quantum photonics is a very active field of quantum information, communication, and processing. One of the main challenges to achieve massively parallel systems for complex operations is the generation, manipulation, and detection of many qubits within the same chip. Here, we present our last achievements on AlGaAs quantum photonic devices emitting nonclassical states of light at room temperature by spontaneous parametric down conversion (SPDC). The choice of this platform combines the advantages of a mature fabrication technology, a high nonlinear coefficient, a SPDC wavelength in the C-telecom band and the possibility of electrical injection.

  1. A deterministic cavity-QED source of polarization entangled photon pairs

    CERN Document Server

    Garcia-Maraver, R; Eckert, K; Mompart, J

    2006-01-01

    We present two cavity quantum electrodynamics proposals that, sharing the same basic elements, allow for the deterministic generation of entangled photons pairs by means of a three-level atom successively coupled to two single longitudinal mode high-Q optical resonators presenting polarization degeneracy. In the faster proposal, the three-level atom yields a polarization entangled photon pair via two truncated Rabi oscillations, whereas in the adiabatic proposal a counterintuitive Stimulated Raman Adiabatic Passage process is considered. Although slower than the former process, this second method is very efficient and robust under fluctuations of the experimental parameters and, particularly interesting, almost completely insensitive to atomic decay.

  2. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  3. Blind source separation advances in theory, algorithms and applications

    CERN Document Server

    Wang, Wenwu

    2014-01-01

    Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms, and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.

  4. A high-brightness, electron-based source of polarized photons and neutrons

    Science.gov (United States)

    Spencer, J. E.

    1999-06-01

    A compact and comparatively inexpensive system that is practical for universities is described based on a low-energy, electron storage ring with at least one undulator based oscillator to store photons. If the oscillator cavity length is relativistically corrected to be an harmonic of the ring circumference (LC=βLRn/nB with nB the number of bunches), higher-energy, secondary photons from Compton backscattering may become significant. Then, besides synchrotron radiation from the ring dipoles and damping wigglers as well as undulator photons, there are frequency upshifted Compton photons and photoneutrons from low Q-value targets such as Beryllium (Qn=-1.66) or Deuterium (Qn=-2.22 MeV). For 100 MeV electron bunches, an adjustable-phase, planar, helical undulator can be made to produce circularly polarized UV photons having a fundamental ɛγ1=11.1 eV. If these photons are stored in a multimode, hole-coupled resonator they produce a Compton endpoint energy up to ɛγ2=1.7 MeV. When incident on a Be conversion target these secondary photons make unmoderated, epithermal neutrons having mean energy ɛn=24.8±6.8 keV from the two-body reaction Be9+γ→n+Be8(→2α)with negligible, residual radioactivity. The system is shown in Fig. 1. When the target is unpolarized, one expects neutron rates of 1011 epithermal n/s for 1015 Comptons/s and a circulating current of 1 A with polarizations PRHC(n⃗)=-0.5, PLHC(n⃗)=0.5, both with reduced flux, and PLin(n⃗)=0. With a 1 cm thick cylindrical tungsten sheath surrounding the Be to attenuate scattered photons exiting at 90° to the incident photons, there is a peak neutron flux of ≈109 epithermal n/s/cm2 cylindrically symmetric around the surface. No attempt was made to optimize this because there is still no accepted treatment protocol (dose rates or preferred neutron energy distribution). Although these factors depend on the individual case, several thousand BNCT treatments per year appear feasible. A potential clinical

  5. Imaging spectroscopic analysis at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  6. Radial Photonic Crystal for Detection of Frequency and Position of Radiation Sources

    Science.gov (United States)

    2012-08-06

    spiral resonators. Phys. Rev. B 69, 014402 (2004). 12. Carbonell , J., Torrent, D., Diaz-Rubio, A. & Sanchez-Dehesa, J. Multidisciplinary approach to...creativecommons.org/licenses/by-nc-sa/3.0/ How to cite this article: Carbonell , J. et al. Radial Photonic Crystal for detection of frequency and position of

  7. Fundamental limitations in spontaneous emission rate of single-photon sources

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Khurgin, Jacob B.

    2016-01-01

    The rate of single-photon generation by quantum emitters (QEs) can be enhanced by placing a QE inside a resonant structure. This structure can represent an all-dielectric micro-resonator or waveguide and thus be characterized by ultra-low loss and dimensions on the order of wavelength. Or it can ...

  8. Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Vogl, Ulrich; Strekalov, Dmitry V.;

    2015-01-01

    Quantum information technology strongly relies on the coupling of optical photons with narrowband quantum systems, such as quantum dots, color centers, and atomic systems. This coupling requires matching the optical wavelength and bandwidth to the desired system, which presents a considerable pro...

  9. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.;

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  10. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  11. Two photon fluorescence imaging of lipid membrane domains and potentials using advanced fluorescent probes

    Science.gov (United States)

    Kilin, Vasyl; Darwich, Zeinab; Richert, Ludovic; Didier, Pascal; Klymchenko, Andrey; Mély, Yves

    2013-02-01

    Biomembranes are ordered and dynamic nanoscale structures critical for cell functions. The biological functions of the membranes strongly depend on their physicochemical properties, such as electrostatics, phase state, viscosity, polarity and hydration. These properties are essential for the membrane structure and the proper folding and function of membrane proteins. To monitor these properties, fluorescence techniques and notably, two-photon microscopy appear highly suited due to their exquisite sensitivity and their capability to operate in complex biological systems, such as living cells and tissues. In this context, we have developed multiparametric environment-sensitive fluorescent probes tailored for precise location in the membrane bilayer. We notably developed probes of the 3-hydroxychromone family, characterized by an excited state intramolecular proton transfer reaction, which generates two tautomeric emissive species with well-separated emission bands. As a consequence, the response of these probes to changes in their environment could be monitored through changes in the ratios of the two bands, as well as through changes in the fluorescence lifetimes. Using two-photon ratiometric imaging and FLIM, these probes were used to monitor the surface membrane potential, and were applied to detect apoptotic cells and image membrane domains.

  12. Stereotactic body radiation therapy (SBRT) for adrenal metastases. A feasibility study of advanced techniques with modulated photons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca [Istituto Clinico Humanitas, Rozzano-Milan (Italy). Dept. of Radiation Oncology; Fogliata, Antonella; Cozzi, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland). Medical Physics Unit; Scorsetti, Marta

    2011-04-15

    Purpose: To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Materials and Methods: Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V{sub 95%} = 100%) and to keep the maximum dose below 107% of the prescribed dose (V{sub 107%} = 0%). Planning objective for planning target volume (PTV) was V{sub 95%} > 80%. For kidneys, the general planning objective was V{sub 15Gy} < 35% and for liver V{sub 15Gy} < (liver volume-700 cm{sup 3}). Results: All techniques achieved the minimum and maximum dose objective for CTV and PTV, D{sub 5-95%} ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V{sub 10Gy} and integral dose) after protons and the best conformality together with IMRT. Conclusions: Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment. (orig.)

  13. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  14. Low Temperature Heat Source Utilization Current and Advanced Technology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  15. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  16. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    CERN Document Server

    Wang, Zhehui

    2015-01-01

    The requirements to achieve high detection efficiency (above 50\\%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-$\\mu$m thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  17. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.

    Science.gov (United States)

    Burgess, Ian B; Zhang, Yinan; McCutcheon, Murray W; Rodriguez, Alejandro W; Bravo-Abad, Jorge; Johnson, Steven G; Loncar, Marko

    2009-10-26

    We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.

  18. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    Science.gov (United States)

    Wang, Zhehui

    2015-12-01

    The requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  19. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)] (eds.)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  20. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  1. TU-EF-207-03: Advances in Stationary Breast Tomosynthesis Using Distributed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, O. [The University of North Carolina at Chapel Hill (United States)

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  2. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  3. Design and performance of the ASAXS instrument at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, S.; Thiyagarajan, P.; Tiede, D. M.; Winans, R. E.

    1999-07-06

    The SAXS instrument on the high brilliance undulator beam line (ID-12, BESSRC-CAT) at APS has been designed to produce high-resolution scattering patterns in the millisecond time domain. This instrument is equipped with a 20 cm x 20 cm position sensitive gas detector and a 15 cm x 15 cm high-resolution position sensitive CCD mosaic detector. A photodiode detector mounted on a 3 mm diameter beam stop permits quick alignment of the instrument as well as precise measurement of the transmitted beam intensity. The ease of changing the sample to detector distance and tuning of x-ray energy enables easy access to different Q ranges. With this instrument we routinely measure data in a Q range of 0.001 to 1 {angstrom}{sup {minus}1}. The exposure time with the CCD detector varies from 0.1 second to 10 sec depending on the scattering cross-section of the samples. Techniques to interface ancillary equipment for time-resolved studies and software for faster online analysis of the data have also been developed. We have obtained excellent data on the unfolding of proteins in the millisecond time domain, ASAXS of metallic alloys by using this instrument.

  4. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    Science.gov (United States)

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  5. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    Science.gov (United States)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  6. Flame experiments at the advanced light source: new insights into soot formation processes.

    Science.gov (United States)

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-05-26

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  7. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source

    Science.gov (United States)

    Jiao, Yi; Duan, Zhe

    2017-01-01

    In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.

  8. Structural Source of the Trap of ICT Advancement - Lessons from World ICT Top Leaders

    OpenAIRE

    2014-01-01

    In light of the significant consequence of the trap of dramatic advancement of information and communication technology (ICT) in the global economy, both nations and firms that have been compelling their productivity decline. This resulted in great stagnation of ICT advanced economies and therefore its structural sources were analyzed. Based on an empirical analysis tracing, the trend in marginal productivity of ICT and its subsequent prices among the top ICT leaders in the ...

  9. Advanced prediction for multiple disaster sources of laneway under complicated geological conditions

    Institute of Scientific and Technical Information of China (English)

    Wang Bo; Liu Shengdong; Liu Jing; Huang Lanying; Zhao Ligui

    2011-01-01

    The driving safety in the laneway is often controlled by multiple disaster sources whicn include fault fracture zone,water-bearing body,goaf and collapse column.The advanced prediction of them has become a hotspot.Based on analysis of physical characteristics of the disaster sources and comparative evaluation of accuracy of the main advanced geophysical detection methods,we proposed a comprehensive judging criterion that tectonic interface can be judged by the elastic wave energy anomaly,strata water abundance can be discriminated by apparent resistivity response difference and establish a reasonable advanced prediction system.The results show that the concealed disaster sources are detected effectively with the accuracy rate of 80% if we use advanced prediction methods of integrated geophysics combined with correction of seismic and electromagnetic parameters,moreover,applying geological data,we may then distinguish types of the disaster sources and fulfill the qualitative forecast.Therefore,the advanced prediction system pays an important referential and instructive role in laneway driving project.

  10. Measurement of uranium and plutonium in solid waste by passive photon or neutron counting and isotopic neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1980-03-01

    A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.

  11. Photonics for life.

    Science.gov (United States)

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  12. Highly efficient source for frequency-entangled photon pairs generated in a 3rd order periodically poled MgO-doped stoichiometric LiTaO3 crystal

    CERN Document Server

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    We present a highly efficient source for discrete frequency-entangled photon pairs based on spontaneous parametric down-conversion using 3rd order type-0 quasi-phase matching in a periodically poled MgO-doped stoichiometric LiTaO3 crystal pumped by a 355.66 nm laser. Correlated two-photon states were generated with automatic conservation of energy and momentum in two given spatial modes. These states have a wide spectral range, even under small variations in crystal temperature, which consequently results in higher discreteness. Frequency entanglement was confirmed by measuring two-photon quantum interference fringes without any spectral filtering.

  13. Simulating Single-Photon Sources Based on Backward-Wave Spontaneous Parametric Down-Conversion in a Periodically Poled KTP Waveguide

    Directory of Open Access Journals (Sweden)

    Shukhin A.A.

    2015-01-01

    Full Text Available The properties of the backward-wave spontaneous parametric down-conversion (SPDC in a periodically poled potassium titanyl phosphate (KTP waveguide are studied in the context of creating narrowband heralded sources of single-photon states. The effective index of refraction and spatial profile of different waveguide modes, efficiency of different SPDC processes and purity of heralded photons are calculated numerically for a given waveguide. Compared to the usual co-propagating SPDC, spectral narrowing of the backward-wave SPDC was observed as should be expected. Generation biphoton states in backward-wave regime is experimentally observed in two-photon detection scheme.

  14. High visibility time-energy entangled photons from a silicon nanophotonic chip

    CERN Document Server

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C; Lin, Qiang

    2016-01-01

    Advances in quantum photonics have shown that chip-scale quantum devices are translating from the realm of basic research to applied technologies. Recent developments in integrated photonic circuits and single photon detectors indicate that the bottleneck for fidelity in quantum photonic processes will ultimately lie with the photon sources. We present and demonstrate a silicon nanophotonic chip capable of emitting telecommunication band photon pairs that exhibit the highest raw degree of time-energy entanglement from a micro/nanoscale source, to date. Biphotons are generated through cavity-enhanced spontaneous four-wave mixing (SFWM) in a high-Q silicon microdisk resonator, wherein the nature of the triply-resonant generation process leads to a dramatic Purcell enhancement, resulting in highly efficient pair creation rates as well as extreme suppression of the photon noise background. The combination of the excellent photon source and a new phase locking technique, allow for the observation of a nearly perfe...

  15. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    DEFF Research Database (Denmark)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper...

  16. An examination of the elastic structural response of the Advanced Neutron Source fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Swinson, W.F.; Luttrell, C.R.; Yahr, G.T.

    1994-09-01

    Procedures for evaluating the elastic structural response of the Advanced Neutron Source (ANS) fuel plates to coolant flow and to temperature variations are presented in this report. Calculations are made that predict the maximum deflection and the maximum stress for a representative plate from the upper and from the lower fuel elements.

  17. ITMO Photonics: center of excellence

    Science.gov (United States)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir

    2016-09-01

    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  18. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shi-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chian-Yao; Tang, Mau-Tsu [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Wu, Shao-Yun [National Tsing-Hua University, Hsinchu 30076, Taiwan (China)

    2016-01-28

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm and 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.

  19. Multimodal hard x-ray nanoprobe facility by nested Montel mirrors aimed for 40nm resolution at Taiwan Photon Source

    Science.gov (United States)

    Yin, Gung-Chian; Chang, Shi-Hung; Chen, Bo-Yi; Chen, Huang-Yeh; Lin, Bi-Hsuan; Tseng, Shao-Chin; Lee, Chian-Yao; Wu, Shao-Yun; Tang, Mau-Tsu

    2016-01-01

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm and 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.

  20. Design and analysis of the internally cooled silicon mirrors and benders for wiggler sources at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Schildkamp, W.; Jaski, Y. [Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Tonnessen, T.; Douglas, G. [Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107 (United States)

    1996-09-01

    When silicon single crystal mirrors are bent to cylindrical figures of typically 6 km bending radius, the moments needed are very small and easy to disturb by cooling attachments to the sides of the mirror. Hence, we decided to abandon the conventional concept of cooling plates attached to the sides of the mirrors and instead have chosen to use internal water channels. We present here the design of mirrors with cooling channels near the neutral axis of the silicon beam that have a rather thick {open_quote}{open_quote}hot wall.{close_quote}{close_quote} The results of this analytical work are nonintuitive, regarding the stresses produced by wiggler heating. The design path chosen minimizes figure errors due to coolant pressure variations and residual stresses from machining and bonding of multiple layers of silicon. The geometry of the water channels avoids water-to-vacuum seals and uses the mirror bender as the coolant manifold. Engineering efforts, which reduce the bending stresses at bender-to-silicon interface by a factor of five, will be presented. The complete mirror bender and motion control mechanics will be shown. {copyright} {ital 1996 American Institute of Physics.}

  1. Advanced Pulse Width Technique in Impedance Source Cascaded Multilevel Inverter with Asymmetric Topology

    Directory of Open Access Journals (Sweden)

    Rajnish Kumar Sharma

    2016-08-01

    Full Text Available In this research, a single phase Z-source cascading Multilevel Inverter, Nine-level inverter topologies with a trinary DC sources are offered. The recommended topologies are expanded by cascading a full bridge inverter with dissimilar DC sources. This paper recommends advanced pulse with modulation technique as a switching scheme. In this PWM technology, trapezoidal modulation technique is used as variable amplitude pulse width modulation. These topologies compromise reduced harmonics present in the output voltage and superior root mean square (RMS values of the output voltages linked with the traditional trapezoidal pulse width modulation. The simulation of proposed circuit is carried out by using MATLAB/SIMULINK.

  2. Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device

    Science.gov (United States)

    Saha, Bidyut Baran; Chakraborty, Anutosh; Koyama, Shigeru; Srinivasan, Kandadai; Ng, Kim Choon; Kashiwagi, Takao; Dutta, Pradip

    2007-09-01

    This letter presents a thermodynamic formulation to calculate the minimum driving heat source temperature of an advanced solid sorption cooling device, and it is validated with experimental data. This formalism has been developed from the rigor of the Boltzmann distribution function and the condensation approximation of adsorptive molecules. An interesting and useful finding has been established from this formalism that it is possible to construct a solid sorption refrigeration device that operates in a cycle transferring heat from a low temperature source to a heat sink with a driving heat source at a temperature close to but above ambient.

  3. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    Science.gov (United States)

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  4. FocusStack and StimServer: A new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    Directory of Open Access Journals (Sweden)

    Dylan Richard Muir

    2015-01-01

    Full Text Available Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  5. The research on two-color photon sources in infrared and X-ray ranges by compton scattering

    CERN Document Server

    Yu Zhao

    2001-01-01

    The generation of a two-color source of FEL light in both the infrared and soft X-ray ranges by intracavity Compton backscattering is demonstrated by the Beijing FEL facility. 1.20-1.35 keV soft X-rays are successfully extracted from the optical cavity of the FEL through a porous metallic mirror, while a 9-10 mu m FEL laser is output in the other dielectric mirror simultaneously. The average output flux of X-ray is 10 sup 2 -10 sup 3 photons/s when the average output FEL laser power is 6-20 mW. The experimental result allows us to envision a convenient way to expand the application areas of IR FEL facilities into X-ray or gamma-ray ranges.

  6. High-speed tunable photonic crystal fiber-based femtosecond soliton source without dispersion pre-compensation

    Directory of Open Access Journals (Sweden)

    Martín E. Masip

    2012-02-01

    Full Text Available We present a high-speed wavelength tunable photonic crystal fiber-based source capable of generating tunable femtosecond solitons in the infrared region. Through measurements and numerical simulation, we show that both the pulsewidth and the spectral width of the output pulses remain nearly constant over the entire tuning range from 860 to 1160 nm. This remarkable behavior is observed even when pump pulses are heavily chirped (7400 fs^2, which allows to avoid bulky compensation optics, or the use of another fiber, for dispersion compensation usually required by the tuning device. Received: 7 July 2011, Accepted: 1 February 2012; Edited by: A. Goñi; Reviewed by: J. Chavez Boggio, Leibniz Institut fur Astrophysik Potsdam, Germany; DOI: http://dx.doi.org/10.4279/PIP.040001 Cite as: M. Caldarola, V. A. Bettachini, A. A. Rieznik, P. G. Konig, M. E. Masip, D. F. Grosz, A. V. Bragas, Papers in Physics 4, 040001 (2012

  7. Technology development for a single-photon source; Technologieentwicklung fuer eine Einzelphotonenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Enzmann, Roland

    2011-08-02

    , separated with a thin spacer layer, were deposited upon each other. By this way a redshift of the emission from 1.3 {mu}m to 1.5 {mu}m was obtained. To achieve high collection efficiency, the quantum dots should be embedded into photonic crystals. An ArCl{sub 2}-etch-process was developed which enables the etch of small features in Al{sub x}Ga{sub y}In{sub 1-x-y}As material system to transfer the Si{sub 3}N{sub 4}-pattern into the semiconductor. Using this process the fabricated photonic crystals with L3-cavities had Q-factors around 2200. Any concept using a cavity needs a mechanism to control the frequency-detuning between the mode and the quantum dots, due to the inhomogeneous frequency broadening of the quantum dots. Thus an in-situ tuning mechanism is required for adjusting the emission wavelength of the quantum dot or cavity mode, respectively. This concept intents to use the quantum confined Stark effect (QCSE) to force the emission of a single photon out of a quantum dot into the photonic crystal mode. This is realized using a reversed biased Schottky contact to cause a red-shift of the emission of a single quantum dot. Electroluminescence measurements on the device show, that even with very low currents of 14.5 {mu}A the saturation intensity of single quantum dots could be reached. (orig.)

  8. A Monte Carlo estimate for the fraction of thermal Comptonized photons that impinge back on the soft source in neutron star LMXBs

    Science.gov (United States)

    Kumar, Nagendra; Misra, Ranjeev

    2016-10-01

    In earlier works, it was shown that the energy-dependent soft time lags observed in kHz quasi-periodic oscillations of neutron star low-mass X-ray binaries can be explained as being due to Comptonization lags provided a significant fraction (η ˜ 0.2-0.8) of the Comptonized photons impinge back into the soft photon source. Here we use a Monte Carlo scheme to verify if such a fraction is viable or not. In particular we consider three different Comptonizing medium geometries: (i) a spherical shell, (ii) a boundary layer like torus and (iii) a corona on top of an accretion disc. Two sets of spectral parameters corresponding to the `hot' and `cold' seed photon models were explored. The general result of the study is that for a wide range of sizes, the fraction lies within η ˜ 0.3-0.7, and hence compatible with the range required to explain the soft time lags. Since there is a large uncertainty in the range, we cannot concretely rule out any of the geometries or spectral models, but the analysis suggests that a boundary layer type geometry with a `cold' seed spectral model is favoured over an accretion corona model. Better quality data will allow one to constrain the geometry more rigorously. Our results emphasize that there is significant heating of the soft photon source by the Comptonized photons and hence this effect needs to be taken into account for any detailed study of these sources.

  9. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  10. Multipli-Entangled Photons from a Spontaneous Parametric Down-Conversion Source

    Science.gov (United States)

    2011-01-01

    Alsing, Corey J. Peters (AFRL/RITA); Enrique J. Galvez ( Colgate University, Hamilton, NY) 5d. PROJECT NUMBER QIS0 5e. TASK NUMBER PR 5f...and Enrique J. Galvez Colgate University, Hamilton, NY (USA) 1. ABSTRACT In this work, we discuss a novel compact source that generates six

  11. Source of statistical noises in the Monte Carlo sampling techniques for coherently scattered photons.

    Science.gov (United States)

    Muhammad, Wazir; Lee, Sang Hoon

    2013-01-01

    Detailed comparisons of the predictions of the Relativistic Form Factors (RFFs) and Modified Form Factors (MFFs) and their advantages and shortcomings in calculating elastic scattering cross sections can be found in the literature. However, the issues related to their implementation in the Monte Carlo (MC) sampling for coherently scattered photons is still under discussion. Secondly, the linear interpolation technique (LIT) is a popular method to draw the integrated values of squared RFFs/MFFs (i.e. A(Z, v(i)²)) over squared momentum transfer (v(i)² = v(1)²,......, v(59)²). In the current study, the role/issues of RFFs/MFFs and LIT in the MC sampling for the coherent scattering were analyzed. The results showed that the relative probability density curves sampled on the basis of MFFs are unable to reveal any extra scientific information as both the RFFs and MFFs produced the same MC sampled curves. Furthermore, no relationship was established between the multiple small peaks and irregular step shapes (i.e. statistical noise) in the PDFs and either RFFs or MFFs. In fact, the noise in the PDFs appeared due to the use of LIT. The density of the noise depends upon the interval length between two consecutive points in the input data table of A(Z, v(i)²) and has no scientific background. The probability density function curves became smoother as the interval lengths were decreased. In conclusion, these statistical noises can be efficiently removed by introducing more data points in the A(Z, v(i)²) data tables.

  12. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    CERN Document Server

    Halevy, A; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by more than three times. Such an improvement is currently required for the generation of multiphoton entangled states.

  13. The biaxial nonlinear crystal BiB₃O₆ as a polarization entangled photon source using non-collinear type-II parametric down-conversion.

    Science.gov (United States)

    Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-10-10

    We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states.

  14. Generation of arbitrary freeform source shapes using advanced illumination systems in high-NA immersion scanners

    Science.gov (United States)

    Zimmermann, Jörg; Gräupner, Paul; Neumann, Jens T.; Hellweg, Dirk; Jürgens, Dirk; Patra, Michael; Hennerkes, Christoph; Maul, Manfred; Geh, Bernd; Engelen, Andre; Noordman, Oscar; Mulder, Melchior; Park, Sean; De Vocht, Joep

    2010-04-01

    The application of customized and freeform illumination source shapes is a key enabler for continued shrink using 193 nm water based immersion lithography at the maximum possible NA of 1.35. In this paper we present the capabilities of the DOE based Aerial XP illuminator and the new programmable FlexRay illuminator. Both of these advanced illumination systems support the generation of such arbitrarily shaped illumination sources. We explain how the different parts of the optical column interact in forming the source shape with which the reticle is illuminated. Practical constraints of the systems do not limit the capabilities to utilize the benefit of freeform source shapes vs. classic pupil shapes. Despite a different pupil forming mechanism in the two illuminator types, the resulting pupils are compatible regarding lithographic imaging performance so that processes can be transferred between the two illuminator types. Measured freeform sources can be characterized by applying a parametric fit model, to extract information for optimum pupil setup, and by importing the measured source bitmap into an imaging simulator to directly evaluate its impact on CD and overlay. We compare measured freeform sources from both illuminator types and demonstrate the good matching between measured FlexRay and DOE based freeform source shapes.

  15. On the seed photon source for Comptonisation in the black hole binary SWIFT J1753.5-0127

    CERN Document Server

    Kajava, J J E; Tsygankov, S; Neustroev, V

    2016-01-01

    Aims. The black hole binary SWIFT J1753.5-0127 is providing a unique data-set to study accretion flows. Various investigations of this system and of other black holes have not, however, led to an agreement on the accretion flow geometry nor on the seed photon source for Comptonisation during different stages of X-ray outbursts. We aim to place constraints on these accretion flow properties by studying long term spectral variations of this source. Methods. We performed phenomenological and self-consistent broad band spectral modeling of SWIFT J1753.5-0127 using quasi-simultaneous archived data from INTEGRAL/ISGRI, Swift/UVOT/XRT/BAT, RXTE/PCA/HEXTE and Maxi/GSC instruments. Results. 1. We identify a critical flux limit, F \\sim 1.5 \\times 10^{-8} erg/cm^2/s, and show that the spectral properties of SWIFT J1753.5-0127 are markedly different above and below that. Above the limit, during the outburst peak, the hot medium seems to intercept roughly 50 per cent of the disc emission. Below it, in the outburst tail, t...

  16. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-11-01

    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  17. Photon Conserving Radiative Transfer around Point Sources in multi-dimensional Numerical Cosmology

    CERN Document Server

    Abel, T; Madau, P; Abel, Tom; Norman, Michael L.; Madau, Piero

    1998-01-01

    Many questions in physical cosmology regarding the thermal and ionization history of the intergalactic medium are now successfully studied with the help of cosmological hydrodynamical simulations. Here we present a numerical method that solves the radiative transfer around point sources within a three dimensional cartesian grid. The method is energy conserving independently of resolution: this ensures the correct propagation speeds of ionization fronts. We describe the details of the algorithm, and compute as first numerical application the ionized region surrounding a mini-quasar in a cosmological density field at z=7.

  18. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  19. Status, upgrades, and advances of RTS2: the open source astronomical observatory manager

    Science.gov (United States)

    Kubánek, Petr

    2016-07-01

    RTS2 is an open source observatory control system. Being developed from early 2000, it continue to receive new features in last two years. RTS2 is a modulat, network-based distributed control system, featuring telescope drivers with advanced tracking and pointing capabilities, fast camera drivers and high level modules for "business logic" of the observatory, connected to a SQL database. Running on all continents of the planet, it accumulated a lot to control parts or full observatory setups.

  20. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  1. Advanced Photonic Hybrid Materials

    Science.gov (United States)

    2015-07-01

    distribution is unlimited.   TECHNICAL DESCRIPTION OF THE RESULTS:    1/  Synthesis , characterization and modelling of anisotropic  gold   nanoparticles ...preparations  and  purification  of  the AuNPs  are  described  elsewhere.4,6,9,14,15   Synthesis  of the  gold  spherical  nanoparticles   The spherical...presentations.  This report is based on 3 articles (joined to the report):  ‐ Dispersion  and  self‐orientation  of  gold   nanoparticles   in  sol‐gel  hybrid

  2. Accurate relative-phase and time-delay maps all over the emission cone of hyperentangled photon source

    CERN Document Server

    Hegazy, Salem F; Badr, Yehia A; Obayya, Salah S A

    2016-01-01

    High flux of hyperentangled photons entails collecting the two-photon emission over relatively wide extent in frequency and transverse space within which the photon pairs are simultaneously entangled in multiple degrees of freedom. In this paper, we present a numerical approach to determining the spatial-spectral relative-phase and time-delay maps of hyperentangled photons all over the spontaneous parametric down conversion (SPDC) emission cone. We consider the hyperentangled-photons produced by superimposing noncollinear SPDC emissions of two crossed and coherently-pumped nonlinear crystals. We adopt a vectorial representation for all parameters of concern. This enables us to study special settings such as the self-compensation via oblique pump incidence. While rigorous quantum treatment of SPDC emission requires Gaussian state representation, in low-gain regime (like the case of the study), it is well approximated to the first order to superposition of vacuum and two-photon states. The relative phase and ti...

  3. Experimental Study on Preparation Efficiency of Microstructured-Fibre Based Heralded Single-Photon Source at 1.5 μm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Si-Tuo; ZHANG Wei; ZHOU Qiang; HUANG Yi-Dong; PENG Jiang-De

    2009-01-01

    We present an experimental study on the microstructured-fibre (MSF) based heralded single photon source (HSPS) at 1.5 μm.The preparation efficiency is measured to be 8.7% under room temperature.The analysis of the experimental results shows that the preparation efficiency can be improved up to 22.9% by the Raman noise suppression with fibre cooling under the experimental setup parameters.Further efficiency improvement could be achieved by improving the collection efficiency and reducing dark counts of single photon detectors (SPDs).The experimental results and analysis show great potential applications of the MSF in high efficient HSPSs.

  4. Recent Beam Measurements and New Instrumentation at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Sannibale, F.; Baptiste, K.; Barry, W.; Chin, M.; /LBL, Berkeley; Filippetto, D.; /Frascati; Jaegerhofer, L.; /Vienna, Tech. U.; Julian, J.; Kwiatkowski, S.; Low, R.; Plate, D.; Portmann, G.; Robin, D.; Scarvie, T.; /LBL, Berkeley; Stupakov, G.; /SLAC; Weber, J.; Zolotorev, M.; /LBL, Berkeley

    2012-04-11

    The Advanced Light Source (ALS) in Berkeley was the first of the soft x-ray third generation light source ever built, and since 1993 has been in continuous and successful operation serving a large community of users in the VUV and soft x-ray community. During these years the storage ring underwent through several important upgrades that allowed maintaining the performance of this veteran facility at the forefront. The ALS beam diagnostics and instrumentation have followed a similar path of innovation and upgrade and nowadays include most of the modem and last generation devices and technologies that are commercially available and used in the recently constructed third generation light sources. In this paper we will not focus on such already widely known systems, but we will concentrate our effort in the description of some measurements techniques, instrumentation and diagnostic systems specifically developed at the ALS and used during the last few years.

  5. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    Directory of Open Access Journals (Sweden)

    David G Rosenegger

    Full Text Available Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  6. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  7. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source

    Science.gov (United States)

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J.; Chance, Mark R.; Ralston, Corie

    2014-01-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale. PMID:24971962

  8. Design for an efficient single photon source based on a single quantum dot embedded in a parabolic solid immersion lens.

    Science.gov (United States)

    Devaraj, Vasanthan; Baek, Jongseo; Jang, Yudong; Jeong, Hyuk; Lee, Donghan

    2016-04-18

    We have designed a single photon emitter based on a single quantum dot embedded within a single mode parabolic solid immersion lens (pSIL) and a capping low-index pSIL. Numerical simulations predicted that the emitter performance should exhibit a high photon collection efficiency with excellent far-field emission properties, broadband operation, and good tolerance in its geometric (spatial configuration) parameters. Good geometric tolerance in a single-mode pSIL without yielding significant losses in the photon collection efficiency is advantageous for device fabrication. The low-index top pSIL layer provided this structure with a high photon collection efficiency, even in the case of a small numerical aperture (NA). Photon collection efficiencies of 64% and 78% were expected for NA values of 0.41 and 0.5, respectively. In addition to the benefits listed above, our combined pSIL design provided excellent broadband performance in a 100 nm range.

  9. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging.

    Science.gov (United States)

    Patel, Anjla C; Thornton, Rachel C; Mitchell, Tejal N; Michell, Andrew W

    2016-10-01

    Over the last two decades, technological advances in electroencephalography (EEG) have allowed us to extend its clinical utility for the evaluation of patients with epilepsy. This article reviews three main areas in which substantial advances have been made in the diagnosis and pre-surgical planning of patients with epilepsy. Firstly, the development of small portable video-EEG systems have allowed some patients to record their attacks at home, thereby improving diagnosis, with consequent substantial healthcare and economic implications. Secondly, in specialist centres carrying out epilepsy surgery, there has been considerable interest in whether bursts of very high frequency EEG activity can help to determine the regions of the brain likely to be generating the seizures. Identification of these discharges, initially only recorded from intracranial electrodes, may thus allow better surgical planning and improve surgical outcomes. Finally we discuss the contribution of electrical source imaging in the pre-surgical evaluation of patients with focal epilepsy, and its prospects for the future.

  10. Quantum photonics at telecom wavelengths based on lithium niobate waveguides

    Science.gov (United States)

    Alibart, Olivier; D'Auria, Virginia; De Micheli, Marc; Doutre, Florent; Kaiser, Florian; Labonté, Laurent; Lunghi, Tommaso; Picholle, Éric; Tanzilli, Sébastien

    2016-10-01

    Integrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits.

  11. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    CERN Document Server

    Flanigan, Daniel; Jones, Glenn; Johnson, Bradley R; Ade, Peter; Araujo, Derek; Bradford, Kristi; Cantor, Robin; Che, George; Day, Peter K; Doyle, Simon; Kjellstrand, Carl Bjorn; LeDuc, Henry G; Limon, Michele; Luu, Vy; Mauskopf, Philip; Miller, Amber; Mroczkowski, Tony; Tucker, Carole; Zmuidzinas, Jonas

    2015-01-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to $\\mathrm{NEP} \\approx 2 \\times 10^{-17} \\; \\mathrm{W} \\; \\mathrm{Hz}^{-1/2}$, referenced to absorbed power. At higher source power levels we observe the relationships between noise and power expected from the photon statistics of the source signal: $\\mathrm{NEP} \\propto P$ for broadband (chaotic) illumination ...

  12. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  13. The advanced light source: America`s brightest light for science and industry

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Lawler, G.

    1994-03-01

    America`s brightest light comes from the Advanced Light Source (ALS), a national facility for scientific research, product development, and manufacturing. Completed in 1993, the ALS produces light in the ultraviolet and x-ray regions of the spectrum. Its extreme brightness provides opportunities for scientific and technical progress not possible anywhere else. Technology is poised on the brink of a major revolution - one in which vital machine components and industrial processes will be drastically miniaturized. Industrialized nations are vying for leadership in this revolution - and the huge economic rewards the leaders will reap.

  14. New Advanced Source Identification Algorithm (ASIA-NEW) for radiation monitors with plastic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stavrov, Andrei; Yamamoto, Eugene [Rapiscan Systems, Inc., 14000 Mead Street, Longmont, CO, 80504 (United States)

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well

  15. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  16. Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier

    Science.gov (United States)

    Amir, F.; Mitchell, C.; Farrington, N.; Missous, M.

    2009-09-01

    An advanced step-graded Gunn diode is reported, which has been developed through joint modelling-experimental work. The ~ 200 GHz fundamental frequency devices have been realized to test GaAs based Gunn oscillators at sub-millimetre wave for use as a high power (multi mW) Terahertz source in conjunction with a mm-wave multiplier, with novel Schottky diodes. The epitaxial growth of both the Gunn diode and Schottky diode wafers were performed using an industrial scale Molecular Beam Epitaxy (V100+) reactor. The Gunn diodes were then manufactured and packaged by e2v Technologies (UK) Plc. Physical models of the high power Gunn diode sources, presented here, are developed in SILVACO.

  17. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  18. Programmable atom-photon quantum interface

    Science.gov (United States)

    Kurz, Christoph; Eich, Pascal; Schug, Michael; Müller, Philipp; Eschner, Jürgen

    2016-06-01

    We present the implementation of a programmable atom-photon quantum interface, employing a single trapped +40Ca ion and single photons. Depending on its mode of operation, the interface serves as a bidirectional atom-photon quantum-state converter, as a source of entangled atom-photon states, or as a quantum frequency converter of single photons. The interface lends itself particularly to interfacing ions with spontaneous parametric down-conversion-based single-photon or entangled-photon-pair sources.

  19. FY 2004 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Keller, Paul E.; Bennett, Wendy D.; Martin, Peter M.; Johnson, Bradley R.; Sundaram, S. K.; Riley, Brian J.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

    2004-10-01

    Research done by the Infrared Photonics team at PNNL is focused on developing miniaturized integrated optics for the MWIR and LWIR by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin film deposition capabilities, direct-laser writing techniques, IR photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology - all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to Quantum Cascade Laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  20. Methodological study and application of advanced receptor modeling to airborne particulate sources

    Science.gov (United States)

    Chueinta, Wanna

    Two aspects of air quality management, aerosol mass measurement and pollution source identification, were studied. A beta gauge was developed to determine particulate mass collected on filter. Two advanced receptor models were applied to resolve possible sources of pollutants on local and regional scales by use of positive matrix factorization (PMF) and multilinear engine (ME), respectively. A simple, low cost beta gauge was designed, constructed, and tested to determine if it provided the necessary performance and reliability in collected aerosol mass measurements. The beta gauge was calibrated and evaluated by experiments with different sized particles. The results showed that the unit provided a satisfactory accuracy and precision with respect to the gravimetric method. (PMF) is a least-square approach to factor analysis. In this study, PMF was applied to investigate the possible sources of airborne particulate matter (APM) collected at an urban residential area of Bangkok from June 1995 to May 1996 and at a suburban residential area in Pathumthani from September 1993 to August 1994. The data consisting of the fine and coarse fractions were analyzed separately. The analysis used the robust analysis mode and rotations to produce six source factors for both the fine and coarse fractions at the urban site and five factors for the fine and coarse fractions at the suburban site. Examination of the influence of wind direction showed the correspondence of some specific factors such as sea salt and vehicle sources with known area sources. ME is a new algorithm for solving a broad range of multilinear problems. A model was developed for the analysis of spatial patterns and possible sources affecting haze and its visual effects in the southwestern United States. The data from the project Measurement of Haze and Visual Effects (MOHAVE) collected during the late winter and mid-summer of 1992 at the monitoring sites in four states, i.e., California, Arizona, Nevada and Utah

  1. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Cannao, Paola M. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Canstein, Christian [Siemens Medical Solutions, Malvern, PA (United States); Fuller, Stephen R.; Varga-Szemes, Akos [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Muscogiuri, Giuseppe; De Cecco, Carlo N. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Nikolaou, Konstantin [Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-06-15

    To evaluate the impact of an advanced monoenergetic (ME) reconstruction algorithm on CT coronary stent imaging in a phantom model. Three stents with lumen diameters of 2.25, 3.0 and 3.5 mm were examined with a third-generation dual-source dual-energy CT (DECT). Tube potential was set at 90/Sn150 kV for DE and 70, 90 or 120 kV for single-energy (SE) acquisitions and advanced modelled iterative reconstruction was used. Overall, 23 reconstructions were evaluated for each stent including three SE acquisitions and ten advanced and standard ME images with virtual photon energies from 40 to 130 keV, respectively. In-stent luminal diameter was measured and compared to nominal lumen diameter to determine stent lumen visibility. Contrast-to-noise ratio was calculated. Advanced ME reconstructions substantially increased lumen visibility in comparison to SE for stents ≤3 mm. 130 keV images produced the best mean lumen visibility: 86 % for the 2.25 mm stent (82 % for standard ME and 64 % for SE) and 82 % for the 3.0 mm stent (77 % for standard ME and 69 % for SE). Mean DLP for SE 120 kV and DE acquisitions were 114.4 ± 9.8 and 58.9 ± 2.2 mGy x cm, respectively. DECT with advanced ME reconstructions improves the in-lumen visibility of small stents in comparison with standard ME and SE imaging. (orig.)

  2. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications.

    Science.gov (United States)

    Washburn, Adam L; Bailey, Ryan C

    2011-01-21

    By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.

  3. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  4. Broadband photon time of flight spectroscopy: advanced spectroscopic analysis for ensuring safety and performance of pharmaceutical tablets

    DEFF Research Database (Denmark)

    Kamran, Faisal; Nielsen, Otto Højager Attermann; Andersson-Engels, Stefan;

    2013-01-01

    We report on extended spectroscopic analysis of pharmaceutical tablets performed with broadband photon time-of-flight absorption/scaring spectroscopy. Precise monitoring of absorption and scattering spectra enables cost-efficient monitoring of key safety and performance parameters of the drugs....

  5. CdSe quantum dot in a ZnSe nanowire as an efficient source of single photons

    Energy Technology Data Exchange (ETDEWEB)

    Tribu, A.; Aichele, T.; Kheng, K. [CEA/CNRS Group Nanophysique et Semi-Conducteurs, CEA/INAC/SP2M, Grenoble (France); Sallen, G.; Bougerol, C.; Andre, R.; Poizat, J.P.; Tatarenko, S. [CEA/CNRS Group Nanophysique et Semi-Conducteurs, Institut Neel CNRS, Universite J. Fourier Grenoble (France)

    2009-04-15

    We report on our development of fabrication of CdSe QD in ZnSe nanowire. We have been able to obtain high quality structures with very good optical properties. This has allowed us to measure photon emission from single quantum dots and to demonstrate photon antibunching. We show that this new type of II-VI quantum dot is very promising for high temperature operation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A folded-sandwich polarization-entangled two-color photon pair source with large tuning capability for applications in hybrid quantum architectures

    CERN Document Server

    Dietz, Otto; Kreißl, Thomas; Herzog, Ulrike; Kroh, Tim; Ahlrichs, Andreas; Benson, Oliver

    2015-01-01

    We demonstrate a two-color entangled pho ton pair source which can be adapted easily to a wide range of wavelengths combinations. A Fresnel rhomb as a geometrical quarter-wave plate and a versatile combination of compensation crystals are key components of the source. Entanglement of two photons at the Cs D1 line (894.3 nm) and at the telecom O-band (1313.1 nm) with a fidelity of $F = 0.753 \\pm 0.021$ is demonstrated and improvements of the setup are discussed.

  7. Recent advances in omega-3: Health Benefits, Sources, Products and Bioavailability.

    Science.gov (United States)

    Nichols, Peter D; McManus, Alexandra; Krail, Kevin; Sinclair, Andrew J; Miller, Matt

    2014-09-16

    The joint symposium of The Omega-3 Centre and the Australasian Section American Oil Chemists Society; Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability, was held November 7, 2013 in Newcastle, NSW, Australia. Over 115 attendees received new information on a range of health benefits, aquaculture as a sustainable source of supply, and current and potential new and novel sources of these essential omega-3 long-chain (LC, ≥ C20) polyunsaturated fatty acid nutrients (also termed LC omega-3). The theme of "Food versus Fuel" was an inspired way to present a vast array of emerging and ground breaking Omega-3 research that has application across many disciplines. Eleven papers submitted following from the Omega-3 Symposium are published in this Special Issue volume, with topics covered including: an update on the use of the Omega-3 Index (O3I), the effects of dosage and concurrent intake of vitamins/minerals on omega-3 incorporation into red blood cells, the possible use of the O3I as a measure of risk for adiposity, the need for and progress with new land plant sources of docosahexaenoic acid (DHA, 22:6ω3), the current status of farmed Australian and New Zealand fish, and also supplements, in terms of their LC omega-3 and persistent organic pollutants (POP) content, progress with cheap carbon sources in the culture of DHA-producing single cell organisms, a detailed examination of the lipids of the New Zealand Greenshell mussel, and a pilot investigation of the purification of New Zealand hoki liver oil by short path distillation. The selection of papers in this Special Issue collectively highlights a range of forward looking and also new and including positive scientific outcomes occurring in the omega-3 field.

  8. Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability

    Directory of Open Access Journals (Sweden)

    Peter D. Nichols

    2014-09-01

    Full Text Available The joint symposium of The Omega-3 Centre and the Australasian Section American Oil Chemists Society; Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability, was held November 7, 2013 in Newcastle, NSW, Australia. Over 115 attendees received new information on a range of health benefits, aquaculture as a sustainable source of supply, and current and potential new and novel sources of these essential omega-3 long-chain (LC, ≥C20 polyunsaturated fatty acid nutrients (also termed LC omega-3. The theme of “Food versus Fuel” was an inspired way to present a vast array of emerging and ground breaking Omega-3 research that has application across many disciplines. Eleven papers submitted following from the Omega-3 Symposium are published in this Special Issue volume, with topics covered including: an update on the use of the Omega-3 Index (O3I, the effects of dosage and concurrent intake of vitamins/minerals on omega-3 incorporation into red blood cells, the possible use of the O3I as a measure of risk for adiposity, the need for and progress with new land plant sources of docosahexaenoic acid (DHA, 22:6ω3, the current status of farmed Australian and New Zealand fish, and also supplements, in terms of their LC omega-3 and persistent organic pollutants (POP content, progress with cheap carbon sources in the culture of DHA-producing single cell organisms, a detailed examination of the lipids of the New Zealand Greenshell mussel, and a pilot investigation of the purification of New Zealand hoki liver oil by short path distillation. The selection of papers in this Special Issue collectively highlights a range of forward looking and also new and including positive scientific outcomes occurring in the omega-3 field.

  9. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    Science.gov (United States)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  10. Source apportionment advances using polar plots of bivariate correlation and regression statistics

    Science.gov (United States)

    Grange, Stuart K.; Lewis, Alastair C.; Carslaw, David C.

    2016-11-01

    This paper outlines the development of enhanced bivariate polar plots that allow the concentrations of two pollutants to be compared using pair-wise statistics for exploring the sources of atmospheric pollutants. The new method combines bivariate polar plots, which provide source characteristic information, with pair-wise statistics that provide information on how two pollutants are related to one another. The pair-wise statistics implemented include weighted Pearson correlation and slope from two linear regression methods. The development uses a Gaussian kernel to locally weight the statistical calculations on a wind speed-direction surface together with variable-scaling. Example applications of the enhanced polar plots are presented by using routine air quality data for two monitoring sites in London, United Kingdom for a single year (2013). The London examples demonstrate that the combination of bivariate polar plots, correlation, and regression techniques can offer considerable insight into air pollution source characteristics, which would be missed if only scatter plots and mean polar plots were used for analysis. Specifically, using correlation and slopes as pair-wise statistics, long-range transport processes were isolated and black carbon (BC) contributions to PM2.5 for a kerbside monitoring location were quantified. Wider applications and future advancements are also discussed.

  11. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    Science.gov (United States)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  12. Calculations of neutron and photon source terms and attenuation profiles for the generic design of the SPEAR3 storage ring shield.

    Science.gov (United States)

    Rokni, S H; Khater, H; Liu, J C; Mao, S; Vincke, H

    2005-01-01

    The FLUKA Monte Carlo particle generation and transport code was used to calculate shielding requirements for the 3 GeV, 500 mA SPEAR3 storage ring at the Stanford Synchrotron Radiation Laboratory. The photon and neutron dose equivalent source term data were simulated for a 3 GeV electron beam interacting with two typical target/shielding geometries in the ring. The targets simulated are a rectangular block of 0.7 cm thick copper and a 5 cm thick iron block, both tilted at 1 degree relative to the beam direction. Attenuation profiles for neutrons and photons in concrete and lead as a function of angle at different shield thicknesses were calculated. The first, second and equilibrium attenuation lengths of photons and neutrons in the shield materials are derived from the attenuation profiles. The source term data and the attenuation lengths were then used to evaluate the shielding requirements for the ratchet walls of all front-ends of the SPEAR3 storage ring.

  13. Modulation of Quantum Dot Energy Levels by Surface Acoustic Waves for use as a Triggered Photon Source

    Science.gov (United States)

    Hubert, Colin

    The foundation for a triggered photon source was realized by convolving the energy bandgap of a quantum dot with a surface acoustic wave. The devices consisted of an InP substrate on which InAs/InP quantum dots were grown. It was then coated with a layer of piezoelectric ZnO by radio-frequency magnetic sputtering. Modulation of the device was enabled through aluminum interdigitated transducers that were deposited on the sample, which excited surface acoustic waves. The expected resonance of the interdigitated transducers was around 200 MHz. However, resonances at 200 MHz and 300 MHz were recorded, due a Sezawa mode excitation. The preferential excitation of modes was likely due to variations in the ZnO film thickness. The target quantum dot emission was around 1550 nm, matching with the C-band used in fibre optic communication channels. The largest wavelength measured for the ground state energy emissions from these dots was 1580 nm, though typical lowest energy emission peaks were in the range of 1300-1400 nm. Unidirectional Stark shifts in the photoluminescence emission of the quantum dots were observed as surface acoustic waves were applied. This quantum confined Stark effect is thought to be due the polarization of the InP/InAs due to the electric field in the ZnO layer, providing a second order effect. The electrical field from the ZnO layer potentially contributes a linear effect. The modulation of the quantum dot energy is due to the strain field but due to the electrical coupling form the ZnO layer, exact determination of the strain field's contribution is not possible. The emission modulation effect is quadratically dependent on both applied SAW power and inital emission energy. Convolution of the quantum dot emission with the surface acoustic wave-induced bandgap modulation was also observed, resulting in a split emission peak. A splitting of 4.97 meV was observed using a linear surface acoustic wave power density of at least 1.69 W/m and a laser

  14. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  15. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Henry Herng Wei [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ~100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  16. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Henry Herng Wei

    2004-04-16

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates {approx}100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a {Delta}S=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  17. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  18. Advanced system demonstration for utilization of biomass as an energy source. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    McCollom, M.

    1979-01-01

    The conclusions and findings of extensive analyses undertaken to assess the environmental impacts and effects of the proposal to assist in an Advanced System Demonstration for Utilization of Biomass as an Energy Source by means of a wood-fueled power plant. Included are a description of the proposed project, a discussion of the existing environment that the project would affect, a summary of the project's impacts on the natural and human environments, a discussion of the project's relationships to other government policies and plans, and an extensive review of the alternatives which were considered in evaluating the proposed action. All findings of the research undertaken are discussed. More extensive presentations of the methods of analysis used to arrive at the various conclusions are available in ten topical technical appendices.

  19. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. (Science Applications International Corp., Oak Ridge, TN (United States))

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  20. Introduction: Assessing non-point source pollution in the vadose zone with advanced information technologies

    Science.gov (United States)

    Corwin, Dennis L.; Loague, Keith; Ellsworth, Timothy R.

    The information age has ushered in a global awareness of complex environmental problems that do not respect political or physical boundaries: climatic change, ozone layer depletion, deforestation, desertification, and non-point source (NPS) pollution. Among these global environmental problems, NPS pollutants represent a perfect example of a complex multidisciplinary problem that exists over multiple scales with tremendous spatial and temporal complexity. To address the NPS problem, specific to the vadose zone, advanced information technologies must be applied in a spatial context. An integrated system of advanced information technologies (i.e., global positioning, geographic information system, geostatistics, remote sensing, solute transport modeling, neural networks, transfer functions, fuzzy logic, hierarchical theory, and uncertainty analysis) provides a framework from which real-time and/or simulated assessments of NPS pollution can be made. The ability to accurately assess present and future NPS-pollution impacts on ecosystems ranging from local to global scales provides a powerful tool for environmental stewardship and guiding future human activities.

  1. Photon-number squeezing with a noisy femtosecond fiber laser amplifier source using a collinear balanced detection technique.

    Science.gov (United States)

    Sawai, Shota; Kawauchi, Hikaru; Hirosawa, Kenichi; Kannari, Fumihiko

    2013-10-21

    We experimentally demonstrate photon-number squeezing at 1.55 μm using a noisy erbium-doped fiber amplifier (EDFA). We employ a collinear balanced detection (CBD) technique, where the intensity noise at a specific radio frequency is canceled between two pulse trains. In spite of substantially large excess noise (>10 dB) in an EDFA due to amplified spontaneous emission, we successfully cancel the intensity noise and achieve a shot noise limit at a specific radio frequency with the CBD technique. We exploit two sets of fiber polarization interferometers to generate squeezed light and observe a maximal photon-number squeezing of -2.6 dB.

  2. Suppression of single cesium atom heating in a microscopic optical dipole trap for demonstration of an 852nm triggered single-photon source

    CERN Document Server

    Liu, Bei; He, Jun; Wang, Junmin

    2016-01-01

    We investigate single cesium (Cs) atom heating owing to the momentum accumulation process induced by the resonant pulsed excitation in a microscopic optical dipole trap formed by a strongly focused 1064 nm laser beam. The heating depends on the trap frequency which restricts the maximum repetition rate of pulsed excitation. We experimentally verify the heating of a single atom and then demonstrate how to suppress it with an optimized pulsed excitation/cooling method. The typical trap lifetime of single Cs atom is extended from 108 +/- 6 us to 2536 +/- 31 ms, and the corresponding number of excitation increases from ~ 108 to ~ 360000. In applying this faster cooling method, we use the trapped single Cs atom as a triggered single-photon source at an excitation repetition rate of 10 MHz. The second-order intensity correlations of the emitted single photons are characterized by implementing Hanbury Brown and Twiss setup, and clear anti-bunching effect has been observed.

  3. Measurements of the spatial structure and directivity of 100 KeV photon sources in solar flares using PVO and ISEE-3 spacecraft

    Science.gov (United States)

    Anderson, Kinsey A.

    1991-01-01

    The objective of this grant was to measure the spatial structure and directivity of the hard X-ray and low energy gamma-ray (100 keV-2 MeV) continuum sources in solar flares using stereoscopic observations made with spectrometers aboard the Pioneer Venus Orbiter (PVO) and Third International Sun Earth Explorer (ISEE-3) spacecraft. Since the hard X-ray emission is produced by energetic electrons through the bremsstrahlung process, the observed directivity can be directly related to the 'beaming' of electrons accelerated during the flare as they propagate from the acceleration region in the corona to the chromosphere/transition region. Some models (e.g., the thick-target model) predict that most of the impulsive hard X-ray/low energy gamma-ray source is located in the chromosphere, the effective height of the X-ray source above the photosphere increasing with the decrease in the photon energy. This can be verified by determining the height-dependence of the photon source through stereoscopic observations of those flares which are partially occulted from the view of one of the two spacecraft. Thus predictions about beaming of electrons as well as their spatial distributions could be tested through the analysis proposed under this grant.

  4. Skin dose estimation for various beam modifiers and source-to-surface distances for 6MV photons

    Directory of Open Access Journals (Sweden)

    Yadav Girigesh

    2009-01-01

    Full Text Available The purpose of this study was to learn the skin dose estimation for various beam modifiers at various source-to-surface distances (SSDs for a 6 MV photon. Surface and buildup region doses were measured with an acrylic slab phantom and Markus 0.055 cc parallel plate (PP ionization chamber. Measurements were carried out for open fields, motorized wedge fields, acrylic block tray fields ranging from 3 x 3 cm 2 to 30 x 30 cm 2 . Twenty-five percent of the field was blocked with a cerrobend block and a Multileaf collimator (MLC. The effect of the blocks on the skin dose was measured for a 20 x 20 cm 2 field size, at 80 cm, 100 cm and 120 cm SSD. During the use of isocentric treatments, whereby the tumor is positioned at 100 cm from the source, depending on the depth of the tumor and size of the patient, the SSD can vary from 80 cm to 100 cm. To achieve a larger field size, the SSD can also be extended up to 120 cm at times. The skin dose increased as field size increased. The skin dose for the open 10 x10 cm 2 field was 15.5%, 14.8% and 15.5% at 80 cm, 100 cm and 120 cm SSDs, respectively. The skin dose due to a motorized 60 0 wedge for the 10 x 10 cm 2 field was 9.9%, 9.5%, and 9.5% at 80 cm, 100 cm and 120 cm SSDs. The skin dose due to acrylic block tray, of thickness 1.0 cm for a 10 x 10 cm 2 field was 27.0%, 17.2% and 16.1% at 80, 100 and 120 cm SSD respectively. Due to the use of an acrylic block tray, the surface dose was increased for all field sizes at the above three SSDs and the percentage skin dose was more dominant at the lower SSD and larger field size. The skin dose for a 30 x 30 cm 2 field size at 80 cm SSD was 38.3% and it was 70.4% for the open and acrylic block tray fields, respectively. The skin doses for motorized wedge fields were lower than for open fields. The effect of SSDs on the surface dose for motorized 60° wedge fields was not significant for a small field size (difference was less than 1% up to a 15 x 15 cm 2 field size

  5. Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations

    Science.gov (United States)

    Gonzales, John M.; Brown, Paul B.

    2006-01-01

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Tilapia are currently under evaluation as a source of food and their contribution to reducing waste in advanced life support systems (ALSS). The nutritional composition of tilapia whole bodies, fillet, and carcass residues were quantitatively determined. Carbon and nitrogen free-extract percentages were similar among whole body (53.76% and 6.96%, respectively), fillets (47.06% and 6.75%, respectively), and carcass (56.36% and 7.04%, respectively) whereas percentages of N, S, and protein were highest in fillet (13.34, 1.34, and 83.37%, respectively) than whole body (9.27, 0.62, and 57.97%, respectively) and carcass (7.70, 0.39, and 48.15%, respectively). Whole body and fillet meet and/or exceeded current nutritional recommendations for protein, vitamin D, ascorbic acid, and selenium for international space station missions. Whole body appears to be a better source of lipids and n-3 fatty acids, calcium, and phosphorous than fillet. Consuming whole fish appears to optimize equivalent system mass compared to consumption of fillets. Additional research is needed to determine nutritional composition of tilapia whole body, fillet, and carcass when fed waste residues possibly encountered in an ALSS.

  6. Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

    OpenAIRE

    Thomas K. Gaylord; Guy M. Burrow

    2011-01-01

    Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI). With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL) to accomplish subwavelength patterning. Advances in...

  7. Recent Advances and Open Questions in Neutrino-induced Quasi-elastic Scattering and Single Photon Production

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T. [Los Alamos; Harris, D. A. [Fermilab; Tanaka, H. A. [British Columbia U.; Tayloe, R. [Indiana U.; Zeller, G. P. [Fermilab

    2015-06-15

    The study of neutrino–nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron–nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations.

  8. Nanowire photonics

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  9. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  10. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  11. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  12. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  13. Recent advances in two-photon 3D laser lithography with self-Q-switched Nd:YAG microchip lasers

    Science.gov (United States)

    Baldeck, Patrice L.; Prabhakaran, Prem; Liu, Chao-Yuan; Bouriau, Michel; Gredy, Laetitia; Stephan, Olivier; Vergote, Thomas; Chaumeil, Hélène; Malval, Jean-Pierre; Lee, Yi-Hsiung; Lin, Chih-Lang; Lin, Chin-Te; Hsueh, Ya Hsun; Chung, Tien-Tung

    2013-09-01

    We review our recent results towards the development of a turnkey 3D laser printer, based on self-Q-switched microchip Nd:YAG lasers, with reproducible sub-100nm resolution, and with large-scale (cm) and fast-speed (cm/sec) capability at micron resolution. First of all, we report on line fabrication with 70nm lateral, and 150nm longitudinal resolutions without significant shrinking. This is due to the tight focusing with green visible wavelength, large numerical aperture, and excellent resin properties. Secondly, we report on two-photon sensitive photoacid generators that lead to efficient 3D microfabrication with epoxy SU-8 resin. Thirdly, we demonstrate high-speed microfabrication of large scale, millimeter size, scaffolds and cemtimeter height needle with high repetition rate (130Khz), and high average power (1W) amplified microchip laser. Finally we demonstrate the two-photon induced cross-linking of antibodies to determine the type of red blood cells in microfluidic channels.

  14. Highly-efficient source of collimated multi-MeV photons driven by radiation reaction of an electron beam in a self-generated magnetic field

    CERN Document Server

    Stark, D J; Arefiev, A V

    2015-01-01

    The rapid development of high brilliance X-ray radiation sources is revolutionizing physics, chemistry, and biology research through their novel applications. Another breakthrough is anticipated with the construction of next-generation laser facilities which will operate at intensities beyond $10^{23}$ $\\mathrm{W/cm^2}$, leading to higher yield, shorter wavelength radiation sources. We use numerical simulations to demonstrate that a source of collimated multi-MeV photons with conversion efficiency comparable to the one expected for these facilities is achievable at an order of magnitude lower in intensity, within reach of the existing facilities. In the optimal setup, the laser pulse irradiates a bulk solid-density target, heating the target electrons and inducing relativistic transparency. As the pulse then propagates, it generates a beam of energetic electrons which in turn drives a strong azimuthal magnetic field. This field significantly enhances the radiation reaction for the electrons, yielding tens of ...

  15. A Monte Carlo estimate for the fraction of thermal Comptonized photons that impinge back on the soft source in neutron star LMXBs

    CERN Document Server

    Kumar, Nagendra

    2016-01-01

    In earlier works, it was shown that the energy dependent soft time lags observed in kHz QPOs of neutron star low mass X-ray binaries (LMXBs) can be explained as being due to Comptonization lags provided a significant fraction ($\\eta \\sim 0.2$ - $0.8$) of the Comptonized photons impinge back into the soft photon source. Here we use a Monte Carlo scheme to verify if such a fraction is viable or not. In particular we consider three different Comptonizing medium geometries: (i) a spherical shell, (ii) a boundary layer like torus and (iii) a corona on top of an accretion disk. Two set of spectral parameters corresponding to the 'hot' and 'cold' seed photon models were explored. The general result of the study is that for a wide range of sizes, the fraction lies within $\\eta \\sim 0.3$ - $0.7$, and hence compatible with the range required to explain the soft time lags. Since there is a large uncertainty in the range, we cannot concretely rule out any of the geometries or spectral models, but the analysis suggests th...

  16. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  17. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  18. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  19. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  20. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.