WorldWideScience

Sample records for advanced photon source

  1. The advanced photon source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996

  2. Beam Stability at the Advanced Photon Source

    CERN Document Server

    Decker, Glenn

    2005-01-01

    The Advanced Photon Source has been in operation since 1996. Since that time, extensive incremental improvements to orbit stabilization systems have been made. This includes the addition of 80 channels of narrowband rf beam position monitors (bpm's), 40 channels of bending magnet photon bpm's, and most recently the inclusion of 36 insertion device photon bpm's into the orbit correction response matrix. In addition, considerable improvements have been made in the area of power supply regulation, both for the main multipole magnets and the steering corrector magnets. The present status of overall performance will be discussed, including long term pointing stability, reproducibility, and AC beam motion.

  3. The Advanced Photon Source main control room

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today's requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout

  4. Photon energy tunability of the advanced photon source undulators

    International Nuclear Information System (INIS)

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or open-quote tunedclose quotes by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay-clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5-20 keV is discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and K-values are given for two typical classes of devices

  5. The Advanced Photon Source: A status report

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) currently under construction at Argonne National Laboratory is scheduled for completion in early 1996. Both conventional facilities construction and technical fabrication is well underway. An update on the current state of civil construction as well as progress on storage ring and beamline technical component development will be presented. User activities have also proceeded at a rapid pace, particularly over the last year. In response to a call for Proposals for sectors, the APS received proposals for over twenty sectors from prospective Collaborative Access Teams (CATs). It is anticipated that beamline construction in the experiment hall could begin in approximately 18 months

  6. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  7. Injector Research at the Advanced Photon Source

    Science.gov (United States)

    Lewellen, John

    2003-04-01

    During the past several years, various techniques for improving the operational capabilities of high-brightness electron beam sources have been explored at the Advanced Photon Source. Areas of particular emphasis include novel methods of longitudinal phase space control, reduced emittance via blunt-needle cathodes, and alternate cavity geometries for improved source reliability and fabrication. To date most of this work has been computationally based, and a sampling of the results is presented. The APS injector test stand, now undergoing commissioning, will allow the experimental exploration of these and other aspects of high-brightness beam production and preservation. The capabilities of the test stand, along with an initial experimental schedule, will also be presented.

  8. Status of the advanced photon source

    International Nuclear Information System (INIS)

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m2 experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed

  9. Nanoscience at the advanced photon source

    International Nuclear Information System (INIS)

    The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS), located at Argonne National Laboratory, is a 3rd-generation synchrotron radiation source of hard X-rays. Also sited at Argonne is the Center for Nanoscale Materials (CNM), one of the five Nanoscience Research Centers that have been created by the DOE's Office of Basic Energy Sciences. The APS and CNM are closely connected, both physically and intellectually, as the CNM building is attached to the APS experiment hall, and the APS and CNM jointly operate the nanoprobe beamline at APS Sector 26 that was constructed as part of the CNM project. Both the APS and CNM are user facilities and their synergy provides the research community with a unique suite of tools for the fabrication and characterization of nanomaterials. This talk will summarize the capabilities of the nanoprobe beamline and some of the recent nanoscience results from data collected at the APS.

  10. Environmental research at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Because of the importance of probing molecular-scale chemical and physical structure of environmental samples in their natural and often hydrated state, synchrotron radiation has been a powerful tool for environmental scientists for decades. Thus, the crucial role that a highly coherent and high-brightness hard X-ray source such as the Advance Photon Source (APS) can play in addressing many of the outstanding questions in molecular environmental science (MES) was recognized even before 'first light' at the facility. No single synchrotron-based technique or experimental approach can adequately address the tremendous temporal and spatial heterogeneities of the chemistry, physics, and biology of natural environmental samples. Thus, it is common at the APS that multiple X-ray techniques and experimental systems are employed to investigate environmental samples, often chosen for their ability to focus on solute species, plants, microbes, organics, interfacial species, or solids.

  11. The Advanced Photon Source Metrology Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) Metrology Laboratory is now operational in its permanent location in a cleanroom environment on the Experiment Hall floor of the APS site. The Metrology Laboratory will provide characterization of the figure and finish of x-ray optical surfaces for the user community using visible light instrumentation. Three noncontact instruments are now available for measuring surface features with lateral resolution from less than a micron to lengths of 2 meters and with a vertical resolution as small as an Angstrom. This paper gives a brief description of the three instruments used to cover this spatial frequency range and other associated issues, such as the environment and cleanliness of the laboratory. copyright 1996 American Institute of Physics

  12. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  13. Status of the Advanced Photon Source

    Science.gov (United States)

    Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.

    2011-09-01

    In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year.

  14. Status of the Advanced Photon Source

    International Nuclear Information System (INIS)

    In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year.

  15. The Advanced Photon Source list of parameters

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system's parameters include parameters for both an undulator and a wiggler

  16. The planned photon diagnostics beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    We present the planned photon diagnostics beamlines at the Advanced Photon Source. The photon diagnostics beamlines of the storage ring include two bending magnet sources and a dedicated diagnostic undulator. The bending magnet lines will employ the conventional UV/visible imaging techniques (resolution σ congruent 10 μm) and the x-ray pinhole camera (resolution σ congruent 15 μm) for the measurement of the positron beam-size (design value: σ congruent 100 μm). The opening angle of die undulator radiation will be around σ congruent 3 μrad for its first hamionic (23.2--25.8 keV), and σ congruent=1.7 μrad for its third harmonic (70--72 keV), providing a good resolution for measuring the positron beam divergence size (design values: σ congruent 9 μrad for 10% vertical coupling and 3 μrad for 1% coupling). The undulator and its x-ray, optics are specifically optimized for full emittance measurement of the positron beam. A major developmental effort will be in the area of detecting very fast phenomena (nanosecond and sub-nanosecond) in particle dynamics

  17. Nanoscience at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, D. (OTD-PSC)

    2010-01-01

    The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS), located at Argonne National Laboratory, is a 3rd-generation synchrotron radiation source of hard X-rays. Also sited at Argonne is the Center for Nanoscale Materials (CNM), one of the five Nanoscience Research Centers that have been created by the DOE's Office of Basic Energy Sciences. The APS and CNM are closely connected, both physically and intellectually, as the CNM building is attached to the APS experiment hall, and the APS and CNM jointly operate the nanoprobe beamline at APS Sector 26 that was constructed as part of the CNM project. Both the APS and CNM are user facilities and their synergy provides the research community with a unique suite of tools for the fabrication and characterization of nanomaterials. This talk will summarize the capabilities of the nanoprobe beamline and some of the recent nanoscience results from data collected at the APS.

  18. Advanced Photon Source research: Volume 1, Number 1, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  19. Advanced Photon Source research: Volume 1, Number 1, April 1998

    International Nuclear Information System (INIS)

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status

  20. Atomic physics at the advanced photon source

    International Nuclear Information System (INIS)

    Argonne's 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons

  1. The Advanced Photon Source: Performance and results from early operation

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is now providing researchers with extreme-brilliance undulator radiation in the hard x-ray region of the spectrum. All technical facilities and components are operational and have met design specifications. Fourteen research teams, occupying 20 sectors on the APS experiment hall floor, are currently installing beamline instrumentation or actively taking data. An overview is presented for the first operational years of the Advanced Photon Source. Emphasis is on the performance of accelerators and insertion devices, as well as early scientific results and future plans

  2. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    A 2856-MHz S-band, 450-MeV electron/positron linear accelerator is the first part of the injector for the Advanced Photon Source (APS) 7-GeV storage ring. Construction of the APS linac is currently nearing completion, and commissioning will begin in July 1993. The linac and its current status are discussed in this paper

  3. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  4. Sixth users meeting for the Advanced Photon Source: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here.

  5. Sixth users meeting for the Advanced Photon Source: Proceedings

    International Nuclear Information System (INIS)

    Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, advances in synchrotron radiation applications, and technical developments at the APS. The actions taken at the 1994 Business Meeting of the Advanced Photon Source Users Organization are also documented here

  6. Status of the Advanced Photon Source at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source optimized for production of high-brilliance undulator radiation in the hard x-ray portion of the spectrum. A user community representing all major centers of synchrotron research, including universities, industry, and federal laboratories, will utilize these x-ray beams for investigations across a diverse range of disciplines. All technical facilities and components required for operations have been completed and installed, and are well along in the commissioning process. Major design goals and Department of Energy milestones have been met or exceeded. Project funds have been maximized to construct a number of beamline components and user facilities over and above those called for in the original project scope. Research teams preparing experimental apparatus at the Advanced Photon Source have procured strong funding support. copyright 1996 American Institute of Physics

  7. Photothermal cathode measurements at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) ballistic bunch compression (BBC) gun in the Injector Test Stand (ITS) presently uses an M-type thermionic dispenser cathode as a photocathode. This photothermal cathode offers substantial advantages over conventional metal photocathodes, including easy replacement and easy cleaning via the cathode's built-in heater. We present the results of photoemission measurements as a function of cathode heater power, laser pulse energy, and applied rf field strength.

  8. Access control and interlock system at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Forrestal, J.; Hogrefe, R.; Knott, M.; McDowell, W.; Reigle, D.; Solita, L.; Koldenhoven, R.; Haid, D. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-08-01

    The Advanced Photon Source (APS) consists of a linac, position accumulator ring (PAR), booster synchrotron, storage ring, and up to 70 experimental beamlines. The Access Control and Interlock System (ACIS) utilizes redundant programmable logic controllers (PLCs) and a third hard-wired chain to protect personnel from prompt radiation generated by the linac, PAR, synchrotron, and storage ring. This paper describes the ACIS`s design philosophy, configuration, hardware, functionality, validation requirements, and operational experience.

  9. Status of the Advanced Photon Source (APS) linear accelerator

    International Nuclear Information System (INIS)

    A 2856-MHz S-band, electron-positron linear accelerator (linac) has been constructed at the Advanced Photon Source (APS). It is the source of particles and the injector for the other APS accelerators, and linac commissioning is well underway. The linac is operated 24 hours per day to support linac beam studies and rf conditioning, as well as positron accumulator ring and synchrotron commissioning studies. The design goal for accelerated positron current is 8-mA, and has been met. Maximum positron energy to date is 420-MeV, approaching the design goal of 450-MeV. The linac design and its performance are discussed

  10. Status report on the Advanced Photon Source, Spring 1990

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) at Argonne National Laboratory has been designed as a national user facility for synchrotron-radiation researchers from industry, universities, and national laboratories. In fact, the APS user community has been an important source of guidance and expertise throughout the project's planning cycle. By providing x-ray beams more brilliant than those currently available, the APS promises to play a substantial role in any discipline where knowledge of the structure of matter is important, from basic research in materials and chemistry to condensed-matter physics, biology, and medical applications. The science now in progress at existing synchrotron-radiation facilities, and the science being proposed for the APS, underlie virtually all modern technologies. In February of 1986, a conceptual design report (CDR) was issued detailing plans for a next-generation synchrotron-radiation machine, the 6-GeV Synchrotron X-ray Source. In April of 1987, a second CDR formalized the design of the 7-GeV Advanced Photon Source. That design has been refined and carried forward to its current level of construction readiness. On the eve of ground-breaking ceremonies, a review of APS status is appropriate

  11. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.;

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...... during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure...

  12. Advanced photon source experience with vacuum chambers for insertion devices

    International Nuclear Information System (INIS)

    During the last five years, a new approach to the design and fabrication of extruded aluminum vacuum chambers for insertion devices was developed at the Advanced Photon Source (APS). With this approach, three different versions of the vacuum chamber, with vertical apertures of 12 mm, 8 mm, and 5 mm, were manufactured and tested. Twenty chambers were installed into the APS vacuum system. All have operated with beam, and 16 have been coupled with insertion devices. Two different vacuum chambers with vertical apertures of 16 mm and 11 mm were developed for the BESSY-II storage ring and 3 of 16 mm chambers were manufactured

  13. Automated tuning of the advanced photon source booster synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S.G.; Milton, S.V.

    1997-08-01

    The acceleration cycle of the Advanced Photon Source (APS) booster synchrotron is completed within 223 ms and is repeated at 2 Hz. Unless properly corrected, transverse and longitudinal injection errors can lead to inefficient booster performance. In order to simplify daily operation, automated tuning methods have been developed. Through the use of beam position monitor (BPM) reading, transfer line corrector magnets, magnet ramp timing, and empirically determined response functions, the injection process is optimized by correcting the first turn trajectory to the measured closed orbit. These tuning algorithms and their implementation are described here along with an evaluation of their performance.

  14. Elliptical multipole wiggler beamlines at the advanced photon source

    International Nuclear Information System (INIS)

    The Basic Energy Sciences Synchrotron Radiation Center Collaborative Access Team has built three independent beamlines, which simultaneously utilize the X-ray radiation from an elliptical multipole wiggler, located at Sector 11 of the Advanced Photon Source. This insertion device produces circularly polarized X-rays on-axis and linearly polarized X-rays above and below the ring plane. The lower linearly polarized radiation is used in the monochromatic 11ID-D station for scattering and spectroscopy experiments in the 5-40 keV range. The on-axis circularly polarized photons are used for magnetic Compton scattering experiments in the 11ID-B station. The upper linearly polarized radiation is utilized by the high-energy diffraction station, 11ID-C. We report here on the beamline optics and experimental station equipment

  15. Poster session: Fifth users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology.

  16. Poster session: Fifth users meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), which is currently under construction as a national user facility at Argonne National Laboratory is a third-generation synchrotron x-ray source, one of only three in the world. It is expected to produce x-rays that are 10,000 times brighter than any currently produced elsewhere for use in research in a wide range of scientific areas. Users from industry, national laboratories, universities, and business will be able to come to the APS to conduct research either as members of Collaborative Access Teams (CATS) or as Independent Investigators. Principal users will be members of CATS, which will be building and operating all of the beamlines present in the first phase of APS beamline development. The first set of CATs has been selected through a competitive proposal process involving peer scientific review, thorough technical evaluation, and significant management oversight by the APS. This document is a compilation of posters presented at the Fifth Users Meeting for the Advanced Photon Source, held at Argonne National Laboratory on October 14--15, 1992. All CATs whose scientific cases were approved by the APS Proposal Evaluation Board are included. In addition, this document contains a poster from the Center for Synchrotron Radiation and Research and Instrumentation at the Illinois Institute of Technology

  17. Atomic physics at the Advanced Photon Source: Workshop report

    International Nuclear Information System (INIS)

    The first Workshop on Atomic Physics at the Advanced Photon Source was held at Argonne National Laboratory on March 29--30, 1990. The unprecedented brightness of the Advanced Photon Source (APS) in the hard X-ray region is expected to make possible a vast array of new research opportunities for the atomic-physics community. Starting with discussions of the history and current status of the field, presentations were made on various future directions for research with hard X-rays interacting with atoms, ions, clusters, and solids. Also important were the discussions on the design and status of the four next-generation rings coming on line during the 1990's: the ALS 1.6 GeV ring at Berkeley; the ESRF 6.0-GeV ring at Grenoble (1993); the APS 7.0-GeV ring at Argonne (1995); and the SPring-8 8.0-GeV ring in Japan (1998). The participation of more than one hundred scientists from domestic as well as foreign institutions demonstrated a strong interest in this field. We plan to organize follow-up workshops in the future emphasizing specific research topics

  18. Fundamental limits on beam stability at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber and girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability

  19. Man-machine interface builders at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs

  20. Front end support systems for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The support system designs for the Advanced Photon Source (APS) front ends are complete and will be installed in 1994. These designs satisfy the positioning and alignment requirements of the front end components installed inside the storage ring tunnel, including the photon beam position monitors, fixed masks, photon and safety shutters, filters, windows, and differential pumps. Other components include beam transport pipes and ion pumps. The designs comprise 3-point kinematic mounts and single axis supports to satisfy various multi-direction positioning requirements from course to ultra-precise. The confined space inside the storage ring tunnel has posed engineering challenges in the design of these devices, considering some components weigh as much as 500 kg. These challenges include designing for mobility during commissioning and initial alignment, mechanical and thermal stability, and precise low profile vertical and horizontal positioning. As a result, novel stages and kinematic mounts have emerged with modular and standard designs. This paper will discuss the diverse group of support systems, including specifications and performance data of the prototypes

  1. Proceedings of the Advanced Photon Source renewal workshop.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M.; Mills, D. M.; Kobenhavns Univ.; Northwestern Univ.; Stony Brook Univ.; Univ. of Pennsylvania; Notre Dame Univ.; Univ. of Chicago; Univ. of Connecticut; Diamond Light Source Ltd.; Univ. of Wisconsin at Madison; North Dakota State Univ.; Washington State Univ.; ORNL; Univ. of Illinois; NIH

    2008-12-01

    Beginning in March 2008, Advanced Photon Source (APS) management engaged users, facility staff, the distinguished members of the APS Scientific Advisory Committee, and other outside experts in crafting a renewal plan for this premier synchrotron x-ray research facility. It is vital that the investment in the APS renewal begin as soon as possible in order to keep this important U.S. facility internationally competitive. The APS renewal plan encompasses innovations in the beamlines and the x-ray source that are needed for major advances in science - advances that promise to further extend the impact of x-ray science on energy research, technology development, materials innovation, economic competitiveness, health, and far-reaching fundamental knowledge. A planning milestone was the APS Renewal Workshop held on October 20-21, 2008. Organized by the APS Renewal Steering Committee, the purpose of the workshop was to provide a forum where leading researchers could present the broad outlines of forward-looking plans for science at the APS in all major disciplines serviced by x-ray techniques. Two days of scientific presentations, discussions, and dialogue involved more than 180 scientists representing 41 institutions. The scientific talks and breakout/discussion sessions provided a forum for Science Team leaders to present the outlines of forward-looking plans for experimentation in all the major scientific disciplines covered by photon science. These proceedings comprise the reports from the Science Teams that were commissioned by the APS Renewal Steering Committee, having been edited by the Science Teams after discussion at the workshop.

  2. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  3. The Advanced Photon Source Injector Test Stand Control System

    CERN Document Server

    MacLean, J F

    2001-01-01

    The Advanced Photon Source (APS) primary and backup injectors consist of two thermionic-cathode rf guns. These guns are being upgraded to provide improved performance, to improve ease of maintenance, and to reduce downtime required for repair or replacement of a failed injector. As part of the process, an injector test stand is being prepared. This stand is effectively independent of the APS linac and will allow for complete characterization and validation of an injector prior to its installation into the APS linac. A modular control system for the test stand has been developed using standard APS control solutions with EPICS to deliver a flexible and comprehensive control system. The modularity of the system will allow both the future expansion of test stand functionality and the evaluation of new control techniques and solutions.

  4. [Overview of RF systems for the advanced photon source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is being built by Argonne National Laboratory (ANL) near Chicago. The APS is a 7-GeV positron storage ring from which x-ray beams of energies from a few keV to hundreds of keV are emitted as the positrons pass through ring bending magnets and also through special magnets called wigglers and undulators. The present schedule is to be operational in 1995. The energy emitted from the positron beam as x-rays is replaced through a radio-frequency accelerating system operating at 352 MHz at a maximum power level of 3 MW. The RF system will be described as well as several lower-power systems at frequencies of 0.8 MHz, 117 MHz and 2.8 GHz. The associated control electronics (phase shifters amplitude control, automatic tuning control, etc.) as well as the computer control architecture will also be described

  5. Design considerations for mirrors at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Detailed ray-tracing studies and preliminary thermal analysis are presented for two mirrors that will be installed at the Advanced Photon Source. The first mirror is designed to accept white radiation from a bending magnet. This radiation is 5 mrad in the horizontal direction and 73 μrad in the vertical. A 1.5 m long toroidal mirror is planned. The second mirror accepts radiation from an undulator. This radiation is 55 μrad and 25 μrad in horizontal and vertical directions, respectively. A 70-cm toroidal mirror is planned. Both mirrors are optimized for 1:1 focusing in order to minimize optical aberrations. Design specifications are presented. Suitable materials for the mirror substrates and reflective surfaces are discussed as well

  6. Commissioning software tools at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A software tool-oriented approach has been adopted in the commissioning of the Advanced Photon Source (APS) at Argonne National Laboratory, particularly in the commissioning of the Positron Accumulator Ring (PAR). The general philosophy is to decompose a complicated procedure involving measurement, data processing, and control into a series of simpler steps, each accomplished by a generic toolkit program. The implementation is greatly facilitated by adopting the SDDS (self-describing data set protocol), which comes with its own toolkit. The combined toolkit has made accelerator physics measurements easier. For instance, the measurement of the optical functions of the PAR and the beamlines connected to it have been largely automated. Complicated measurements are feasible with a combination of tools running independently

  7. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  8. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  9. Beam position monitor data acquisition for the Advanced Photon Source

    International Nuclear Information System (INIS)

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems

  10. Some results of the advanced photon source beam lifetime studies

    International Nuclear Information System (INIS)

    Total beam lifetime consists of two components: the residual-gas-scattering lifetime and Touschek lifetime. The residual-gas lifetime is comprised of the elastic and inelastic scattering on electrons and elastic and inelastic scattering on nuclei. Touschek scattering involves scattering of particles within the bunch. One usually calculates only the elastic scattering on nuclei (single Coulomb scattering) and inelastic scattering on nuclei (bremsstrahlung) of the residual-gas-scattering lifetime component. Experience gained from computing the beam lifetime in the Advanced Photon Source (APS) storage ring shows that the electron scattering should not be neglected, particularly the inelastic contribution. Given the measured quantities from the APS storage ring, one can compare theoretical predictions with experimental results. Uncertainties in calculating the various contributions to lifetime will be discussed

  11. Overview of insertion device controls at the Advanced Photon Source

    Science.gov (United States)

    Ramanathan, Mohan; Smith, Martin; Grimmer, John; Merritt, Michael

    2002-03-01

    The Advanced Photon Source (APS) is a third-generation synchrotron with major emphasis on insertion device (ID) sources. Currently, there are 25 sectors instrumented out of a possible 35 ID sources. Most of the insertion devices are undulators. Beamlines have been using the ID radiation at the APS for more than five years. The control system of choice at the APS is the experimental physics and industrial control system (EPICS) (http://www.aps.anl.gov/epics). Based on operational experience, the ID control system has been completely revamped. During user operations, the beamline user has complete control of the insertion device. Various interfaces, from RS-232 to EPICS channel access, have been provided for the users to control the IDs. The control system software has been designed to accommodate scanning of the insertion device synchronized to each user's beamline monochromator. The users have the option of operating the device in a tapered mode. The control software allows the users to control the undulators in energy space from the fundamental to the seventh harmonic. The design philosophy of the insertion device control system will be discussed. The implementation and operational experience will be presented in detail.

  12. Vibration analysis of the photon shutter designed for the advanced photon source

    International Nuclear Information System (INIS)

    The photon shutter is a critical component of the beamline front end for the 7 GeV Advanced Photon Source (APS) project, now under construction at Argonne National Laboratory (ANL). The shutter is designed to close in tens of milliseconds to absorb up to 10 kW heat load (with high heat flux). Our shutter design uses innovative enhanced heat transfer tubes to withstand the high heat load. Although designed to be light weight and compact, the very fast movement of the shutter gives rise to concern regarding vibration and dynamic sensitivity. To guarantee long-term functionality and reliability of the shutter, the dynamic behavior should be fully studied. In this paper, the natural frequency and transient dynamic analysis for the shutter during operation are presented. Through analysis of the vibration characteristics, as well as stress and deformation, several options in design were developed and compared, including selection of materials for the shutter and structural details

  13. Spectral characteristics of insertion device sources at the advanced photon source

    International Nuclear Information System (INIS)

    The 7-GeV Advanced Photon Source (APS) synchrotron facility at Argonne National Laboratory will be a powerful source of hard x-rays with energies above 1 keV. In addition to the availability of bending magnet radiation, the storage ring will have 35 straight sections for insertion device (ID) x-ray sources. The unique spectral properties and flexibility of these devices open new possibilities for scientific research in essentially every area of science and technology. Existing and new techniques utilizing the full potential of these sources, such as the enhanced coherence, unique polarization properties, and high spectral brilliance, will permit experiments not possible with existing sources. In the following presentation, the spectral properties of ID sources are briefly reviewed. A summary of the specific properties of sources planned for the APS storage ring is then presented. Recent results for APS prototype ID sources are discussed, and finally some special x-ray sources under consideration for the APS facility are described

  14. Spectral characteristics of insertion device sources at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The 7-GeV Advanced Photon Source (APS) synchrotron facility at Argonne National Laboratory will be a powerful source of hard x-rays with energies above 1 keV. In addition to the availability of bending magnet radiation, the storage ring will have 35 straight sections for insertion device (ID) x-ray sources. The unique spectral properties and flexibility of these devices open new possibilities for scientific research in essentially every area of science and technology. Existing and new techniques utilizing the full potential of these sources, such as the enhanced coherence, unique polarization properties, and high spectral brilliance, will permit experiments not possible with existing sources. In the following presentation, the spectral properties of ID sources are briefly reviewed. A summary of the specific properties of sources planned for the APS storage ring is then presented. Recent results for APS prototype ID sources are discussed, and finally some special x-ray sources under consideration for the APS facility are described

  15. Spectral characteristics of insertion device sources at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The 7-GeV Advanced Photon Source (APS) synchrotron facility at Argonne National Laboratory will be a powerful source of hard x-rays with energies above 1 keV. In addition to the availability of bending magnet radiation, the storage ring will have 35 straight sections for insertion device (ID) x-ray sources. The unique spectral properties and flexibility of these devices open new possibilities for scientific research in essentially every area of science and technology. Existing and new techniques utilizing the full potential of these sources, such as the enhanced coherence, unique polarization properties, and high spectral brilliance, will permit experiments not possible with existing sources. In the following presentation, the spectral properties of ID sources are briefly reviewed. A summary of the specific properties of sources planned for the APS storage ring is then presented. Recent results for APS prototype ID sources are discussed, and finally some special x-ray sources under consideration for the APS facility are described. 9 refs

  16. Proceedings of the fourth users meeting for the advanced photon source

    International Nuclear Information System (INIS)

    The Fourth Users Meeting for the Advanced Photon Source (APS) was held on May 7--8, 1991 at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project; critical issues for APS operation; advances in synchrotron radiation applications; users perspectives, and funding perspectives. The actions taken at the 1991 Business Meeting of the Advanced Photon Source Users Organization are also documented

  17. Status report on the Advanced Photon Source Project at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is designed as a national synchrotron radiation user facility which will provide extremely bright, highly energetic x-rays for multidisciplinary research. When operational, the Advanced Photon Source will accelerate positrons to a nominal energy of 7 GeV. The positrons will be manipulated by insertion devices to produce x-rays 10,000 times brighter than any currently available for research. Accelerator components, insertion devices, optical elements, and optical-element cooling schemes have been and continue to be the subjects of intensive research and development. A call for Letters of Intent from prospective users of the Advanced Photon Source has resulted in a substantial response from industrial, university, and national laboratory researchers

  18. Chamber Surface Roughness and Electron Cloud for the Advanced Photon Source Superconducting Undulator

    OpenAIRE

    Boon, Laura; Harkay, Katherine

    2013-01-01

    The electron cloud is a possible heat source in the superconducting undulator (SCU) designed for the Advanced Photon Source (APS), a 7-GeV electron synchrotron radiation source at Argonne National Laboratory. In electron cloud generation extensive research has been done, and is continuing, to understand the secondary electron component. However, little work has been done to understand the parameters of photoemission in the accelerator environment. To better understand the primary electron gen...

  19. Selected publications related to the experimental facilities of the Advanced Photon Source, 1987--1991

    International Nuclear Information System (INIS)

    This report contain papers on work related to the experimental facilities of the Advanced Photon Source. The general topics of these papers are: insertion devices; front ends; high heat load x-ray optics; novel optics and techniques; and radiation safety, interlocks, and personnel safety

  20. Front end designs for the 7-GeV advanced photon source

    International Nuclear Information System (INIS)

    The conceptual designs for the insertion device (ID) and bending magnet (BM) front ends have been completed for the 7-GeV Advanced Photon Source (APS) under construction at Argonne National Laboratory. These designs satisfy the generic front end functions. However, the high power and high heat fluxes imposed by the X-ray sources of the 7-GeV APS have presented various design engineering challenges for the front end. Consideration of such challenges and their solutions have led to novel and advanced features including modularized systems, enhanced heat transfer concepts in the fixed mask and the photon shutter designs, a radiation safety philosophy based on multiple photon shutters for a fail-safe operation, a sub-micron resolution beam position monitor for beam monitoring and ring feedback information, and minimal beam filtering concepts to deliver maximized beam power and spectra to the experimenters. The criteria and special features of the front end design are discussed in this paper

  1. Characteristics of the 7-GEV advanced photon source: A guide for users

    International Nuclear Information System (INIS)

    In this document we present the characteristics of the electromagnetic radiation from various types of sources on the 7-GeV Advanced Photon Source (APS) storage ring. The sources include bending magnets, undulators, and wigglers. The characteristics are compared with those of other synchrotron sources when operated at their design specifications. The influence of positron beam size on the on-axis brilliance is discussed, along with the power distribution from these sources. The goal of this document is to provide users with enough information on the characteristics of radiation from the APS storage ring so that experiments can be efficiently planned

  2. Proceedings of the Fifth Users Meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Fifth Users Meeting for the Advanced Photon Source (APS) was held on October 14--15, 1992, at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, funding opportunities, advances in synchrotron radiation applications, and technical developments at the APS. In addition, the 15 Collaborative Access Teams that have been approved to date participated in a poster session, and several vendors displayed their wares. The actions taken at the 1992 Business Meeting of the Advanced Photon Source Users Organization are also documented

  3. Proceedings of the Fifth Users Meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Fifth Users Meeting for the Advanced Photon Source (APS) was held on October 14--15, 1992, at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, funding opportunities, advances in synchrotron radiation applications, and technical developments at the APS. In addition, the 15 Collaborative Access Teams that have been approved to date participated in a poster session, and several vendors displayed their wares. The actions taken at the 1992 Business Meeting of the Advanced Photon Source Users Organization are also documented.

  4. 7-GeV Advanced Photon Source Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV.

  5. 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV

  6. Proceedings of the third users meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Third Users Meetings for the Advanced Photon Source, held on October 12--13, 1989, at Argonne National Laboratory, brought together scientists and engineers from industry, universities, and national laboratories to review the status of the facility and make plans for its use. The presentations documented in these proceedings include overviews of the project status and the user access policy; updates on several fundamental research efforts that make use of synchrotron radiation; reports on insertion-device R ampersand D and beam line design activities; cost and manpower estimates for beam line construction; and a panel discussion on strategies for developing and managing Collaborative Access Teams. The actions taken at the 1989 Business Meeting of the Advanced Photon Source Users Organization are also documented

  7. Support systems for optics in the experiment stations at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Support systems have been designed for optics in the experiment stations of the Advanced Photon Source at Argonne National Laboratory. These systems utilize modular precision positioning slides and stages arranged in 3-point kinematic mount fashion for optimum mechanical stability. Through the use of novel configurations, these systems can achieve large linear motions, six degree-of-freedom motion, and large load capacities without sacrificing valuable experimental station space. This paper will discuss the designs and specifications of the positioning systems developed

  8. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    International Nuclear Information System (INIS)

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  9. Development of grating-based x-ray Talbot interferometry at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.; Divan, Ralu; Butler, Leslie G.; Ham, Kyungmin; Fezzaa, Kamel; Erdmann, Mark; Wen, Han H.; Lee, Wah-Keat; Macrander, Albert T.; De Carlo, Francesco; Mancini, Derrick C.; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, IL 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave, IL 60439 (United States); Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); CAMD / Louisiana State University, 6890 Jefferson Hwy, Baton Rouge, LA 70806 (United States); NHLBI / National Institutes of Health, Bethesda, MD 20892 (United States); Photon Sciences Directorate, Brookhaven National Laboratory, NY 11973 (United Arab Emirates)

    2012-07-31

    We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.

  10. A closed-loop photon beam control study for the Advanced Light Source

    International Nuclear Information System (INIS)

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared -- a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices

  11. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    International Nuclear Information System (INIS)

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy

  12. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Shen Qun [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: qshen@aps.anl.gov; Lee, Wah-Keat; Fezzaa, Kamel; Chu, Yong S.; De Carlo, Francesco; Jemian, Peter; Ilavsky, Jan; Erdmann, Mark; Long, Gabrielle G. [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy.

  13. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    International Nuclear Information System (INIS)

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper

  14. Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source

    International Nuclear Information System (INIS)

    We review the single-cell, superconducting crab cavity designs for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). The 'on-cell' waveguide scheme is expected to have a more margin for the impedance budget of the APS storage ring, as well as offering a more compact design compared with the original design consisting of a low order mode damping waveguide on the beam pipe. We will report recent fabrication progress, cavity test performance on original and alternate prototypes, and concept designs and analysis for various cryomodule components.

  15. Vacuum tests of a beamline front-end mock-up at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A-mock-up has been constructed to test the functioning and performance of the Advanced Photon Source (APS) front ends. The mock-up consists of all components of the APS insertion-device beamline front end with a differential pumping system. Primary vacuum tests have been performed and compared with finite element vacuum calculations. Pressure distribution measurements using controlled leaks demonstrate a better than four decades of pressure difference between the two ends of the mock-up. The measured pressure profiles are consistent with results of finite element analyses of the system. The safety-control systems are also being tested. A closing time of ∼20 ms for the photon shutter and ∼7 ms for the fast closing valve have been obtained. Experiments on vacuum protection systems indicate that the front end is well protected in case of a vacuum breach

  16. Vacuum tests of a beamline front-end mock-up at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A mock-up has been constructed to test the functioning and performance of the Advanced Photon Source (APS) front ends. The mock-up consists of all components of the APS insertion-device beamline front end with a differential pumping system. Primary vacuum tests have been performed and compared with finite element vacuum calculations. Pressure distribution measurements using controlled leaks demonstrate a better than four decades of pressure difference between the two ends of the mock-up. The measured pressure profiles are consistent with results of finite element analyses of the system. The safety-control systems are also being tested. A closing time of ∼20 ms for the photon shutter and ∼7 ms for the fast closing valve have been obtained. Experiments on vacuum protection systems indicate that the front end is well protected in case of a vacuum breach

  17. Vacuum system development status for the APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    The status of the design and fabrication of a prototype sector of the storage ring vacuum system for the Advanced Photon Source is described. The 26.5-m-long prototype sector will be assembled within a full-scale magnet and tunnel mockup to study interspacial component relationships for maintenance, as well as the vacuum system operational performance. Each completed vacuum section is mounted as an integral part of the modular structure that contains the magnets and magnet power supplies on a common base. Unique automatic machine welding designs and techniques are employed in the fabrication of the aluminium vacuum chambers from extrusions. Special chamber bending procedures and measurements checks are used to maintain the required flatness of the insider chamber light gap surfaces. Photo-electron yields due to low-energy photons in the narrow channel gap of the vacuum chamber and their potential effects on the overall outgassing rate are found to be negligible. 9 refs., 5 figs

  18. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  19. The Short-Pulse X-ray Facility at the Advanced Photon Source

    Science.gov (United States)

    Young, Linda; Evans, Paul

    2013-05-01

    The Short-Pulse X-ray (SPX) Facility will extend time-resolved x-ray scattering and spectroscopy to the picosecond time scale while retaining the powerful characteristics of synchrotron radiation, i.e., user-controlled continuous tunability of energy, polarization, and bandwidth combined with exquisite x-ray energy and pulse-length stability over a wide energy range. Experiments at the SPX facility will produce 1-ps stroboscopic snapshots of molecular rotations, molecular excited-state transient structures, stress/strain wave propagation, magnetic domain wall dynamics, phase transitions, and the coupling between electronic, vibrational, and magnetic degrees of freedom in condensed matter systems. Time-resolved studies of transient dynamics will be possible with simultaneous picosecond time resolution and picometer structural precision for a variety of atomic, molecular, supramolecular, nanoscale, and bulk material systems. Pump-probe experiments using high-average-power, sub-picosecond, high-repetition-rate laser systems will make efficient use of the MHz x-ray rates of the SPX. Five end stations for x-ray scattering, diffraction, spectroscopy, imaging, and microscopy can be developed as part of the Advanced Photon Source Upgrade project. The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Dept of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.

  20. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1,104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  1. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  2. High-Brightness Beams from a Light Source Injector The Advanced Photon Source Low-Energy Undulator Test Line Linac

    CERN Document Server

    Travish, G; Borland, M; Hahne, M; Harkay, K C; Lewellen, J W; Lumpkin, Alex H; Milton, S V; Sereno, N S

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, includi...

  3. Digital closed orbit feedback system for the advanced photon source storage ring

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is a dedicated third-generation synchrotron light source with a nominal energy of 7 GeV and a circumference of 1104 m. The closed orbit feedback system for the APS storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing (DSP). Hardware and software aspects of the system will be described in this paper. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware including the DSPs is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically-networked reflective memories

  4. Digital closed orbit feedback system for the advanced photon source storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.; Barr, D.; Decker, G. [and others

    1995-12-31

    The Advanced Photon Source (APS) is a dedicated third-generation synchrotron light source with a nominal energy of 7 GeV and a circumference of 1104 m. The closed orbit feedback system for the APS storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing (DSP). Hardware and software aspects of the system will be described in this paper. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware including the DSPs is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically-networked reflective memories.

  5. Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs

  6. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    International Nuclear Information System (INIS)

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper

  7. Status of the Advanced Photon Source and its accelerator control system

    International Nuclear Information System (INIS)

    This paper presents the current status of the Advanced Photon Source (APS), its control system and the Experimental Physics and Industrial Control System (EPICS) tools being used to implement this control system. The status of the physical plant and each of the accelerators as well as detailed descriptions of the software tools used to build the accelerator control system are presented. The control system uses high-performance graphic workstations and the X-windows graphical user interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high-performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  8. Design and Application of CVD Diamond Windows for X-Rays at the Advanced Photon Source

    Science.gov (United States)

    Jaski, Yifei; Cookson, David

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  9. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jaski, Y.; Cookson, D.; Experimental Facilities Division (APS); Univ. of Chicago

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  10. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs

  11. Proceedings of the first users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development.

  12. Development of GUS for control applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A script-based interpretive shell GUS (General Purpose Data Acquisition for Unix Shell) has been developed for application to the Advanced Photon Source (APS) control. The primary design objective of GUS is to provide a mechanism for efficient data flow among modularized objects called Data Access Modules (DAMs). GUS consists of four major components: user interface, kernel, built-in command module, and DAMS. It also incorporates the Unix shell to make use of the existing utility programs for file manipulation and data analysis. At this time, DAMs have been written for device access through EPICS (Experimental Physics and Industrial Control System), data I/O for SDDS (Self-Describing Data Set) files, matrix manipulation, graphics display, digital signal processing, and beam position feedback system control. The modular and object-oriented construction of GUS will facilitate addition of more DAMs with other functions in the future

  13. Advanced Photon Source RF Beam Position Monitor System Upgrade Design and Commissioning

    CERN Document Server

    Lill, R; Singh, O

    2001-01-01

    This paper describes the Advanced Photon Source (APS) storage ring mono-pulse rf beam position monitor (BPM) system upgrade. The present rf BPM system requires a large dead time of 400 ns between the measured bunch and upstream bunch. The bunch pattern is also constrained by the required target cluster of six bunches of 7 mA minimum necessary to operate the receiver near the top end of the dynamic range. The upgrade design objectives involve resolving bunches spaced as closely as 100 ns. These design objectives require us to reduce receiver front-end losses and reflections. An improved trigger scheme that minimizes systematic errors is also required. The upgrade is in the final phases of installation and commissioning at this time. The latest experimental and commissioning data and results will be presented.

  14. Proceedings of the second users meeting for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The second national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory -- held March 9--10, 1988, at Argonne -- brought scientists and engineers from industry, universities, and national laboratories together to review the status of the facility and expectations for its use. Presented papers and status reports in these proceedings include the current status of the APS with respect to accelerator systems, experimental facilities, and conventional facilities; scientific papers on frontiers in synchrotron applications summaries of reports on workshops held by users in certain topical groups; reports in research and development activities in support of the APS at other synchrotron facilities; and noted from a discussion of APS user access policy. In addition, actions taken by the APS Users Organization and its Executive Committee are documented in this report.

  15. Development and application of General Purpose Data Acquisition Shell (GPDAS) at advanced photon source

    International Nuclear Information System (INIS)

    An operating system shell GPDAS (General Purpose Data Acquisition Shell) on MS-DOS-based microcomputers has been developed to provide flexibility in data acquisition and device control for magnet measurements at the Advanced Photon Source. GPDAS is both a command interpreter and an integrated script-based programming environment. It also incorporates the MS-DOS shell to make use of the existing utility programs for file manipulation and data analysis. Features include: alias definition, virtual memory, windows, graphics, data and procedure backup, background operation, script programming language, and script level debugging. Data acquisition system devices can be controlled through IEEE488 board, multifunction I/O board, digital I/O board and Gespac crate via Euro G-64 bus. GPDAS is now being used for diagnostics R ampersand D and accelerator physics studies as well as for magnet measurements. Their hardware configurations will also be discussed. 3 refs., 3 figs

  16. Proceedings of the first users meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The first national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory - held November 13-14, 1986, at Argonne - brought together scientists and engineers from industry, universities, and national laboratories to exchange information on the design of the facility and expectations for its use. Presented papers and potential participating research team (PRT) plans are documented in these proceedings. Topics covered include the current status of the project, an overview of the APS conceptual design, scientific opportunities offered by the facility for synchrotron-radiation-related research, current proposals and funding mechanisms for beam lines, and user policies. A number of participants representing universities and private industry discussed plans for the possible formation of PRTs to build and use beam lines at the APS site. The meeting also provided an opportunity for potential users to organize their efforts to support and guide the facility's development

  17. Proceedings of the second users meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The second national users meeting for the Advanced Photon Source (APS) at Argonne National Laboratory -- held March 9--10, 1988, at Argonne -- brought scientists and engineers from industry, universities, and national laboratories together to review the status of the facility and expectations for its use. Presented papers and status reports in these proceedings include the current status of the APS with respect to accelerator systems, experimental facilities, and conventional facilities; scientific papers on frontiers in synchrotron applications summaries of reports on workshops held by users in certain topical groups; reports in research and development activities in support of the APS at other synchrotron facilities; and noted from a discussion of APS user access policy. In addition, actions taken by the APS Users Organization and its Executive Committee are documented in this report

  18. Development and application of general purpose data acquisition shell (GPDAS) at Advanced Photon Source

    International Nuclear Information System (INIS)

    An operating system shell GPDAS (General Purpose Data Acquisition Shell) on MS-DOS-based microcomputers has been developed to provide flexibility in data acquisition and device control for magnet measurements at the Advanced Photon Source. GPDAS is both a command interpreter and an integrated script-based programming environment. It also incorporates the MS-DOS shell to make use of the existing utility programs for file manipulation and data analysis. Features include: alias definition, virtual memory, windows, graphics, data and procedure backup, background operation, script programming language, and script level debugging. Data acquisition system devices can be controlled through IEEE488 board, multifunction I/O board, digital I/O board and Gespac crate via Euro G-64 bus. GPDAS is now being used for diagnostics R and D and accelerator physics studies as well as for magnet measurements. Their hardware configurations are also discussed

  19. UHV seal studies for the advanced photon source storage ring vacuum system

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) Storage Ring Vacuum Chambers (SRVC) are constructed of aluminum. The chamber design incorporates aluminum alloy 2219-T87 Conflat flanges welded to an aluminum alloy 6063-T5 extruded chamber body. Vacuum connections to the aluminum Conflat chamber flanges are by means of 304 stainless steel Conflat flanges. To evaluate the Conflat seal assemblies relative to vacuum bake cycles, a Conflat Bake Test Assembly (CBTA) was constructed, and thermal cycling tests were performed between room temperature and 150 degrees C on both stainless steel to aluminum Conflat assemblies and aluminum to aluminum Conflat assemblies. A Helicoflex Bake Test Assembly (HBTA) was similarly constructed to evaluate Helicoflex seals. Both Conflat and Helicoflex seals were studied in a SRVC Sector String Test arrangement of five SRVC sections. The CBTA, HBTA and SRVC tests and their results are reported. 3 refs., 2 figs., 2 tabs

  20. UHV seal studies for the Advanced Photon Source storage ring vacuum system

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) Storage Ring Vacuum Chambers (SRVC) are constructed of aluminum. The chamber design incorporates aluminum alloy 2219-T87 Conflat flanges welded to an aluminum alloy 60603-T5 extruded chamber body. Vacuum connections to the aluminum Conflat chamber flanges are by means of 304 stainless steel Conflat flanges. To evaluate the Conflat seal assemblies relative to vacuum bake cycles, a Conflat Bake Test Assembly (CBTA) was constructed, and thermal cycling tests were performed between room temperature and 150 C on both stainless steel to aluminum Conflat assemblies and aluminum to aluminum Conflat assemblies. A Helicoflex Bake Test Assembly (HBTA) was similarly constructed to evaluate Helicoflex seals. Both Conflat and Helicoflex seals were studied in a SRVC Sector String Test arrangement of five SRVC sections. The CBTA, HBTA and SRVC tests and their results are reported

  1. Basic Energy Sciences Synchrotron Radiation Center Undulator Sector at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Basic Energy Sciences Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) has designed and built a multipurpose undulator beamline at Sector 12 of the Advanced Photon Source (APS). The first optical enclosure contains all the white light components including a high performance thin, cryogenically cooled Si (1 1 1) double crystal monochromator. All the experimental stations are equipped with an exhaust for reactive gases that allows in-situ studies of chemical reactions. The monochromatic windowless beamline is used for elastic and inelastic X-ray scattering, surface scattering, small-angle scattering, and spectroscopy research. Each of these activities is in general confined to one of the three experimental stations. The end station (12-ID-D) is a monochromatic enclosure that is used for surface scattering and includes MOCVD equipment for in-situ measurements

  2. High-resolution X-ray imaging for microbiology at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria (∼1 microm x 4 microm in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies

  3. Front-end equipment protection system at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The front-end Equipment Protection System (FE-EPS) at the Advanced Photon Source (APS) is a high reliability, fail-safe single-chain interlock and control system. It consists of an Allen-Bradley PLC-5/30 processor, local and remote I/O racks, monitoring and control panels, serial communication links, and field devices. Each front end is equipped with a dedicated EPS. The system monitors a variety of sensors (e.g., vacuum, cooling water, temperature, pneumatic pressure), and controls front-end (FE) photon shutters and UHV valves. The main functions of the FE-EPS are to guard the integrity of the storage ring vacuum against vacuum excursions in the FE and beam transport line, as well as to protect the front-end and beamline components from being damaged by synchrotron radiation. The FE-EPS interfaces to six other APS interlock and control systems. Information about FE interlocks and devices is displayed on UNIX machines using the EPICS software tool kit. The system design is presented. copyright 1996 American Institute of Physics

  4. Digital closed orbit feedback system for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Closed orbit feedback for the Advanced Photon Source (APS) storage ring employs unified global an local feedback systems for stabilization of particle and photon beams based on digital signal processing (DSP). Hardware and software aspects of the system will be described. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm. application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware, including the DSPS, is distributed in 20 VNE crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically-networked reflective memories

  5. The PNC-CAT insertion device beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The PNC-CAT is a consortium of Pacific Northwest institutions formed to instrument a sector (number 20) at the Advanced Photon Source (APS). Research is planned in a variety of areas, with an emphasis on environmentally based problems. The insertion device beamline is based on the APS undulator A and will be optimized for producing microbeams as well as for applications requiring energy scanning capabilities. This paper describes the basic layout and some special features of the beamline. Two experimental stations are planned: one general purpose and one dedicated to MBE and surface science problems. Both tapered capillaries and Kirkpatrick-Baez optics will be used for producing microbeams, and a large optical bench is planned for the main station to allow for easy accommodation of new optics developments. Design calculations and initial capillary tests indicate that flux densities exceeding 1011 photons/sec/mm2 should be achievable. All major components are under construction or in procurement, and initial testing is planned for late 1996. copyright 1996 American Institute of Physics

  6. Digital closed orbit feedback system for the Advanced Photon Source storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.; Barr, D.; Decker, G.; Galayda, J.; Lenkszus, F.; Lumpkin, A.; Votaw, A.J. [Accelerator Systems Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    1996-09-01

    Closed orbit feedback for the Advanced Photon Source (APS) storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing. Hardware and software aspects of the system will be described. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware, including the digital signal processor (DSPs), is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically networked reflective memories. {copyright} {ital 1996 American Institute of Physics.}

  7. Digital closed orbit feedback system for the Advanced Photon Source storage ring

    Science.gov (United States)

    Chung, Y.; Barr, D.; Decker, G.; Galayda, J.; Lenkszus, F.; Lumpkin, A.; Votaw, A. J.

    1996-09-01

    Closed orbit feedback for the Advanced Photon Source (APS) storage ring employs unified global and local feedback systems for stabilization of particle and photon beams based on digital signal processing. Hardware and software aspects of the system will be described. In particular, we will discuss global and local orbit feedback algorithms, PID (proportional, integral, and derivative) control algorithm, application of digital signal processing to compensate for vacuum chamber eddy current effects, resolution of the interaction between global and local systems through decoupling, self-correction of the local bump closure error, user interface through the APS control system, and system performance in the frequency and time domains. The system hardware, including the digital signal processor (DSPs), is distributed in 20 VME crates around the ring, and the entire feedback system runs synchronously at 4-kHz sampling frequency in order to achieve a correction bandwidth exceeding 100 Hz. The required data sharing between the global and local feedback systems is facilitated via the use of fiber-optically networked reflective memories.

  8. 7-GeV advanced photon source beamline initiative: Conceptual design report

    International Nuclear Information System (INIS)

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R ampersand D plans for the Beamline Initiative activities and provides the cost estimates for the required R ampersand D

  9. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    International Nuclear Information System (INIS)

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m0c2/E) radian with respect to the electron beam path, where m0c2 is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10-9 Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air

  10. Measurement of gas bremsstrahlung from the insertion device beamlines of the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Pisharody, M.; Job, P.K.; Magill, S. [and others

    1997-03-01

    High energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the electrons (or positrons) with the residual gas molecules inside the storage ring. The resulting radiation exits at an average emittance angle of (m{sub 0}c{sub 2}/E) radian with respect to the electron beam path, where m{sub 0}c{sup 2} is the rest mass of E the electron and E its kinetic energy. Thus, at straight sections of the storage rings, moving electrons will produce a narrow and intense monodirectional photon beam. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous gas bremsstrahlung spectrum, with a maximum energy of the electron beam, will be present. There are a number of compelling reasons that a measurement of the bremsstrahlung characteristics be conducted at the Advanced Photon Source (APS) storage ring. Although the number of residual gas molecules present in the storage ring at typical nTorr vacuum is low, because of the long straight paths of the electrons in the storage ring at APS, significant production of bremsstrahlung will be produced. This may pose a radiation hazard. It is then imperative that personnel be shielded from dose rates due to this radiation. There are not many measurements available for gas bremsstrahlung, especially for higher electron beam energies. The quantitative estimates of gas bremsstrahlung from storage rings as evaluated by Monte Carlo codes also have several uncertainties. They are in general calculated for air at atmospheric pressure, the results of which are then extrapolated to typical storage ring vacuum values (of the order of 10{sup -9} Torr). Realistically, the actual pressure profile can vary inside the narrow vacuum chamber. Also, the actual chemical composition of the residual gas inside the storage ring is generally different from that of air.

  11. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-, e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  12. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  13. Canted Undulator Upgrade for GeoSoilEnviroCARS Sector 13 at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Stephen

    2013-02-02

    Support for the beamline component of the canted undulator upgrade of Sector 13 (GeoSoilEnviroCARS; managed and operated by the University of Chicago) at the Advanced Photon Source (APS; Argonne National Laboratory) was received from three agencies (equally divided): NASA-SRLIDAP (now LARS), NSF-EAR-IF (ARRA) and DOE-Single Investigator Small Group (SISGR). The associated accelerator components (undulators, canted front end) were provided by the APS using DOE-ARRA funding. The intellectual merit of the research enabled by the upgrade lies in advancing our knowledge of the composition, structure and properties of earth materials; the processes they control; and the processes that produce them. The upgrade will facilitate scientific advances in the following areas: high pressure mineral physics and chemistry, non-crystalline and nano-crystalline materials at high pressure, chemistry of hydrothermal fluids, reactions at mineral-water interfaces, biogeochemistry, oxidation states of magmas, flow dynamics of fluids and solids, and cosmochemistry. The upgrade, allowing the microprobe to operate 100% of the time and the high pressure and surface scattering and spectroscopy instruments to receive beam time increases, will facilitate much more efficient use of the substantial investment in these instruments. The broad scientific community will benefit by the increase in the number of scientists who conduct cutting-edge research at GSECARS. The user program in stations 13ID-C (interface scattering) and 13ID-D (laser heated diamond anvil cell and large volume press) recommenced in June 2012. The operation of the 13ID-E microprobe station began in the Fall 2012 cycle (Oct.-Dec 2012). The upgraded canted beamlines double the amount of undulator beam time at Sector 13 and provide new capabilities including extended operations of the X-ray microprobe down to the sulfur K edge and enhanced brightness at high energy. The availability of the upgraded beamlines will advance the

  14. Smart x-ray beam position monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    In third-generation synchrotron radiation sources, such as the Advanced Photon Source (APS), the sensitivity and reliability requirements for the x-ray beam position monitors (XBPMs) are much higher than for earlier systems. Noise and contamination signals caused by radiation emitted from the bending magnet become a major problem. The regular XBPM calibration process can only provide signal correction for one set of conditions for the insertion devices (ID). During normal operation, parameters affecting the ID-emitted beam, such as the gap of the ID magnets and the beam current, are the variables. A new smart x-ray beam position monitor system (SBPM) has been conceived and designed for the APS. It has a built in self-learning structure with EEPROM memory that is large enough to open-quote open-quote remember close-quote close-quote a complete set of calibration data covering all the possible operating conditions. During the self-learning mode, the monitor system initializes a series of automatic scan motions with information for different ID setups and records them into the database array. During normal operation, the SBPM corrects the normalized output according to the ID setup information and the calibration database. So that, with this novel system, the SBPM is always calibrating itself with the changing ID set up conditions. copyright 1996 American Institute of Physics

  15. Design and construction of the advanced photon source 352-MHz rf system switching control

    International Nuclear Information System (INIS)

    A switching control system has been designed and built to provide the capability of rapidly switching the waveguide and low-level cabling between different klystrons to operate the Advanced Photon Source storage ring in the event of a failure of a klystron system or to perform necessary repairs and preventative maintenance. The twelve possible modes of operation allow for complete redundancy of the booster synchrotron rf system and either a maximum of two storage ring rf systems to be completely off-line or one system to be used as a power source for an rf test stand. A programmable controller is used to send commands to intermediate control panels which interface to WR2300 waveguide switches and phase shifters, rf cavity interlock and low-level rf distribution systems, and klystron power supply controls for rapid reconfiguration of the rf systems in response to a mode-selection command. Mode selection is a local manual operation using a keyswitch arrangement which prevents more than one mode from being selected at a time. The programmable controller also monitors for hardware malfunction and guards against open-quotes hot-switchingclose quotes of the rf systems. The rf switching controls system is monitored via the Experimental Physics and Industrial Control System (EPICS) for remote system status check

  16. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    International Nuclear Information System (INIS)

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs

  17. Sensitivity and offset calibration for the beam position monitors at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The beam position monitors (BPMs) play a critically important role in commissioning and operation of accelerators. Accurate determination of the offsets relative to the magnetic axis and sensitivities of individual BPMs is thus needed. We will describe in this paper the schemes for calibrating all of the 360 BPMs for sensitivity and offset in the 7-GeV Advanced Photon Source (APS) storage ring and the results. For the sensitivity calibration, a 2-dimensional map of the BPM response in the aluminum vacuum chamber is obtained theoretically, which is combined with the measured nonlinear response of the BPM electronics. A set of 2-dimensional polynomial coefficients is then obtained to approximate the result analytically. The offset calibration of the BPMs is done relative to the magnetic axis of the quadrupoles using the beam. This avoids the problem arising from various mechanical sources as well as the offset in the processing electronics. The measurement results for the resolution and long-term drift of the BPM electronics shows 0.06-μm/√Hz resolution and 2-μm/hr drift over a period of 1.5 hrs

  18. Fiber diffraction using the BioCAT undulator beamline at the Advanced Photon Source

    CERN Document Server

    Irving, T C; Rosenbaum, G; Bunker, G B

    2000-01-01

    The BioCAT undulator-based beamline at the Advanced Photon Source, Argonne IL, USA is designed to be a state-of-the-art instrument for biological non-crystalline diffraction and X-ray absorption spectroscopy. The optics consist of double crystal monochromators with sagitally focussing second crystals followed by a vertically focussing mirror which allow independent focussing of the beam in the vertical and horizontal directions virtually anywhere along the length of the 12 m experimental enclosure. When configured for a 2 m fiber diffraction camera, a focal spot of less than 40x200 mu m (FWHM) has been observed which contained essentially all of the 1.5-2.5x10 sup 1 sup 3 ph/s delivered by the cryogenically-cooled Si(1 1 1) double crystal monochromator. This combination of highly demagnifying optics and the very low divergence of the very small source have yielded excellent quality patterns from various muscle specimens and collagen-containing tissues. Detectors available include a Fuji BAS2500 image plate sc...

  19. Review of window and filter requirements for commissioning of the Advanced Photon Source insertion device beamlines

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is building 16 insertion device (ID) front ends for the first phase of the project. Eleven of these are to be equipped with the APS Undulator A and the other five with a Wiggler-A-type source. The Undulator A front ends are designed to operate in a ''windowless'' mode using an APS-designed differential pump. However, during beamline commissioning and early operations of the storage ring, it is prudent to install windows to ensure storage ring vacuum safety before easing into windowless operation. However, the window designed for this interim period may not meet all the needs of a user's scientific program. In the early phases of the project through commissioning and start of operations, such a window will permit the user to prepare for his program, while allowing both the user and the facility operators to gain experience for safe phasing into eventual windowless operations. In this report, we will present analysis and design options for a variety of windows particularly suited to either the APS Undulator A front ends or as user windows located in the first optics enclosure (FOE)

  20. Environmental assessment of the proposed 7-GeV Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    1990-02-01

    The potential environmental impacts of construction and operation of a 6- to 7-GeV synchrotron radiation source known as the 7-GeV Advanced Photon Source at Argonne National Laboratory were evaluated. Key elements considered include on- and off-site radiological effects; socioeconomic effects; and impacts to aquatic and terrestrial flora and fauna, wetlands, water and air quality, cultural resources, and threatened or endangered species. Also incorporated are the effects of decisions made as a result of the preliminary design (Title I) being prepared. Mitigation plans to further reduce impacts are being developed. These plans include coordination with the US Army Corps of Engineers (COE) and other responsible agencies to mitigate potential impacts to wetlands. This mitigation includes providing habitat of comparable ecological value to assure no net loss of wetlands. These mitigation actions would be permitted and monitored by COE. A data recovery plan to protect cultural resources has been developed and approved, pursuant to a Programmatic Agreement among the US Department of Energy, the Advisory Council on Historic Preservation, and the Illinois State Historic Preservation Office. Applications for National Emission Standard for Hazardous Air Pollutants (NESHAP) and air emissions permits have been submitted to the US Environmental Protection Agency (EPA) and the Illinois Environmental Protection Agency (IEPA), respectively. 71 refs., 10 figs., 11 tabs.

  1. Monte Carlo simulations of the vacuum performance of differential pumps at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Monte Carlo computer simulations have been successfully applied in the design of vacuum systems. These simulations allow the user to check the vacuum performance without the need of making a prototype of the vacuum system. In this paper we demonstrate the effectiveness and aptitude of these simulations in the design of differential pumps for synchrotron radiation beamlines. Eventually a good number of the beamline front ends at the Advanced Photon Source (APS) will use differential pumps to protect the synchrotron storage ring vacuum. A Monte Carlo computer program is used to calculate the molecular flow transmission and pressure distribution across the differential pump. A differential pump system, which consists of two 170 l/s ion pumps with three conductance-limiting apertures, was previously tested on an APS insertion-device beamline front end. Pressure distribution measurements using controlled leaks demonstrated a pressure difference of over two decades across the differential pump. A new differential pump utilizes a fixed mask between two 170 l/s ion pumps. The fixed mask, which has a conical channel with a small cross section of 4.5x4.5 mm2 in the far end, is used in the beamline to confine the photon beam. Monte Carlo simulations indicate that this configuration with the fixed mask significantly improves the pressure reduction capability of the differential pump, to ∼3x10-5, within the operational range from ∼10-4 to 10-10 Torr. The lower end of pressure is limited by outgassing from front-end components and the higher end by the pumping ability of the ion pump. copyright 1996 American Institute of Physics

  2. Performance of the beam position monitor for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Performance measurement and analysis of the Advanced Photon Source (APS) beam position monitor (BPM) electronics are reported. The results indicate a BPM resolution of 0.16 μm·mA/√Hz in terms of the single-bunch current and BPM bandwidth. For the miniature insertion device (ID) BPM, the result was 0.1 μm·mA/√Hz. The improvement is due to the 3.6 times higher position sensitivity (in the vertical plane), which is partially canceled by the lower button signal by a factor of 2.3. The minimum single-bunch current required was roughly 0.03 mA. The long-term drift of the BPM electronics independent of the actual beam motion has measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Implications of the BPM resolution limit on the global and local orbit feedback systems for the APS storage ring will also be discussed. copyright 1996 American Institute of Physics

  3. Commissioning of experimental enclosures (Hutches) at the Advanced Photon Source - A to Z ALARA

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), 7 GeV electron Storage Ring at the Argonne National Laboratory is designed to be a major national user facility providing high-brilliance x-ray beams. Figure 1 shows a plan view of the APS. At completion, APS will have 35 bending magnet (BM) beamlines and 35 insertion device (ID) beamlines. A typical x-ray beamline at APS comprises of a front end (FE) that confines the beam; a first optics enclosure (FOE) which houses optics to filter and monochromatize the beam; and beam transports, additional optics, and the experiment stations. Figure 2 shows a section of the storage ring with the layout of the ID and BM beamlines and typical experiment stations. The first x-ray beam was delivered to an experiment station in 1995. Ever since, to date, over 120 experimental stations (hutches) have been commissioned and are receiving intense x-ray beams of varying energies for various experiments. This paper describes in some detail the steps involved in the process of commissioning experimental stations and the implementation of the ALARA at each step

  4. Performance of the beam position monitor for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Performance measurement and analysis of the Advanced Photon Source (APS) beam position monitor (BPM) electronics are reported. The results indicate a BPM resolution of 0.16 μm·mA/√Hz in terms of the single-bunch current and BPM bandwidth. For the miniature insertion device (ID) BPM, the result was 0.1 μm·mA/√Hz. The improvement is due to the 3.6 times higher position sensitivity (in the vertical plane), which is partially canceled by the lower button signal by a factor of 2.3. The minimum single-bunch current required was roughly 0.03 mA. The long-term drift of the BPM electronics independent of the actual beam motion was measured at 2 μm/hr, which settled after approximately 1.5 hours. This drift can be attributed mainly to the temperature effect. Implications of the BPM resolution limit on the global and local orbit feedback systems for the APS storage ring will also be discussed

  5. Insertion device and beam line plans for the advanced photon source

    International Nuclear Information System (INIS)

    In the 7-GeV Advanced Photon Source (APS) Conceptual Design Report (CDR), fifteen complete experimental beam lines were specified in order to establish a representative technical and cost base for the components involved. In order to optimize the composition of the insertion devices and the beam line, these funds are considered a open-quote Trust Fund.close quotes The present report evaluates the optimization for the distribution of these funds so that the short- and long-term research programs will be most productive, making the facility more attractive from the user's point of view. It is recommended that part of the open-quote Trust Fundclose quotes be used for the construction of the insertion devices, the front-end components, and the first-optics, minimizing the cost to potential users of completing a beam line. In addition, the possibility of cost savings resulting from replication and standardization of high multiplicity components (such as IDs, front ends, and first-optics instrumentation) is addressed

  6. The vacuum system for insertion devices at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A vacuum system for the insertion devices at the Advanced Photon Source was designed, and chambers of this design were successfully manufactured and tested. Three different versions of the vacuum chamber have been developed with vertical apertures of 12 mm, 8mm, and 5 mm, respectively. The chambers are fabricated by extruding 6063 aluminum alloy to form a tube with the desired internal shaped and machining the exterior to finish dimensions. The wall thickness of the completed chamber at the beam orbit position is 1 mm. The design utilizes a rigid strongback that limits deflection of the chamber under vacuum despite the thin wall. Chambers with lengths of 2.2m and 5.2 m have been fabricated. Pumping is accomplished by a combination of lumped and distributed non-evaporable getters and ion pumps. An ultimate pressure of 5.1·-11 torr was achieved with the 12-mm vertical aperture prototype. Alignment of the vacuum chamber on its support can be made with a precision of ± 25 μm in the vertical plane, which allows minimum insertion device pole gaps of 14.5 mm, 10.5 mm, and 7.5 mm

  7. Spectral properties of segmented undulators for the 7-GeV advanced photon source

    International Nuclear Information System (INIS)

    The effect of nonzero particle beam emittance and magnetic field errors on the on-axis spectral brightness (BTo) of long undulators is discussed. It is shown that the quadratic dependence of BTo on the number of undulator periods, N, is reduced by emittance to N-x with 1 ≤x < 2. Further reductions in the intensity result from random magnetic field errors present in the undulator. An approximate model for the intensity of the central core of radiation of the principle harmonics is discussed and the results compared to those from Monte Carlo-type calculations where emittance is explicitly accounted for. An estimation of the effects of random field errors on the on-axis brightness in the presence of nonzero particle emittance is made. For the particular case of undulators proposed for the 7-GeV Advanced Photon Source, the results indicate that 5-m-long devices segmented into two sections will provide the required spectral intensity of a single long undulator when both emittance and magnet errors are considered

  8. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database

    International Nuclear Information System (INIS)

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  9. A shutter design for time domain studies using synchrotron radiation at the Advanced Photon Source

    International Nuclear Information System (INIS)

    In general, a variable repetition rate of the x-ray bunches is needed to explore time domain problems using x-rays. In some instances, the results of several hundreds or thousands of x-ray pulses must be averaged requiring the sample to be in the same time-dependent state each time the monitoring pulse strikes. The important point is that before a second x-ray pulse hits the sample, the system must return to its initial relaxed ground state prior to another spectrum pulse in order to prepare the same excited state again. Our key design principle employs a subsonic, rotating mirror whose period is slaved to the synchrotron intrapulse period. The synchrotron x-ray bunches will be reflected a distance of about 2 m to a narrow 0.5-mm slit just in front of the sample. A mirror rotating at a low 7500 rpm (125 Hz) is sufficient to select a single synchrotron pulse for the Advanced Photon Source. The very precise phase stability required by this method is currently available in rotating mirror devices for laser scanning

  10. Vacuum chamber of the injector synchrotron for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The 40 chambers of the 368 m, 7-GeV injector synchrotron of the Advanced Photon Source are made from 1 mm-thick, 316LN stainless steel tubing. Tubes are cold-drawn to an elliptical shape with inside major and minor axes of 6 cm and 3.7 cm, respectively. This results in a thin metallic chamber without corrugations, which allows maximum beam space in the magnets and withstands atmospheric pressure. Sections of the chamber are bent to match the radius of curvature (33.3 m) of the beam over the entire effective length of the dipole magnets. A modified orbital welder is used to join sections of tubing. The chambers and the pumping system required to achieve a pressure of 10-9 Torr are described. A straight section of chamber tubing was tested under external pressure up to 60 psig. At 15 psig, the resulting deflection at the minor half axis was 0.2mm and a maximum compressive stress of 13,500 psi was measured. Tube deformation remained in the elastic region up to ∼38 psig. 4 refs., 2 figs

  11. Commissioning of experimental enclosures (Hutches) at the Advanced Photon Source - A to Z ALARA.

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, J.; Job, P. K.; Rauchas, A.; Justus, A.; Veluri, V. R.

    2000-11-01

    The Advanced Photon Source (APS), 7 GeV electron Storage Ring at the Argonne National Laboratory is designed to be a major national user facility providing high-brilliance x-ray beams. Figure 1 shows a plan view of the APS. At completion, APS will have 35 bending magnet (BM) beamlines and 35 insertion device (ID) beamlines. A typical x-ray beamline at APS comprises of a front end (FE) that confines the beam; a first optics enclosure (FOE) which houses optics to filter and monochromatize the beam; and beam transports, additional optics, and the experiment stations. Figure 2 shows a section of the storage ring with the layout of the ID and BM beamlines and typical experiment stations. The first x-ray beam was delivered to an experiment station in 1995. Ever since, to date, over 120 experimental stations (hutches) have been commissioned and are receiving intense x-ray beams of varying energies for various experiments. This paper describes in some detail the steps involved in the process of commissioning experimental stations and the implementation of the ALARA at each step.

  12. A divide-down RF source generation system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    A divide-down rf source system has been designed and built at Argonne National Laboratory to provide harmonically-related and phase-locked rf source signals between the APS 352-MHz storage ring and booster synchrotron rf systems and the 9.77-MHz and 117-MHz positron accumulator ring rf systems. The design provides rapid switching capability back to individual rf synthesizers for each one. The system also contains a digital bucket phase shifter for injection bucket selection. Input 352-MHz rf from a master synthesizer is supplied to a VXI-based ECL divider board which produces 117-MHz and 9.77-MHz square-wave outputs. These outputs are passed through low-pass filters to produce pure signals at the required fundamental frequencies. These signals, plus signals at the same frequencies from independent synthesizers, are fed to an interface chassis where source selection is made via local/remote control of coaxial relays. This chassis also produces buffered outputs at each frequency for monitoring and synchronization of ancillary equipment

  13. Design and analysis of a photon/safety shutter for CARS sector 14 ID beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A photon/safety shutter capable of stopping bremsstrahlung, white, pink, and monochromatic radiation from the APS wiggler and undulator sources is described. The shutter consists of two individually actuated but redundant block assemblies. Each block consists of a water-cooled, OFHC block thermal absorber followed by a tungsten block to stop both synchrotron and bremsstrahlung rays. The design presented here is inexpensive and spatially compact. Fatigue analysis and ANSYS thermal and stress analysis are presented. copyright 1996 American Institute of Physics

  14. A quasi-realtime x-ray microtomography system at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The combination of high-brilliance x-ray sources, fast detector systems, wide-bandwidth networks, and parallel computers can substantially reduce the time required to acquire, reconstruct, and visualize high-resolution three-dimensional tomographic datasets. A quasi-realtime computed x-ray microtomography system has been implemented at the 2-BM beamline at the Advanced Photon Source at Argonne National Laboratory. With this system, a complete tomographic data set can be collected in about 15 minutes. Immediately after each projection is obtained, it is rapidly transferred to the Mathematics and Computing Sciences Division where preprocessing and reconstruction calculations are performed concurrently with the data acquisition by a SGI parallel computer. The reconstruction results, once completed, are transferred to a visualization computer that performs the volume rendering calculations. Rendered images of the reconstructed data are available for viewing back at the beamline experiment station minutes after the data acquisition was complete. The fully pipelined data acquisition and reconstruction system also gives us the option to acquire the tomographic data set in several cycles, initially with coarse then with fine angular steps. At present the projections are acquired with a straight-ray projection imaging scheme using 5-20 keV hard x rays in either phase or amplitude contrast mode at a 1-10 pm resolution. In the future, we expect to increase the resolution of the projections to below 100 nm by using a focused x-ray beam at the 2-ID-B beamline and to reduce the combined acquisition and computation time to the 1 min scale with improvements in the detectors, network links, software pipeline, and computation algorithms

  15. Guide to beamline radiation shielding design at the Advanced Photon Source

    International Nuclear Information System (INIS)

    This document is concerned with the general requirements for radiation shielding common to most Advanced Photon Source (APS) users. These include shielding specifications for hutches, transport, stops, and shutters for both white and monochromatic beams. For brevity, only the results of calculations are given in most cases. So-called open-quotes special situationsclose quotes are not covered. These include beamlines with white beam mirrors for low-pass energy filters (open-quotes pink beamsclose quotes), extremely wide band-pass monochromators (multilayers), or novel insertion devices. These topics are dependent on beamline layout and, as such, are not easily generalized. Also, many examples are given for open-quotes typicalclose quotes hutches or other beamline components. If a user has components that differ greatly from those described, particular care should be taken in following these guidelines. Users with questions on specific special situations should address them to the APS User Technical Interface. Also, this document does not cover specifics on hutch, transport, shutter, and stop designs. Issues such as how to join hutch panels, floor-wall interfaces, cable feed-throughs, and how to integrate shielding into transport are covered in the APS Beamline Standard Components Handbook. It is a open-quotes living documentclose quotes and as such reflects the improvements in component design that are ongoing. This document has the following content. First, the design criteria will be given. This includes descriptions of some of the pertinent DOE regulations and policies, as well as brief discussions of abnormal situations, interlocks, local shielding, and storage ring parameters. Then, the various sources of radiation on the experimental floor are discussed, and the methods used to calculate the shielding are explained (along with some sample calculations). Finally, the shielding recommendations for different situations are given and discussed

  16. Standards and the design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  17. Standards and the design of the Advanced Photon Source control system

    Science.gov (United States)

    McDowell, W. P.; Knott, M. J.; Lenkszus, F. R.; Kraimer, M. R.; Daly, R. T.; Arnold, N. D.; Anderson, M. D.; Anderson, J. B.; Zieman, R. C.; Cha, Ben-Chin K.

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. In the conceptual stage the control system design group faced the challenges that face all control system designers: to force the machine designers to quantify and codify the system requirements, to protect the investment in hardware and software from rapid obsolescence, and to find methods of quickly incorporating new generations of equipment and replace of obsolete equipment without disrupting the exiting system. To solve these and related problems, the APS control system group made an early resolution to use standards in the design of the system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. The system will use high performance graphic workstations using an X-Windows Graphical User Interface at the operator interface level. It connects to VME-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities.

  18. The Poisson alignment reference system implementation at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Feier, I.

    1998-09-21

    The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 {+-} 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 {+-} 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system.

  19. The Poisson alignment reference system implementation at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 ± 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 ± 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system

  20. A beamline for 1 endash 4 keV microscopy and coherence experiments at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The third-generation Advanced Photon Source will open up dramatic new opportunities for experiments requiring coherent x-rays, such as scanning x-ray microscopy, interferometry, and coherent scattering. We are building a beamline at the Advanced Photon Source to exploit the potential of coherent x-ray applications in the 1 endash 4 keV energy region. A high brightness 5.5-cm-period undulator supplies the coherent x-rays. The beamline uses horizontally deflecting grazing-incidence optical elements to preserve the coherence of the undulator beam. The optics have multilayer coatings for operation at energies above 1.5 keV. This paper discusses the beamline design and its expected performance. copyright 1996 American Institute of Physics

  1. Controllable photon source

    Science.gov (United States)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  2. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany)], E-mail: paola.coan@esrf.fr; Gruener, F. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany); Glaser, C.; Schneider, T. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany); Reiser, M. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Habs, D. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany)

    2009-09-01

    In this paper, the excellence cluster 'Munich-Centre for Advance Photonics' (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  3. Design of high heat load white-beam slits for wiggler/undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of horizontal and vertical white-beam slits has been designed for the Advanced Photon Source wiggler/undulator beamlines at Argonne National Laboratory. While this slit set can handle the high heat flux from on e APS undulator source, it has large enough aperture to be compatible with a wiggler source also. A grazing-incidence, knife-edge configuration has been used in the design to eliminate downstream X-ray scattering. Enhanced heat transfer technology has been used in the water-cooling system. A unique stepping parallelogram driving structure provides precise vertical slit motion with large optical aperture. The full design detail is presented in this paper

  4. Design of high heat load white-beam slits for wiggler/undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of horizontal and vertical white-beam slits has been designed for the Advanced Photon Source wiggler/undulator beamlines at Argonne National Laboratory. While this slit set can handle the high heat flux from one APS undulator source, it has a large enough aperture to be compatible with a wiggler source also. A grazing-incidence, knife-edge configuration has been used in the design to eliminate downstream x-ray scattering. Enhanced heat transfer technology has been used in the water-cooling system. A unique stepping parallelogram driving structure provides precise vertical slit motion with large optical aperture. The full design detail is presented in this paper

  5. An overview of the information distribution system at the Advanced Photon Source

    Science.gov (United States)

    Ramanathan, M.; Smith, M.; Arnold, N.; Lenkszus, F.; Laird, R.; Evans, K.; Anderson, J.; Sidorowicz, K.

    2002-03-01

    The Advanced Photon Source (APS) has been in operational mode for more than 5 yr. Currently there are over 40 beamlines in various phases of operation. The control system of choice at the APS is the Experimental Physics and Industrial Control System (EPICS). We have provided various interfaces to the beamlines from the APS control system. An overview of the various systems will be discussed. The General Control System Information (GCSI) uses dedicated computers as EPICS process variable gateways to provide data from the APS control system to each beamline. The GCSI architecture makes the APS control system secure, yet has the flexibility of providing access control to any data available on the APS control system. In addition, the gateway reduces the load on the APS control system equipment by making only one connection for each process variable accessed by multiple users. Each sector, consisting of a bending magnet and insertion device beamlines, is provided its own gateway, which resides on the local sector network. This scheme has the advantage of providing network security and more reliable operation. To provide real-time accelerator data to beamlines, each sector has been provided a chassis to display the storage ring current and other relevant information. These data are transmitted via a direct fiber link from the APS control system hardware to the beamlines. The beamlines are also provided VME-based hardware and associated EPICS software to retrieve key information provided via this fiber link. Some of the information on this link is beam current, lifetime, injection status, and sector specific information such as shutter status, insertion device gap, and energy, and storage ring and front-end beam position monitor signals. The data rates on this link are typically 10 Hz but can be as high as 272 kHz. This scheme allows the beamlines using EPICS-based software to seamlessly use the data from the APS control system without excessively impacting the system

  6. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  7. Study of Second Phase Particles and Fe content in Zr Alloys Using the Advanced Photon Source at Argonne

    International Nuclear Information System (INIS)

    We have conducted a study of second phase particles and matrix alloying element concentrations in zirconium alloys using synchrotron radiation from the Advanced Photon Source (APS) at Argonne National Laboratory. The high flux of synchrotron radiation delivered at the 2BM beamline compared to conventional x-ray generators, enables the detection of very small precipitate volume fractions. We detected the standard C14 hcp Zr(Cr,Fe)2 precipitates, (the stable second phase in Zircaloy-4) in the bulk material at a cumulative annealing parameter as low as 10-20 h, and we followed the kinetics of precipitation and growth as a function of the cumulative annealing parameter (CAP) in the range 10-22 (quench) to 10-16 h. In addition, the unique combination of spatial resolution and elemental sensitivity of the 2ID-D/E microbeam line at the Advanced Photon Source at Argonne (APS) allows study of the alloying element concentrations at ppm levels in an area as small as 0.2 mm. We used x-ray fluorescence induced by this sub-micron x-ray beam to determine the concentration of these alloying elements in the matrix as a function of alloy type and thermal history. We discuss these results and the potential of synchrotron radiation-based techniques for studying zirconium alloys

  8. Engineered Quantum Dot Single Photon Sources

    CERN Document Server

    Buckley, Sonia; Vuckovic, Jelena

    2012-01-01

    Fast, high efficiency, and low error single photon sources are required for implementation of a number of quantum information processing applications. The fastest triggered single photon sources to date have been demonstrated using epitaxially grown semiconductor quantum dots (QDs), which can be conveniently integrated with optical microcavities. Recent advances in QD technology, including demonstrations of high temperature and telecommunications wavelength single photon emission, have made QD single photon sources more practical. Here we discuss the applications of single photon sources and their various requirements, before reviewing the progress made on a quantum dot platform in meeting these requirements.

  9. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    International Nuclear Information System (INIS)

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper

  10. High heat load x-ray optics research and development at the Advanced Photon Source -- An overview

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wah-Keat; Mills, D.M.

    1993-09-01

    Insertion devices at third generation synchrotron radiation sources such as the APS are capable of producing x-ray beams with total power in excess of 7 kilowatts or power densities of 150 watts/mm{sup 2} at a typical location of the optical components. Optical elements subjected to these types of heat fluxes will suffer considerably unless carefully designed to withstand these unprecedented power loadings. At the Advanced Photon Source (APS), we have an aggressive R&D program aimed at investigating possible methods to mitigate thermal distortions. The approaches being studied include, improved heat exchangers, use of liquid gallium and liquid nitrogen as coolants, novel crystal geometries, power filtering, and replacement of silicon with diamond for crystal monochromators. This paper will provide an overview of the high heat load x-ray optics program at the APS.

  11. Thermomechanical analysis of the white-beam slits for a wiggler/undulator beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of precision, vertical, white-beam slits has been designed for an undulator/wiggler beamline at the Advanced Photon Source (APS). The slit, a knife-edge-type precision device, is required to have very small thermal distortion during operation with beam. The traditional slit consists of a cooling block and an OFHC cooling channel inside the block. The design consists of one large block and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. This design will accommodate the x-ray source from both undulators and wigglers. Due to the powerful x-ray heat flux coming from APS Undulator A, it is an exceedingly difficult problem to reduce the thermal distortion to less than 50 μm as required by some users

  12. The Advanced Photon Source: Using Synchrotron Radiation to Study Actinide Containing Samples Relevant to Nuclear Energy Systems

    International Nuclear Information System (INIS)

    The realization of advanced nuclear reactors as a national source of reliable energy awaits materials research on fuels, reactor components under extreme environments and options for waste treatment and storage. The third generation synchrotrons such as the Advanced Photon Source (APS) provide a high flux of coherent, variable energy X rays that can be used to probe in situ a wide range of chemical, physical and materials problems of relevance to nuclear energy production. Synchrotron radiation from such a source is particularly suited to the study of radioactive samples because of its tunability, penetration and intensity. Together, these features provide the opportunity to work with small, encapsulated samples, a necessary requirement because of the inherently hazardous heavy metal, highly radioactive materials. Complicating the practical advantages of synchrotron radiation to the study of nuclear energy systems is the need for risk mitigation when bringing such materials into a user facility. The APS has used a risk based approach to the problem. As part of Argonne National Laboratory, which has a long history in nuclear energy, the APS has taken advantage of the broader Laboratory infrastructure to reach out and accommodate experiments on radioactive samples and the broad nuclear energy community. (author)

  13. The operation of the BNL/ATF gun-IV photocathode RF gun at the Advanced Photon Source

    International Nuclear Information System (INIS)

    At the Advanced Photon Source (APS) at Argonne National Laboratory (ANL), a free-electron laser (FEL) based on the self-amplified spontaneous emission (SASE) process is nearing completion. Recently, an rf photoinjector gun system was made available to the APS by Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF). It will be used to provide the high-brightness, low-emittance, and low-energy spread electron beam required by the SASE FEL theory. A Nd:Glass laser system, capable of producing a maximum of 500 microJ of UV in a 1-10 ps pulse at up to a 10-Hz repetition rate, serves as the photoinjector's drive laser. Here, the design, commissioning, and integration of this gun with the APS is discussed

  14. High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A

    2012-07-01

    High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

  15. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper

  16. Thermo-mechanical analysis of the white-beam slits for an undulator beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of precision horizontal and vertical white-beam slits has been designed for an undulator beamline at the Advanced Photon Source. Due to the powerful x-ray heat flux emitted by the undulator, it is difficult to control the thermal distortion within the desired range of 1--2 μm. We analyzed many conceptual designs in an attempt to minimize the thermal distortion of the slits. Even with 1-mm-thick, low-Z material (graphite) coated on the heating surface of a traditional slit, the maximum thermal distortion is over 25 μm. A three-piece slit was then designed to satisfy the requirements. It consists of one large block, two tungsten knife edges, and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. The thermal distortion at the knife edges of this three-piece slit is less than 2 μm

  17. Thermo-mechanical analysis of the white-beam slits for an undulator beamline at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A set of precision horizontal and vertical white-beam slits has been designed for an undulator beamline at the Advanced Photon Source. Due to the powerful x-ray heat flux emitted by the undulator, it is difficult to control the thermal distortion within the desired range of 1-2 microns. We analyzed many conceptual designs in an attempt to minimize the thermal distortion of the slits. Even with 1-mm-thick, low-Z material (graphite) coated on the heating surface of a traditional slit, the maximum thermal distortion is over 25 microns. A three-piece slit was then designed to satisfy the requirements. It consists of one large block, two tungsten knife edges, and an OFHC cooling tube (filled with copper mesh) brazed inside the large block. The thermal distortion at the knife edges of this three-piece slit has a relative displacement of less than 2 microns

  18. Combined SCaM-XAFS and advanced photon source. XAFS of single atoms

    International Nuclear Information System (INIS)

    At the beam-line BL10XU of SPring-8 Facility, it has been proposed to construct a Capacitance XAFS (X-ray Absorption Fine Structure) in which absorption of a photon from an X-ray beam by defects in a solid followed by emission of localized and bound electrons can be monitored by capacitance change to obtain a XAFS spectrum specific only to the site of the defects. The capacitance XAFS method allows to measure zero-dimensional (corresponding to point defects) and one-dimensional (corresponding to dislocation) X-ray absorption coefficients of a three-dimensional sample solid. These LDAC (Low Dimensional Absorption Coefficient) may be denoted as 0/3 and 1/3 in the above cases. The present study may be extended to obtain capacitance XAFS from such interfaces as for example metal-insulator and insulator-semiconductor, etc, (which can be denoted as 0/2 and 1/2), and the required photon intensity for the SCaM study is discussed. Of these, 0/2 spectrum corresponds to a single atom XAFS. (S.Ohno)

  19. In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The mechanical and chemical response of energetic materials is controlled by a convolution of deformation mechanisms that span length scales and evolve during impact. Traditional methods use continuum measurements to infer the microstructural response whereas advances in synchrotron capabilities and diagnostics are providing new, unique opportunities to interrogate materials in real time and in situ. Experiments have been performed on a new gas-gun system (IMPact system for Ultrafast Synchrotron Experiments) using single X-ray bunch phase contrast imaging (PCI) and Laue diffraction at the Advanced Photon Source (APS). The low absorption of molecular materials maximizes x-ray beam penetration, allowing measurements in transmission using the brilliance currently available at APS Sector 32. The transmission geometry makes it possible to observe both average lattice response and spatially heterogeneous, continuum response (1-4 um spatial resolution over ∼2 × 2 mm area, 80 ps exposure, 153 ns frame-rate) in energetic materials ranging from single crystals to plastic-bonded composites. The current work describes our progress developing and using these diagnostics to observe deformation mechanisms relevant to explosives and the first experiments performed with explosives on IMPULSE at APS.

  20. Performance of photon position monitors and stability of undulator beams at the Advanced Light Source

    International Nuclear Information System (INIS)

    Position monitors are implemented in three undulator beamlines at the ALS. Their performance has been studied carefully on one of these lines and is reviewed. The monitors work as expected and show the ALS to be an exceptionally stable source of synchrotron radiation

  1. X-ray photoelectron spectroscopy analysis of aluminum and copper cleaning procedures for the Advanced Photon Source

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS), presently under construction, will produce x rays of unprecedented brightness. The storage ring where the x rays will be produced will be constructed from an extruded 6063 aluminum alloy, while transition pieces (flanges, etc.) will be made from a 2219 aluminum alloy. In addition, cooled photon absorbers will be placed in strategic locations throughout the ring to intercept the majority of the unused high power-density radiation. These will be made of either CDA-101 (OFHC) copper or glidcop (a dispersion strengthened copper alloy). Before any of these components can be assembled they must be cleaned to remove surface contaminants so that the ultrahigh vacuum (<0.1 nTorr) necessary for successful operation can be achieved. Many recipes for cleaning aluminum and copper exist; however, most of them involve the use of chemicals that present safety and/or environmental concerns. We have undertaken an x-ray photoelectron spectroscopy study of the effects of a variety of commercially available cleaners on the surface cleanliness of aluminum and copper. Several important results have been identified in this study. A simple alkaline detergent in an ultrasonic bath cleans aluminum alloys as effectively as the more aggressive cleaning solutions. The detergent can be used at 65 degree C to clean the 6063 alloy and at 50 degree C to clean the 2219 alloy. A citric acid based cleaner was found to be effective at cleaning copper, although the surface oxidizes rapidly. To date, we have been unable to find a universal cleaning procedure, i.e., one that is optimal for cleaning both Al and Cu

  2. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    International Nuclear Information System (INIS)

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R ampersand D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R ampersand D

  3. Vibratory response of a mirror support/positioning system for the Advanced Photon Source project at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The vibratory response of a typical mirror support/positioning system used at the experimental station of the Advanced Photon Source (APS) project at Argonne National Laboratory is investigated. Positioning precision and stability are especially critical when the supported mirror directs a high-intensity beam aimed at a distant target. Stability may be compromised by low level, low frequency seismic and facility-originated vibrations traveling through the ground and/or vibrations caused by flow-structure interactions in the mirror cooling system. The example case system has five positioning degrees of freedom through the use of precision actuators and rotary and linear bearings. These linkage devices result in complex, multi-dimensional vibratory behavior that is a function of the range of positioning configurations. A rigorous multibody dynamical approach is used for the development of the system equations. Initial results of the study, including estimates of natural frequencies and mode shapes, as well as limited parametric design studies, are presented. While the results reported here are for a particular system, the developed vibratory analysis approach is applicable to the wide range of high-precision optical positioning systems encountered at the APS and at other comparable facilities

  4. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  5. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  6. LIGA fabrication of mm-wave accelerating cavity structures at the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Recent microfabrication technologies based on the LIGA (German acronym for Lithographe, Galvanoformung, und Abformung) process have been applied to build high-aspect-ratio, metallic or dielectric planar structures suitable for high-frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacture of precision x-ray masks, exposure of positive resist x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant-impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated with the synchrotron radiation sources at APS and NSLS. This paper will present an overview of the new technology and details of the mm-wave cavity fabrication

  7. Perovskite photonic sources

    Science.gov (United States)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  8. High-Brightness Beams from a Light Source Injector: The Advanced Photon Source Low-Energy Undulator Test Line Linac

    OpenAIRE

    Travish, G.; Biedron, S; Borland, M.; Hahne, M.; Harkay, K.; Lewellen, J.W.; Lumpkin, A.; Milton, S.; Sereno, N.

    2000-01-01

    The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventiona...

  9. A hard X-ray scanning microprobe for fluorescence imaging and microdiffraction at the Advanced Photon Source

    International Nuclear Information System (INIS)

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 microm (v) x 0.6 microm (h), and a photon flux of 4 x 109 photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 microm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (La line) of 80 attograms/microm2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique

  10. A finite element analysis of room temperature silicon crystals for the Advanced Photon Source bending-magnet and insertion-device beams

    International Nuclear Information System (INIS)

    The third generation of synchrotron radiation sources, such as the Advanced Photon Source (APS), will provide users with a high brilliance x-ray beam with high power and power densities. In many cases, the first optical component to intercept the x-ray beam is a silicon-crystal monochromator. Due to extreme heat loading, the photon throughput and brilliance will be severely degraded if the monochromator is not properly designed (or cooled). This document describes a series of finite element analyses performed on room temperature silicon for the three standard APS sources, namely, the bending magnet, Wiggler A, and Undulator A. The modeling is performed with the silicon cooled directly with water or liquid gallium through rectangular channels. The temperature distributions and thermally induced deformations are presented

  11. A hard x-ray scanning microprobe for fluorescence imaging and microdiffraction at the advanced photon source

    International Nuclear Information System (INIS)

    A hard x-ray scanning microprobe based on zone plate optics and undulator radiation, in the energy region from 6 to 20 keV, has reached a focal spot size (FWHM) of 0.15 μm(v)x0.6 μm(h), and a photon flux of 4x109 photons/sec/0.01%BW. Using a slit 44 meters upstream to create a virtual source, a circular beam spot of 0.15 μm in diameter can be obtained with a photon flux of one order of magnitude less. During fluorescence mapping of trace elements in a single human ovarian cell, the microprobe exhibited an imaging sensitivity for Pt (Lα line) of 80 attograms/μm2 for a count rate of 10 counts per second. The x-ray microprobe has been used to map crystallographic strain and multiquantum well thickness in micro-optoelectronic devices produced with the selective area growth technique

  12. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  13. Smart x-ray beam position monitor system using artificial intelligence methods for the advanced photon source insertion-device beamlines

    International Nuclear Information System (INIS)

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front-end has two XBPMs to monitor the X-ray beam position for both that vertical and horizontal directions. Performance challenges for a conventional photoemission type X-ray beam position monitor (XBPM) during operations are contamination of the signal from the neighboring bending magnet sources and the sensitivity of the XBPM to the insertion device (ID) gap variations. Problems are exacerbated because users change the ID gap during their operations, and hence the percentage level of the contamination in the front end XBPM signals varies. A smart XBPM system with a high speed digital signal processor has been built at the Advanced Photon Source for the ID beamline front ends. The new version of the software, which uses an artificial intelligence method, provides a self learning and self-calibration capability to the smart XBPM system. The structure of and recent test results with the system are presented in this paper

  14. A fast white-beam shutter for hard x-ray topography at beamline 1-BM of the Advanced Photon Source

    International Nuclear Information System (INIS)

    Beamline 1-BM at the Advanced Photon Source (APS) delivers a white beam from a bending magnet with very intense x-ray photon flux. One important application of this beamline is white-beam x-ray topography imaging for crystal-based x-ray optics development and for industrial characterization of single crystals and epitaxial materials. Due to the intense photon flux from the third-generation synchrotron source of the APS, the exposure time of the imaging process should be accurately controlled down to the millisecond level. For this purpose we have designed and implemented a fast shutter that is vacuum compatible to 10−8 torr. The aperture is a copper block with a 70 mm horizontal and 5 mm vertical opening and is water cooled. The aperture is moved vertically up and down by means of a linear voice-coil actuator. The aperture's position is controlled using encoder feedback in a servo loop running on an industrial motion controller. A shutter opening response time of 32 milliseconds was measured. In this paper, we describe the shutter mechanics and its associated electronics installed at the 1-BM, and we report example white-beam topographs of diamond type IIa crystals.

  15. Recent Advances of VCSEL Photonics

    Science.gov (United States)

    Koyama, Fumio

    2006-12-01

    A vertical-cavity surface emitting laser (VCSEL) was invented 30 years ago. A lot of unique features can be expected, such as low-power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years, and they are now key devices in local area networks using multimode optical fibers. Also, long wavelength VCSELs are currently attracting much interest for use in single-mode fiber metropolitan area and wide area network applications. In addition, a VCSEL-based disruptive technology enables various consumer applications such as a laser mouse and laser printers. In this paper, the recent advance of VCSEL photonics will be reviewed, which include the wavelength extension of single-mode VCSELs and their wavelength integration/control. Also, this paper explores the potential and challenges for new functions of VCSELs toward optical signal processing.

  16. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    International Nuclear Information System (INIS)

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation

  17. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    International Nuclear Information System (INIS)

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics

  18. Precision white-beam slit design for high power-density x-ray undulator beamlines at the Advanced Photon Source

    Science.gov (United States)

    Shu, D.; Brite, C.; Nian, T.; Yun, W.; Haeffner, D. R.; Alp, E. E.; Ryding, D.; Collins, J.; Li, Y.; Kuzay, T. M.

    1995-02-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source x-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including a grazing-incidence knife-edge configuration to minimize the scattering of x rays downstream, enhanced heat transfer tubing to provide water cooling, and a secondary slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper.

  19. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.;

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency as...

  20. Photonic MEMS tunable laser sources

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-qun

    2009-01-01

    This article covers laser configurations, design and experiments of photonic microelectromechanical systems (MEMS) tunable laser sources. Three different types of MEMS tunable lasers such as MEMS coupled-cavity lasers, injection-locked laser systems and dual-wavelength tunable lasers are demonstrated as examples of natural synergy of MEMS with photonics. The expansion and penetration of the MEMS technology to silicon optoelectronic creates on-chip optical systems at an unprecedented scale of integration. While producing better integration with robustness and compactness, MEMS improves the functionalities and specifications of laser chips. Additionally, MEMS tunable lasers are featured with small size, high tuning speed, wide tuning range and CMOS compatible integration, which broaden their applications to many fields.

  1. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël;

    2013-01-01

    Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so as to...... tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...... mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments....

  2. Nuclear Resonance Fluorescence Using Different Photon Sources

    International Nuclear Information System (INIS)

    Nuclear resonance fluorescence (NRF) is a photon-based active interrogation approach that provides isotope-specific signatures that can be used to detect and characterize samples. As NRF systems are designed to address specific applications, an obvious first question to address is the type of photon source to be employed for the application. Our collaboration has conducted a series of NRF measurements using different photon sources to begin to examine this issue. The measurements were designed to be as similar as possible to facilitate a straightforward comparison of the different sources. Measurements were conducted with a high-duty factor electron accelerator using bremsstrahlung photons, with a pulsed linear accelerator using bremsstrahlung photons, and with a narrow bandwidth photon source using Compton backscattered photons. We present our observations on the advantages and disadvantages of each photon source type. Issues such as signal rate, the signal-to-noise ratio, and absorbed dose are discussed

  3. Performance of an adaptive mu-focusing Kirkpatrick-Baez system for high-pressure studies at the Advanced Photon Source

    International Nuclear Information System (INIS)

    X-ray studies of materials in extreme conditions of pressure call for focusing optics able to deliver very clean micron-size focal spots of high energy X-rays with added stringent requirements of flexibility to accommodate different experimental geometries and fast focal spot size adjustment. These requirements are fully met by multi-electrode modular piezoelectric bimorph mirrors (PBMs) in Kirkpatrick-Baez configurations, and these optical systems have already been successfully used for several years at high brilliance 3rd generation synchrotron radiation facilities such as the ESRF and SPring-8. The optical characterization and in-situ X-ray performance of the first pair of modular PBMs installed at the Advanced Photon Source at Argonne national laboratory is reported here. Metrology tests show that the mirrors are able to approximate an arbitrary surface described by a 9th order polynomial in shape with only 100 (angstrom); rms shape error over their full optical surface. Full adaptive zonal control allows wave front correction, delivers optimum focal spot profiles (as small as 8.5 (H) x 5.0 (V) (micro)m2 FWHM at a focal distance of 1 m) and fully achieves the creep-free short and long term stability and repeatability required by the experimental program.

  4. Use of the high-energy x-ray microprobe at the Advanced Photon Source to investigate the interactions between metals and bacteria

    International Nuclear Information System (INIS)

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical separation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical separation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at th needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline

  5. Calibration of an Advanced Photon Source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a positron beam also containing electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2 x 2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856- and 5712-MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856- and 5712-MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856-MHz and 5712-MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856- and 5712-MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  6. Status of RF deflecting cavity design for the generation of short x-ray pulses in the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) at Argonne National Laboratory is exploring the possibility of using radio frequency deflection to generate x-ray radiation pulses on the order of 1 pico-second (Delta t - 70%) or less. This scheme is based on a proposal by A. Zholents et al. that relies on manipulating the transverse momentum of the electrons in a bunch by using an rf deflecting cavity to induce a longitudinally dependent vertical deflection of the beam. The beam will then travel through a number of undulators before arriving at a second set of deflecting cavities where the deflection is reversed such that the remainder of the storage ring is largely unperturbed. Considerable effort has been expended on the design of a superconducting rf deflecting cavity operating in the S-band at 2.8 GHz to address fundamental design issues including cavity geometry, deflecting voltage, rf power coupling, tuning, and damping of higher-order and lower-order modes. In this paper we present simulation results and analysis of an optimized superconducting rf deflecting cavity design for the APS storage ring.

  7. MM-wave cavity/klystron developments using deep X-ray lithography at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Recent microfabrication technologies based on LIGA (German acronym for Lithographe, Galvanoformung, and Abformung) have been applied to build high-aspect-ratio, metallic or dielectric, planar structures suitable for high frequency rf cavity structures. The cavity structures would be used as parts of linear accelerators, microwave undulators, and mm-wave amplifiers. The microfabrication process includes manufacturing of precision x-ray masks, exposure of positive resist by x-rays through the mask, resist development, and electroforming of the final microstructure. Prototypes of a 32-cell, 108-GHz constant impedance cavity and a 66-cell, 94-GHz constant-gradient cavity were fabricated using the synchrotron radiation sources at APS. Preliminary design parameters for a 91- GHz modulator klystron along with an overview of the new technology are discussed

  8. Photon statistics characterization of a single photon source

    OpenAIRE

    Alleaume, Romain; Treussart, Francois; Courty, Jean-Michel; Roch, Jean-Francois

    2003-01-01

    n a recent experiment, we reported the time-domain intensity noise measurement of a single photon source relying on single molecule fluorescence control. In this article we present data processing, starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single photon source is derived from ONOFF dynamics . Finally, source intensity noise analysis using the Mandel parameter is quantitatively compared to the usual...

  9. The Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs

  10. Photon statistics characterization of a single-photon source

    International Nuclear Information System (INIS)

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  11. Advanced Light Source elliptical wiggler

    International Nuclear Information System (INIS)

    A 3.5m long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 1013 photons/sec over the 50 eV to 10 keV operating range for current of 0.4 amps and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 14 1/2 periods respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally 1/4 period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented

  12. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  13. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  14. Recent advances in integrated photonic sensors.

    Science.gov (United States)

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  15. Recent Advances in Integrated Photonic Sensors

    Directory of Open Access Journals (Sweden)

    Francesco De Leonardis

    2012-11-01

    Full Text Available Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.

  16. Bright Solid State Source of Photon Triplets

    CERN Document Server

    Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2015-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...

  17. Advanced Photonic and Electronic Systems WILGA 2010

    CERN Document Server

    Romaniuk, R S

    2010-01-01

    SPIE – PSP WILGA Symposium gathers two times a year in January and in May new adepts of advanced photonic and electronic systems. The event is oriented on components and applications. WILGA Symposium on Photonics and Web Engineering is well known on the web for its devotion to “young research” promotion under the eminent sponsorship of international engineering associations like SPIE and IEEE and their Poland Sections or Counterparts. WILGA is supported by the most important national professional organizations like KEiT PAN and PSP-Photonics Society of Poland. The Symposium is organized since 1998 twice a year. It has gathered over 4000 young researchers and published over 2000 papers mainly internationally, including more than 900 in 10 published so far volumes of Proc. SPIE. This paper is a digest of WILGA Symposium Series and WILGA 2010 summary. Introductory part treats WILGA Photonics Applications characteristics over the period 1998-2010. Following part presents a short report on the XXVth and XXVI...

  18. Global sourcing of advanced services

    OpenAIRE

    Ørberg Jensen, Peter D.; Petersen, Bent

    2011-01-01

    In this exploratory study we take a strategic management approach to global sourcing of advanced services. We discuss in which ways conventional sourcing differs from strategic sourcing and what impels firms to aim for the latter (or, prevent them from doing so). Potentially, strategic global sourcing of services has high returns, but is also associated with high risks and needs for organizational changes. Strategic global sourcing may therefore be outside firms’ “comfort zone”...

  19. Narrowband Photon Pair Source for Quantum Networks

    CERN Document Server

    Monteiro, F; Sanguinetti, B; Zbinden, H; Thew, R T

    2013-01-01

    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.

  20. Cosmogenic photons strongly constrain UHECR source models

    CERN Document Server

    van Vliet, Arjen

    2016-01-01

    With the newest version of our Monte Carlo code for ultra-high-energy cosmic ray (UHECR) propagation, CRPropa 3, the flux of neutrinos and photons due to interactions of UHECRs with extragalactic background light can be predicted. Together with the recently updated data for the isotropic diffuse gamma-ray background (IGRB) by Fermi LAT, it is now possible to severely constrain UHECR source models. The evolution of the UHECR sources especially plays an important role in the determination of the expected secondary photon spectrum. Pure proton UHECR models are already strongly constrained, primarily by the highest energy bins of Fermi LAT's IGRB, as long as their number density is not strongly peaked at recent times.

  1. Narrowband polarization entangled telecom photon pair source

    OpenAIRE

    Kaiser, Florian; Issautier, Amandine; Alibart, Olivier; Martin, Anthony; Tanzilli, Sébastien

    2011-01-01

    During the last decade, quantum entanglement has paved the way out to of the lab modern applications such as quantum computation and communication. Today, small scale quantum networks exist already, but they are limited to a few 100 km distance, due to intrinsic fiber transmission losses and non perfect detectors. These networks are typically established using photon pair sources based on spontaneous parametric down conversion (SPDC). Widely used entanglement observables are time-bin and pola...

  2. Proceedings of the first symposium on advanced photon research

    International Nuclear Information System (INIS)

    This report consists of 76 contributed papers of the First Symposium on Advanced Photon Research, which was held at Keihanna Plaza and JAERI Advanced Photon Research Center in Kyoto on November 8-9, 1999. The numbers of oral presentations including a special invited talk and poster presentations were 14 and 68, respectively. (J.P.N.)

  3. Proceedings of the first symposium on advanced photon research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report consists of 76 contributed papers of the First Symposium on Advanced Photon Research, which was held at Keihanna Plaza and JAERI Advanced Photon Research Center in Kyoto on November 8-9, 1999. The numbers of oral presentations including a special invited talk and poster presentations were 14 and 68, respectively. (J.P.N.)

  4. X-ray structural study of Ge(001):Te 1x1 performed at the advanced photon source. Current status of the surface-interface structure beamline at SPring-8

    CERN Document Server

    Sakata, O

    2002-01-01

    This article is composed of two parts. In the first half, we describe a study that we performed at 5ID-C of the Dupont- Northwestern University-Dow (DND) CAT in the Advanced Photon Source, the Argonne National Laboratory for 1998 to 2000. A surface structure of Ge(001):Te 1x1 was determined by least-squares fits of x-ray scattered intensities with calculations based on some surface atomic structural models. The fitted structural model has a characteristic that a direction of a Ge-Ge dimer bond on the first Ge atomic layer is perpendicular to a Te missing row. It was distinct from those based on first-principles total energy calculations. In the second half, we introduce up-to-the-minute status of BL13XU for surface-interface structural studies at SPring-8. Scientific research goals we desire are mentioned as well. (author)

  5. Photonic crystal fibre source of photon pairs for quantum information processing

    CERN Document Server

    Fulconis, J; O'Brien, J L; Rarity, J G; Wadsworth, W J; Alibart, Olivier; Brien, Jeremy L. O'; Fulconis, Jeremie; Rarity, John G.; Wadsworth, William J.

    2006-01-01

    We demonstrate two key components for optical quantum information processing: a bright source of heralded single photons; and a bright source of entangled photon pairs. A pair of pump photons produces a correlated pair of photons at widely spaced wavelengths (583 nm and 900 nm), via a $\\chi^{(3)}$ four-wave mixing process. We demonstrate a non-classical interference between heralded photons from independent sources with a visibility of 95%, and an entangled photon pair source, with a fidelity of 89% with a Bell state.

  6. Photonic Crystal Fiber Source of Quantum Correlated Photon Pairs in the 1550 nm Telecom Band

    International Nuclear Information System (INIS)

    A source of quantum correlated photon pairs in the 1550nm telecom band obtained by a pumping 11m photonic crystal fiber with 10 ps pulse trains is experimentally demonstrated. We investigate how the birefringence of the fiber influences the purity of the photon pairs. We also present the frequency correlation of the signal and idler photon pairs. The experimental results are useful for developing a compact source of photon pairs well suited for quantum communication

  7. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  8. Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires

    DEFF Research Database (Denmark)

    Gerard, Jean-Michel; Claudon, Julien; Bleuse, Joel;

    2014-01-01

    We review the recent development of high efficiency single photon sources based on a single quantum dot in a photonic wire. Unlike cavity-based devices, very pure single photon emission and efficiencies exceeding 0.7 photon per pulse are jointly demonstrated under non-resonant pumping conditions...... optical properties of "one-dimensional atoms"....

  9. Single-photon source engineering using a Modal Method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num...... photonic nanowire SPSs...

  10. Advanced light source master oscillator

    International Nuclear Information System (INIS)

    The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of ± 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs., 7 figs

  11. Proceedings of the 15th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 15th Symposium on Advanced Photon Research was held at Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizugawa, Kyoto on November 13 - 14, 2014. This report consists of invited and contributed papers presented at the oral and poster sessions in the Symposium. All the 23 papers are indexed individually (J.P.N.)

  12. Proceedings of the 11th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 11th Symposium on Advanced Photon Research was held at Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizugawa, Kyoto on June 24 - 25, 2010. This report consists of invited and contributed papers presented at the oral and poster sessions in the Symposium. The 29 of the presented papers are indexed individually. (J.P.N.)

  13. Proceedings of the 13th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 13th Symposium on Advanced Photon Research was held at Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizugawa-shi, Kyoto on November 15 - 16, 2012. This report consists of invited and contributed papers presented at the oral and poster sessions in the Symposium. (author)

  14. Proceedings of the 10th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 10th Symposium on Advanced Photon Research was held at Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizugawa, Kyoto on October 21 - 22, 2009. This report consists of invited and contributed papers presented at the oral and poster sessions in the Symposium. The 38 of the presented papers are indexed individually. (J.P.N.)

  15. Proceedings of the 9th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 9th Symposium on Advanced Photon Research was held at Kansai Photon Science Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizugawa, Kyoto on July 31- August 1, 2008. This report consists of invited and contributed papers presented at the oral and poster sessions in The Symposium. The 25 of the presented papers are indexed individually. (J.P.N.)

  16. Proceedings of the 6th symposium on advanced photon research

    International Nuclear Information System (INIS)

    The 6th Symposium on Advanced Photon Research was held at JAERI-Kansai in Kyoto on November 4-5, 2004. The symposium has been held once a year since 1999, to promote the advanced photon research through speeches, information exchanges, discussion by researchers on the front line of advanced photon research in Japan and abroad, not only reports of latest research results and plans at Advanced Photon Research Center. The numbers of speeches were 16, including 5 invited speeches, and the numbers of poster presentations were 56, including the report of presentations and cooperative research and joint research performed in FY2003. The 56 of the presented papers are indexed individually. (J.P.N.)

  17. Photoluminescence and Photonics: from miniaturised light sources to radiation detectors

    International Nuclear Information System (INIS)

    Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification. Luminescence phenomena are widely used in solid state light sources and radiation detectors based on point defects in insulators. Among them, 2 ed F3+ aggregate colour centres are induced in lithium fluoride (LiF) by various kinds of ionizing radiation and are laser active in the visible spectral region. They have been studied and successfully used at Frascati ENEA Research Centre for realizing prototypes of both miniaturized light sources, in the form of waveguides and vertical optical micro cavities for integrated optics, and of novel X-ray imaging detectors, based on the optical reading of photoluminescence of the locally induced defects. The highest intrinsic spatial resolution on a wide field of view and their versatility, achieved by the growth of LiF thin films by thermal evaporation, allow using such detectors in the frameworks of nano photonics, life science and energy. Recently, they have been also used in the advanced diagnostics of proton beams, with promising results in imaging and dosimetry based on photoluminescence

  18. Advances in photon counting for bioluminescence

    Science.gov (United States)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  19. Monte Carlo source model for photon beam radiotherapy: photon source characteristics

    International Nuclear Information System (INIS)

    A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1x1 to 30x30 cm2 as well as a 10x10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within ±1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within ±2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model--including a charged particle source and the full PSD as input--was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned

  20. A wavelength tunable photon source with sealed inner volume

    DEFF Research Database (Denmark)

    2014-01-01

    (214) being a sealed volume, and forming a bonding interface (212) which is gas-tight, so that the first mirror (106) is placed in the inner volume (214) so the first mirror (106) may move within the inner volume (214). The method provides a relatively simple way of obtaining a tunable photon source...... where the inner volume is sealed. The invention furthermore relates to a corresponding photon source, and use of such photon source....

  1. Nonlinear photonic crystals as source of entangled photons

    International Nuclear Information System (INIS)

    Full text: Nonlinear photonic crystals can be used to provide phase matching for frequency conversion in optically isotropic materials. The phase-matching mechanism proposed here is a combination of form birefringence and phase velocity dispersion in a periodic structure. Since the phase matching relies on the geometry of the photonic crystal, it becomes possible to use highly nonlinear materials. This is illustrated considering a one dimensional periodic Al0.4Ga0.6As/air structure for the generation of 1.5 micrometer light. The down-conversion process is treated quantum mechanically and analytical predictions of the down-converted emission are made. We show that emission suitable for the extraction of polarization-entangled photon pairs can be generated in one-dimensional photonic crystal structures that can be realistically fabricated. (author)

  2. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  3. Research opportunities at the advanced light source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is a third-generation synchrotron radiation facility based on a low-emittance, 1.5-GeV electron storage ring with 10 long straight sections available for insertion devices and, initially, 24 bend-magnet ports. Undulators will provide high-brightness radiation at photon energies from below 10 eV to above 2 keV; wiggler and bend-magnet radiation will extend the spectral coverage with high fluxes to above 10 keV. Scheduled to begin operations as a US Department of Energy national user facility in the spring of 1993, the ALS will support an extensive research program in which soft x-ray and ultraviolet radiation is used to study matter in all its varied gaseous, liquid, and solid forms. Participating research teams to implement the initial scientific program have been selected. 13 refs., 3 figs., 2 tabs

  4. Engineering a factorable photon pair source

    Energy Technology Data Exchange (ETDEWEB)

    Zielnicki, Kevin; Kwiat, Paul [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2014-12-04

    Spontaneous parametric downconversion is an important process for producing pairs of photons for quantum optics. We discuss a scheme for eliminating undesired inter-photon correlations inherent in this process, and an efficient characterization of spectral correlations.

  5. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  6. A Versatile Source of Single Photons for Quantum Information Processing

    CERN Document Server

    Förtsch, Michael; Wittmann, Christoffer; Strekalov, Dmitry; Aiello, Andrea; Chekhova, Maria V; Silberhorn, Christine; Leuchs, Gerd; Marquardt, Christoph

    2012-01-01

    The quantum state of a single photon stands amongst the most fundamental and intriguing manifestations of quantum physics. At the same time single photons and pairs of single photons are important building blocks in the fields of linear optical based quantum computation and quantum repeater infrastructure. These fields possess enormous potential and much scientific and technological progress has been made in developing individual components, like quantum memories and photon sources using various physical implementations. However, further progress suffers from the lack of compatibility between these different components. Ultimately, one aims for a versatile source of single photons and photon pairs in order to overcome this hurdle of incompatibility. Such a photon source should allow for tuning of the spectral properties (wide wavelength range and narrow bandwidth) to address different implementations while retaining high efficiency. In addition, it should be able to bridge different wavelength regimes to make...

  7. Advances in photonic bandgap fiber functionality

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian

    In order to take advantage of the many intriguing optical properties of photonic bandgap fibers, there are some technological challenges that have to be addressed. Among other things this includes transmission loss and the fibers ability to maintain field polarization. The work presented in this ...

  8. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    International Nuclear Information System (INIS)

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g(2)(τ) is measured with a Hanbury Brown-Twiss setup. The measured g(2)(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber

  9. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  10. Compact Tunable High-Efficiency Entangled Photon Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MagiQ proposes to develop a compact tunable high-efficiency low-power-consumption entangled photon source. The source, based on inter-Fabry-Perot-cavity Spontaneous...

  11. A photonics design tool for advanced CMOS nodes

    CERN Document Server

    Alloatti, Luca; Stojanovic, Vladimir; Popovic, Milos; Ram, Rajeev Jagga

    2015-01-01

    Recently, we have demonstrated large-scale integrated systems with several million transistors and hundreds of photonic elements. Yielding such large-scale integrated systems requires a design-for-manufacture rigor that is embodied in the 10000 to 50000 design rules that these designs must comply within advanced CMOS manufacturing. Here, we present a photonic design automation (PDA) tool which allows automatic generation of layouts without design-rule violations. Our tool is written in SKILL, the native language of the mainstream electric design automation (EDA) software, Cadence. This allows seamless integration of photonic and electronic design in a single environment. The tool leverages intuitive photonic layer definitions, allowing the designer to focus on the physical properties rather than on technology-dependent details. Removal of design-rule violations - based on Manhattan discretization, Boolean and sizing operations - occurs during data preparation from the initial photonic layers to the final mask...

  12. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh; Bazin, Maela; Jaffrennou, Perine; Gregersen, Niels; Sauvan, Christophe; Lalanne, Philippe; Gerard, Jean-Michel

    2010-01-01

    The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  13. X-ray micro-Tomography at the Advanced Light Source

    Science.gov (United States)

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  14. Direct generation of photon triplets using cascaded photon-pair sources

    CERN Document Server

    Hübel, H; Fedrizzi, A; Ramelow, S; Resch, K J; Jennewein, T

    2010-01-01

    Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pai...

  15. Advanced Photon Source accelerator ultrahigh vacuum guide

    International Nuclear Information System (INIS)

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS

  16. Environmental Research At The Advanced Photon Source

    Science.gov (United States)

    Because of the importance of probing molecular-scale chemical and physical structure of environmental samples in their natural and often hydrated state, synchrotron radiation has been a powerful tool for environmental scientists for decades. Thus, the crucial role that a highly ...

  17. Hong-Ou-Mandel interference between two independent all fiber photon sources

    CERN Document Server

    Zhou, Zhi-Yuan; Xu, Zhao-Huai; Wang, Shuang; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Guided-wave platforms such as fiber and silicon-on-insulator waveguide show great advances over traditional free space implementations in quantum information technology for significant advantages of low transmission loss, low cost, integrability and compatible with mature fiber communication systems. Interference between independent photon sources is the key to realize complex quantum systems for more sophisticated applications such as multi-photon entanglement generation and quantum teleportation. In this work, we report Hong-Ou-Mandel interference between two independent all fiber photon pair sources over two 100GHz dense wave division multiplexing channels, the visibility reaches 53.2(8.4)% (82.9(5.3)%) without (with) back ground counts subtracted. In addition, we give a general theoretical description of the purity of the photon pair generation in dispersion shifted fiber and obtain the optimized condition for high purity photon pair generation. We also obtain a maximum coincidence to back ground ratio of...

  18. Advances in terahertz communications accelerated by photonics

    Science.gov (United States)

    Nagatsuma, Tadao; Ducournau, Guillaume; Renaud, Cyril C.

    2016-06-01

    Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

  19. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper;

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors are...... used to tailor the far-field emission pattern. This non-resonant approach relaxes the demands to fabrication perfection, allowing for record-high measured efficiency of fabricated nanowire single-photon sources. We review recent progress in photonic nanowire technology and present next generation...

  20. Spectrally dependent fluctuations of thermal photon sources

    Science.gov (United States)

    Olson, K.; Talghader, J.

    2016-07-01

    Many current quantum optical systems, such as microcavities, interact with thermal light through a small number of widely separated modes. Previous theories for photon number fluctuations of thermal light have been primarily limited to special cases that are appropriate for large volumes or distances, such as single modes, many modes, or modes of uniform spectral distribution. Herein, a theory for the general case of spectrally dependent photon number fluctuations is developed for thermal light. The error in variance of prior art is quantitatively derived for an example cavity in the case where photon counting noise dominates. A method to reduce the spectral impact of this variance is described.

  1. Silicon-chip source of bright photon pairs.

    Science.gov (United States)

    Jiang, Wei C; Lu, Xiyuan; Zhang, Jidong; Painter, Oskar; Lin, Qiang

    2015-08-10

    Integrated quantum photonics relies critically on the purity, scalability, integrability, and flexibility of a photon source to support diverse quantum functionalities on a single chip. Here we report a chip-scale photon-pair source on the silicon-on-insulator platform that utilizes dramatic cavity-enhanced four-wave mixing in a high-Q silicon microdisk resonator. The device is able to produce high-quality photon pairs at different wavelengths with a high spectral brightness of 6.24×10(7) pairs/s/mW(2)/GHz and photon-pair correlation with a coincidence-to-accidental ratio of 1386 ± 278 while pumped with a continuous-wave laser. The superior performance, together with the structural compactness and CMOS compatibility, opens up a great avenue towards quantum silicon photonics with capability of multi-channel parallel information processing for both integrated quantum computing and long-haul quantum communication. PMID:26367942

  2. QUANTUM KEY DISTRIBUTION WITH REALISTIC HERALDED SINGLE-PHOTON SOURCES

    OpenAIRE

    Lasota, Mikolaj; Demkowicz-Dobrzanski, Rafal; Banaszek, Konrad

    2013-01-01

    We analyze theoretically performance of four-state quantum key distribution protocols implemented with a realistic heralded single-photon source. The analysis assumes a noisy model for the detector heralding generation of individual photons via spontaneous parametric down-conversion, including dark counts and imperfect photon number resolution. We identify characteristics of the heralding detector that defines the attainable cryptographic key rate and the maximum secure distance. Approximate ...

  3. Quantum computing with distant single photon sources with insurance

    CERN Document Server

    Lim, Y L; Kwek, L C; Lim, Yuan Liang; Beige, Almut; Kwek, Leong Chuan

    2004-01-01

    We demonstrate the possibility to perform quantum computations using only single photon sources, linear optics elements and photon detectors. In contrast to common linear optics quantum computing proposals, the described scheme can be operated with insurance without relying on highly entangled ancilla photons. Universality is achieved by employing the properties of certain single photon sources, namely the fact that it is possible to encode the logical qubit within the state of a source as well as in the state of the generated photon. The proposed Ising gate allows to build cluster states for one-way quantum computing. Furthermore we describe the implementation of the quantum parity filter, enabling teleportation with insurance, and the generation of multiphoton entanglement on demand.

  4. Photonic Crystals: Advances in Design, Fabrication, and Characterization

    Science.gov (United States)

    Busch, Kurt; Lölkes, Stefan; Wehrspohn, Ralf B.; Föll, Helmut

    2004-03-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 "Photonische Kristalle" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micro-lasers, and photonic crystal fibers. Illustrated in full color, this book is not only of interest to advanced students and researchers in physics, electrical engineering, and material science, but also to company R&D departments involved in photonic crystal-related technological developments.

  5. Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures

    Science.gov (United States)

    Lukishova, S. G.; Winkler, J. M.; Bissell, L. J.; Mihaylova, D.; Liapis, Andreas C.; Shi, Z.; Goldberg, D.; Menon, V. M.; Boyd, R. W.; Chen, G.; Prasad, P.

    2014-10-01

    Results are presented here towards robust room-temperature SPSs based on fluorescence in nanocrystals: colloidal quantum dots, color-center diamonds and doped with trivalent rare-earth ions (TR3+). We used cholesteric chiral photonic bandgap and Bragg-reflector microcavities for single emitter fluorescence enhancement. We also developed plasmonic bowtie nanoantennas and 2D-Si-photonic bandgap microcavities. The paper also provides short outlines of other technologies for room-temperature single-photon sources.

  6. Qubit dephasing due to photon shot noise from coherent and thermal sources

    Science.gov (United States)

    Gustavsson, S.; Yan, F.; Kamal, A.; Orlando, T. P.; Oliver, W. D.; Birenbaum, J.; Sears, A.; Hover, D.; Gudmundsen, T.; Yoder, J.

    We investigate qubit dephasing due to photon shot noise in a superconducting flux qubit transversally coupled to a coplanar microwave resonator. Due to the AC Stark effect, photon fluctuations in the resonator cause frequency shifts of the qubit, which in turn lead to dephasing. While this is universally understood, we have made the first quantitative spectroscopy of this noise for both thermal (i.e., residual photons from higher temperature stages) and coherent photons (residual photons from the readout and control pulses). We find that the bandwidth of the shot noise from thermal and coherent photons differ by approximately a factor of two, which we attribute to differences in the correlation time for the two noise sources. By comparing the results with noise spectra measured without any externally applied photons, we conclude that the qubit coherence times in our setup were limited by photon shot noise from thermal radiation, with an average resonator photon population of 0.006. Equipped with this knowledge, we improved the filtering for thermal noise and thereby improved the qubit coherence times by more than a factor of two, with T2 echo times approaching 100 us. From the measured T2 decay, we determine an upper bound on the residual photon population of 0.0004. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT LL under Air Force Contract No. FA8721-05-C-0002.

  7. Advanced photonic integrated technologies for optical routing and switching

    Science.gov (United States)

    Masanovic, Milan L.; Burmeister, Emily; Dummer, Matthew M.; Koch, Brian; Nicholes, Steven C.; Jevremovic, Biljana; Nguyen, Kim; Lal, Vikrant; Bowers, John E.; Coldren, Larry A.; Blumenthal, Daniel J.

    2009-02-01

    In this paper, we report on the latest advances in implementation of the photonic integrated circuits (PICs) required for optical routing. These components include high-speed, high-performance integrated tunable wavelength converters and packet forwarding chips, integrated optical buffers, and integrated mode-locked lasers.

  8. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei;

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  9. Supercontinuum Lightwave Sources for Photonic Networks

    Institute of Scientific and Technical Information of China (English)

    Kunihiko; Mori

    2003-01-01

    WDM optical sources based on supercontinuum (SC) generation are reviewed. The design of an SC lightwave source is described that uses a scaling rule among the parameters in an SC generating fiber and a seed optical pulse. Finally, recent efforts to apply SC lightwave source to optical network systems are mentioned.

  10. Advances in Photonics Design and Modeling for Nano- and Bio-photonics Applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2010-01-01

    In this invited paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. We will first discuss the application of a traditional formulation of the FDTD...... approach to the modeling of sub-wavelength photonics structures. Next, a modified total/scattered field FDTD approach will be applied to the modeling of biophotonics applications including Optical Phase Contrast Microscope (OPCM) imaging of cells containing gold nanoparticles (NPs) as well as its potential...

  11. Advanced time-correlated single photon counting techniques

    CERN Document Server

    Becker, Wolfgang

    2005-01-01

    Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range.

  12. The Advanced Light Source (ALS) Radiation Safety System

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies

  13. Advanced modeling of high-contrast photonic structures

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří; Prkna, Ladislav; Hubálek, Milan

    Dordrecht: Springer, 2006 - (Janz, S.; Čtyroký, J.; Tanev, S.), s. 71-100. (NATO Science Series. Mathematics, Physics and Chemistry. Sub Series II. 216). ISBN 1-4020-4164-0. [NATO Advanced Research Workshop on Frontiers in Planar Lightwave Circuit Technology . Ottawa (CA), 21.09.2004-25.09.2004] Institutional research plan: CEZ:AV0Z2067918 Keywords : optical waveguide theory * photonic crystals * integrated optics Subject RIV: BH - Optics, Masers, Lasers

  14. Spent-fuel photon and neutron source spectra

    International Nuclear Information System (INIS)

    Computational activities at Oak Ridge National Laboratory have been performed to develop appropriate data and techniques for computing the photon and neutron source spectra of spent fuel. The methods reviewed here include both the determination of spent-fuel composition and the radiation source spectra associated with these isotopic inventories

  15. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.;

    2013-01-01

    must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... emitter, e.g. a nitrogen-vacancy center or a semiconductor quantum dot (QD), embedded in a solid-state semiconductor host material appears as an attractive platform for generating such single photons. However, for a QD in bulk material, the large index contrast at the semiconductor-air interface leads to...

  16. Dark and Visible Photons as Source of CP Violation

    CERN Document Server

    Gamboa, J

    2015-01-01

    The problem of excess gamma radiation in the center of galaxy is discussed assuming that the photon's production is dominated by two kinds of processes, the first one due to the conventional kinetic mixing term and, secondly, due to a kinetic mixing term violating the CP symmetry between dark and visible photons. The CP violation symmetry between dark and visible sectors is not forbidden and, in principle, could be considered as an additional source of CP violation. The conversion probability between dark and visible photons is calculated and compared between both processes. The processes violating CP are less significant but contribute non-trivially to the excess gamma radiation.

  17. Independent telecom-fiber sources of quantum indistinguishable single photons

    International Nuclear Information System (INIS)

    Quantum-mechanically indistinguishable photons produced by independent (or equivalently, mutually phase incoherent) light sources are essential for distributed quantum information processing applications. We demonstrate heralded generation of such photons in two spatially separate telecom-fiber spools, each driven by pulsed pump waves that are measured to have no mutual phase coherence. Through Hong–Ou–Mandel experiments, we measure the quantum interference visibility of those photons to be 76.4±4.2. Our experimental results are well predicted by a quantum multimode theory we developed for such systems without the need for any fitting parameter

  18. Bright Photon Pair Source with High Spectral and Spatial Purity

    International Nuclear Information System (INIS)

    Spontaneous parametric down-conversion (SPDC) is a reliable and robust source of photons for quantum information applications. For applications that involve operations such as entanglement swapping or single-photon heralding, two-photon states are required to be factorable (uncorrelated) in their spectral and spatial degrees of freedom. We report the design and experimental characterization of an SPDC source that has been optimized for high spectral and spatial purity. The source is pumped by the 776 nm output of a mode-locked Ti:Sapphire laser and consists of a periodically-poled Potassium Titanyl Phosphate (PPKTP) crystal phase-matched for collinear type-II SPDC. The dispersive properties of PPKTP at these wavelengths is such that it is possible to minimize the spectral entanglement by matching the widths of the pump to the spectral phase-matching function. The spatial entanglement is minimized through careful control of the pump focus, yielding nearly single-mode emission. An advantage of this approach is that the emission rate into the collection modes is very high, resulting in a very bright SPDC source. We also report a scheme that employs the output of collinear sources such as these to produce polarization-entangled photon pairs. The scheme, which requires only simple polarization elements, can be scaled to N-photon GHZ states.

  19. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed to...

  20. High brightness single mode source of correlated photon pairs using a photonic crystal fiber

    CERN Document Server

    Fulconis, J; Wadsworth, W J; Russell, P S J; Rarity, J G

    2005-01-01

    We demonstrate a picosecond source of correlated photon pairs using a micro-structured fibre with zero dispersion around 715 nm wavelength. The fibre is pumped in the normal dispersion regime at ~708 nm and phase matching is satisfied for widely spaced parametric wavelengths. Here we generate up to 10^7 photon pairs per second in the fibre at wavelengths of 587 nm and 897 nm. On collecting the light in single-mode-fibre-coupled Silicon avalanche diode photon counting detectors we detect ~3.2.10^5 coincidences per second at pump power 0.5 mW.

  1. A bright single-photon source based on a photonic trumpet

    OpenAIRE

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël; Dupuy, Emmanuel; Gregersen, Niels; Mørk, Jesper; Gérard, Jean-Michel; Claudon, Julien

    2012-01-01

    Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application to the realization of bright sources of quantum light and, reversibly, provide an efficient interface between propagating photons and the QD. For a wire diameter ∼ λ/n (λ is the operation wavelength), the fra...

  2. Advanced Light Source Activity Report 2002

    International Nuclear Information System (INIS)

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information

  3. Advanced Light Source Activity Report 2002

    OpenAIRE

    Duque editor, Theresa; Greiner editor, Annette; Moxon editor, Elizabeth; Robinson editor, Arthur; Tamura editor, Lori

    2003-01-01

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  4. Advanced Light Source Activity Report 2000

    OpenAIRE

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  5. Advanced Light Source Activity Report 2000

    International Nuclear Information System (INIS)

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself

  6. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  7. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  8. An Optimized Photon Pair Source for Quantum Circuits

    OpenAIRE

    Harder, Georg; Ansari, Vahid; Brecht, Benjamin; Dirmeier, Thomas; Marquardt, Christoph; Silberhorn, Christine

    2013-01-01

    We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corr...

  9. Advances in FDTD computational electrodynamics photonics and nanotechnology

    CERN Document Server

    Oskooi, Ardavan; Johnson, Steven G

    2013-01-01

    Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...

  10. Localised excitation of a single photon source by a nanowaveguide

    Science.gov (United States)

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; de Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10-4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  11. Spectrally engineered broadband photon source for two-photon quantum interferometry

    CERN Document Server

    Thomas, Abu; Minaeva, Olga; Simon, David; Sergienko, Alexander V

    2016-01-01

    We present a new approach to engineering broadband sources of entangled photon pairs for quantum interferometry. The source is based on quasi-phase-matched spontaneous parametric down conversion in a titanium diffused periodically poled lithium niobate waveguide with a strongly-chirped poling period. The proposed non-standard asymmetric poling mitigates phase distortions associated with the process of chirping. Asymmetric poling significantly broadens the entangled source bandwidth while preserving high visibility quantum interferometric sensing.

  12. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  13. Multi-photon excitation microscopy for advanced biomedical imaging

    OpenAIRE

    Gadella, B.M.; van Haeften, T.W.; Bavel, Kees van; Valentijn, Jack A.

    2003-01-01

    Fluorescence microscopy (FM) is a technique traditionally used for determining biological structures [33]; its basic concept is summarised in Figure 1a. The biological specimen under examination is labelled with one or more fluorescent probes before being placed in the microscope. A single photon from the light source (usually a Hg lamp) has sufficient energy to excite an electron in the fluorescence moiety of the specimen-bound probe, taking it from an un-excited 'ground' state to an excited...

  14. Photonic nanowire-based single-photon source with polarization control

    CERN Document Server

    Gregersen, Niels

    2016-01-01

    This document describes a modal method for optical simulations of structures with elliptical cross sections and its application to the design of the photonic nanowire (NW)-based single-photon source (SPS). The work was carried out in the framework of the EMRP SIQUTE project ending May 31st 2016. The document summarizes the new method used to treat the elliptical cross section in an efficient manner and additionally presents design parameters for the photonic NW SPS with elliptical cross section for polarization control. The document does not introduce the new method and the elliptical photonic NW SPS design in the context of existing literature but instead dives directly into the equations. Additionally, the document assumes that the reader possess expert knowledge of general modal expansion techniques. The presented formalism does not implement Li's factorization rules nor the recently proposed open boundary geometry formalism with fast convergence towards the open geometry limit but instead relies on (older...

  15. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Science.gov (United States)

    2012-04-02

    ... Technologies Corporation, 4C Controls, Inc., and 2-Track Global, Inc.; Order of Suspension of Trading March 29... information concerning the securities of Advanced BioPhotonics, Inc. because it has not filed any periodic... Research Corp. because it has not filed any periodic reports since the period ended September 30, 2008....

  16. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  17. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  18. Waveguide-based OPO source of entangled photon pairs

    International Nuclear Information System (INIS)

    In this paper, we present a compact source of narrow-band energy-time-entangled photon pairs in the telecom regime based on a Ti-indiffused periodically poled lithium niobate (PPLN) waveguide resonator, i.e. a waveguide with end-face dielectric multi-layer mirrors. This is a monolithic doubly resonant optical parametric oscillator (OPO) far below threshold, which generates photon pairs by spontaneous parametric down-conversion (SPDC) at around 1560 nm with a 117 MHz (0.91 pm)-bandwidth. A coherence time of 2.7 ns is estimated by a time correlation measurement and a high quality of the entangled states is confirmed by a Bell-type experiment. Since highly coherent energy-time-entangled photon pairs in the telecom regime are suitable for long distance transmission and manipulation, this source is well suited to the requirements of quantum communication.

  19. Single perylene diimide dendrimers as single-photon sources

    International Nuclear Information System (INIS)

    Single-molecule fluorescence spectroscopy was performed on a number of perylene diimide multichromophores with different dendritic geometries, with the particular goal of characterizing their performance as single-photon sources at room temperature. The quality of the different perylene diimide-containing dendrimers as single-photon sources was evaluated by determining the Mandel parameter. Values similar to ones reported previously for perylene monoimide dendrimers were found. The different arrangements of the chromophores in the different dendrimers do not noticeably affect their efficiency as single-photon emitters. Due to the formation of oxygen-enhanced long dark states, anaerobic conditions are found to be the best for optimizing their performance, which is in contrast with the case for perylene monoimide containing dendrimers

  20. Quantum cryptography based on realistic "single-photon" source

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Haderka, Ondřej; Soubusta, Jan

    Rochester: Optical Society of America, 2004 - (Bigelow, N.; Eberly, J.; Stroud, C.; Walmsley, I.), --- [International Conference on Quantum Information. Rochester (US), 10.06.2003-13.06.2003] R&D Projects: GA MŠk(CZ) LN00A015 Keywords : quantum cryptography * single-photon source Subject RIV: BH - Optics, Masers, Lasers

  1. An all-silicon single-photon source by unconventional photon blockade

    CERN Document Server

    Flayac, H; Savona, V

    2015-01-01

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We fin...

  2. Applications of circularly polarized photons at the ALS with a bend magnet source

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High {Tc} Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements.

  3. Applications of circularly polarized photons at the ALS with a bend magnet source

    International Nuclear Information System (INIS)

    The purpose of this workshop is to focus attention on, and to stimulate the scientific exploitation of, the natural polarization properties of bend-magnet synchrotron radiation at the ALS -- for research in biology, materials science, physics, and chemistry. The topics include: The Advanced Light Source; Magnetic Circular Dichroism and Differential Scattering on Biomolecules; Tests of Fundamental Symmetries; High Tc Superconductivity; Photoemission from Magnetic and Non-magnetic Solids; Studies of Highly Correlated Systems; and Instrumentation for Photon Transport and Polarization Measurements

  4. Six-photon entangled Dicke state enabled by a UV enhancement cavity as novel SPDC photon source

    Science.gov (United States)

    Wieczorek, Witlef; Krischek, Roland; Ozawa, Akira; Tóth, Géza; Kiesel, Nikolai; Michelberger, Patrick; Udem, Thomas; Weinfurter, Harald

    2010-06-01

    Photon sources for multi-photon entanglement experiments are commonly based on the process of spontaneous parametric down conversion. Due to the probabilistic photon production, such experiments suffer from low multiphoton count rates. To increase this count rate, we present a novel SPDC pump source based on a femtosecond UV enhancement cavity that increases the available pump power while maintaining a high repetition rate of 80MHz. We apply the cavity as photon source for realizing symmetric, multi-partite entangled Dicke states, which are observed with a high rate and high fidelity. We characterize the observed Dicke states of up to six photons using efficient tools exploiting the state's symmetries.

  5. High-efficiency single-photon source: The photonic wire geometry

    DEFF Research Database (Denmark)

    Claudon, J.; Bazin, Maela; Malik, Nitin S.;

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminary...

  6. A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons

    International Nuclear Information System (INIS)

    We present a source of polarization-entangled photon pairs suitable for the implementation of long-distance quantum communication protocols using quantum memories. Photon pairs with wavelengths 883 nm and 1338 nm are produced by coherently pumping two periodically poled nonlinear waveguides embedded in the arms of a polarization interferometer. Subsequent spectral filtering reduces the bandwidth of the photons to 240 MHz. The bandwidth is well-matched to a quantum memory based on an Nd:YSO crystal, to which, in addition, the center frequency of the 883 nm photons is actively stabilized. A theoretical model that includes the effect of the filtering is presented and accurately fits the measured correlation functions of the generated photons. The model can also be used as a way to properly assess the properties of the source. The quality of the entanglement is revealed by a visibility of V=96.1(9)% in a Bell-type experiment and through the violation of a Bell inequality. (paper)

  7. Semiconductor sources of twin photons for quantum information

    Energy Technology Data Exchange (ETDEWEB)

    Ducci, S [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Lanco, L [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Seurin, Y [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Leo, G [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Berger, V [Laboratoire Materiaux et Phenomenes Quantiques, UMR 7162, Universite Paris 7-Denis Diderot, 2, Place Jussieu, Case 7021, 75251 Paris (France); Rossi, A De [Thales Research and Technology, Domaine de Corbeville, 91404 Orsay (France); Marcadet, X [Thales Research and Technology, Domaine de Corbeville, 91404 Orsay(France)

    2005-07-01

    A large number of scientific proposals made in the last few years are based on transport and manipulation of information using single quantum objects. Some of them make use of entanglement in pairs of particles such as twin photons. Although theoretical proposals have demonstrated highly interesting perspectives in the quantum information domain, experimental realizations and applications still suffer from the complexity of experimental set-ups and technological limitations. This paper presents various approaches aiming at efficient twin photon semiconductor sources. The emergence of these compact and integrated devices would be an important technological breakthrough in quantum information applications.

  8. Design Consideration of a Booster for Taiwan Photon Source

    CERN Document Server

    Luo, Gwo-Huei; Kuo, Chin-Cheng; Lin, Ke-Kang; Tsai, Hung-Jen; Wang, Min-Huey

    2005-01-01

    After more than 10 years' operation and expansion, the Taiwan Light Source (TLS) of National Synchrotron Radiation Research Center (NSRRC) reaches very stable operation condition. The storage ring has better than 96% of beam availability annually with 6 Insertion Devices (ID) in a six-folds symmetry over-crowded machine. Two superconducting IDs and one superconducting RF cavity were installed in recent year, which intend to push the photon energy to hard x-ray regime and double the photon flux with better beam quality. Beamlines and experimental stations occupied all over the experimental area. The uproar for more beamlines in higher photon energy with higher brightness was frequently transpired from users' community. The Board of Trustee of NSRRC gave a green light to a new design and construction of median-energy light source, Taiwan Photon Source (TPS) in the coming decade. This paper will present two draft designs of booster and the consideration of the design criteria for new booster to work with a top-u...

  9. A search for point sources of EeV photons

    CERN Document Server

    Aab, A; Aglietta, M; Ahlers, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertou, X; Biermann, P L; Billoir, P; Blanco, F; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Cheng, S H; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Criss, A; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; de Jong, S J; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; del Peral, L; Deligny, O; Dembinski, H; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Castro, M L Díaz; Diep, P N; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dong, P N; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fuji, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Albarracin, F Gomez; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guardincerri, Y; Guarino, F; Guedes, G P; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Islo, K; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; La Rosa, G; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Lyberis, H; Maccarone, M C; Malacari, M; Maldera, S; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, A J; Matthews, J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Moreno, J C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Pastor, S; Paul, T; Pech, M; Pękala, J; Pelayo, R; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Peters, C; Petrera, S; Petrolini, A; Petrov, Y; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Roberts, J; de Carvalho, W Rodrigues; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Rühle, C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Thao, N T; Theodoro, V M; Tiffenberg, J; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; Berg, A M van den; van Velzen, S; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Whelan, B J; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Younk, P; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M

    2014-01-01

    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\\deg} to +20{\\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.

  10. Advancing the performance of one-dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator

    OpenAIRE

    Md Zain, A.R.; Sorel, M.; De La Rue, R.M.

    2008-01-01

    We present new results that demonstrate advances in the performance achievable in photonic crystal/photonic wire micro-cavities. In one example, a quality-factor value as high as 147,000 has been achieved experimentally at a useful transmission level.

  11. Hyperbolic Metamaterial Nano-Resonators Make Poor Single Photon Sources

    CERN Document Server

    Axelrod, Simon; Wong, Herman M K; Helmy, Amr S; Hughes, Stephen

    2016-01-01

    We study the optical properties of quantum dipole emitters coupled to hyperbolic metamaterial nano-resonators using a semi-analytical quasinormal mode approach. We show that coupling to metamaterial nano-resonators can lead to significant Purcell enhancements that are nearly an order of magnitude larger than those of plasmonic resonators with comparable geometry. However, the associated single photon output $\\beta$-factors are extremely low (around 10%), far smaller than those of comparable sized metallic resonators (70%). Using a quasinormal mode expansion of the photon Green function, we describe how the low $\\beta$-factors are due to increased Ohmic quenching arising from redshifted resonances, larger quality factors and stronger confinement of light within the metal. In contrast to current wisdom, these results suggest that hyperbolic metamaterial nano-structures make poor choices for single photon sources.

  12. Plasmonic nanoantenna based triggered single-photon source

    Science.gov (United States)

    Straubel, J.; Filter, R.; Rockstuhl, C.; Słowik, K.

    2016-05-01

    Highly integrated single-photon sources are key components in future quantum-optical circuits. Whereas the probabilistic generation of single photons can routinely be done by now, their triggered generation is a much greater challenge. Here, we describe the triggered generation of single photons in a hybrid plasmonic device. It consists of a lambda-type quantum emitter coupled to a multimode optical nanoantenna. For moderate interaction strengths between the subsystems, the description of the quantum optical evolution can be simplified by an adiabatic elimination of the electromagnetic fields of the nanoantenna modes. This leads to an insightful analysis of the emitter's dynamics, entails the opportunity to understand the physics of the device, and to identify parameter regimes for a desired operation. Even though the approach presented in this work is general, we consider a simple exemplary design of a plasmonic nanoantenna, made of two silver nanorods, suitable for triggered generation of single photons. The investigated device realizes single photons, triggered, potentially at high rates, and using low device volumes.

  13. Nonclassically paired photons from sources based on cold atoms

    Science.gov (United States)

    Głódź, Małgorzata; Janowicz, Maciej; Kowalski, Krzysztof; Szonert, Jerzy

    2015-01-01

    In this short review some essentials concerning creation and testing of nonclassically correlated photons (biphotons) are given. In the introduction we remind the role which the experimentally produced entangled states have been playing for the foundations of the quantum physics, by witnessing against the model of local hidden variables. The well established sources of biphotons are based on spontaneous parametric down conversion in nonlinear crystals. A popular source with two BBO crystals is described, which generates pairs of photons nearly maximally entangled in polarization. Crystalbased sources rely on intrinsically broadband transitions, therefore thus produced biphotons are also broadband. Additional efforts (like applying optical cavities) are needed to reach narrowband biphotons which would comply with the requirements of some implementations in the quantum communication science. The topical issue of our article is a review of another, more recent approaches based on narrowband transitions between levels in cold atoms. Such method provides naturally narrowband biphotons. First, the principles are given of an atomic source of nonclassically paired photons, which is operated in a pulsed write-read mode. Such source is based on two separated in time Raman transitions triggered successively in two Λ-schemes. Next, cw-mode sources based (mainly) on spontaneous four wave mixing process (SFWM) are presented in a generic four-level scheme. Some underlying physics is sketched and profiles of biphoton correlation functions in the time domain are explained. Among other presented SFWM sources, one proves in testing high degree entanglement of generated biphotons, both in time-frequency and polarization (hyperentanglement).

  14. The thick-crystal regime in photon pair sources

    CERN Document Server

    Septriani, Brigitta; Durak, Kadir; Ling, Alexander

    2015-01-01

    We present comprehensive measurement data on the pump and collection beam parameters necessary to achieve high collection efficiency ($89.0 \\pm 1.7 \\%$) together with high brightness when a single $\\beta$-Barium Borate crystal is operated in the thick-crystal regime and pumped with a narrow linewidth laser source. Spectral analysis of the collinear, non-degenerate photons suggest that the effective interaction length within the crystal is dominated by the collection beam mode and the use of longer crystals with increased spatial walk-off does not necessarily lead to a reduced collection efficiency. This result is an important consideration for optical designers who seek to develop practical photon pair sources.

  15. An electrically injected photon-pair source at room temperature

    CERN Document Server

    Boitier, Fabien; Autebert, Claire; Lemaître, Aristide; Galopin, Elisabeth; Manquest, Christophe; Sirtori, Carlo; Favero, Ivan; Leo, Giuseppe; Ducci, Sara

    2013-01-01

    One of the main challenges for future quantum information technologies is miniaturization and integration of high performance components in a single chip. In this context, electrically driven sources of non-classical states of light have a clear advantage over optically driven ones. Here we demonstrate the first electrically driven semiconductor source of photon pairs working at room temperature and telecom wavelength. The device is based on type-II intracavity Spontaneous Parametric Down-Conversion in an AlGaAs laser diode and generates pairs at 1.57 $\\mu$m. Time-correlation measurements of the emitted pairs give an internal generation efficiency of $7 \\times 10^{-11}$ pairs/injected electron. The capability of our platform to support generation, manipulation and detection of photons opens the way to the demonstration of massively parallel systems for complex quantum operations.

  16. Multiplexed entangled photon sources for all fiber quantum networks

    CERN Document Server

    Zhou, Yin-Hai Li Zhi-Yuan; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advantage of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all f...

  17. Extreme environmental testing of a rugged correlated photon source

    CERN Document Server

    Grieve, James A; Ling, Alexander

    2015-01-01

    Experiments in long distance quantum key distribution have motivated the development of ruggedised single photon sources, capable of producing useful correlations even when removed from the warm, nurturing environment found in most optics laboratories. As part of an ongoing pro- gramme to place such devices into low earth orbit (LEO), we have developed and built a number of rugged single photon sources based on spontaneous parametric downconversion. In order to evalu- ate device reliability, we have subjected our design to various thermal, mechanical and atmospheric stresses. Our results show that while such a device may tolerate launch into orbit, operation in orbit and casual mishandling by graduate students, it is probably unable to survive the forcible disassembly of a launch vehicle at the top of a ball of rapidly expanding and oxidising kerosene and liquid oxygen.

  18. Telecom-wavelength single-photon sources for quantum communications

    International Nuclear Information System (INIS)

    This paper describes the progress towards the realization of efficient single-photon sources based on semiconductor quantum dots (QDs), for application in quantum key distribution and, more generally, quantum communications. We describe the epitaxial growth of QD arrays with low areal density and emitting in the telecom wavelength range, the nanofabrication of single-QD structures and devices, and their optical and electro-optical characterization. The potential for integration with monolithic microcavities is also discussed

  19. Coherence measures for heralded single-photon sources

    OpenAIRE

    Bocquillon, E.; Couteau, C.; Razavi, M.; Laflamme, R.; Weihs, G.

    2008-01-01

    Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absence, only time-averaged measurements are accessible. These time-averaged measures, standing alone, do not carry sufficient information for proper characterization of SPSs. Here, we develop a theory, corroborated by an experiment, that allows us to s...

  20. The photon pair source that survived a rocket explosion

    Science.gov (United States)

    Tang, Zhongkan; Chandrasekara, Rakhitha; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander

    2016-01-01

    We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfinder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems. PMID:27161541

  1. The photon pair source that survived a rocket explosion

    Science.gov (United States)

    Tang, Zhongkan; Chandrasekara, Rakhitha; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander

    2016-05-01

    We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfinder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems.

  2. The photon pair source that survived a rocket explosion

    CERN Document Server

    Tang, Zhongkan; Tan, Yue Chuan; Cheng, Cliff; Durak, Kadir; Ling, Alexander

    2015-01-01

    We report on the performance of a compact photon pair source that was recovered intact from a failed space launch. The source had been embedded in a nanosatellite and was designed to perform pathfi?nder experiments leading to global quantum communication networks using spacecraft. Despite the launch vehicle explosion soon after takeoff?, the nanosatellite was successfully retrieved from the accident site and the source within it was found to be fully operational. We describe the assembly technique for the rugged source. Post-recovery data is compared to baseline measurements collected before the launch attempt and no degradation in brightness or polarization correlation was observed. The survival of the source through an extreme environment provides strong evidence that it is possible to engineer rugged quantum optical systems.

  3. An optimized photon pair source for quantum circuits.

    Science.gov (United States)

    Harder, Georg; Ansari, Vahid; Brecht, Benjamin; Dirmeier, Thomas; Marquardt, Christoph; Silberhorn, Christine

    2013-06-17

    We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corresponding to a Schmidt number below 1.16. We further demonstrate the indistinguishability as well as the purity of signal and idler photons by Hong-Ou-Mandel interferences between signal and idler and between signal/idler and a coherent field, respectively. Without using narrowband spectral filtering, we achieve a visibility for the interference between signal and idler of 94.8% and determine a purity of more than 80% for the heralded single photon states. Moreover, we measure raw heralding efficiencies of 20.5% and 15.5% for the signal and idler beams corresponding to detector-loss corrected values of 80% and 70%. PMID:23787587

  4. Characterization of photon-emitting wide area reference sources

    International Nuclear Information System (INIS)

    A procedure has been developed to calibrate photon-emitting wide area reference sources in terms of activity, surface emission rate and uniformity considering the requirements introduced by the recent revision of ISO standard 8769. The method makes use of a large volume NaI detector with a cross table scanning system, a radiography system and it applies Monte Carlo techniques to assess the surface emission rate. The method was successfully applied to sources of 241Am, 57Co, 137Cs and 60Co. In addition, problems with definitions and the practical use of standard are highlighted. - Highlights: ► A procedure to calibrate photon-emitting wide area reference sources has been developed. ► The requirements introduced by the recent revision of ISO standard 8769 are discussed. ► A Monte Carlo approach is used to calculate the photon flux for a given activity distribution. ► The position dependent efficiency map of a large NaI detector is measured by a motorized XY stage. ► The uniformity of the activity distribution is reconstructed from a digital autoradiography.

  5. Advances in Solid Core Photonic Bandgap Fiber Amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Petersen, Sidsel Rübner;

    2012-01-01

    We present recent development of photonic crystal fiber amplifiers containing photonic bandgap structures for enhanced spectral and modal filtering functionality.......We present recent development of photonic crystal fiber amplifiers containing photonic bandgap structures for enhanced spectral and modal filtering functionality....

  6. Insertion devices for the Advanced Light Source at LBL

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory will be the first of the new generation of dedicated synchrotron light sources to be put into operation. Specially designed insertion devices will be required to realize the high brightness photon beams made possible by the low emittance of the electron beam. The complement of insertion devices on the ALS will include undulators with periods as short as 3.9 cm and one or more high field wigglers. The first device to be designed is a 5 m long, 5 cm period, hybrid undulator. The goal of very high brightness and high harmonic output imposes unusually tight tolerances on the magnetic field quality and thus on the mechanical structure. The design process, using a generic structure for all undulators, is described. 5 refs., 4 figs., 1 tab

  7. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    Science.gov (United States)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  8. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the Ti:Sapph

  9. The advanced neutron source (ANS) project

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a new user experimental facility for neutron research planned at Oak Ridge. The centerpiece of the facility will be a steady-state source of neutrons from a reactor of unprecedented flux. In addition, extensive and comprehensive equipment and facilities for neutron research will be included. The scientific fields to be served include neutron scattering with cold, thermal, and hot neutrons (the most important scientific justification for the project); engineering materials irradiation; isotope production (including transuranium isotopes); materials analysis; and nuclear science

  10. Monitoring performance of the Advanced Light Source

    OpenAIRE

    Byrne, Warren E.; Lampo, Edward J.; Samuelson, Bruce C.

    2001-01-01

    Providing high quality light to users in a consistent and reliable manner is one of the main goals of the accelerator physics group at the Advanced Light source (ALS). To meet this goal considerable time is spent monitoring the performance of the machine. At the Group's weekly meeting the performance of the accelerator over the previous week's run is reviewed. This paper describes the parameters that are monitored to optimize the performance of the ALS.

  11. Advances in integrated photonic circuits for packet-switched interconnection

    Science.gov (United States)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  12. The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël; Dupuy, Emmanuel; Delga, Adrien; Mørk, Jesper; Gérard, Jean-Michel; Claudon, Julien

    2013-01-01

    Efficient coupling between a localized quantum emitter and a well defined optical channel represents a powerful route to realize single-photon sources and spin-photon interfaces. The tailored fiber-like photonic nanowire embedding a single quantum dot has recently demonstrated an appealing...... first implementation of this strategy has lead to an ultra-bright single-photon source with a first-lens external efficiency of 0.75 ± 0.1 and a predicted coupling to a Gaussian beam of 0.61 ± 0.08....

  13. Recent advancement of slow light in microwave photonics applications

    OpenAIRE

    Chin, Sanghoon; Thévenaz, Luc

    2010-01-01

    A complete realization of an optically tunable true time delay, generated through the combination of a photonic RF phase shifter and a Brillouin slow light element is presented. Illustration through a dynamic microwave photonic filter is demonstrated.

  14. Semiconductor Nanomembranes for Quantum Photonics: Quantum Light Sources and Optomechanics

    DEFF Research Database (Denmark)

    Liu, Jin

    optomechanical nanomembranes for cavity cooling experiments. For PC cavities, several important processes have been extensively optimized such as the inductively coupled plasma (ICP) dry etch, the release of the membranes and the post-cleaning of the samples. GaAs optomechanical nanomembranes with a world......This thesis describes the fabrication and characterizations of semiconductor nanomembranes, i.e., gallium arsenide (GaAs) photonic crystal (PC) and optomechanical nanomemebranes. Processing techniques are developed and optimized in order to fabricate PC membranes for quantum light sources and...

  15. e+e- Plasma Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Hartouni, Ed P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-06

    This note addresses the idea of a photon source that is based on an e+e- plasma created by co-propagating beams of e+ and e-. The plasma has a well-defined temperature, and the thermal distribution of the charged particles is used to average over the relative velocity cross section multiplied by the relative velocity. Two relevant cross sections are the direct “free-free” annihilation of e+e- pairs in the plasma, and the radiative recombination of e+e- pairs into positronium (Ps) which subsequently undergoes annihilation.

  16. Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique

    Science.gov (United States)

    Berger, Vincent; Gérard, Jean-Michel

    2003-07-01

    A large number of scientific proposals in recent years are based on transport and manipulation of information using single quantum objects. Although very impressive theoretical perspectives have been envisaged, experimental demonstrations are still limited due to technological difficulties with present state-of-the-art devices. This paper presents various approaches aiming at efficient single or twin photons semiconductor sources. The emergence of these devices will be an important technological breakthrough in the field of quantum information. To cite this article: V. Berger, J.-M. Gérard, C. R. Physique 4 (2003).

  17. Random nonlinear layered structures as sources of photon pairs for quantum-information processing

    CERN Document Server

    Perina, Jan; Sibilia, Concita; Bertolotti, Mario

    2009-01-01

    Random nonlinear layered structures have been found to be a useful source of photon pairs with perfectly indistinguishable un-entangled photons emitted into a very narrow spectral range. Localization of the interacting optical fields typical for random structures gives relatively high photon-pair fluxes. Superposing photon-pair emission quantum paths at different emission angles, several kinds of two-photon states (including states with coincident frequencies) useful in quantum-information processing can easily be generated.

  18. Linear optical quantum computation with imperfect entangled photon-pair sources and inefficient non-photon-number-resolving detectors

    CERN Document Server

    Gong, Yan-Xiao; Ralph, Timothy C; Zhu, Shi-Ning; Guo, Guang-Can; 10.1103/PhysRevA.81.052303

    2010-01-01

    We propose a scheme for efficient cluster state quantum computation by using imperfect polarization-entangled photon-pair sources, linear optical elements and inefficient non-photon-number-resolving detectors. The efficiency threshold for loss tolerance in our scheme requires the product of source and detector efficiencies should be >1/2 - the best known figure. This figure applies to uncorrelated loss. We further find that the loss threshold is unaffected by correlated loss in the photon pair source. Our approach sheds new light on efficient linear optical quantum computation with imperfect experimental conditions.

  19. Advanced Light Source: Activity report 1993

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) produces the world's brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director's message; (2) operations overview; (3) user program; (4) users' executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff

  20. Advanced Light Source beam diagnostics systems

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed

  1. Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources

    Science.gov (United States)

    Malin, Martha J.

    Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP

  2. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Felle, M. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk; Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J. [Toshiba Research Europe Limited, Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Penty, R. V. [Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2015-09-28

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  3. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    International Nuclear Information System (INIS)

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons

  4. Quantum dots as single-photon sources for quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Unitt, D C [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Bennett, A J [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Atkinson, P [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cooper, K [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); See, P [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Gevaux, D [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Ward, M B [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Stevenson, R M [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom); Ritchie, D A [Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE (United Kingdom); Shields, A J [Toshiba Research Europe Ltd, 260 Cambridge Science Park, Milton Road, Cambridge CB4 0WE (United Kingdom)

    2005-07-01

    Semiconductor pillar microcavities containing quantum dots have shown promise as efficient sources of single and correlated pairs of photons, which may find applications in quantum information processing. In this paper we discuss the use of these sources to generate single photons and the use of pillars with elliptical cross-section to enhance and select a particular photon state. Single-photon interference measurements are also performed and show coherence times of up to 180 ps for quasi-resonantly pumped dots. Hong-Ou-Mandel-type two-photon interference measurements using a fibre interferometer indicate that individually created photons display a large degree of indistinguishability.

  5. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël;

    be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...... with a divergence controlled by the top-facet diameter: for a top diameter of 1.5 µm, less than 5% of the light is scattered outside the collection cone of a lens with a 0.75 NA. iii) the large top facet also simplifies the implementation of a top electrode, to achieve an electrical driving of the device [3]. Using...

  6. High-quality asynchronous heralded single-photon source at telecom wavelength

    International Nuclear Information System (INIS)

    We report on the experimental realization and characterization of an asynchronous heralded single-photon source based on spontaneous parametric down-conversion. Photons at 1550 nm are heralded as being inside a single-mode fibre with more than 60% probability, and the multi-photon emission probability is reduced by a factor of up to more than 500 compared to Poissonian light sources. These figures of merit, together with the choice of telecom wavelength for the heralded photons, are compatible with practical applications needing very efficient and robust single-photon sources

  7. Effcient and pure femtosecond-pulse-length source of polarization-entangled photons

    CERN Document Server

    Weston, Morgan M; Wollmann, Sabine; Boston, Allen; Ho, Joseph; Shalm, Lynden K; Verma, Varun B; Allman, Michael S; Nam, Sae Woo; Patel, Raj B; Slussarenko, Sergei; Pryde, Geoff J

    2016-01-01

    We present a source of polarization entangled photon pairs based on spontaneous parametric downconversion engineered for frequency uncorrelated telecom photon generation. Our source provides photon pairs that display, simultaneously, the key properties for high-performance quantum information and fundamental quantum science tasks. Specifically, the source provides for high heralding efficiency, high quantum state purity and high entangled state fidelity at the same time. Among different tests we apply to our source we observe almost perfect non-classical interference between photons from independent sources with a visibility of $(100\\pm5)\\%$.

  8. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons.

    Science.gov (United States)

    Weston, Morgan M; Chrzanowski, Helen M; Wollmann, Sabine; Boston, Allen; Ho, Joseph; Shalm, Lynden K; Verma, Varun B; Allman, Michael S; Nam, Sae Woo; Patel, Raj B; Slussarenko, Sergei; Pryde, Geoff J

    2016-05-16

    We present a source of polarization entangled photon pairs based on spontaneous parametric downconversion engineered for frequency uncorrelated telecom photon generation. Our source provides photon pairs that display, simultaneously, the key properties for high-performance quantum information and fundamental quantum science tasks. Specifically, the source provides for high heralding efficiency, high quantum state purity and high entangled state fidelity at the same time. Among different tests we apply to our source we observe almost perfect non-classical interference between photons from independent sources with a visibility of (100 ± 5)%. PMID:27409907

  9. Design for an Electrically-Pumped Photonic Nanowire Single-Photon Source with an Effciency of 89 %

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper; Claudon, Julien; Gérard, Jean-Michel

    2011-01-01

    We propose an electrically-pumped singlephoton source design based on a photonic nanowire. For realistic geometrical parameters, a collection effciency of 89 % is predicted. Initial fabrication results confirming the feasibility of the design are presented.......We propose an electrically-pumped singlephoton source design based on a photonic nanowire. For realistic geometrical parameters, a collection effciency of 89 % is predicted. Initial fabrication results confirming the feasibility of the design are presented....

  10. Harmonic sextupoles for the Advanced Light Source low emittance upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Madur, A., E-mail: amadur@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Arbelaez, D.; Marks, S.; Prestemon, S.; Robin, D.; Schlueter, R.; Steier, C.; Wan, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States)

    2011-09-01

    The Advanced Light Source is a 3rd generation light source in operation since 1993. This light source is providing state of the art performance to more than 40 beamlines and their users thanks to the upgrades that have been completed over the last few years. Higher photon beam brightness is expected to become available to users in the near future through a new upgrade with the introduction of 48 sextupoles in the ALS lattice. Introducing new combined function magnets in an existing storage ring is a challenge due to the limited space available and a balance had to be found between magnet performance and spatial constraints. Moreover, the existing steering magnets will be replaced by the harmonic sextupoles. Therefore predicting the hysteresis behavior of the harmonic sextupole steering functions became critical for those included in the fast-orbit feedback loop (22 of them). After a brief introduction to the motivation for the upgrade and the scope of the project, we develop in this paper the different constraints driving the three required combined function magnet designs as well as their expected performance.

  11. A status report on the advanced neutron source project

    International Nuclear Information System (INIS)

    Design work on the Advanced Neutron Source facilities has progressed significantly, with cost saving changes to the buildings and other systems. The cold source design has advanced considerably, and in addition design work has been initiated on the hot neutron source and on a positron source. (J.P.N.)

  12. Parametric down-conversion photon pair source on a nanophotonic chip

    CERN Document Server

    Guo, Xiang; Schuck, Carsten; Jung, Hojoong; Cheng, Risheng; Tang, Hong X

    2016-01-01

    Quantum photonic chips, which integrate quantum light sources alongside active and passive optical elements, as well as single photon detectors, show great potential for photonic quantum information processing and quantum technology. Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity. Second order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming part of linear optic experiments using bulk components but integration with waveguide circuitry on a nanophotonic chip proved to be challenging. Here we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second order nonlinearity in an Aluminum nitride microring resonator. We show the potential of our source for quantum information processing by measuring high-visibility antibunching of heralded single photons with nearly ideal state purity. Our down conversion source operates with high ...

  13. Advanced neutron source materials surveillance program

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing

  14. Performance of the Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is the first of the lower energy (1--2 GeV) third-generation synchrotron radiation facilities to come into operation. Designed with very small electron beam emittances to operate with long insertion devices producing very high brightness beams of synchrotron radiation in the VUV and soft x-ray regions of the spectrum, these facilities are complementary to the higher energy (6--9 GeV) facilities designed for harder x-radiation. The ALS storage ring began operation in October 1993. In this paper, we will review the operational performance of the ALS, including the effects of the 4.5 m long undulators (period 5 cm), and discuss the overall performance of the facility

  15. Guidelines for the calibration of low energy photon sources at beta-ray brachytherapy sources

    International Nuclear Information System (INIS)

    With the development of improved methods of implanting brachytherapy sources in a precise manner for treating prostate cancer and other disease processes, there has been a tremendous growth in the use of low energy photon sources, such as 125I and 103Pd brachytherapy seeds. Low energy photon sources have the advantage of easier shielding and also lowering the dose to normal tissue. However, the dose distributions around these sources are affected by the details in construction of the source and its encapsulation more than other sources used for brachytherapy treatments, such as 192Ir. With increasing number of new low energy photon sources on the market, care should be taken with regard to its traceability to primary standards. It cannot be assumed that a calibration factor for an ionization chamber that is valid for one type of low energy photon source, automatically is valid for another source even if both would use the same isotope. Moreover, the method used to calculate the dose must also take into account the structure of the source and the encapsulation. The dose calculation algorithm that is valid for one type of low energy source may not be valid for another source even if in both cases the same radionuclide is used. Simple ''point source'' approximations, i.e. where the source is modeled as a point, should be avoided, as such methods do not account for any details in the source construction. In this document, the dose calculation formalism adopted for low energy photon sources is that recommended by the American Association of Physicists in Medicine (AAPM) as outlined by Task Group-43 (TG-43). This method accounts for the source and capsule geometry. The AAPM recommends brachytherapy photon sources to be specified in terms of 'Air Kerma Strength' that is also used in the formalism mentioned above. On the other hand, the International Commission on Radiation Units and Measurements (ICRU) recommends that the specification be done in terms of Reference Air

  16. Efficient and pure femtosecond-pulse-length source of polarization-entangled photons

    OpenAIRE

    Weston, Morgan M.; Chrzanowski, Helen M.; Wollmann, Sabine; Boston, Allen; Ho, Joseph; Shalm, Lynden K.; Verma, Varun B.; Allman, Michael S.; Nam, Sae Woo; Patel, Raj. B.; Slussarenko, Sergei; Pryde, Geoff J.

    2016-01-01

    We present a source of polarization entangled photon pairs based on spontaneous parametric downconversion engineered for frequency uncorrelated telecom photon generation. Our source provides photon pairs that display, simultaneously, the key properties for high-performance quantum information and fundamental quantum science tasks. Specifically, the source provides for high heralding efficiency, high quantum state purity and high entangled state fidelity at the same time. Among different tests...

  17. Improving noise threshold for optical quantum computing with the EPR photon source

    CERN Document Server

    Wei, Z -H; OH, C H; Duan, L -M

    2009-01-01

    We show that the noise threshold for optical quantum computing can be significantly improved by using the EPR-type of photon source. In this implementation, the detector efficiency $\\eta_{d}$ is required to be larger than 50%, and the source efficiency $\\eta_{s}$ can be an arbitrarily small positive number. This threshold compares favorably with the implementation using the single-photon source, where one requires the combined efficiency $\\eta_{d}\\eta_{s}>2/3$. We discuss several physical setups for realization of the required EPR photon source, including the photon emitter from a single-atom cavity.

  18. Jets as a Source of Information about Photon Structure

    CERN Document Server

    Tasevsky, M

    1998-01-01

    A review of recent jet measurements of the photon structure from the H1 experiment at HERA. The scale and the virtuality dependence of the effective parton distribution function of the photon is discussed.

  19. A bright on-demand source of indistinguishable single photons at telecom wavelengths

    CERN Document Server

    Kim, Je-Hyung; Richardson, Christopher J K; Leavitt, Richard P; Waks, Edo

    2015-01-01

    Long-distance quantum communication relies on the ability to efficiently generate and prepare single photons at telecom wavelengths. In many applications these photons must also be indistinguishable such that they exhibit interference on a beamsplitter, which implements effective photon-photon interactions. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. The cavity enhances the quantum dot emission, resulting in a nearly Gaussian transverse mode profile with high out-coupling efficiency exceeding 46%, leading to detected photon count rates that would exceed 1.5 million counts per second. We also observe Purcell enhanced spontaneous emission rate as large as 4. Using this source, we generate linearly polarized, high purity single photons at telecom-wavelength and demonstrate the indistinguishable nature o...

  20. Bridging visible and telecom wavelengths with a single-mode broadband photon pair source

    International Nuclear Information System (INIS)

    We present a spectrally decorrelated photon pair source bridging the visible and telecom wavelength regions. Tailored design and fabrication of a solid-core photonic crystal fiber (PCF) lead to the emission of signal and idler photons into only a single spectral and spatial mode. Thus no narrowband filtering is necessary and the heralded generation of pure photon number states in ultrafast wave packets at telecom wavelengths becomes possible.

  1. Bright single photon source based on self-aligned quantum dot-cavity systems

    OpenAIRE

    Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation...

  2. Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion.

    Science.gov (United States)

    Kaneda, Fumihiro; Garay-Palmett, Karina; U'Ren, Alfred B; Kwiat, Paul G

    2016-05-16

    We report on the generation of an indistinguishable heralded single-photon state, using highly nondegenerate spontaneous parametric downconversion (SPDC). Spectrally factorable photon pairs can be generated by incorporating a broadband pump pulse and a group-velocity matching (GVM) condition in a periodically-poled potassium titanyl phosphate (PPKTP) crystal. The heralding photon is in the near IR, close to the peak detection efficiency of off-the-shelf Si single-photon detectors; meanwhile, the heralded photon is in the telecom L-band where fiber losses are at a minimum. We observe spectral factorability of the SPDC source and consequently high purity (90%) of the produced heralded single photons by several different techniques. Because this source can also realize a high heralding efficiency (> 90%), it would be suitable for time-multiplexing techniques, enabling a pseudo-deterministic single-photon source, a critical resource for optical quantum information and communication technology. PMID:27409894

  3. Quantum dot single photon sources: prospects for applications in linear optics quantum information processing

    CERN Document Server

    Kiraz, A; Imamoglu, A

    2003-01-01

    An optical source that produces single photon pulses on demand has potential applications in linear optics quantum information processing, provided that stringent requirements on indistinguishability and collection efficiency of the generated photons are met. We show that these are conflicting requirements for anharmonic emitters that are incoherently pumped via reservoirs. As a model for a coherently pumped single photon source, we consider cavity-assisted spin-flip Raman transitions in a single charged quantum dot embedded in a microcavity. We demonstrate that using such a source, arbitrarily high collection efficiency and indistinguishability of the generated photons can be obtained simultaneously with increased cavity coupling. We analyze the role of errors that arise from distinguishability of the single photon pulses in linear optics quantum gates by relating the gate fidelity to the strength of the two-photon interference dip in photon cross-correlation measurements. We find that performing controlled ...

  4. All-fibre multiplexed source of high-purity heralded single photons

    CERN Document Server

    Francis-Jones, Robert J A; Mosley, Peter J

    2016-01-01

    Single photon sources based on spontaneous photon-pair generation have enabled pioneering experiments in quantum optics. However, their non-determinism presents a bottleneck to scaling up photonic and hybrid quantum-enhanced technologies. Furthermore, photon pairs are typically emitted into many correlated frequency modes, producing an undesirable mixed state on heralding. Here we present a complete fibre-integrated heralded single photon source that addresses both these difficulties simultaneously. We use active switching to provide a path to deterministic operation by multiplexing separate spontaneous sources, and dispersion engineering to minimise frequency correlation for high-purity single photon generation. All the essential elements -- nonlinear material with dispersion control, wavelength isolation, optical delay, and fast switching -- are incorporated in a low-loss alignment-free package that heralds photons in telecoms single-mode fibre. Our results demonstrate a scalable approach to delivering pure...

  5. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source

    International Nuclear Information System (INIS)

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 108 photons/s at 30 keV. The instrumental resolution, Δq/qmax, reaches to 2 × 10−3 and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition

  6. Group IV Light Sources to Enable the Convergence of Photonics and Electronics

    Directory of Open Access Journals (Sweden)

    Shinichi eSaito

    2014-09-01

    Full Text Available Group IV lasers are expected to revolutionize chip-to-chip optical communications in terms of cost, scalability, yield, and compatibility to the existing infrastructure of silicon industries for mass production. Here, we review the current state-of-the-art developments of silicon and germanium light sources towards monolithic integration. Quantum confinement of electrons and holes in nano-structures has been the primary route for light emission from silicon, and we can use advanced silicon technologies using top-down patterning processes to fabricate these nano-structures, including fin-type vertical multiple quantum wells. Moreover, the electromagnetic environment can also be manipulated in a photonic crystal nano-cavity to enhance the efficiency of light extraction and emission by the Purcell effect. Germanium is also widely investigated as an active material in Group IV photonics, and novel epitaxial growth technologies are being developed to make a high quality germanium layer on a silicon substrate. To develop a practical germanium laser, various technologies are employed for tensile-stress engineering and high electron doping to compensate the indirect valleys in the conduction band. These challenges are aiming to contribute towards the convergence of electronics and photonics on a silicon chip.

  7. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  8. Advanced active quenching circuits for single-photon avalanche photodiodes

    Science.gov (United States)

    Stipčević, M.; Christensen, B. G.; Kwiat, P. G.; Gauthier, D. J.

    2016-05-01

    Commercial photon-counting modules, often based on actively quenched solid-state avalanche photodiode sensors, are used in wide variety of applications. Manufacturers characterize their detectors by specifying a small set of parameters, such as detection efficiency, dead time, dark counts rate, afterpulsing probability and single photon arrival time resolution (jitter), however they usually do not specify the conditions under which these parameters are constant or present a sufficient description. In this work, we present an in-depth analysis of the active quenching process and identify intrinsic limitations and engineering challenges. Based on that, we investigate the range of validity of the typical parameters used by two commercial detectors. We identify an additional set of imperfections that must be specified in order to sufficiently characterize the behavior of single-photon counting detectors in realistic applications. The additional imperfections include rate-dependence of the dead time, jitter, detection delay shift, and "twilighting." Also, the temporal distribution of afterpulsing and various artifacts of the electronics are important. We find that these additional non-ideal behaviors can lead to unexpected effects or strong deterioration of the system's performance. Specifically, we discuss implications of these new findings in a few applications in which single-photon detectors play a major role: the security of a quantum cryptographic protocol, the quality of single-photon-based random number generators and a few other applications. Finally, we describe an example of an optimized avalanche quenching circuit for a high-rate quantum key distribution system based on time-bin entangled photons.

  9. Applications of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    When the technique of neutron scattering was pioneered at the X-10 graphite reactor at Oak Ridge National Laboratory about 50 years ago, it was used to study certain important, but fairly esoteric, properties of crystals. From this modest beginning, neutron scattering has become a major tool in every branch of science, from the astrophysics of the early universe to human biology, and in many important industrial and engineering applications. In a typical modern research reactor it is not unusual to find one instrument studying new polymeric materials, while its neighbor is measuring residual stress in a jet turbine, sometimes with the jet operating. Most of this development has taken place outside of the United States, primarily in Western Europe, Japan and Russia, and it is generally recognized that we are a decade behind our competitors in this important field. The Advanced Neutron Source (ANS), planned to become operational as a user-facility at Oak Ridge at the end of this decade, will regain our leadership in neutron-based research and will be a major center for attracting new students into science. This paper discusses some of the research and development applications of the ANS, with an emphasis on applied materials science and engineering

  10. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  11. Operational experience at the Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) has been operational for users since October 1993 when white light from a bend magnet was delivered to the Center for X-Ray Optic close-quote s (CXRO) x-ray microprobe end station. Since then, the ALS has installed and commissioned three undulators and their beamlines (including monochromators and post-monochromator focusing optics), and eight bend-magnet beamlines, including one dedicated to machine diagnostics. Apart from one serious outage, when scheduled beam was not available to users for 17 days, the ALS has enjoyed remarkable operating statistics, with typically 95% of scheduled beam time delivered to the users. Beam quality has also been very good. With a vertical emittance measured at 0.06 nm-rad, the electron beam is kept stable to about one-tenth of its transverse dimensions, in the face of changing error fields in the insertion devices (as their main fields are varied), temperature variations, and floor vibration. The longitudinal motion of the beam, which leads to an increase in the electron beam energy spread and thence to a degradation of the undulator spectra, has recently been brought under control by the addition of an innovative feedback system. This paper focuses on those aspects of electron beam stability that we find most affect the ALS users: beam size and position, and energy spread. copyright 1996 American Institute of Physics

  12. Operational experiences at the advanced light source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) has been operational for users since October 1993 when white light from a bend magnet was delivered to the Center for X-Ray Optic's (CXRO) x-ray microprobe end-station. Since then, the ALS has installed and commissioned three undulators and their beamlines (including monochrornators and post-monochromator focusing optics), and eight bend magnet beamlines, including one dedicated to machine diagnostics. Apart from one serious outage, when scheduled beam was not available to users for 17 days, the ALS has enjoyed remarkable operating statistics, with typically 95% of scheduled beam-time delivered to the users. Beam quality has also been very good. With a vertical emittance measured at 0.06 nm-rad, the electron beam is kept stable to about one-tenth of it's transverse dimensions, in the face of changing error fields in the insertion devices (as their main fields are varied), temperature variations and floor vibration. The longitudinal motion of the beam, which leads to an increase in the electron beam energy spread, and thence, to a degradation of the undulator spectra, has recently been brought under control by the addition of an innovative feedback system. This paper focuses on those aspects of electron beam stability that we find most affect the ALS users: beam size and position, and energy spread

  13. Advanced Neutron Sources: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  14. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  15. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MWth, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  16. Selecting the pre-detection characteristics for effective fiber coupling of entangled photon sources

    OpenAIRE

    Anwar, Ali; P, Chithrabhanu; Reddy, Salla Gangi; Lal, Nijil; Singh, R P

    2016-01-01

    Photon modes have an important role in characterizing the quantum sources of light. Proper coupling of various photon modes obtained in spontaneous parametric down conversion (SPDC) process in optical fibers is essential to generate an effective source of entangled photons. The two main pre-detection factors affecting the biphoton mode coupling in SPDC are the pump beam focusing parameter and the crystal thickness. We present the numerical and experimental results on the effect of pump focusi...

  17. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    Science.gov (United States)

    Akhter, Perveen

    In today's fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption in thin film Si solar cells are of great importance and have been the focus of research for a few decades now. Another big issue of technology in this fast-paced world is the computing rate or data transfer rate between components of a chip in ultra-fast processors. Existing electronic interconnects suffering from the signal delays and heat generation issues are unable to handle high data rates. A possible solution to this problem is in replacing the electronic interconnects with optical interconnects which have large data carrying capacity. However, optical components are limited in size by the fundamental laws of diffraction to about half a wavelength of light and cannot be combined with nanoscale electronic components. Tremendous research efforts have been directed in search of an advanced technology which can bridge the size gap between electronic and photonic worlds. An emerging technology of "plasmonics'' which exploits the extraordinary optical properties of metal nanostructures to tailor the light at nanoscale has been considered a potential solution to both of the above-mentioned problems. Research conducted for this dissertation has an overall goal to investigate the optical properties of silicon with metal nanostructures for photovoltaics and advanced silicon photonics applications. The first part of the research focuses on achieving enhanced

  18. Indirect measurement of three-photon correlation in nonclassical light sources

    Science.gov (United States)

    Ann, Byoung-moo; Song, Younghoon; Kim, Junki; Yang, Daeho; An, Kyungwon

    2016-06-01

    We observe the three-photon correlation in nonclassical light sources by using an indirect measurement scheme based on the dead-time effect of photon-counting detectors. We first develop a general theory which enables us to extract the three-photon correlation from the two-photon correlation of an arbitrary light source measured with detectors with finite dead times. We then confirm the validity of our measurement scheme in experiments done with a cavity-QED microlaser operating with a large intracavity mean photon number exhibiting both sub- and super-Poissonian photon statistics. The experimental results are in good agreement with the theoretical expectation. Our measurement scheme provides an alternative approach for N -photon correlation measurement employing (N -1 ) detectors and thus a reduced measurement time for a given signal-to-noise ratio, compared to the usual scheme requiring N detectors.

  19. Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band

    International Nuclear Information System (INIS)

    We demonstrate an optical-fiber-based source of polarization-entangled photon pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550-nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally polarized pump pulses, one propagating in the clockwise and the other in the counterclockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contamination of the entangled photon pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: (i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal and idler bands and (ii) broadening of the pump-pulse spectrum due to self-phase modulation causes pump photons to leak into the signal and idler bands. We obtain two-photon interference with visibility >90% without subtracting counts caused by the background photons (only dark counts of the detectors are subtracted), when the mean photon number in the signal (idler) channel is about 0.02/pulse, while no interference is observed in direct detection of either the signal or idler photons

  20. A bright triggered twin-photon source in the solid state

    CERN Document Server

    Thoma, Alexander; Schlehahn, Alexander; Gschrey, Manuel; Schnauber, Peter; Schulze, Jan-Hindrik; Strittmatter, André; Rodt, Sven; Carmele, Alexander; Knorr, Andreas; Reitzenstein, Stephan

    2016-01-01

    A non-classical light source emitting pairs of identical photons represents a versatile resource of interdisciplinary importance with applications in quantum optics and quantum biology. Emerging research fields, which benefit from such type of quantum light source, include quantum-optical spectroscopy or experiments on photoreceptor cells sensitive to photon statistics. To date, photon twins have mostly been generated using parametric downconversion sources, relying on Poissonian number distributions, or atoms, exhibiting low emission rates. Here, we propose and experimentally demonstrate the efficient, triggered generation of photon twins using the energy-degenerate biexciton-exciton radiative cascade of a single semiconductor quantum dot. Deterministically integrated within a microlens, this nanostructure emits highly-correlated photon pairs, degenerate in energy and polarization, at a rate of up to (2.8 $\\pm$ 0.4) MHz. Two-photon interference experiments reveal a significant degree of indistinguishability ...

  1. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  2. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  3. Advanced Neutron Source radiological design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  4. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D.W.; Perera, R.C.C. [eds.

    1991-12-31

    This report discusses the following topics: Mother nature`s finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  5. Applications of photon-in, photon-out spectroscopy with third-generation, synchrotron-radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, D.W.; Perera, R.C.C. (eds.)

    1991-01-01

    This report discusses the following topics: Mother nature's finest test probe; soft x-ray emission spectroscopy with high-brightness synchrotron radiation sources; anisotropy and polarization of x-ray emission from atoms and molecules; valence-hole fluorescence from molecular photoions as a probe of shape-resonance ionization: progress and prospects; structural biophysics on third-generation synchrotron sources; ultra-soft x-ray fluorescence-yield XAFS: an in situ photon-in, photon-out spectroscopy; and x-ray microprobe: an analytical tool for imaging elemental composition and microstructure.

  6. Photon emission as a source of coherent behaviour of polaritons

    OpenAIRE

    Vinck-Posada, Herbert; Rodriguez, Boris A.; Guimaraes, P. S. S.; Cabo, Alejandro; Gonzalez, Augusto

    2006-01-01

    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest energy photon mode of a microcavity) are presented in support to this statement.

  7. Photon emission as a source of coherent behavior of polaritons.

    Science.gov (United States)

    Vinck-Posada, Herbert; Rodriguez, Boris A; Guimaraes, P S S; Cabo, Alejandro; Gonzalez, Augusto

    2007-04-20

    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest-energy photon mode of a microcavity) are presented in support of this statement. PMID:17501462

  8. On improving single photon sources via linear optics and photodetection

    CERN Document Server

    Berry, D W; Sanders, B C; Knight, P L; Berry, Dominic W.; Scheel, Stefan; Sanders, Barry C.; Knight, Peter L.

    2004-01-01

    In practice, single photons are generated as a mixture of vacuum with a single photon with weights 1-p and p, respectively; here we are concerned with increasing p by directing multiple copies of the single photon-vacuum mixture into a linear optic device and applying photodetection on some outputs to conditionally prepare single photon states with larger p. We prove that it is impossible, under certain conditions, to increase p via linear optics and conditional preparation based on photodetection, and we also establish a class of photodetection events for which p can be improved. In addition we prove that it is not possible to obtain perfect (p=1) single photon states via this method from imperfect (p<1) inputs.

  9. Advanced Electronics and Photonics for High Energy Physics Experiments

    OpenAIRE

    Linczuk, M.; Pozniak, K.; Romaniuk, Ryszard

    2010-01-01

    WILGA Symposium on Photonics and Web Engineering is well known on the web for its devotion to “young research” promotion under the promotorship of international engineering associations like IEEE and SPIE and their Poland Sections or Counterparts. The Symposium is organized since 1998 twice a year, gathered nearly 4000 young researchers and published over 1500 papers mainly internationally. Here a short report on the XXVth Symposium is presented. The event took place on 29-30 January at the F...

  10. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    Science.gov (United States)

    Bussard, R. W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column.

  11. Bright quantum dot single photon source based on a low Q defect cavity

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, A.;

    2014-01-01

    The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023.......The quasi-planar single photon source presented in this paper shows an extraction efficiency of 42% without complex photonic resonator geometries or lithography steps as well as a high purity with a g2(0) value of 0.023....

  12. Experimental open-air quantum key distribution with a single-photon source

    International Nuclear Information System (INIS)

    We describe the implementation of a quantum key distribution (QKD) system using a single-photon source, operating at night in open air. The single-photon source at the heart of the functional and reliable set-up relies on the pulsed excitation of a single nitrogen-vacancy colour centre in a diamond nanocrystal. We tested the effect of attenuation on the polarized encoded photons for inferring the longer distance performance of our system. For strong attenuation, the use of pure single-photon states gives measurable advantage over systems relying on weak attenuated laser pulses. The results are in good agreement with theoretical models developed to assess QKD security

  13. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    International Nuclear Information System (INIS)

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus s intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications

  14. Proceedings of JAEA-KPSI 8th symposium on advanced photon research

    International Nuclear Information System (INIS)

    JAEA-KPSI-APRC 8th Symposium on Advanced Photon Research was held at Kansai Photon Research Institute, Japan Atomic Energy Agency (JAEA-KPSI) in Kizu, Kyoto on June 4th - 5th, 2007. This report consists of contributed papers for the speeches and poster presentations in JAEA-KPSI-APRC 8th Symposium. The 33 of the presented papers are indexed individually. (J.P.N.)

  15. Effect of temperature and phonons on the spectral properties of a multi-level semiconductor quantum dot single-photon source

    OpenAIRE

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter; Mørk, Jesper

    2009-01-01

    Since it was realized that efficient quantum computing can be performed using single photons and standard linear optics elements, immense international research activity has been aimed at developing semiconductor quantum dot (QD) single-photon sources (SPS). In order to optimise the design of SPS for high efficiency as well as increase the understanding of the physics, advanced and accurate models are needed that describes the complex solid-state environment the SPS is part of. This paper inv...

  16. Design of bright, fiber-coupled and fully factorable photon pair sources

    International Nuclear Information System (INIS)

    From quantum computation to quantum key distribution, many quantum-enhanced applications rely on the ability to generate pure single photons. Even though the process of spontaneous parametric downconversion (SPDC) is widely used as the basis for photon-pair sources, the conditions for pure heralded single-photon generation, taking into account both spectral and spatial degrees of freedom, have not been fully described. We present an analysis of the spatio-temporal correlations present in photon pairs produced by type-I, non-collinear SPDC. We derive a set of conditions for full factorability in all degrees of freedom-required for the heralding of pure single photons-between the signal and idler modes. In this paper, we consider several possible approaches for the design of bright, fiber-coupled and factorable photon-pair sources. We show through numerical simulations of the exact equations that sources based on: (i) the suppression of spatio-temporal entanglement according to our derived conditions and (ii) a tightly focused pump beam together with optimized fiber-collection modes and spectral filtering of the signal and idler photon pairs, lead to a source brightness of the same order of magnitude. Likewise, we find that both of these sources lead to a drastically higher factorable photon-pair flux, compared to an unengineered source.

  17. Source of single photons and interferometry with one photon. From the Young's slit experiment to the delayed choice

    International Nuclear Information System (INIS)

    This manuscript is divided in two independent parts. In the first part, we study the wave-particle duality for a single photon emitted by the triggered photoluminescence of a single NV color center in a diamond nano-crystal. We first present the realization of a single-photon interference experiment using a Fresnel's bi-prism, in a scheme equivalent to the standard Young's double-slit textbook experiment. We then discuss the complementarity between interference and which-path information in this two-path interferometer. We finally describe the experimental realization of Wheeler's delayed-choice Gedanken experiment, which is a fascinating and subtle illustration of wave-particle duality. The second part of the manuscript is devoted to the efficiency improvement of single-photon sources. We first describe the implementation of a new single-photon source based on the photoluminescence of a single nickel-related defect center in diamond. The photophysical properties of such defect make this single-photon source well adapted to open-air quantum cryptography. We finally demonstrate an original method that leads to an improvement of single-molecule photo stability at room temperature. (author)

  18. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien;

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement ...

  19. Influences of source displacement on the features of subwavelength imaging of a photonic crystal slab

    OpenAIRE

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu

    2010-01-01

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square- and triangular-lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on the imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double-image. Both properties are found to be sensiti...

  20. Near-optimal single-photon sources in the solid state

    Science.gov (United States)

    Somaschi, N.; Giesz, V.; de Santis, L.; Loredo, J. C.; Almeida, M. P.; Hornecker, G.; Portalupi, S. L.; Grange, T.; Antón, C.; Demory, J.; Gómez, C.; Sagnes, I.; Lanzillotti-Kimura, N. D.; Lemaítre, A.; Auffeves, A.; White, A. G.; Lanco, L.; Senellart, P.

    2016-05-01

    The scaling of optical quantum technologies requires efficient, on-demand sources of highly indistinguishable single photons. Semiconductor quantum dots inserted into photonic structures are ultrabright single-photon sources, yet the indistinguishability is limited by charge noise. Parametric downconversion sources provide highly indistinguishable photons but are operated at very low brightness to maintain high single-photon purity. To date, no technology has provided a bright source generating near-unity indistinguishability and pure single photons. Here, we report such devices made of quantum dots in electrically controlled cavities. Application of an electrical bias on the deterministically fabricated structures is shown to strongly reduce charge noise. Under resonant excitation, an indistinguishability of 0.9956 ± 0.0045 is demonstrated with g(2)(0) = 0.0028 ± 0.0012. The photon extraction of 65% and measured brightness of 0.154 ± 0.015 make this source 20 times brighter than any source of equal quality. This new generation of sources opens the way to new levels of complexity and scalability in optical quantum technologies.

  1. Advances in multi-photon processes and spectroscopy v.22

    CERN Document Server

    Lin, S H; Fujimura, Y

    2014-01-01

    This volume presents the recent progress and perspective in multi-photon processes and spectroscopy of atoms, ions, molecules and solids. The subjects in the series cover the experimental and theoretical investigations in the interdisciplinary research fields of natural science including chemistry, physics, bioscience and material science. Contents:Theoretical Foundations for Exploring Quantum Optimal Control of Molecules (Tak-San Ho, Herschel Rabitz and Shih-I Chu)Intramolecular Nuclear Flux Densities (I Barth, C Daniel, E Gindensperger, J Manz, J F Pérez-To

  2. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, Cameron G.R., E-mail: cgrgeddes@lbl.gov; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.

    2015-05-01

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.

  3. Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization

    International Nuclear Information System (INIS)

    Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system

  4. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    A description of hard X-ray photon-in photon-out spectroscopy techniques for X-ray free electron laser applications is given. A discussion of the instrumentation suitable for taking full advantage of these new sources and a description of recent measurements performed and related examples are also presented. X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source

  5. Single Semiconductor Quantum Dots in Microcavities: Bright sources of indistinguishable Photons

    OpenAIRE

    Schneider, C.; Gold, P.; Lu, C. -Y.; Höfling, S.; Pan, J. -W.; Kamp, M.

    2015-01-01

    In this chapter we will discuss the technology and experimental techniques to realize quantum dot (QD) single photon sources combining high outcoupling efficiencies and highest degrees of non-postselected photon indistinguishability. The system, which is based on ultra low density InAs QDs embedded in a quasi planar single sided microcavity with natural photonic traps is an ideal testbed to study quantum light emission from single QDs. We will discuss the influence of the excitation condition...

  6. Down-conversion source of positively spectrally correlated and decorrelated photon pairs at telecom wavelength

    OpenAIRE

    Lutz, Thomas; Kolenderski, Piotr; Jennewein, Thomas

    2012-01-01

    The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a Beta-Barium Borate (BBO) crystal cut for type-II phase matching at 1550 nm which emits photons with the positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.

  7. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources

    International Nuclear Information System (INIS)

    The implementation of fully integrated single-photon sources and detectors into waveguide structures such as photonic crystals or a slab and ridge waveguide is currently one of the major goals in the linear optics quantum computation and communication community. Here, we present an implementation of a single-photon on-chip experiment based on a III–V semiconductor platform. Individual semiconductor quantum dots were used as pulsed single-photon sources integrated in ridge waveguides, and the on-chip waveguide-beamsplitter operation is verified on the single-photon level by performing off-chip photon cross-correlation measurements between the two output ports of the beamsplitter. A degree of polarization of the emitted photons above 90% is observed and a careful characterization of the waveguide propagation losses in straight (< 1.5 dB mm−1) and bent (∼ (8.5 ± 2.2) dB mm−1) sections documents the applicability of such GaAs-based waveguide structures in more complex photonic integrated circuits. The presented work marks an important step towards the realization of fully integrated photonic quantum circuits including on-demand single-photon emitters. (paper)

  8. Room temperature triggered single-photon source in the near infrared

    International Nuclear Information System (INIS)

    We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to quantum key distribution (QKD) under practical operating conditions

  9. An advanced negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P. [Institute of Physics National Academy of Science in Ukraine, Kiev 03028 (Ukraine)

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  10. Status report on the advanced photon source: Spring 1994

    International Nuclear Information System (INIS)

    Facility construction is presented for the conventional facilities, central laboratory/Office building, and the user residence facility. Accelerator systems are described in terms of commissioning and control system hardware. Insertion devices, front-end components, and monochromators are depicted in the experimental facilities. The operating energy and beam stability are discussed in terms of operations objectives. Collaborative access teams efforts are presented for the memoranda of understanding, CAT funding, and foreign participation in research at APS

  11. Beam splitting mirror for advanced photon source sector 34

    International Nuclear Information System (INIS)

    The insertion device beamline at APS sector 34 is intended for tandem operation of two, high brilliance, experimental stations. Each station will require only a small fraction of the total cross-sectional area of the undulator beam, allowing both to operate simultaneously without compromise. A Coherent X-ray Diffraction (CXD) station will be supplied with pink beam from a horizontally reflecting, beam splitting mirror, while a Micro-Focus Diffraction (MFD) station will operate with white beam that passes beside the mirror. Use of a mirror as a beam splitter requires good thermal and mechanical stability from the mirror and its associated positioning system. The mirror substrate is liquid nitrogen cooled to minimize the thermal bump and increase its thermal conductivity. The principal motions of the mirror (2 translations, 2 rotations) are handled outside the chamber and passed into vacuum via two sets of bellows

  12. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Maurayama, Hiroki; Ken-ichi, Ueda; Lyngsøe, Jens Kristian; Broeng, Jes

    2010-01-01

    Ytterbium-doped photonic-bandgap fiber sources operationg at the long-wavelength edge of the ytterbium gain band are being investigated for high power amplification. Artificial shaping of the gain spectrum by the characteristic distributed filtering effect of the photonic bandgap enables spontane...

  13. Next-Generation Photon Sources for Grand Challenges in Science and Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-05-01

    The next generation of sustainable energy technologies will revolve around transformational new materials and chemical processes that convert energy efficiently among photons, electrons, and chemical bonds. New materials that tap sunlight, store electricity, or make fuel from splitting water or recycling carbon dioxide will need to be much smarter and more functional than today's commodity-based energy materials. To control and catalyze chemical reactions or to convert a solar photon to an electron requires coordination of multiple steps, each carried out by customized materials and interfaces with designed nanoscale structures. Such advanced materials are not found in nature the way we find fossil fuels; they must be designed and fabricated to exacting standards, using principles revealed by basic science. Success in this endeavor requires probing, and ultimately controlling, the interactions among photons, electrons, and chemical bonds on their natural length and time scales. Control science - the application of knowledge at the frontier of science to control phenomena and create new functionality - realized through the next generation of ultraviolet and X-ray photon sources, has the potential to be transformational for the life sciences and information technology, as well as for sustainable energy. Current synchrotron-based light sources have revolutionized macromolecular crystallography. The insights thus obtained are largely in the domain of static structure. The opportunity is for next generation light sources to extend these insights to the control of dynamic phenomena through ultrafast pump-probe experiments, time-resolved coherent imaging, and high-resolution spectroscopic imaging. Similarly, control of spin and charge degrees of freedom in complex functional materials has the potential not only to reveal the fundamental mechanisms of high-temperature superconductivity, but also to lay the foundation for future generations of information science. This

  14. Sealed sources in Peru: advances and outlook

    International Nuclear Information System (INIS)

    Cementation of spent sealed sources is performed by the Radioactive Waste Management Group of the Peruvian Institute of Nuclear Energy (IPEN). The sealed sources are collected in different areas of the country and brought to the RACSO nuclear centre, a national storage and conditioning facility for spent sources from industry and medical institutions. In addition to its amenities dedicated to research and the production of radioisotopes, the RACSO nuclear centre features a complex of some 1.5 ha for radioactive waste management that includes an infiltration bed and chemical treatment plant for liquid waste, compacting equipment and trenches for solid radioactive waste, a tank for the elimination of biological residues and a temporary storage emplacement for radioactive waste immobilized in cement cylinder casings. The steps described are the unpacking, identification of spent sealed sources, placement of the source in shielding, cementation, solidification, tagging and storage, as well as the actions taken to comply with the appropriate measures of radiological protection. (author)

  15. Quantum Optics with Quantum Dots in Photonic Wires: Basics and Application to “Ultrabright” Single Photon Sources

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.; Malik, N. S.; Munsch, M.; Dupuy, E.; Lalanne, P.; Gregersen, Niels

    2011-01-01

    , we have noticeably observed a very strong (16 fold) inhibition of their spontaneous emission rate in the thin-wire limit, and a nearly perfect funnelling of their spontaneous emission into the guided mode for larger PWs. We present a novel single -photon-source based on the emission of a quantum dot......We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire (PW) geometry for quantum optics experiments with solid-state emitters, and for quantum optoelectronic devices. By studying single InAs QDs embedded within single-mode cylindrical GaAs PW...

  16. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred;

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...

  17. Modeling resonant cavities for single-photon waveguide sources

    International Nuclear Information System (INIS)

    Spectral correlations between photon pairs generated by spontaneous parametric down conversion (SPDC) in bulk non-linear optical crystals remain a hindrance to the implementation of efficient quantum communication architectures. It has been demonstrated that SPDC within a distributed micro-cavity can result in little or no correlation between photon pairs. We present results on modeling three different cavity configurations based on integrated Bragg gratings. Output from the SPDC process can be tailored by altering the periodicity and geometry of such nanostructures. We will discuss the merits of each cavity configuration from the standpoint of degenerate Type-II SPDC

  18. Deterministic Single-Phonon Source Triggered by a Single Photon

    Science.gov (United States)

    Söllner, Immo; Midolo, Leonardo; Lodahl, Peter

    2016-06-01

    We propose a scheme that enables the deterministic generation of single phonons at gigahertz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on chip in an optomechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new optomechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nanofabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.

  19. Deterministic Single-Phonon Source Triggered by a Single Photon

    CERN Document Server

    Söllner, Immo; Lodahl, Peter

    2016-01-01

    We propose a scheme that enables the deterministic generation of single phonons at GHz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on-chip in an opto-mechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new opto-mechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nano-fabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.

  20. Randomly poled nonlinear crystals as a source of photon pairs

    Czech Academy of Sciences Publication Activity Database

    Peřina ml., Jan; Svozilík, J.

    2011-01-01

    Roč. 83, č. 3 (2011), 033808/1-033808/14. ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC09026; GA AV ČR IAA100100713; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric down conversion * production of entangled photons * nonclassical states of the electromagnetic field * entangled photon states Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.878, year: 2011 http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.0757v1.pdf

  1. Spectrally Tunable Sources for Advanced Radiometric Applications

    OpenAIRE

    Brown, S. W.; Rice, J. P; Neira, J. E.; Johnson, B. C.; Jackson, J D

    2006-01-01

    A common radiometric platform for the development of application-specific metrics to quantify the performance of sensors and systems is described. Using this platform, sensor and system performance may be quantified in terms of the accuracy of measurements of standardized sets of source distributions. The prototype platform consists of spectrally programmable light sources that can generate complex spectral distributions in the ultraviolet, visible and short-wave infrared regions for radiomet...

  2. High Fidelity Down-Conversion Source for Secure Communications using On-Demand Single Photons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA SBIR Phase II effort, AdvR will design and build an efficient, fully integrated, waveguide based, source of spectrally uncorrelated photon pairs that...

  3. A SINGLE PHOTON SOURCE MODEL BASED ON QUANTUM DOT AND MICROCAVITY

    Directory of Open Access Journals (Sweden)

    Moez ATTIA

    2011-12-01

    Full Text Available We report a single photon source model which consists on InAs/GaAs pyramidal quantum dot (QDmodel based on effective mass theory to calculate the emitted photons energies. We study the choice ofgeometrics parameters of QD to obtain emission at 1550 nm. This quantum dot must be embedded on amicrocavity to improve the live time of photon at 1550 nm and inhibit the others photons to increase theprobability to obtain only one emitted photon. We present two kinds of microcavities; the first based ontwo dimensional photonic crystal over GaAs, we study the geometric parameters choice to obtain a heightdensity of mode (DOM at 1550 nm; the second microcavity is based on microdisk structure over GaAswe evaluate the impact of radius variation to obtain whispering-gallery mode at 1550 nm. This study canserve for the conception of new quantum communications protocols.

  4. Luminescence-induced noise in single photon sources based on BBO crystals

    Science.gov (United States)

    Machulka, Radek; Lemr, Karel; Haderka, Ondřej; Lamperti, Marco; Allevi, Alessia; Bondani, Maria

    2014-11-01

    Single-photon sources based on the process of spontaneous parametric down-conversion play a key role in various applied disciplines of quantum optics. We characterize the intrinsic luminescence of BBO crystals as a source of non-removable noise in quantum-optics experiments. By analysing its spectral and temporal properties together with its intensity, we evaluate the impact of luminescence on single-photon state preparation using spontaneous parametric down-conversion.

  5. Super-resolving multi-photon interferences with independent light sources

    CERN Document Server

    Oppel, Steffen; Kok, Pieter; von Zanthier, Joachim

    2012-01-01

    Multi-photon interferences with indistinguishable photons from independent light sources are at the focus of current research owing to their potential in optical quantum computing, creating remote entanglement for quantum computation and communication, and quantum metrology. The paradigmatic states for multi-photon interference are the highly entangled NOON states, which can be used to achieve increased resolution in spectroscopy, interferometry, lithography, and microscopy. Multi-photon interferences from independent, uncorrelated emitters can also lead to enhanced resolution in metrology and imaging. So far, such interferences have been observed with maximally two independent emitters. Here, we report multi-photon interferences with up to five independent emitters, displaying interference patterns equivalent to those of NOON states. Experimental results with independent thermal light sources confirm this NOON-like modulation. The experiment is an extension of the landmark measurement by Hanbury Brown and Tw...

  6. High-Rate Entanglement Source via Two-Photon Emission from Semiconductor Quantum Wells

    CERN Document Server

    Hayat, A; Orenstein, M; Hayat, Alex; Ginzburg, Pavel; Orenstein, Meir

    2006-01-01

    We propose a compact high-intensity room-temperature polarization-entangled photons source based on two-photon spontaneous emission from semiconductor quantum wells in a photonic microcavity. Second-order interaction allows much more efficient pair generation compared to a third-order parametric downconversion. The structure is pumped electrically and the cavity is designed to support two-photon transitions only for the specific signal and idler wavelengths and at a preferred direction. Cavity's quality factor determines the emitted photons bandwidth without any additional post-selection or filtering. We estimate the cavity-controlled narrowband pair generation rate in GaAs/AlGaAs quantum well structures to be 3 orders of magnitude higher than for traditional broadband parametric downconversion based sources.

  7. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons.

    Science.gov (United States)

    Kang, Dongpeng; Anirban, Ankita; Helmy, Amr S

    2016-06-27

    Generating entangled photons from a monolithic chip is a major milestone towards real-life applications of optical quantum information processing including quantum key distribution and quantum computing. Ultrabroadband entangled photons are of particular interest to various applications such as quantum metrology and multi-party entanglement distribution. In this work, we demonstrate the direct generation of broadband wavelength-multiplexed polarization entangled photons from a semiconductor chip for the first time. Without the use of any off-chip compensation or interferometry, entangled photons with a signal-idler separation as large as 95 nm in the telecom band were observed. The highest concurrence of 0.98±0.01 achieved in this work is also the highest, to the best of our knowledge, comparing to all previously demonstrated semiconductor waveguide sources. This work paves the way for fully integrated, ultrabroadband sources of polarization entangled photons. PMID:27410667

  8. Dynamically reconfigurable directionality of plasmon-based single photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Lodahl, Peter; Koenderink, A. Femius

    2010-01-01

    beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication....

  9. Potential of semiconductor nanowires for single photon sources

    NARCIS (Netherlands)

    Harmand, J.-C.; Liu, L.; Patriarche, G.; Tchernycheva, M.; Akopian, N.; Perinetti, U.; Zwiller, V.

    2009-01-01

    The catalyst-assisted growth of semiconductor nanowires heterostructures offers a very flexible way to design and fabricate single photon emitters. The nanowires can be positioned by organizing the catalyst prior to growth. Single quantum dots can be formed in the core of single nanowires which can

  10. Sealed sources in Peru: advances and perspectives

    International Nuclear Information System (INIS)

    This work refers to the sealed sources cementation in disuse performed by the Wastes Management Group of the Peruvian Institute of Nuclear Energy. Sources are centralized from several parts of the country in the 'RACSO' Nuclear Center, since this is the single national center of storing and sealed sources arrangement from industry and medicine national users mainly. The Nuclear Center besides its radioactive installations for the radioisotope research and production, has an area of about 1,5 Ha for the radioactive wastes management in which surface we can find: the infiltration bed and the chemical treatment plant for liquid wastes; compacting and trench for solid radioactive wastes, an isolation cubicle for the biological wastes removal, in addition to a temporary storage of motionless radioactive wastes in a cemented cylinder matrix. For the cementation, a tiltable drum-type mixer, metallic cylinders and transportation and cemented material were acquired. Although the main step concerning radiological security and protection by the isolation of the sealed sources in disuse related with public and environment is highlighted, there is still the need to integrate some improvements in the cementation procedures and in guarantees of an optimal physical location for the cemented radioactive sources definite storage

  11. Non-linear photonic crystals as a source of entangled photons

    OpenAIRE

    de Dood, Michiel J. A.; Irvine, William T M; Bouwmeester, Dirk

    2004-01-01

    Non-linear photonic crystals can be used to provide phase-matching for frequency conversion in optically isotropic materials. The phase-matching mechanism proposed here is a combination of form birefringence and phase velocity dispersion in a periodic structure. Since the phase-matching relies on the geometry of the photonic crystal, it becomes possible to use highly non-linear materials. This is illustrated considering a one-dimensional periodic Al$_{0.4}$Ga$_{0.6}$As / air structure for the...

  12. Advances in multi-photon processes and spectroscopy, v.5

    CERN Document Server

    Lin, Sheng H

    1989-01-01

    In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in many interdisciplinary fields, an Advanced Series that contains review papers readable not only to active researchers in these areas but also to those who are not experts in the field but intend to enter the field is very necessary. This series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much prepar

  13. Advanced radioisotope heat source for Stirling Engines

    Science.gov (United States)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  14. Advanced radioisotope heat source for Stirling Engines

    International Nuclear Information System (INIS)

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions

  15. Development of the beamline flux monitor for the laser compton-scattered photon source

    International Nuclear Information System (INIS)

    In order to demonstrate accelerator and laser technologies required for a laser Compton scattering (LCS) photon generation, a LCS photon source is under construction at the Compact ERL (cERL). We considered the flux monitors for the adjustment LCS photon source. A thin scintillator detector and a silicon drift detector are employed as flux monitors and are installed at the upstream part of the LCS beamline. The background signal level due to the bremsstrahlung of the electron beam was measured by a CsI(pure) scintillator. In the result of the measurement, the background signal is acceptable level for the flux monitors. (author)

  16. Advanced Light Source activity report 1996/97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Ten years ago, the Advanced Light Source (ALS) existed as a set of drawings, calculations, and ideas. Four years ago, it stored an electron beam for the first time. Today, the ALS has moved from those ideas and beginnings to a robust, third-generation synchrotron user facility, with eighteen beam lines in use, many more in planning or construction phases, and hundreds of users from around the world. Progress from concepts to realities is continuous as the scientific program, already strong in many diverse areas, moves in new directions to meet the needs of researchers into the next century. ALS staff members who develop and maintain the infrastructure for this research are similarly unwilling to rest on their laurels. As a result, the quality of the photon beams the authors deliver, as well as the support they provide to users, continues to improve. The ALS Activity Report is designed to share the results of these efforts in an accessible form for a broad audience. The Scientific Program section, while not comprehensive, shares the breadth, variety, and interest of recent research at the ALS. (The Compendium of User Abstracts and Technical Reports provides a more comprehensive and more technical view.) The Facility Report highlights progress in operations, ongoing accelerator research and development, and beamline instrumentation efforts. Although these Activity Report sections are separate, in practice the achievements of staff and users at the ALS are inseparable. User-staff collaboration is essential as they strive to meet the needs of the user community and to continue the ALS's success as a premier research facility.

  17. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  19. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  20. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  1. Deep UV Semiconductor Sources for Advanced Planetary Science Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for miniature, narrow-linewidth, deep UV optical sources that operate at very low ambient temperatures for use in advanced in situ...

  2. Photoionization of multiply charged ions at the advanced light source

    OpenAIRE

    Schlachter, A. S.; Kilcoyne, A. L. D.; Aguilar, A.; Gharaibeh, M. F.; Emmons, E. D.; Scully., S. W. J.; Phaneuf, R A; Muller, A.; Schippers, S.; I. Alvarez; Cisneros, C.; Hinojosa, G.; McLaughlin, B. M.

    2004-01-01

    Photoionization of multiply charged ions is studied using the merged-beams technique at the Advanced Light Source. Absolute photoionization cross sections have been measured for a variety of ions along both isoelectronic and isonuclear sequences.

  3. New results in atomic physics at the Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization

  4. Advanced RF power sources for linacs

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1996-10-01

    In order to maintain a reasonable over-all length at high center-of-mass energy, the main linac of an electron-positron linear collider must operate at a high accelerating gradient. For copper (non-superconducting) accelerator structures, this implies a high peak power per unit length and a high peak power per RF source, assuming a limited number of discrete sources are used. To provide this power, a number of devices are currently under active development or conceptual consideration: conventional klystrons with multi-cavity output structures, gyroklystrons, magnicons, sheet-beam klystrons, multiple-beam klystrons and amplifiers based on the FEL principle. To enhance the peak power produced by an rf source, the SLED rf pulse compression scheme is currently in use on existing linacs, and new compression methods that produce a flatter output pulse are being considered for future linear colliders. This paper covers the present status and future outlook for the more important rf power sources and pulse compression systems. It should be noted that high gradient electron linacs have applications in addition to high-energy linear colliders; they can, for example, serve as compact injectors for FEL`s and storage rings.

  5. Quantum cryptography using a photon source based on postselection from entangled two-photon states

    Czech Academy of Sciences Publication Activity Database

    Peřina ml., Jan; Haderka, Ondřej; Soubusta, Jan

    2001-01-01

    Roč. 64, - (2001), s. 052305-1-152305-13. ISSN 1050-2947 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum cryptography * photon number squeezing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.810, year: 2001

  6. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    Science.gov (United States)

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  7. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    Science.gov (United States)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of

  8. Highly efficient photon-pair source using a Periodically Poled Lithium Niobate Waveguide

    CERN Document Server

    Tanzilli, S; Tittel, W; Zbinden, H; Baldi, P; De Micheli, M; Ostrowsky, D B; Gisin, Nicolas

    2000-01-01

    We report on a new kind of correlated photon-pair source based on a waveguide integrated on a Periodically Poled Lithium Niobate substrate. Using a pump laser of a few micro-Watts at 657 nm, we generate degenerate photon-pairs at 1314 nm. Detecting about 1500 coincidences per second, we can infer a conversion rate of 10-6 pairs per pump photon, which is four orders of magnitude higher than that obtained with previous bulk sources. These results are very promising for the realization of sources for quantum communication and quantum metrology experiments requiring a high signal-to-noise ratio or working with more than one photon-pair at a time.

  9. Heralded single-photon sources for quantum-key-distribution applications

    Science.gov (United States)

    Schiavon, Matteo; Vallone, Giuseppe; Ticozzi, Francesco; Villoresi, Paolo

    2016-01-01

    Single-photon sources (SPSs) are a fundamental building block for optical implementations of quantum information protocols. Among SPSs, multiple crystal heralded single-photon sources seem to give the best compromise between high pair production rate and low multiple photon events. In this work, we study their performance in a practical quantum-key-distribution experiment, by evaluating the achievable key rates. The analysis focuses on the two different schemes, symmetric and asymmetric, proposed for the practical implementation of heralded single-photon sources, with attention on the performance of their composing elements. The analysis is based on the protocol proposed by Bennett and Brassard in 1984 and on its improvement exploiting decoy state technique. Finally, a simple way of exploiting the postselection mechanism for a passive, one decoy state scheme is evaluated.

  10. Proposal for an Integrated Raman-free Correlated Photon Source

    CERN Document Server

    Blay, Daniel R; Steel, M J

    2016-01-01

    We propose a dual-pump third-order nonlinear scheme for producing pairs of correlated photons that is less susceptible to Raman noise than typical spontaneous four wave mixing methods (SFWM). Beginning with the full multimode Hamiltonian we derive a general expression for the joint spectral amplitude, from which the probability of producing a pair of photons can be calculated. As an example, we demonstrate that a probability of 0.028 pairs per pulse can be achieved in an appropriately designed fused silica microfiber. As compared with single pump SFWM in standard fiber, we calculate that our process shows significant suppression of the spontaneous Raman scattering and an improvement in the signal to noise ratio.

  11. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  12. Experiments on a compact and robust polarization-entangled photon source

    Science.gov (United States)

    Zhang, Shi-Wei; Zhang, Tong-Yi; Yao, Yin-Ping; Wan, Ren-Gang; Zou, Sheng-Wu

    2012-02-01

    We construct a compact polarization-entangled photon source using type-II degenerate spontaneous parametric down-conversion (SPDC) in beta-barium borate (BBO) crystal pumped by a 405 nm violet laser diode. In order to compensate the spatial displacement and the temporal delay due to the birefringence and dispersion effect of signal and idler photons, we make the down-converted photon pairs pass through a half wave plate and an additional BBO crystal with the half thickness of the original one. This improves the visibility of two-photon interference by eliminating the distinguishability of the paired photons. We measure the polarization correlations by two adjustable polarization analyzers in two conjugate bases, H/V and +45°/-45°, respectively. The polarization analyzer consists of a polarization beam splitter cube preceded by a rotatable half wave plate. When rotating one of the half wave plates and keeping the other one at fixed angle, we obtain the expected sin2 dependence of the coincidence counts. The highly visible sinusoidal coincidence indicates the violation of the Bell inequality and demonstrates the high quality of the polarization-entangled photon source. This compact polarization-entangled photon source is easily configurable and robust to demonstrate optical quantum information processing.

  13. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules.

    Science.gov (United States)

    Rothhardt, Jan; Hädrich, Steffen; Shamir, Yariv; Tschnernajew, Maxim; Klas, Robert; Hoffmann, Armin; Tadesse, Getnet K; Klenke, Arno; Gottschall, Thomas; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Boll, Rebecca; Bomme, Cedric; Dachraoui, Hatem; Erk, Benjamin; Di Fraia, Michele; Horke, Daniel A; Kierspel, Thomas; Mullins, Terence; Przystawik, Andreas; Savelyev, Evgeny; Wiese, Joss; Laarmann, Tim; Küpper, Jochen; Rolles, Daniel

    2016-08-01

    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses. PMID:27505779

  14. Bright single photon source based on self-aligned quantum dot-cavity systems.

    Science.gov (United States)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred; Gregersen, Niels; Mørk, Jesper; Höfling, Sven; Schneider, Christian; Kamp, Martin

    2014-04-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g(2)(0) value of 0.023) single-photon emission. PMID:24718190

  15. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    Energy Technology Data Exchange (ETDEWEB)

    Xu, De-Qin [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); School of Science, Tianjin University of Technology and Education, Tianjin 300222 (China); Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun, E-mail: junxiong@bnu.edu.cn; Wang, Kaige, E-mail: wangkg@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  16. COMS eye plaque brachytherapy dosimetric sensitivity to source photon energy and seed design

    International Nuclear Information System (INIS)

    This study explores the influence of source photon energy on eye plaque brachytherapy dose distributions for a 16 mm COMS plaque filled with 103Pd, 125I, or 131Cs sources or monoenergetic photon emissions ranging from 12 keV to 100 keV. Dose distributions were similarly created for all permutations of three common brachytherapy seed designs. Within this range, sources with average energy ≤22 keV may reduce dose to the opposite eye wall by more than a factor of 2 while maintaining tolerable proximal sclera doses when prescribing to depths of 9 mm or less. Current commercially-available brachytherapy sources can exhibit up to 15% relative dosimetric sensitivity to seed design at regions within the eye. - Highlights: • Episcleral eye plaque brachytherapy utilizes low-energy photon-emitting sources. • Dose distribution sensitivity to source photon energy and seed design was examined. • Tumor dose conformity and critical structure sparing from ≤22 keV photons is preferred. • Ocular dose distributions varied by up to 15% with seed design permutations

  17. Advances in InGaAs/InP single-photon detector systems for quantum communication

    CERN Document Server

    Zhang, Jun; Zbinden, Hugo; Pan, Jian-Wei

    2015-01-01

    Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to improve the device performance of single-photon avalanche diodes and to invent new avalanche quenching techniques. This Review aims to introduce the technology advances of InGaAs/InP single-photon detector systems in the telecom wavelengths and the relevant quantum communication applications, and particularly to highlight recent emerging techniques such as high-frequency gating at GHz rates and free-running operation using negative-feedback avalanche diodes. Future perspectives of both the devices and quenching techniques are summarized.

  18. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  19. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    OpenAIRE

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-01-01

    Sources of single photons are key elements in the study of basic quantum optical concepts and applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their straight forward integrability in semiconductor based on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon emission event is part of a cascaded biexciton-exciton emission scheme. Important properties of the emitted photon s...

  20. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  1. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  2. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  3. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  4. Wavelength-tunable sources of entangled photons interfaced with atomic vapours

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Wildmann, Johannes S.; Piredda, Giovanni; Reindl, Marcus; Schimpf, Christian; Zallo, Eugenio; Stroj, Sandra; Edlinger, Johannes; Rastelli, Armando

    2016-01-01

    The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices.

  5. Wavelength-tunable sources of entangled photons interfaced with atomic vapours

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Wildmann, Johannes S.; Piredda, Giovanni; Reindl, Marcus; Schimpf, Christian; Zallo, Eugenio; Stroj, Sandra; Edlinger, Johannes; Rastelli, Armando

    2016-01-01

    The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices. PMID:26815609

  6. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures

    Science.gov (United States)

    Fedyanin, D. Yu; Agio, M.

    2016-07-01

    The recently demonstrated electroluminescence of color centers in diamond makes them one of the best candidates for room temperature single-photon sources. However, the reported emission rates are far off what can be achieved by state-of-the-art electrically driven epitaxial quantum dots. Since the electroluminescence mechanism has not yet been elucidated, it is not clear to what extent the emission rate can be increased. Here we develop a theoretical framework to study single-photon emission from color centers in diamond under electrical pumping. The proposed model comprises electron and hole trapping and releasing, transitions between the ground and excited states of the color center as well as structural transformations of the center due to carrier trapping. It provides the possibility to predict both the photon emission rate and the wavelength of emitted photons. Self-consistent numerical simulations of the single-photon emitting diode based on the proposed model show that the photon emission rate can be as high as 100 kcounts s‑1 at standard conditions. In contrast to most optoelectronic devices, the emission rate steadily increases with the device temperature achieving of more than 100 Mcount s‑1 at 500 K, which is highly advantageous for practical applications. These results demonstrate the potential of color centers in diamond as electrically driven non-classical light emitters and provide a foundation for the design and development of single-photon sources for optical quantum computation and quantum communication networks operating at room and higher temperatures.

  7. Wavelength-tunable sources of entangled photons interfaced with atomic vapours.

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Wildmann, Johannes S; Piredda, Giovanni; Reindl, Marcus; Schimpf, Christian; Zallo, Eugenio; Stroj, Sandra; Edlinger, Johannes; Rastelli, Armando

    2016-01-01

    The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices. PMID:26815609

  8. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency

    Science.gov (United States)

    Schlehahn, A.; Thoma, A.; Munnelly, P.; Kamp, M.; Höfling, S.; Heindel, T.; Schneider, C.; Reitzenstein, S.

    2016-04-01

    We report on an electrically driven efficient source of indistinguishable photons operated at pulse-repetition rates f up to 1.2 GHz. The quantum light source is based on a p-i-n-doped micropillar cavity with integrated self-organized quantum dots, which exploits cavity quantum electrodynamics effects in the weak coupling regime to enhance the emission of a single quantum emitter coupled to the cavity mode. We achieve an overall single-photon extraction efficiency of (61 ± 11) % for a device triggered electrically at f = 625 MHz. Analyzing the suppression of multi-photon emission events as a function of excitation repetition rate, we observe single-photon emission associated with g(2)HBT(0) values between 0.076 and 0.227 for f ranging from 373 MHz to 1.2 GHz. Hong-Ou-Mandel-type two-photon interference experiments under pulsed current injection at 487 MHz reveal a photon-indistinguishability of (41.1 ± 9.5) % at a single-photon emission rate of (92 ± 23) MHz.

  9. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%

  10. Advances in explosives analysis--part II: photon and neutron methods.

    Science.gov (United States)

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons. PMID:26446898

  11. Quantum Optics with Quantum Dots in Photonic Wires: Basics and Application to “Ultrabright” Single Photon Sources

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.;

    2011-01-01

    We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire (PW) geometry for quantum optics experiments with solid-state emitters, and for quantum optoelectronic devices. By studying single InAs QDs embedded within single-mode cylindrical GaAs PW......, we have noticeably observed a very strong (16 fold) inhibition of their spontaneous emission rate in the thin-wire limit, and a nearly perfect funnelling of their spontaneous emission into the guided mode for larger PWs. We present a novel single -photon-source based on the emission of a quantum dot....... Numerical simulations show that an efficiency higher than 0.9 can be obtained for optimized structures, under either optical or electrical pumping....

  12. Retarded/Advanced Correlation Functions and Soft Photon Production in the Hard Loop Approximation

    OpenAIRE

    Aurenche, P.; Becherrawy, T.; Petitgirard, E.

    1994-01-01

    We apply the retarded/advanced formalism of real time field theory to the QED or QED like case. We obtain a general expression for the imaginary part of the two-point correlation function in terms of discontinuities. The hard loop expansion is derived. The formalism is used to extract the divergent part of the soft fermion loop contribution to the real soft photon production.

  13. Technology development for a single-photon source

    International Nuclear Information System (INIS)

    m to 1.5 μm was obtained. To achieve high collection efficiency, the quantum dots should be embedded into photonic crystals. An ArCl2-etch-process was developed which enables the etch of small features in AlxGayIn1-x-yAs material system to transfer the Si3N4-pattern into the semiconductor. Using this process the fabricated photonic crystals with L3-cavities had Q-factors around 2200. Any concept using a cavity needs a mechanism to control the frequency-detuning between the mode and the quantum dots, due to the inhomogeneous frequency broadening of the quantum dots. Thus an in-situ tuning mechanism is required for adjusting the emission wavelength of the quantum dot or cavity mode, respectively. This concept intents to use the quantum confined Stark effect (QCSE) to force the emission of a single photon out of a quantum dot into the photonic crystal mode. This is realized using a reversed biased Schottky contact to cause a red-shift of the emission of a single quantum dot. Electroluminescence measurements on the device show, that even with very low currents of 14.5 μA the saturation intensity of single quantum dots could be reached. (orig.)

  14. Precision linac and laser technologies for nuclear photonics gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Hartemann, F. V.; Anderson, S. G.; Cross, R. R.; Gibson, D. J.; Hall, J.; Marsh, R. A.; Messerly, M.; Wu, S. S.; Siders, C. W.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East Avenue, Livermore, California 94550 (United States)

    2012-05-15

    Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratory is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.

  15. Tuneable on-demand single-photon source in the microwave range.

    Science.gov (United States)

    Peng, Z H; de Graaf, S E; Tsai, J S; Astafiev, O V

    2016-01-01

    An on-demand single-photon source is a key element in a series of prospective quantum technologies and applications. Here we demonstrate the operation of a tuneable on-demand microwave photon source based on a fully controllable superconducting artificial atom strongly coupled to an open-ended transmission line. The atom emits a photon upon excitation by a short microwave π-pulse applied through a control line. The intrinsically limited device efficiency is estimated to be in the range 65-80% in a wide frequency range from 7.75 to 10.5 GHz continuously tuned by an external magnetic field. The actual demonstrated efficiency is also affected by the excited state preparation, which is about 90% in our experiments. The single-photon generation from the single-photon source is additionally confirmed by anti-bunching in the second-order correlation function. The source may have important applications in quantum communication, quantum information processing and sensing. PMID:27545689

  16. A micrometer-scale integrated silicon source of time-energy entangled photons

    CERN Document Server

    Grassani, Davide; Liscidini, Marco; Galli, Matteo; Strain, Michael J; Sorel, Marc; Sipe, J E; Bajoni, Daniele

    2014-01-01

    Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip but the sources demonstrated so far require millimeter lengths and pump powers of the order of hundreds of mWs to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been demonstrated. Here we report the first demonstration of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell's inequality by as much as 11 standard deviations. The source is integrated on a silicon chip, operates at sub-mW pump power, emits in the telecom band with a pair generation rate exceeding 10$^7$ Hz per $nm$, and outputs into a photonic waveguide. These are all essential features of an entangled states emitter for a quantum photonic networks.

  17. Survey, alignment, and beam stability at the Advanced Light Source

    International Nuclear Information System (INIS)

    This paper describes survey and alignment at the Lawrence Berkeley Laboratories Advanced Light Source (ALS) accelerators from 1993 to 1997. The ALS is a third generation light source requiring magnet alignment to within 150 microns. To accomplish this, a network of monuments was established and maintained. Monthly elevation surveys show the movement of the floor over time. Inclinometers have recently been employed to give real time information about magnet, vacuum tank and magnet girder motion in the ALS storage ring

  18. Photonic crystal fibre-based light source for STED lithography

    Energy Technology Data Exchange (ETDEWEB)

    Glubokov, D A; Sychev, V V; Vitukhnovsky, Alexey G; Korol' kov, A E

    2013-06-30

    A light source having a relative noise level in the order of 10{sup -6} and sufficient stability for application in STED lithography has been obtained using the generation of Cherenkov peaks in a supercontinuum spectrum. (laser applications and other topics in quantum electronics)

  19. Measurement of anisotropic angular distributions of photon energy spectra for I-125 brachytherapy sources

    International Nuclear Information System (INIS)

    The angular distribution of photon energy spectra emitted from an I-125 brachytherapy source was measured using a specially designed jig in the range of ±70° in the plane of the long axis of the source. It is important to investigate the angular dependence of photon emissions from these sources for the calibration of the air kerma rate. The results show that the influence of the distributions between 0° and ±8° is small enough to allow a calibration using current primary instruments which have a large entrance window. - Highlights: ► Angular energy distribution for an I-125 brachytherapy source was measured. ► Variation of the distribution is sufficiently small. ► It is acceptable for primary calibration of the source strength. ► Distributions should be taken into consideration in some instruments.

  20. Photon neutron mixed-beam radiotherapy of locally advanced prostate cancer

    International Nuclear Information System (INIS)

    Purpose: In this article we present the results of mixed-beam, photon/neutron radiation therapy in 45 patients with locally advanced, bulky, or postoperative recurrent prostate cancer treated at the University of Chicago between 1978 and 1991. Survival, disease-free survival, local control, and long-term complications are analyzed in detail. Methods and Materials: Between 1978 and 1991, 45 patients with locally advanced (> 5 cm Stage B2, Stage C, or Stage D1) prostate cancer underwent mixed-beam (photon/neutron) radiation therapy. Forty percent of the treatment was delivered with neutron irradiation at either the University of Chicago or Fermilab. Sixty percent of treatment was delivered with photons at the University of Chicago. Initially, the whole pelvis was irradiated to 50 photon Gy equivalent. This was followed by a boost to the prostate for an additional 20 photon Gy equivalent. Results: The median follow-up for patients in this series is 72 months. The overall 5-year actuarial survival was 72%, and the 5-year disease-free survival was 45%. Thus far, 18 patients have died. Eleven patients have died from prostate cancer and 7 from other medical illness. Twenty-seven patients are alive, and 12 of these patients have recurrent and or metastatic disease. The local control rate was 89% (40 out of 45). Histologic material was available on 18 patients following treatment (i.e., prostate biopsy in 16 patients and autopsy in 2 patients) and was negative for carcinoma in 13 (72%). Significant Grade 3-5 complications occurred in 36% (16 out of 45) of the patients treated with mixed-beam radiation therapy and were related to dose and beam quality. Factors related to survival, disease-free survival, local control, and complications are analyzed. Conclusions: The survival and local control results of mixed-beam radiation therapy at the University of Chicago appear to be superior to those series using photon radiation in patients with locally advanced prostate carcinoma

  1. Effect of temperature and phonons on the spectral properties of a multi-level semiconductor quantum dot single-photon source

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter; Mørk, Jesper

    2009-01-01

    Since it was realized that efficient quantum computing can be performed using single photons and standard linear optics elements, immense international research activity has been aimed at developing semiconductor quantum dot (QD) single-photon sources (SPS). In order to optimise the design of SPS...... for high efficiency as well as increase the understanding of the physics, advanced and accurate models are needed that describes the complex solid-state environment the SPS is part of. This paper investigates a many-body model of a SPS based on the non-equilibrium Green's function formalism (NEGF...

  2. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  3. Advanced light source, User`s Handbook, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Advanced Light Source (ALS) is a national facility for scientific research and development located at the Lawrence Berkeley National Laboratory (LBNL) of the University of California. Its purpose is to generate beams of very bright light in the ultraviolet and soft x-ray regions of the spectrum. The facility is open to researchers from industry, universities, and government laboratories.

  4. Measurement of storage ring motion at the advanced light source

    International Nuclear Information System (INIS)

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions

  5. Advanced Light Source Activity Report 1997/1998

    International Nuclear Information System (INIS)

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year

  6. Advanced Light Source Activity Report 1997/1998

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Annette (ed.)

    1999-03-01

    This Lawrence Berkeley National Laboratory, Advanced Light Source (ALS) activity report for 1997/98 discusses the following topics: Introduction and Overview; Science Highlights; Facility Report; Special Events; ALS Advisory Panels 1997/98; ALS Staff 1997/98 and Facts and Figures for the year.

  7. Economic analysis of the need for advanced power sources

    International Nuclear Information System (INIS)

    The purpose of this paper is to determine the economic need for an advanced power source, be it fusion, solar, or some other concept. However, calculations were also performed assuming abandonment of the LMFBR program, so breeder benefits are a by-product of this study. The model used was the ALPS linear programming system for forecasting optimum power growth patterns. Total power costs were calculated over a planning horizon from 1975 to 2041 and discounted at 71/2 percent. The benefit of a particular advanced power source is simply the reduction in total power cost resulting from its introduction. Since data concerning advanced power sources (APS) are speculative, parametric calculations varying introduction dates and capital costs about a hypothetical APS plant were performed. Calculations were also performed without the LMFBR to determine the effect of the breeder on the benefits of an advanced power source. Other data used in the study, such as the energy demand curve and uranium resource estimates, are given in the Appendix, and a list of the 11 power plants used in this study is given. Calculations were performed for APS introduction dates of 2001 and 2011. Estimates of APS capital costs included cases where it was assumed the costs were $50/kW and $25/kW higher than the LMFBR. In addition, cases where APS and LMFBR capital costs are identical were also considered. It is noted that the APS capital costs used in this study are not estimates of potential advanced power system plant costs, but were chosen to compute potential dollar benefits of advanced power systems under extremely optimistic assumptions. As a further example, all APS fuel cycle costs were assumed to be zero

  8. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  9. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  10. Photon-monitoring attack on continuous-variable quantum key distribution with source in middle

    Science.gov (United States)

    Wang, Yijun; Huang, Peng; Guo, Ying; Huang, Dazu

    2014-12-01

    Motivated by a fact that the non-Gaussian operation may increase entanglement of an entangled system, we suggest a photon-monitoring attack strategy in the entanglement-based (EB) continuous-variable quantum key distribution (CVQKD) using the photon subtraction operations, where the entangled source originates from the center instead of one of the legal participants. It shows that an eavesdropper, Eve, can steal large information from participants after intercepting the partial beams with the photon-monitoring attach strategy. The structure of the proposed CVQKD protocol is useful in simply analyzing how quantum loss in imperfect channels can decrease the performance of the CVQKD protocol. The proposed attack strategy can be implemented under current technology, where a newly developed and versatile no-Gaussian operation can be well employed with the entangled source in middle in order to access to mass information in the EB CVQKD protocol, as well as in the prepare-and-measure (PM) CVQKD protocol.

  11. On demand single photon source using a nanoscale metal-insulator-semiconductor capacitor

    CERN Document Server

    Hu, B; Yang, M J; Hu, Binhui

    2005-01-01

    We propose an on-demand single photon source for quantum cryptography using a metal-insulator-semiconductor quantum dot capacitor structure. The main component in the semiconductor is a p-doped quantum well, and the cylindrical gate under consideration is only nanometers in diameter. As in conventional metal-insulator-semiconductor capacitors, our system can also be biased into the inversion regime. However, due to the small gate area, at the onset of inversion there are only a few electrons residing in a quantum dot. In addition, because of the strong size quantization and large Coulomb energy, the number of electrons can be precisely controlled by the gate voltage. After holding just one electron in the inversion layer, the capacitor is quickly biased back to the flat band condition, and the subsequent radiative recombination across the bandgap results in single photon emission. We present numerical simulation results of a semiconductor heterojunction and discuss the merits of this single photon source.

  12. Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation

    CERN Document Server

    Rashidinejad, Amir; Weiner, Andrew M

    2015-01-01

    This paper reviews recent advances in photonic-assisted radio-frequency arbitrary waveform generation (RF-AWG), with emphasis on programmable ultrabroadband microwave and millimeter-wave waveforms. The key enabling components in these techniques are programmable optical pulse shaping, frequency-to-time mapping via dispersive propagation, and high-speed photodetection. The main advantages and challenges of several different photonic RF-AWG schemes are discussed. We further review some proof-of-concept demonstrations of ultrabroadband RF-AWG applications, including high-resolution ranging and ultrabroadband non-line-of-sight channel compensation. Finally, we present recent progress toward RF-AWG with increased time aperture and time-bandwidth product.

  13. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  14. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations

  15. Properties of microplasmas excited by microwaves for VUV photon sources

    Science.gov (United States)

    Cooley, James E.; Urdahl, Randall; Xue, Jun; Denning, Mark; Tian, Peng; Kushner, Mark J.

    2015-12-01

    Microplasma sources typically take advantage of pd (pressure  ×  size) scaling by increasing pressure to operate at dimensions as small as tens of microns. In many applications, low pressure operation is desirable, which makes miniaturization difficult. In this paper, the characteristics of low pressure microplasma sources excited by microwave power are discussed based on results from experimental and computational studies. The intended application is production of VUV radiation for chemical analysis, and so emphasis in this study is on the production of resonant excited states of rare gases and radiation transport. The systems of interest operate at a few to 10 Torr in Ar and He/Ar mixtures with cavity dimensions of hundreds of microns to 1 mm. Power deposition is a few watts which produces fractional ionization of about 0.1%. We found that production of VUV radiation from argon microplasmas at 104.8 nm and 106.7 nm saturates as a function of power deposition due to a quasi-equilibrium that is established between the electron temperature (that is not terribly sensitive to power deposition) and the population of the Ar(4s) manifold.

  16. High intensity polarization entangled source with a 2D nonlinear photonic crystal

    DEFF Research Database (Denmark)

    Wang, Qin

    2009-01-01

    We gave a proposal on how to use a piece of two-dimension (2D) nonlinear photonic crystal to generate a polarization entangled source. It provides not only has a high stability, but also a high entangled quality and a high intensity. Moreover, our scheme involves only practical experimental...... conditions and setup. Therefore, it has a potential application in quantum information field...

  17. Laser processing of photonic and microelectronic components using multiple visible and UV wavelength source

    Science.gov (United States)

    Illy, Elizabeth K.; Rutterford, Graham; Knowles, Martyn R. H.

    2003-07-01

    Laser processing using a multiple visible and UV wavelength copper laser source is presented with particular emphasis on photonic and microelectronic applications. Visible micromachining of ceramics and diamond are discussed in addition to UV micromachining/microfabrication of germanium doped silica, sapphire and kapton.

  18. Quantum-tomographic cryptography with a semiconductor single-photon source

    International Nuclear Information System (INIS)

    We analyze the security of so-called quantum-tomographic cryptography with the source producing entangled photons via an experimental scheme proposed by Fattal et al. [Phys. Rev. Lett. 92, 37903 (2004)]. We determine the range of the experimental parameters for which the protocol is secure against the most general incoherent attacks

  19. Faint laser pulses versus a single-photon source in free space quantum cryptography

    Science.gov (United States)

    Molotkov, S. N.; Potapova, T. A.

    2016-03-01

    In this letter we present estimates for the distance of secret key transmission through free space for three different protocols of quantum key distribution: for BB84 and phase time-coding protocols in the case of a strictly single-photon source, and for the relativistic quantum key distribution protocol in the case of faint laser pulses.

  20. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  1. Photon activation therapy: a Monte Carlo study on dose enhancement by various sources and activation media

    International Nuclear Information System (INIS)

    In the present study, a number of brachytherapy sources and activation media were simulated using MCNPX code and the results were analyzed based on the dose enhancement factor values. Furthermore, two new brachytherapy sources (131Cs and a hypothetical 170Tm) were evaluated for their application in photon activation therapy (PAT). 125I, 103Pd, 131Cs and hypothetical 170Tm brachytherapy sources were simulated in water and their dose rate constant and the radial dose functions were compared with previously published data. The sources were then simulated in a soft tissue phantom which was composed of Ag, I, Pt or Au as activation media uniformly distributed in the tumour volume. These simulations were performed using the MCNPX code, and dose enhancement factor (DEF) was obtained for 7, 18 and 30 mg/ml concentrations of the activation media. Each source, activation medium and concentration was evaluated separately in a separate simulation. The calculated dose rate constant and radial dose functions were in agreement with the published data for the aforementioned sources. The maximum DEF was found to be 5.58 for a combination of the 170Tm source with 30 mg/ml concentration of I. The DEFs for 131Cs and 170Tm sources for all the four activation media were higher than those for other sources and activation media. From this point of view, these two sources can be more useful in photon activation therapy with photon emitter sources. Furthermore, 131Cs and 170Tm brachytherapy sources can be proposed as new options for use in the field of PAT.

  2. Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip

    International Nuclear Information System (INIS)

    We report on the demonstration of correlated photon pair generation in a quasi-phase-matched superlattice GaAs/AlGaAs waveguide using a continuous-wave pump. Our photon pair source has a low noise level and achieves a high coincidence-to-accidental ratio greater than 100, which is the highest value reported in III–V chips so far. This correlated photon pair source has the potential to be monolithically integrated with on-chip pump laser sources fabricated on the same superlattice wafer structure, enabling direct correlated/entangled photon pair production from a compact electrically powered chip

  3. Plasmonic resonators for enhanced diamond NV- center single photon sources

    CERN Document Server

    Bulu, Irfan; Hausmann, Birgit; Choy, Jennifer T; Loncar, Marko

    2011-01-01

    We propose a novel source of non-classical light consisting of plasmonic aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV) color center. Theoretical calculations of optimal structures show that these devices can simultaneously enhance optical pumping by a factor of 7, spontaneous emission rates by Fp ~ 50 (Purcell factor), and offer collection efficiencies up to 40%. These excitation and collection enhancements occur over a broad range of wavelengths (~30nm), and are independently tunable with device geometry, across the excitation (~530nm) and emission (~600-800nm) spectrum of the NV center. Implementing this system with top-down techniques in bulk diamond crystals will provide a scalable architecture for a myriad of diamond NV center applications.

  4. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    Science.gov (United States)

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-01

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom. PMID:27137611

  5. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  6. Soft x-ray spectromicroscopy development for materials science at the Advanced Light Source

    International Nuclear Information System (INIS)

    Several third generation synchrotron radiation facilities are now operational and the high brightness of these photon sources offers new opportunities for x-ray microscopy. Well developed synchrotron radiation spectroscopy techniques are being applied in new instruments capable of imaging the surface of a material with a spatial resolution smaller than one micron. There are two aspects to this. One is to further the field of surface science by exploring the effects of spatial variations across a surface on a scale not previously accessible to x-ray measurements. The other is to open up new analytical techniques in materials science using x-rays, on a spatial scale comparable to that of the processes or devices to be studied. The development of the spectromicroscopy program at the Advanced Light Source will employ a variety of instruments, some are already operational. Their development and use will be discussed, and recent results will be presented to illustrate their capabilities

  7. A high-brightness source of polarization-entangled photons optimized for applications in free space

    CERN Document Server

    Steinlechner, Fabian; Jofre, Marc; Weier, Henning; Perez, Daniel; Jennewein, Thomas; Ursin, Rupert; Rarity, John; Mitchell, Morgan W; Torres, Juan P; Weinfurter, Harald; Pruneri, Valerio; 10.1364/OE.20.009640

    2012-01-01

    We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.

  8. Specific absorbed fractions of energy at various ages from internal photon sources: 6, Newborn

    International Nuclear Information System (INIS)

    Specific absorbed fraction (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for a newborn or 3.4-kg person. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  9. Specific absorbed fractions of energy at various ages from internal photon sources: 7, Adult male

    International Nuclear Information System (INIS)

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. In this volume PHI-values are tabulated for an adult male (70-kg Reference Man). These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with other methods at photon energies below 200 keV. 12 refs., 2 tabs

  10. Specific absorbed fractions of energy at various ages from internal photon sources: 1, Methods

    International Nuclear Information System (INIS)

    Specific absorbed fractions (PHI's) in various organs of the body (target organs) from sources of monoenergetic photons in various other organs (source organs) are tabulated. This volume outlines various methods used to compute the PHI-values and describes how the ''best'' estimates recommended by us are chosen. These PHI-values can be used in calculating the photon component of the dose-equivalent rate in a given target organ from a given radionuclide that is present in a given source organ. The International Commission on Radiological Protection recognizes that the endosteal, or bone surface, cells are the tissue at risk for bone cancer. We have applied the dosimetry methods that Spiers and co-workers developed for beta-emitting radionuclides deposited in bone to follow the transport of secondary electrons that were freed by photon interactions through the microscopic structure of the skeleton. With these methods we can estimate PHI in the endosteal cells and can better estimate PHI in the active marrow; the latter is overestimated with the methods at photon energies below 200 keV. 41 refs., 25 figs., 23 tabs

  11. Influences of source dispalcement on the features of subwavelength imaging of a photonic crystal slab

    CERN Document Server

    Luan, Pi-Gang; Yeh, Hsiao-Yu

    2010-01-01

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square- and triangular-lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on the imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double-image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  12. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab.

    Science.gov (United States)

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu

    2011-01-26

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability. PMID:21406862

  13. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu [Wave Engineering Laboratory, Department of Optics and Photonics, National Central University, Jhungli 320, Taiwan (China)

    2011-01-26

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  14. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab

    International Nuclear Information System (INIS)

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  15. Professional development in photonics: the advanced technology education projects of the New England Board of Education

    Science.gov (United States)

    Donnelly, Judith; Hanes, Fenna; Massa, Nicholas

    2007-09-01

    Since 1995, the New England Board of Education (NEBHE) has been providing curriculum and professional development as well as laboratory improvement in optics/photonics to middle school and high school teachers and college faculty across the United States. With funding from the National Science Foundation's Advanced Technology Education program, NEBHE's optics/photonics education projects have created a national network of educational and industry alliances resulting in opportunities in optics and photonics for students at participating schools and colleges. The cornerstone of NEBHE projects is collaboration among educational levels, career counselors and teachers/faculty, and industry and academia. In such a rich atmosphere of cooperation, participants have been encouraged to create their own regional projects and activities involving students from middle school through four-year universities. In this paper we will describe the evolution of teacher/faculty professional development from a traditional week-long summer workshop to a collaborative distance learning laboratory course based on adult learning principles and supported by a national network of industry mentors.

  16. Elliptically polarizing undulator beamlines at the Advanced Light Source

    International Nuclear Information System (INIS)

    Circular polarization insertion devices and beamlines at the Advanced Light Source are described. The facility will consist of multiple undulators feeding two independent beamlines, one optimized for microscopy and the other for spectroscopy. The energy range of the beamlines will go from below 100 eV to 1,800 eV, enabling studies of the magnetically important L2,3 edges of transition metals and the M4,5 edges of rare earths

  17. Elliptically polarizing undulator beamlines at the Advanced Light Source

    International Nuclear Information System (INIS)

    Circular polarization insertion devices and beamlines at the Advanced Light Source are described. The facility will consist of multiple undulators feeding two independent beamlines, one optimized for microscopy and the other for spectroscopy. The energy range of the beamlines will go from below 100 eV to 1800 eV, enabling studies of the magnetically important L2,3 edges of transition metals and the M4,5 edges of rare earths. copyright 1996 American Institute of Physics

  18. Boîtes quantiques II-VI comme sources de photons uniques

    Science.gov (United States)

    Couteau, C.; Moehl, S.; Tinjod, F.; Suffczynski, J.; Romestain, R.; Vial, J.-C.; Gérard, J.-M.; Kheng, K.; Poizat, J.-P.

    2004-11-01

    Dans le cadre de l'information et de la communication quantique, la nécessité d'avoir des photons uniques monomodes et à la demande se révèle cruciale. De récents travaux théoriques ont montré la possibilité de réaliser des portes logiques quantiques n'utilisant que de l'optique linéaire. C'est dans ce contexte que s'insère notre travail sur l'élaboration et l'utilisation de boîtes quantiques semi-conductrices II-VI comme “pistolet” à photons. Des expériences de dégroupement et d'interférences à 2 photons sont les premiers pas nécessaires pour caractériser notre source.

  19. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    Science.gov (United States)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  20. Efficient recycling strategies for preparing large Fock states from single-photon sources: Applications to quantum metrology

    Science.gov (United States)

    Motes, Keith R.; Mann, Ryan L.; Olson, Jonathan P.; Studer, Nicholas M.; Bergeron, E. Annelise; Gilchrist, Alexei; Dowling, Jonathan P.; Berry, Dominic W.; Rohde, Peter P.

    2016-07-01

    Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory.