WorldWideScience

Sample records for advanced nuclear power

  1. Advanced nuclear power plants in Korea

    International Nuclear Information System (INIS)

    Full text: Korea Hydro and Nuclear Power Co., Ltd (KHNP) is the largest power company among the six subsidiaries that separated from Korea Electric Power Corporation (KEPCO) in 2001, accounting for approximately 25% of electricity producing facilities, hydro and nuclear combined. KHNP operates 20 nuclear power plants in Kori, Yonggwang, Ulchin and Wolsong site and several hydroelectric power generation facilities, providing approximately 36% of the national power supply. As a major source of electricity generation in Korea, nuclear energy contributes greatly to the stability of national electricity supply and energy security. KHNP's commercial nuclear power plant operation, which started with Kori Unit 1 in 1978, has achieved an average capacity factor more than 90% since 2000 and a high record of 93.4% in 2008. Following the introduction of nuclear power plants in the 1970's, Korea accumulated its nuclear technology in the 1980's, developed OPR 1000(Optimized Power Reactor) and demonstrated advanced level of its nuclear technology capabilities in the 2000's by developing an advanced type reactor, APR 1400(Advanced Power Reactor) which is being constructed at Shin-Kori Unit 3 and 4 for the first time. By 2022, KHNP will construct additional 12 nuclear power plants in order to ensure a stable power supply according to the Government Plan of Long-Term Electricity supply and Demand. 4 units of OPR 1000 reactor model will be commissioned by 2013 and 8 units of APR 1400 are under construction and planned. At the end of 2022, the nuclear capacity will reach 33% share of total generation capacity in Korea and account for 48% of national power generation. (author)

  2. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  3. Role of advanced reactors in further nuclear power development

    International Nuclear Information System (INIS)

    As a part of the national long-term nuclear R and D program launched in 1992, an endeavor has been made in Korea to develop advanced nuclear reactor systems with significantly enhanced safety and economics from those of the current generation nuclear power plants. The advanced PWR nuclear reactor systems under development in Korea include 1300 MWe Korean Next Generation Reactor (KNGR), 330 MWt Integral Type System Integrated Modular Advanced Reactor (SMART) for nuclear cogeneration, and 330 MWe Korea Advanced Liquid Metal Reactor (KALIMER) in addition to the evolutionary enhancement of the 1000 MWt KSNPP (Korea Standard Nuclear Power Plant). Three point design philosophy has been adopted for the development of the advanced reactors in Korea : enhancements on safety, economics and public acceptance of nuclear power. To enhance the safety of the advanced reactor systems, a strategy has been adopted to employ advanced design features as well as the passive safety design features. Economically viable design concepts also have been implemented in the evolutionary KSNPP, KNGR, and the SMART development. Economic competitiveness against the fossil plants also has been set as a major objective of the ALWR development program in Korea. These safer and more economical advanced reactors will better promote the public acceptance of the commercial use of the nuclear power and thus could be utilized to meet the forecasted national energy need in the early 21st century. International cooperation in the areas of ALWR development as well as improving public acceptance of the nuclear power is required. (author)

  4. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  5. Recent advances in nuclear power plant simulation

    International Nuclear Information System (INIS)

    The field of industrial simulation has experienced very significant progress in recent years, and power plant simulation in particular has been an extremely active area. Improvements may be recorded in practically all simulator subsystems. In Europe, the construction of new full- or optimized-scope nuclear power plant simulators during the middle 1990's has been remarkable intense. In fact, it is possible to identify a distinct simulator generation, which constitutes a new de facto simulation standard. Thomson Training and Simulation has taken part in these developments by designing, building, and validation several of these new simulators for Dutch, German and French nuclear power plants. Their characteristics are discussed in this paper. The following main trends may be identified: Process modeling is clearly evolving towards obtaining engineering-grade performance, even under the added constraints of real-time operation and a very wide range of operating conditions to be covered; Massive use of modern graphic user interfaces (GUI) ensures an unprecedented flexibility and user-friendliness for the Instructor Station; The massive use of GUIs also allows the development of Trainee Stations (TS), which significantly enhance the in-depth training value of the simulators; The development of powerful Software Development Environments (SDE) enables the simulator maintenance teams to keep abreast of modifications carried out in the reference plants; Finally, simulator maintenance and its compliance with simulator fidelity requirements are greatly enhanced by integrated Configuration Management Systems (CMS). In conclusion, the power plant simulation field has attained a strong level of maturity, which benefits its approximately forty years of service to the power generation industry. (author)

  6. Advanced nuclear power plant solidification system

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, M. [Hitachi Ltd., Tokyo (Japan); Hirayama, S.; Nishi, T. [Hitachi Ltd., Ibaraki (Japan); Huang, C. T. [Institute of Nuclear Energy Research, Lungtan (Taiwan)

    2003-07-01

    'Slim-Rad' is an advanced radioactive waste treatment system reflecting Hitachi's long experience as a supplier of nuclear plants. The system utilizes new technologies such as a hollow fiber filter, high-performance cement solidification and laundry and shower drain treatment. By adopting this Slim-Rad system, not only the final waste volume but also the number of radwaste tanks can be reduced 1/8 and 1/2, respectively, compared with previous Hitachi radwaste treatment systems. Moreover, release of radioactivity into the environment from the treated waste is reduced effectively. This paper outlines the system and describes its features, as well as the features of the key technology such as volume reduction and solidification technology.

  7. Spanish program of advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    The energy Spanish Plan is promoting some actions within the area of advanced reactors. Efforts are focussed onto the European Program of Advanced Reactors, the Program of Passive Plants (EPRI), European Fast Reactor Project and the APWR-1000 Program of INI. Electrical sector utilities and industrial partners supported by the Administration have organized an steering committee. The program of Passive Plants includes activities on Qualification, design and detailed engineering (Qualification project, SBWR project of G.E. and AP600 Project of Westinghouse. The european project on advanced plants has the following Spanish contribution: Analysis of alternative Dossier on European requisites (EUR) and Design of an European Reactor (EPR)

  8. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  9. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  10. Cost estimate guidelines for advanced nuclear power technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R. II

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies.

  11. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  12. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  13. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  14. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  15. Overview of global development of advanced nuclear power plants

    International Nuclear Information System (INIS)

    Nuclear power has proven its viability as an energy source in many countries. Nuclear power technology is mature, and has achieved tremendous progress in the last decades. Like any other progressing technology, it continues to pursue improvements. The accumulated experience, which now exceeds 14,000 reactor-years of operation, is being used to develop advanced nuclear power plant designs. This development is proceeding for all reactor lines (water-cooled reactors, gas-cooled reactors, and liquid metal-cooled reactors) so that nuclear power can play an important and increasing role in global energy supply in the future. Improved economic competitiveness and a very high level of safety are common goals for advanced designs. To achieve economic competitiveness for new plants, proven means for achieving cost efficiency are being applied and new approaches are being pursued. There is also considerable potential for nuclear energy to expand beyond production of electricity to other applications such as sea-water desalination and hydrogen production. (author)

  16. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are a clear task related architecture with adaptable redundancy, a consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all function to initiated automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, advanced and likewise economical plant automation and man-machine-interfaces can be implemented into Nuclear Power Plant, assuring compliance with the relevant international safety standards. (author). 10 figs

  17. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  18. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  19. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  20. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally, specific requirements coming from the nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are the clear task related architecture with adaptable redundancy, the consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all functions to initiate automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, economical as well as advanced plant automation and man-machine-interfaces can be implemented into Nuclear Plants, assuring the compliance with the relevant international safety standards. (author). 10 figs

  1. Directions for advanced use of nuclear power in century XXI

    Energy Technology Data Exchange (ETDEWEB)

    Walter, C E

    1999-05-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take.

  2. Advanced interaction media in nuclear power plant control rooms.

    Science.gov (United States)

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  3. Recent advances in radiation monitoring systems for nuclear power stations

    International Nuclear Information System (INIS)

    Present projections indicate that by 1990 a minimum of 700 nuclear power stations will be in operation in at least 42 different countries. The health physics' profession is confronted, therefore, with a massive effort to control the radiological consequences of these operations. Regulations have been adopted or are being considered by the various governments to guide the health physicist. It is apparent that the necessary radiological measurements will become increasingly complex, require improved sensitivity and accuracy, increase in frequency, and demand more attention from the health physics staff. Computerized systems offer a cost-effective solution to keep these expanding requirements within manageable limits. The technology of computers, minicomputers and microcomputers is one of the most dynamic developments occurring in today's society. It has a history of doing 'more-for-less' as each new advancement reaches the commercial market. In the face of constant cost escalation in nuclear plant construction, the opportunity to provide more-for-less is a most welcome change. In anticipation of expanded radiological requirements and the availability of a compatible technology to meet them, the next step is to design and test a total system to be responsive to regulatory guidelines. Such a system will be described with appropriate emphases on both the data acquisition and data management subsystems. As the system evolves, it is logical to view its full purpose as a health physics operations center more than just another monitoring tool. Here the data vital to the decision-making processes are displayed rapidly and intelligently for interpretation by the operators. Overall, system design and operation should provide the health physicist with credible data to reflect favorably on the environmental and public acceptability of nuclear power

  4. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    Science.gov (United States)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  5. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  6. Development of expert evaluation system for advanced nuclear power stations

    International Nuclear Information System (INIS)

    The wheels of the nuclear power industry in China are going to roll on the fast rails soon: It is important to establish an expert evaluation system for optimally selecting new types of NPPs in the future based on scientific evaluation. Under such a background, an expert evaluation system is developed to evaluate Various types of NPPs for the following two decades by taking into account the advices of selected top specialists in Chinese nuclear power industry, and by adopting different evaluation methods. The evaluation system is designed to use the database-MS-SQL Server or Oracle for manipulating experts' knowledge and objective data for scaling NPPs by user-selected evaluation methods for evaluating NPPs. The system includes two subsystems: one is called the Data Management Module and the other called the Evaluation Arithmetic Module. The Data Management Module is used to manage expert knowledge in forms of item marks of the NPPs given by experts of nuclear engineering. The Evaluation Arithmetic Module is used to analyze and deal with the evaluation based on the data in the Database by certain designed evaluation method, and to provide the evaluation results. Based on the users' selection, the evaluation of the NPPs is processed, and the results can be dynamically listed in table or displayed in graphics. So it can be used as a consulting tool to help users make optimal selection of prospective NPPs. The system is developed in architecture of the mixture framework C/S(Client/Server) and B/S(Browse/Server), thus is safe, advanced, extensible and user- friendly. The present system is computer network based, so it can be used not only in personal PC and local network, but also in the Web Server which can be browsed by remote users. To develop such an evaluation system is an initiative R and D project in Chinese nuclear R and D activities. Although the evaluation system is far from perfect, however, the preliminary evaluation results produced by the evaluation

  7. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment a draft NUREG, NUREG-2104, Revision 0, ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water...

  8. Advanced nuclear power options: The driving forces and their results

    International Nuclear Information System (INIS)

    Successful nuclear power plant concepts must simultaneously demonstrate satisfactory performance in terms of both safety and economics. In order to be attractive to both electric utility companies and the public, such plants must produce economical electric energy consistent with a level of safety which is acceptable to both the public and the plant owner. Programs for reactor development worldwide can be classified according to whether the reactor concept pursues improved safety or improved economic performance as the primary objective. When improved safety is the primary goal, safety enters the solution of the design problem as a constraint which restricts the set of allowed solutions. Conversely, when improved economic performance is the primary goal it is allowed to be pursued only to an extent which is compatible with stringent safety requirements. The three major reactor coolants under consideration for future advanced reactor use are water, helium and sodium. Reactor development programs focused upon safety and upon economics using each coolant are being pursued worldwide. It is seen that the safety-oriented concepts are typically of lower capacity by approximately an order of magnitude, than the economics-oriented concepts. This is the result, in the former concept, of using less efficient, but more reliable, means of accomplishing essential safety functions. (author)

  9. Advanced surveillance of Resistance Temperature Detectors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Highlights: • A two time constant transfer function is proposed to describe the Resistance Temperature Detector dynamics. • One constant is only related to the inner dynamics whereas the other one is related to the process and to the inner dynamics. • The two time constants have been found in several RTDs from a Nuclear Power Plant. • A Monte Carlo simulation is used to properly adjust the sampling time to find both constants. - Abstract: The dynamic response of several RTDs located at the cold leg of a PWR has been studied. A theoretical model for the heat transfer between the RTDs and the surrounding fluid is derived. It proposes a two real poles transfer function. By means of noise analysis techniques in the time domain (autoregressive models) and the Dynamic Data System methodology, the two time constants of the system can be found. A Monte Carlo simulation is performed in order to choose the proper sampling time to obtain both constants. The two poles are found and they permit an advance in situ surveillance of the sensor response time and the sensor dynamics performance. One of the poles is related to the inner dynamics whereas the other one is linked to the process and the inner dynamics. So surveillance on the process and on the inner dynamics can be distinguished

  10. Framatome advanced nuclear power-benefits for our clients from the new company

    International Nuclear Information System (INIS)

    Framatome ANP (Advanced Nuclear Power) merges the complementary strengths of two global nuclear industry leaders Framatome and Siemens - offering clients the best technological solutions for safe, reliable and economical plant performance. With a combined workforce of 13,300 skilled individuals, Framatome ANP is now the nuclear industry's leading supplier. Serving as Original Equipment Manufacturer (OEM) for more than 90 reactors that provide about 30% of the world's total installed nuclear power capacity, our experienced resources remain focused on the local needs of individual clients, wherever in the world they may be. The Company main business used to be turnkey construction of complete Nuclear Power plants, BWR and PWR capabilities, heavy equipment manufacturing, comprehensive I and C capabilities, and also expertise and knowledge of VVER. Framatome ANP will benefit in all of its fields of activity of the experience gained through Framatome and Siemens' collaboration on the next generation reactor, the EPR, as well as on steam generators replacements and or modernization of VVER. Framatome ANP nuclear fuel designs for both PWR and BWR plants provide innovative features and world-leading performance. Framatome ANP is organized according a matrix organization with: - 4 Business Groups (Project and Engineering, Service, Nuclear Fuel, Mechanical Equipment) - 3 Regional Divisions (Framatome Advanced Nuclear Power S.A.S., France; Framatome Advanced Nuclear Power GmbH, Germany; Framatome Advanced Nuclear Power Inc., USA). By 30th January 2001 Siemens Nuclear Power GmbH, founded in 2000 as successor of the Nuclear Division of Siemens Power Generation Group (KWU), was renamed to Framatome Advanced Nuclear Power GmbH forming the German part of the world wide acting company. Over the past 40 years 23 nuclear power plants all around the world - not only pressurized and boiling water reactors, but also two heavy-watermoderated reactors have been designed, constructed and

  11. Advances in Nuclear Power Technology : The U. S. Perspective

    International Nuclear Information System (INIS)

    Two months prior to signing the Atomic Energy Act of 1946, President Truman sent the following message to Congress : 'The hope of civilization lies in international arrangements (for) directing and encouraging the use of atomic energy and all future scientific information toward peaceful and humanitarian ends....' However, it took seven years of negotiations and compromises in the U. S. Congress, in international conferences, and in the United Nations before a meaningful framework for cooperation among nations could be established. Not until December 8, 1953, when President Eisenhower delivered his famous 'Atoms for Peace' speech before the United Nations General Assembly, was a plan for international nuclear cooperation delivered. With this initiative, the United States began an ambitious, and ultimately successful, program to promote the peaceful uses of nuclear technology. Today, over 400 nuclear power plants are in operation in 26 countries. Nuclear power can generate nearly 300,000 megawatts. This is a truly remarkable accomplishment

  12. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  13. Siemens' steam turbine generator packages for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Despite the current economic crisis and the increasing share of renewable energy, the long term perspective predicts an increasing global demand for nuclear power generation applications. [1] In response to the growing demand for new nuclear power plants (NPPs), Siemens is implementing and further developing a modular platform of half speed steam turbines and generators covering the most relevant power range from 1000 - 1900 MWe. The paper presents details of the Siemens' Steam Turbine Generator Packages (turboset - Fig. 1) consisting of: Modular Steam Turbine Platform: SST-9000 series 4 pole turbo generator fleet SGEN5-4000W The design of the turbosets for NPPs is based on excellent operational experience with Siemens KONVOI saturated steam turbosets together with service and retrofit experience as well as on experience gained during the project execution of the world largest turboset in Olkiluoto 3. (orig.)

  14. Nuclear power

    International Nuclear Information System (INIS)

    The committee concludes that the nature of the proliferation problem is such that even stopping nuclear power completely could not stop proliferation completely. Countries can acquire nuclear weapons by means independent of commercial nuclear power. It is reasonable to suppose if a country is strongly motivated to acquire nuclear weapons, it will have them by 2010, or soon thereafter, no matter how nuclear power is managed in the meantime. Unilateral and international diplomatic measures to reduce the motivations that lead to proliferation should be high on the foreign policy agenda of the United States. A mimimum antiproliferation prescription for the management of nuclear power is to try to raise the political barriers against proliferation through misuse of nuclear power by strengthening the Non-Proliferation Treaty, and to seek to raise the technological barriers by placing fuel-cycle operations involving weapons-usable material under international control. Any such measures should be considered tactics to slow the spread of nuclear weapons and thus earn time for the exercise of statesmanship. The committee concludes the following about technical factors that should be considered in formulating nuclear policy: (1) rate of growth of electricity use is a primary factor; (2) growth of conventional nuclear power will be limited by producibility of domestic uranium sources; (3) greater contribution of nuclear power beyond 400 GWe past the year 2000 can only be supported by advanced reactor systems; and (4) several different breeder reactors could serve in principle as candidates for an indefinitely sustainable source of energy

  15. Advanced I and C systems for nuclear power plants feedback of experience

    International Nuclear Information System (INIS)

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS.(author)

  16. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI's East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost

  17. Development of advanced RFID application system for nuclear power plant

    International Nuclear Information System (INIS)

    In late years there comes to be close request for traceability of the information such as production control, construction and maintenance record and work history of nuclear power plants. On the other hand, the Radio-frequency identification (RFID) technology that can specify a product and personnel by an electric wave has raised the functionality and versatility as the base technology that can support ubiquitous information society around the mass production industry. In such a background, this article described the developed system, which applied the RFID to nuclear power plants in the areas of production control of the piping manufacture, the construction management and condition monitoring for maintenance works in order to improve their quality and reliability. (T. Tanaka)

  18. South Ukraine Nuclear Power Plant. Advanced Computer Information System Project

    International Nuclear Information System (INIS)

    The South Ukraine upgrade is the first of many that will take place in the former eastern bloc countries over the next several years. Westron is currently developing a similar system for the Zaporozhe nuclear power plant. In addition, there are eleven other WWER type units in operation in the Ukraine, as well as twenty seven others in operation throughout Eastern and Central Europe and Russia - all potential upgrade projects. (author)

  19. National project : advanced robot for nuclear power plant

    International Nuclear Information System (INIS)

    The national project 'Advanced Robot' has been promoted by the Agency of Industrial science and Technology, MITI for eight years since 1983. The robot for a nuclear plant is one of the projects, and is a prototype intelligent one that also has a three dimensional vision system to generate an environmental model, a quadrupedal walking mechanism to work on stairs and four fingered manipulators to disassemble a valve with a hand tool. Many basic technologies such as an actuator, a tactile sensor, autonomous control and so on progress to high level. The prototype robot succeeded functionally in official demonstration in 1990. More refining such as downsizing and higher intelligence is necessary to realize a commercial robot, while basic technologies are useful to improve conventional robots and systems. This paper presents application studies on the advanced robot technologies. (author)

  20. New advanced small and medium nuclear power reactors: possible nuclear power plants for Australia

    International Nuclear Information System (INIS)

    In recent years interest has increased in small and medium sized nuclear power reactors for generating electricity and process heat. This interest has been driven by a desire to reduce capital costs, construction times and interest during construction, service remote sites and ease integration into small grids. The IAEA has recommended that the term 'small' be applied to reactors with a net electrical output less than 300 MWe and the term 'medium' to 300-700 MWe. A large amount of experience has been gained over 50 years in the design, construction and operation of small and medium nuclear power reactors. Historically, 100% of commercial reactors were in these categories in 1951-1960, reducing to 21% in 1991-2000. The technologies involved include pressurised water reactors, boiling water reactors, high temperature gas-cooled reactors, liquid metal reactors and molten salt reactors. Details will be provided of two of the most promising new designs, the South African Pebble Bed Modular Reactor (PBMR) of about 110 MWe, and the IRIS (International Reactor Innovative and Secure) reactor of about 335 MWe. Their construction costs are estimated to be about US$l,000/kWe with a generating cost for the PBMR of about US1.6c/kWh. These costs are lower than estimated for the latest designs of large reactors such as the European Pressurised Reactor (EPR) designed for 1,600 MWe for use in Europe in the next decade. It is concluded that a small or medium nuclear power reactor system built in modules to follow an increasing demand could be attractive for generating low cost electricity in many Australian states and reduce problems arising from air pollution and greenhouse gas emissions from burning fossil fuels

  1. Advanced Nuclear Power Concepts for Human Exploration Missions

    International Nuclear Information System (INIS)

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over ∼2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters

  2. Proceedings of 2009 international congress on advances in nuclear power plants

    International Nuclear Information System (INIS)

    This CD-ROM is the collection of the paper presented at the 2009 International Congress on Advances in Nuclear Power Plants (ICAPP'09) . The 365 of the presented papers are indexed individually. (J.P.N.)

  3. Advanced maintenance, inspection & repair technology for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  4. Advancement on safety management system of nuclear power for safety and non-anxiety of society

    International Nuclear Information System (INIS)

    Advancement on safety management system is investigated to improve safety and non-anxiety of society for nuclear power, from the standpoint of human machine system research. First, the recent progress of R and D works of human machine interface technologies since 1980 s are reviewed and then the necessity of introducing a new approach to promote technical risk communication activity to foster safety culture in nuclear industries. Finally, a new concept of Offsite Operation and Maintenance Support Center (OMSC) is proposed as the core facility to assemble human resources and their expertise in all organizations of nuclear power, for enhancing safety and non-anxiety of society for nuclear power. (author)

  5. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  6. Advanced handbook for accident analyses of German nuclear power plants

    International Nuclear Information System (INIS)

    The advanced handbook of safety analyses (HSA) comprises a comprehensive electronic collection of knowledge for the compilation and conduction of safety analyses in the area of reactor, plant and containment behaviour as well as results of existing safety analyses (performed by GRS in the past) with characteristic specifications and further background information. In addition, know-how from the analysis software development and validation process is presented and relevant rules and regulations with regard to safety demonstration are provided. The HSA comprehensively covers the topic thermo-hydraulic safety analyses (except natural hazards, man-made hazards and malicious acts) for German pressurized and boiling water reactors for power and non-power operational states. In principle, the structure of the HSA-content represents the analytical approach utilized by safety analyses and applying the knowledge from safety analyses to technical support services. On the basis of a multilevel preparation of information to the topics ''compilation of safety analyses'', ''compilation of data bases'', ''assessment of safety analyses'', ''performed safety analyses'', ''rules and regulation'' and ''ATHLET-validation'' the HSA addresses users with different background, allowing them to enter the HSA at different levels. Moreover, the HSA serves as a reference book, which is designed future-oriented, freely configurable related to the content, completely integrated into the GRS internal portal and prepared to be used by a growing user group.

  7. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W. S.; Cha, H. R.; Ham, Y. S.; Lee, Y. G.; Kim, K. P.; Hong, Y. D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  8. Advancement of safeguards inspection technology for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  9. To MARS and Beyond with Nuclear Power - Design Concept of Korea Advanced Nuclear Thermal Engine Rocket

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The President Park of ROK has also expressed support for space program promotion, praising the success of NARO as evidence of a positive outlook. These events hint a strong signal that ROK's space program will be accelerated by the national eager desire. In this national eager desire for space program, the policymakers and the aerospace engineers need to pay attention to the advanced nuclear technology of ROK that is set to a major world nuclear energy country, even exporting the technology. The space nuclear application is a very much attractive option because its energy density is the most enormous among available energy sources in space. This paper presents the design concept of Korea Advanced Nuclear Thermal Engine Rocket (KANuTER) that is one of the advanced nuclear thermal rocket engine developing in Korea Advanced Institute of Science and Technology (KAIST) for space application. Solar system exploration relying on CRs suffers from long trip time and high cost. In this regard, nuclear propulsion is a very attractive option for that because of higher performance and already demonstrated technology. Although ROK was a late entrant into elite global space club, its prospect as a space racer is very bright because of the national eager desire and its advanced technology. Especially it is greatly meaningful that ROK has potential capability to launch its nuclear technology into space as a global nuclear energy leader and a soaring space adventurer. In this regard, KANuTER will be a kind of bridgehead for Korean space nuclear application.

  10. The Westinghouse AP600 -- An update on the advanced simplified nuclear power plant

    International Nuclear Information System (INIS)

    Today, government and industry are working together on advanced nuclear power plant designs that take advantage of valuable lessons learned from the experience to date and promise to reconcile the demands of economic expansion with the laws of environmental protection. In the U.S., the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) initiated a design certification program in 1989 to develop and commercialize advanced light water reactors (ALWRs) for the next round of power plant construction. Advanced, simplified technology is one approach under development to end the industry's search for a simpler, more forgiving, and less costly reactor. As part of this program, Westinghouse is developing the AP600, a new standard 600 MWe advanced, simplified plant. The design strikes a balance between the use of proven technology and new approaches. The result is a greatly streamlined plant that can meet safety regulations and reliability requirements, be economically competitive, and promote broader public confidence in nuclear energy

  11. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  12. Hiberarchy of requirement analysis of reactor protection system for advanced pressurized water reactor nuclear power plant

    International Nuclear Information System (INIS)

    In order to improve the security and the margin of safety of nuclear power plant, the research on requirement analysis of digital reactor protection system for advanced pressurized water reactor nuclear power plant was developed. Based on the known technology, a requirement analysis report was performed. A kind of three-levels pyramidal hierarchy was adopted in the requirement analysis, and the design characteristics of the requirement analysis were described in the analysis report. This hiberarchy can directly illuminate the design characters and logical achievement of the requirement analysis for advanced pressurized water reactor digital protection system. (authors)

  13. Reference Operational Concepts for Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  14. Advanced Control Structures of Turbo Generator System of Nuclear Power Plant

    OpenAIRE

    Paweł Sokólski; Karol Kulkowski; Anna Kobylarz; Kazimierz Duzinkiewicz; Tomasz A. Rutkowski; Michał Grochowski

    2015-01-01

    In the paper a synthesis of advanced control structures of turbine and synchronous generator for nuclear power plant working under changing operating conditions (supplied power level) is presented. It is based on the nonlinear models of the steam turbine and synchronous generator cooperating with the power system. The considered control structure consists of multi-regional fuzzy control systems with local linear controllers, including PID controllers, in particular control loops of turbine...

  15. Using the DSNP Modular Modeling System for the Safety Assessment of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    Advanced nuclear reactor concepts require even in their inception or preliminary conceptual design a safety assessment and a coupled neutronic-thermal hydraulic analysis. Often, such analyses cannot be performed with standard system analysis and simulation codes, because in most cases advanced reactor concepts, particularly in what is considered to be Gen-IV rectors, include unusual design features, which cannot be modeled with available simulation packages. The unusual features can be specially designed heat exchangers integrated in the core vessel wall, reactor vessel air cooling systems employing natural circulation phenomena, unusual fuel elements such as pebbles of different sizes and construction, fluidized bed fuel, exotic coolant such as led-bismuth eutectic for which special equations of state are needed, and accelerator driven systems with unique control features. The combination of new reactor components, fuels and coolants in advanced nuclear power plants require a specific modeling system such as the DSNP. (Dynamic Simulator for Nuclear Power-plants)

  16. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  17. Human Factors Engineering Review Model for advanced nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.; Higgins, J. [Brookhaven National Lab., Upton, NY (United States); Goodman, C.; Galletti, G.: Eckenrode, R. [Nuclear Regulatory Commission, Rockville, MD (United States)

    1993-05-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model`s rationale, scope, objectives, development, general characteristics. and application.

  18. Human Factors Engineering Review Model for advanced nuclear power reactors

    International Nuclear Information System (INIS)

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application

  19. Nuclear power

    International Nuclear Information System (INIS)

    The subject is covered in chapters entitled: nuclear power certainties and doubts; nuclear power in the Western World to 2000; the frequency of core meltdown accidents; hidden costs of the accident at Three Mile Island; costs of nuclear accidents - implications for reactor choice; defining the risks of nuclear power; the uncertain economics of a nuclear power program; the economics of enabling decisions (Sizewell B as an enabling decision); trade in nuclear electricity; some pointers to the future. (U.K.)

  20. The role of advanced nuclear power technologies in developing countries: Criteria and design requirements

    International Nuclear Information System (INIS)

    The document includes the papers presented at the following two technical committee meetings organized by the IAEA: Technical Committee Meeting and Workshop on Criteria for the Introduction of Advanced Nuclear Power Technologies for Specific Applications in Developing Countries, Vienna, 27-30 June 1988 (14 papers) and Technical Committee Meeting and Workshop on Design Requirements for the Application of Advanced Concepts in Developing Countries, Vienna, 6-9 December 1988 (16 papers). A separate abstract was prepared for each of these papers

  1. Incentives to strengthen international co-operation in R and D for advanced nuclear power technology

    International Nuclear Information System (INIS)

    This paper is concerned with the need for International Co-operation in R and D for Advanced Reactors in order to maintain options for the future deployment of nuclear power against the current background of declining R and D capability in Europe

  2. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion — Phase I

    Science.gov (United States)

    Frye, Patrick E.; Allen, Robert; Delventhal, Rex

    2005-02-01

    To investigate and mature space based nuclear power conversion technologies NASA awarded several contracts under Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC). The conceptual design effort performed included BPCS (Brayton power conversion system) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass (with a target of less than 3000 kg), and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to operate in the generic space environment and withstand the extreme environments within the Jovian system. The studies defined a BPCS design traceable to NBP (Nuclear Electric Propulsion) requirements and suitable for future potential missions with a sound technology plan for TRL (Technical Readiness Level) advancement identified. The studies assumed a turbine inlet temperature ˜ 100C above the current the state of the art capabilities with materials issues identified and an approach for resolution developed. Analyses and evaluations of six HRS (heat rejection subsystem) concepts and PMAD (Power Management and Distribution) architecture trades will be discussed in the paper.

  3. Advanced surveillance of resistance temperature detectors in nuclear power plants

    International Nuclear Information System (INIS)

    The dynamic response of several RTDs located at the cold leg of a PWR has been studied. A theoretical model for the heat transfer between the RTDs and the surrounding fluid is derived. It proposes a two real poles transfer function. By means of noise analysis techniques in the time domain (autoregressive models) and the Dynamic Data System methodology, the two time constants of the system can be found. A Monte Carlo simulation is performed in order to choose the proper sampling time to obtain both constants. The two poles are found and they permit an advance in situ surveillance of the sensor response time and the sensor dynamics performance. One of the poles is related to the inner dynamics whereas the other one is linked to the process and the inner dynamics. So surveillance on the process and on the inner dynamics can be distinguished. (author)

  4. Development and utilization of the NRC policy statement on the regulation of advanced nuclear power plants

    International Nuclear Information System (INIS)

    On March 26, 1985, the US Nuclear Regulatory Commission issued for public comment a ''Proposed Policy for Regulation of Advanced Nuclear Power Plants'' (50 FR 11884). This report presents and discusses the Commission's final version of that policy as titled and published on July 8, 1986 ''Regulation of Advanced Nuclear Power Plants, Statement of Policy'' (51 FR 24643). It provides an overview of comments received from the public, of the significant changes from the proposed Policy Statement to the final Policy Statement, and of the Commission's response to six questions contained in the proposed Policy Statement. The report also discusses the definition for advanced reactors, the establishment of an Advanced Reactors Group, the staff review approach and information needs, and the utilization of the Policy Statement in relation to other NRC programs, including the policies for safety goals, severe accidents and standardization. In addition, guidance for advanced reactors with respect to operating experience, technology development, foreign information and data, and prototype testing is provided. Finally, a discussion on the use of less prescriptive and nonprescriptive design criteria for advanced reactors, which the Policy Statement encourages, is presented

  5. Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tashakor, S. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Islamic Azad Univ., Shiraz (Iran, Islamic Republic of). Dept. of Nuclear Engineering; Zarifi, E. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School; Salehi, A.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Nuclear Energy

    2015-12-15

    The High-Performance Light Water Reactor (HPLWR) is the European version of the advance nuclear energy power plant at Supercritical-pressure. A light water reactor at supercritical pressure, being currently under design, is the new generation of nuclear reactors. The aim of this study is to predict the HPLWR neutronic behavior of the axial enrichment profile with an average enrichment of 5 w/o U-235. Neutronic calculations are performed using WIMS and CITATION codes. Changes in neutronic parameter, such as Power Peaking Factor (PPF) are discussed in this paper.

  6. Advanced nuclear power systems: Design, technology, safety and strategies for their deployment

    International Nuclear Information System (INIS)

    The objectives of the symposium were to provide high level decision makers with an overview of the discussion concerning the need for nuclear power and salient features of advanced nuclear power systems; a forum for discussing the design objectives and safety approaches for such systems and the views of regulatory bodies; a forum for identifying barriers to the deployment of these systems and for reviewing strategies to overcome these barriers; and a forum for reviewing options for international cooperation in the development and deployment of such systems. Refs, figs and tabs

  7. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    International Nuclear Information System (INIS)

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident

  8. Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06

    International Nuclear Information System (INIS)

    Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and

  9. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The goal of the Nonproliferation Alternative Systems Assessment Program has been to provide recommendations for the development and deployment of more proliferation-resistant civilian nuclear-power systems without jeopardizing the development of nuclear energy. In principle, new concepts for nuclear-power systems could be designed so that materials and facilities would be inherently more proliferation-resistant. Such advanced, i.e., less-developed systems, are the subject of this volume. Accordingly, from a number of advanced concepts that were proposed for evaluation, six representative concepts were selected: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor

  10. Nuclear power

    OpenAIRE

    Waller, David; McDonald, Alan; Greenwald, Judith; Mobbs, Paul

    2005-01-01

    David Waller and Alan McDonald ask whether a nuclear renaissance can be predicted; Judith M. Greenwald discusses keeping the nuclear power option open; Paul Mobbs considers the availability of uranium and the future of nuclear energy.

  11. Nuclear power

    International Nuclear Information System (INIS)

    This chapter discussed the following topics related to the nuclear power: nuclear reactions, nuclear reactors and its components - reactor fuel, fuel assembly, moderator, control system, coolants. The topics titled nuclear fuel cycle following subtopics are covered: , mining and milling, tailings, enrichment, fuel fabrication, reactor operations, radioactive waste and fuel reprocessing. Special topic on types of nuclear reactor highlighted the reactors for research, training, production, material testing and quite detail on reactors for electricity generation. Other related topics are also discussed: sustainability of nuclear power, renewable nuclear fuel, human capital, environmental friendly, emission free, impacts on global warming and air pollution, conservation and preservation, and future prospect of nuclear power

  12. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  13. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  14. Nuclear Power in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China’s vigorous efforts to propel development of nuclear power are paying off as the country’s nuclear power sector advances at an amazing pace. At present, China has set up three enormous nuclear power bases, one each in Qinshan of Zhejiang Province, Dayawan of Guangdong

  15. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  16. Development of advanced I and C in nuclear power plants: ADIOS and ASICS

    International Nuclear Information System (INIS)

    In this paper Automatic Startup Intelligent Control System (ASICS) that automatically controls the PWR plant from cold shutdown to 5% of reactor power and Alarm and Diagnosis-Integrated Operator Support System (ADIOS) that is integrated with alarms, process values, and diagnostic information to an expert system focused on alarm processing are described. Nuclear Power Plant is manually controlled from cold shutdown to 5% according to the general operation procedures for startup operation of nuclear power plant. Alarm information is the primary sources to detect abnormalities in nuclear power plants or other process plants. The conventional hardwired alarm systems, characterized by one sensor-one indicator may lead the control room operators to be confused with avalanching alarms during plant transients. ASICS and ADIOS are designed to reduce the operator burden. The advances in computer software and hardware technology and also in information processing provide a good opportunity to improve the control systems and the annunciator systems of nuclear power plants or other similar process plants. It is very important to test and evaluate the performance and the function of the computer- or software-based systems like ASICS and ADIOS. The performance and the function of ASICS and ADIOS are evaluated with the real-time functional test facility and the results have shown that the developed systems are efficient and useful for operation and operator support

  17. Development of advanced I and C in nuclear power plants: ADIOS and ASICS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Taek E-mail: jtkim@nanum.kaeri.re.kr; Kwon, Kee-Choon; Hwang, In-Koo; Lee, Dong-Young; Park, Won-Man; Kim, Jung-Soo; Lee, Sang-Jeong

    2001-07-01

    In this paper Automatic Startup Intelligent Control System (ASICS) that automatically controls the PWR plant from cold shutdown to 5% of reactor power and Alarm and Diagnosis-Integrated Operator Support System (ADIOS) that is integrated with alarms, process values, and diagnostic information to an expert system focused on alarm processing are described. Nuclear Power Plant is manually controlled from cold shutdown to 5% according to the general operation procedures for startup operation of nuclear power plant. Alarm information is the primary sources to detect abnormalities in nuclear power plants or other process plants. The conventional hardwired alarm systems, characterized by one sensor-one indicator may lead the control room operators to be confused with avalanching alarms during plant transients. ASICS and ADIOS are designed to reduce the operator burden. The advances in computer software and hardware technology and also in information processing provide a good opportunity to improve the control systems and the annunciator systems of nuclear power plants or other similar process plants. It is very important to test and evaluate the performance and the function of the computer- or software-based systems like ASICS and ADIOS. The performance and the function of ASICS and ADIOS are evaluated with the real-time functional test facility and the results have shown that the developed systems are efficient and useful for operation and operator support.

  18. Validation of BWR advanced core and fuel nuclear designs with power reactor measurements

    International Nuclear Information System (INIS)

    Power reactor measurements have been important in validating the reliability, performance characteristics and economics of BWR advanced core and fuel designs. Such measurements go beyond the data obtainable from normal reactor operation and provide detailed benchmark data necessary to verify design and licensing computer design and simulation models. In some cases, such as in the validation of the performance of zirconium barrier pellet-cladding-interaction (PCI) resistant cladding, the BWR power reactor measurements have subjected the advanced fuel design to operating conditions more severe than normal operating conditions, thereby providing nuclear-thermal-mechanical-corrosion performance data for accelerated or extended conditions of operation. In some cases destructive measurements have been carried out on BWR power reactor fuel to provide microscopic and macroscopic data of importance in validating design and licensing analysis methods. There is not uniform agreement among core and fuel designers on the needs for special power reactor core and fuel measurements for validation of advanced designs. The General Electric approach has been to error on the side of extensive, detailed measurements so as to assure reliable performance licensing and economic design and predictive capability. This paper is a summary of some of the validative power reactor measurements that have been carried out on advanced BWR core and fuel designs. Some comparisons of predictions with the data are summarized

  19. Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants - ICAPP '08

    International Nuclear Information System (INIS)

    ICAPP 2008 congress brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covered the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. It covered also lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program comprised 13 technical tracks: 1. Water-Cooled Reactor Programs and Issues: Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting near term utility needs; design issues; business, economical cost challenges; infrastructure limitations and improved construction techniques including modularization. 2. High Temperature Gas Cooled Reactors: Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, impact of non electricity applications on reactor design; advanced thermal and fast reactors. 3. LMFR and Longer Term Reactor Programs: Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as super critical water reactors and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. 4. Operation, Performance and Reliability Management: Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in

  20. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  1. Nuclear power

    International Nuclear Information System (INIS)

    This chapter of the final report of the Royal Commission on Electric Power Planning in Ontario updates its interim report on nuclear power in Ontario (1978) in the light of the Three Mile Island accident and presents the commission's general conclusions and recommendations relating to nuclear power. The risks of nuclear power, reactor safety with special reference to Three Mile Island and incidents at the Bruce generating station, the environmental effects of uranium mining and milling, waste management, nuclear power economics, uranium supplies, socio-political issues, and the regulation of nuclear power are discussed. Specific recommendations are made concerning the organization and public control of Ontario Hydro, but the commission concluded that nuclear power is acceptable in Ontario as long as satisfactory progress is made in the disposal of uranium mill tailings and spent fuel wastes. (LL)

  2. Nuclear power economics

    International Nuclear Information System (INIS)

    As a petroleum substitute, the nuclear power in Japan possesses the following four features. (1) Stability in supply: The import of nuclear fuel resources is performed from politically stable advanced countries and in long-term contracts. And, nuclear power can be of semi-domestic energy source due to the nuclear fuel cycle. (2) Low cost of nuclear power generation. (3) Contribution of nuclear power technology to other advanced industries. (4) Favorable effects of nuclear power siting upon the region concerned, such as labor employment and social welfare. Electricity charges are high in Japan, as compared with those in the United States and others where coal and water power are relatively abundant. For Japan without such natural resources, nuclear energy is important in lowering the power rates. (Mori, K.)

  3. Laguna Verde nuclear power plant: an experience to consider in advanced BWR design

    International Nuclear Information System (INIS)

    Laguna Verde is a BWR 5 containment Mark II. Designed by GE, two external re-circulation loops, each of them having two speed re-circulation pump and a flow control valve to define the drive flow and consequently the total core flow an power control by total core flow. Laguna Verde Design and operational experience has shown some insights to be considering in design for advanced BRW reactors in order to improve the potential of nuclear power plants. NSSS and Balance of plant design, codes used to perform nuclear core design, margins derived from engineering judgment, at the time Laguna Verde designed and constructed had conducted to have a plant with an operational license, generating with a very good performance and availability. Nevertheless, some design characteristics and operational experience have shown that potential improvements or areas of opportunity shall be focused in the advanced BWR design. Computer codes used to design the nuclear core have been evolved relatively fast. The computers are faster and powerful than those used during the design process, also instrumentation and control are becoming part of this amazing technical evolution in the industry. The Laguna Verde experience is the subject to share in this paper. (author)

  4. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  5. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    International Nuclear Information System (INIS)

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive ''box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs

  6. Book of extended synopses. International symposium on advanced nuclear power systems. Design, technology, safety and strategies for their deployment

    International Nuclear Information System (INIS)

    During the symposium the design, technology, safety and strategy for the development of advanced nuclear power systems were discussed. 20 papers were presented at the symposium. A separate abstract was prepared for each of these papers. Refs

  7. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  8. Deepwell water system control and monitoring in a nuclear power plant by telemetry and advanced instrumentation

    International Nuclear Information System (INIS)

    The potable water in the Philippine Nuclear Power Plant is supplied by a network of ten interconnected deepwell turbine pumps. These underground submersible pumps are installed very deep in the ground. The region is hilly and large. Adequate protection of the expensive pumps, a high degree of automation, reliability and flexibility were the overall goals of the control and instrumentation. The advanced instrumentation consisted of: digital control and digital monitoring; a telemetry system for transmission of all signals between the master station and the ten satellite stations; radiofrequency water level measurement in the wells. This paper describes the system in details. It also points out the characteristics of the system which may be considered as unique or uncommon in a Nuclear Power Plant

  9. Nuclear power

    International Nuclear Information System (INIS)

    Nuclear power has been seen as an answer to the energy problems of the Third World and Third World markets have been seen as an answer to the problems of the nuclear power industry. For some years during the 1970s both views seemed tenable. This paper examines the progress and setbacks of nuclear power in developing countries. In concentrates mainly on the four countries with real nuclear power commitments (as opposed to all-but-abandoned ambitions) - South Korea and Taiwan, where the interest has been mainly in obtaining cheaper and reliable electricity supplies, and Argentina and India, where the main interest has been in developing indigenous nuclear technological capabilities. A number of possibilities are examined which could influence future nuclear ordering, including smaller reactors to suit Third World electricity grids and a possible way round the constraint of large external debts. (author)

  10. An advanced nuclear power plant for heavy oil exploitation in the Venezuelan Orinoco oil belt

    International Nuclear Information System (INIS)

    The most important characteristics of the Orinoco Oil Belt (OOB) and of its heavy oil content, together with the main requirements for its exploitation, are presented here for analyzing the possibilities of the application of advanced nuclear power as main energy source in the heavy oil exploitation in the OOB. A steamsupply advanced nuclear cogeneration plant based on high temperature reactors is suggested for both the extraction and upgrading of the crude oil. The model consists of a plant for a 100 km2 oil field producing 100.000 barrels per day of refinery ready synthetic oil during 25 years. Three 1200 MW(th) reactors, built successively, supply a great portion of the required process heat, injection steam and electricity. Steam conditions are: for the process heat, a maximum pressure of 10 MPa at a temperature of 500deg C, and, for the injection steam, pressures between 12 and 17 MPa at saturation temperatures. Clear advantages for an advanced nuclear option application in the OOB development are substantiated, and a feasibility study is recommended. (orig.)

  11. Power distribution control within the scope of the advanced nuclear predictor for boiling water reactors

    International Nuclear Information System (INIS)

    In boiling water reactors the Advanced Nuclear Predictor (FNR) has proved to be a valuable tool in improving plant operating efficiency. The system is described in its main features and capabilities. As a logical extension, a power distribution control system has been developed, based on a reduced but accurate core model, which in itself can be used for fast prediction of core states. The system provides prediction of optimal operating strategies as well as on-line control, observing all constraints imposed on the permissible operating region. (orig.)

  12. Creep-fatigue effects in structural materials used in advanced nuclear power generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C. R.

    1980-01-01

    Various aspects of time-dependent fatigue behavior of a number of structural alloys in use or planned for use in advanced nuclear power generating systems are reviewed. Materials included are types 304 and 316 stainless steel, Fe-2 1/4 Cr-1 Mo steel, and alloy 800H. Examples of environmental effects, including both chemical and physical interaction, are presented for a number of environments. The environments discussed are high-purity liquid sodium, high vacuum, air, impure helium, and irradiation damage, including internal helium bubble generation.

  13. Advances in processing technologies for titanium heat exchanger tubes of fossil and nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Likhareva, T.P.; Tchizhik, A.A.; Chavchanidze, N.N. [Polzanov Central Boiler and Turbine Institute, St. Petersburg (Russian Federation)

    1998-12-31

    The advances in processing technologies for titanium heat exchangers with rolled and welded tubes of fossil and nuclear power plants in Russia are presented. The special methodology of investigations with constant small strain rate have been used to study the effects of mixed corrosion and creep processes in condensers cooled by sea or synthetic sea waters. The results of corrosion creep tests and K1scc calculations are given. The Russian science activities concerning condensers manufactured from titanium show the possibilities for designing structures with very high level service reliability in different corrosion aggressive mediums with high total salt, Cl-ion and oxygen contents. (orig.)

  14. Intelligent software system for the advanced control room of a nuclear power plant

    International Nuclear Information System (INIS)

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operator's cognitive tasks. It consists of six major modules such as 'Information Processing,' 'Alarm Processing,' 'Procedure Tracking,' 'Performance Diagnosis', and 'Event Diagnosis' modules for operators and 'Malfunction Diagnosis' module for maintenance personnel. Most ot the modules have been developed for several years and the others are under development . After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs

  15. Ergonomics evaluation as a powerful tool to redesign advanced interfaces of nuclear control rooms

    International Nuclear Information System (INIS)

    Ergonomics is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system. Ergonomics contributes to the design and evaluation of tasks, jobs, products, environments and systems in order to make them compatible with the needs, abilities and limitations of people. In the safe operation of nuclear power plant the performance of the control room crews plays an important role. In this respect, well-designed human-system interfaces (HSI) are crucial for safe and efficient operation of the plant, reducing the occurrence of incidents, accidents and the risks for human error. The aim of this paper is to describe a case study in which a methodological framework was applied to redesign advanced interfaces of a nuclear simulator. (author)

  16. Design and safety objectives of advances nuclear power systems in Asia

    International Nuclear Information System (INIS)

    The approaches to advanced nuclear power systems are different in each country due to differences in technological backgrounds and socioeconomic needs. The fuel cycle also becomes a key factor, which usually encourages the optimal use of indigenous resources, such as thorium, natural uranium and fissile plutonium. Each country also tries to increase its domestic share in the programme to varying degrees. Evolutionary approaches are commonly used in this region and renovating approaches follow. Enhancing safety and improving economics are considered as ongoing goals, and progressive advancements will be sought up to the desired levels of the design and safety objectives. For improvements in the economics, the goals of reduction in construction unit cost, increase in plant availability and extension of plant lifetime will be pursued. The reduction in construction unit cost is proposed to be achieved through the streamlining of licensing, simplification of design and shortening of construction time, and increasing plant availability through an increase in the fuel cycle period, faster refuelling and rationalization of periodic inspection and preventive maintenance. For enhancements in safety, probabilistic safety assessment techniques will be increasingly employed in design and engineering, and safety goals will be set in such a way that nuclear power systems do not noticeably increase the existing societal risk. Safety goals are to be used as numerical guides for design purposes rather than licensing requirements. 12 refs, 6 tabs

  17. Development of an advanced thermal hydraulics model for nuclear power plant simulation

    International Nuclear Information System (INIS)

    This paper summarizes the development of an advanced digital computer thermal hydraulics model for nuclear power plant simulation. A review of thermal hydraulics code design options is presented together with a review of existing engineering models. CAE has developed an unequal temperatures-unequal velocities five equation model based on the drift flux formalism. CAE has selected the model on the basis that phase separation and thermal non-equilibrium are required to simulate complex and important phenomena occurring in systems such as reactor cooling systems (RCS) and steam generators (SG). The drift flux approach to phase separation and countercurrent flow was selected because extensive testing and validation data supports full-range drift flux parameters correlations. The five equation model was also chosen because it conserves important quantities, i.e. mass and energy of each phase, and because of numerical advantages provided by the case of coupling phasic mass conservation equations with phasic energy conservation equations. The basis of CAE's model as well as supporting models for convection and conduction heat transfer, break flow, interphase mass and heat transfer are described. Comparison of code calculations with experimental measurements taken during a small break LOCA test with the OTIS facility are presented. The use of such advanced thermal hydraulics model as plant analyzer considerably improves simulation capabilities of severe transient as well as of normal operation of two phase systems in nuclear power plants. (orig./HP)

  18. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Braverman, J.; Morante, R.; Hofmayer, C.

    1997-03-01

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules.

  19. Assessment of modular construction for safety-related structures at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Modular construction techniques have been successfully used in a number of industries, both domestically and internationally. Recently, the use of structural modules has been proposed for advanced nuclear power plants. The objective in utilizing modular construction is to reduce the construction schedule, reduce construction costs, and improve the quality of construction. This report documents the results of a program which evaluated the proposed use of modular construction for safety-related structures in advanced nuclear power plant designs. The program included review of current modular construction technology, development of licensing review criteria for modular construction, and initial validation of currently available analytical techniques applied to concrete-filled steel structural modules. The program was conducted in three phases. The objective of the first phase was to identify the technical issues and the need for further study in order to support NRC licensing review activities. The two key findings were the need for supplementary review criteria to augment the Standard Review Plan and the need for verified design/analysis methodology for unique types of modules, such as the concrete-filled steel module. In the second phase of this program, Modular Construction Review Criteria were developed to provide guidance for licensing reviews. In the third phase, an analysis effort was conducted to determine if currently available finite element analysis techniques can be used to predict the response of concrete-filled steel modules

  20. Hitachi advanced operating nuclear power plant total preventive maintenance management and service system

    International Nuclear Information System (INIS)

    The recent rate of operation of Japanese nuclear power stations attained the result exceeding 70 %, but in order to improve it further and maintain the high reliability, the preventive maintenance program of more elaborate and systematic must be planned and executed. However, in order to establish the plan for maintaining efficiently and with high accuracy the enormous machinery and equipment exceeding 60000 in a nuclear power station, the high advance by mechanization is indispensable. Therefore, Hitachi Ltd. has developed the total preventive maintenance system, and it has partially begun operation. This system has the function of the life diagnosis of machinery and equipment, in addition, it constructs the data base with the specifications of machinery and equipment, the history of checkup, the information on reliability in Japan and foreign countries and so on, and based on these information, the recommendation of checkup, the proposal of improving facilities and other items are to be summarized and offered to electric power companies. The preventive maintenance activities in Hitachi Ltd., the concept and the outline of the total preventive maintenance system are reported. (K.I.)

  1. Nuclear power

    International Nuclear Information System (INIS)

    After three decades of commercial development, nuclear power has failed to fulfil its promise. Why, and what does that failure imply for the future of energy policy? One reason for nuclear power's slow growth is that rich countries have repeatedly found they needed less electricity than they had forecast. Part of the problem is, as it always has been, public unease. Worries about safety affect costs. They make it harder and more time-consuming to find sites for new plants or for storing waste. Complex safety devices mean complex plants, which are more expensive to build (and to relicense when they grow old). The true cost of nuclear power is hard to calculate. However nuclear power now seems to be less economically favourable when compared with its main rival, coal. The only hope for nuclear power is that, apart from hydropower, it is the only commercial alternative to fossil fuels. Concerns over carbon dioxide emissions may tip the balance in nuclear's favour. (Author)

  2. Annual meeting on nuclear technology '96. Technical session: Advanced methods for operation, control and management of German nuclear power plants

    International Nuclear Information System (INIS)

    The six papers of this session deal with experience, results and data obtained in nuclear power plant operation in Germany, and with the conclusions drawn relating to optimisation of maintenance work, insight drawn from reports on events and incidents in nuclear power plant, human factors engineering, or power plant life management. One paper discusses measures for safeguarding in the long run the functional integrity of the Mochovce-1 nuclear power station unit. (DG)

  3. Development of stainless steels for nuclear power plant - Advanced nuclear materials development -

    International Nuclear Information System (INIS)

    This report reviews the status of R and D and the material specifications of nuclear components in order to develop the stainless steels for nuclear applications, and the technology of computer-assisted alloy design is developed to establish the thermodynamic data of Fe-Cr-Ni-Mo-Si-C-N system which is the basic stainless steel systems. High strength and corrosion resistant stainless steels, 316LN and super clean 347, are developed, and the manufacturing processes and heat treatment conditions are determined. In addition, a martensitic steel is produced as a model alloy for turbine blade, and characterized. The material properties showed a good performance for nuclear applications. (Author)

  4. Intelligent software system for the advanced control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Choi, Seong Soo; Park, Jin Kyun; Heo, Gyung Young [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Han Gon [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The intelligent software system for nuclear power plants (NPPs) has been conceptually designed in this study. Its design goals are to operate NPPs in an improved manner and to support operators` cognitive takes. It consists of six major modules such as {sup I}nformation Processing,{sup {sup A}}larm Processing,{sup {sup P}}rocedure Tracking,{sup {sup P}}erformance Diagnosis,{sup a}nd {sup E}vent Diagnosis{sup m}odules for operators and {sup M}alfunction Diagnosis{sup m}odule for maintenance personnel. Most of the modules have been developed for several years and the others are under development. After the completion of development, they will be combined into one system that would be main parts of advanced control rooms in NPPs. 5 refs., 4 figs. (Author)

  5. Nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, S.

    1990-01-01

    The objective of this study is to examine factors and prospects for a resumption in growth of nuclear power in the United States over the next decade. The focus of analysis on the likelihood that current efforts in the United States to develop improved and safer nuclear power reactors will provide a sound technical basis for improved acceptance of nuclear power, and contribute to a social/political climate more conducive to a resumption of nuclear power growth. The acceptability of nuclear power and advanced reactors to five social/political sectors in the U.S. is examined. Three sectors highly relevant to the prospects for a restart of nuclear power plant construction are the financial sector involved in financing nuclear power plant construction, the federal nuclear regulatory sector, and the national political sector. For this analysis, the general public are divided into two groups: those who are knowledgeable about and involved in nuclear power issues, the involved public, and the much larger body of the general public that is relatively uninvolved in the controversy over nuclear power.

  6. Advanced LP turbine installation at 1300 MW nuclear power station Unterweser

    International Nuclear Information System (INIS)

    This paper reports on Preussen Elektra AG's Unterweser power plant. The steam turbine-generator features a disk-type LP turbine rotor design developed in the late 1960's to early 1970's. This rotor design has been installed in 19 nuclear power plants. The 47 rotors in these plants have been in operation for an average of almost 10 years. The design of the 1970 vintage nuclear LP turbine rotors was based on extensive experience gained with disk-type rotors of fossil turbines built in the 1950's. When EPRI reported about corrosion cracking in nuclear LP turbines, a program was initiated by Siemens/KWU as original steam turbine supplier to ultrasonically inspect all their disk-type rotors in nuclear power plats. Indications on one rotor disk in the Unterweser plant was found. This single event was the only one found out of 310 disks inspected in nuclear power plants

  7. Advances in multi-physics and high performance computing in support of nuclear reactor power systems modeling and simulation

    International Nuclear Information System (INIS)

    Significant advances in computational performance have occurred over the past two decades, achieved not only by the introduction of more powerful processors but the incorporation of parallelism in computer hardware at all levels. Simultaneous with these hardware and associated system software advances have been advances in modeling physical phenomena and the numerical algorithms to allow their usage in simulation. This paper presents a review of the advances in computer performance, discusses the modeling and simulation capabilities required to address the multi-physics and multi-scale phenomena applicable to a nuclear reactor core simulator, and present examples of relevant physics simulation codes' performances on high performance computers.

  8. Transition core DNBR penalty determination for Angra-1 nuclear power plant mixed cores consisting of standard and advanced fuel assemblies

    International Nuclear Information System (INIS)

    When two (or more) types of Fuel Assemblies (FA) are inserted in a nuclear reactor core, a flow redistribution occurs, due to the different hydraulic resistances of these assemblies. This way, the FA's with higher hydraulic resistance will get a Departure from Nucleate Boiling Ratio (DNBR) penalty since a part of the total flow will diverge to the FA's with lower hydraulic resistance. Regarding Angra-1 Nuclear Power Plant (NPP), it is planned in a next cycle to insert a new Advanced FA that is a result from a joint-venture project of the companies INB - Industrias Nucleares do Brasil, WEC - Westinghouse Electric Company and KNF - Korean Nuclear Fuel. Therefore, the purpose of this article is to show the work done to determine the DNBR penalty to be applied to the Advanced FA's present in a mixed (or transition) core consisting of Advanced and Standard FA's. (author)

  9. Present and future steam guidelines - standard fossil and nuclear cycles, advanced power cycles, and power generation in the industry

    International Nuclear Information System (INIS)

    Both the worldwide long-term experience in operation of fossil and nuclear cycles and the results of the research and development work in many countries are the basis for establishing of plant cycle chemistry guidelines. Plant cycle chemistry guidelines provide a reference resource for plant personnel and make setting up of individual power plant-specific guidelines possible. In fossil power cycles, the turbine is the most sensitive component of the whole cycle. The cycle efficiency and the operation reliability depend substantially on the respective state of the turbine. In this connection, the steam quality is of immense importance. The subject of this paper is a careful evaluation and discussion of current steam guidelines. The most important issues that should be addressed or considered revising the guidelines are overall plant cycle design, operation mode particularly transient operation, advance power cycles, steam generation in industry, and co-generation. An attempt should be made to estimate the effect of carbon dioxide and low-molecular organic acids on the turbine or turbine materials. (orig.)

  10. Experience and regulatory activities on advanced instrumentation and control systems applied to nuclear power plants in Korea

    International Nuclear Information System (INIS)

    This paper describes the status for applying microprocessor-based systems to nuclear power plants in Korea and the regulatory activities performed by Korea Institute of Nuclear Safety (KINS). And this presents the development of safety and regulatory technology for advanced I and C systems that has been carried out as a part of the next generation reactor development program in Korea. (author). 3 refs, 4 figs, 1 tab

  11. Perspectives for advanced nuclear power technology applications in the development of the Venezuelan Orinoco Oil Belt

    International Nuclear Information System (INIS)

    Venezuela has the world's greatest deposits of extra-heavy oil located at the Orinoco Oil Belt, estimated to contain 1-2x1012 barrels of crude oil. In addition, deposits other than the Orinoco Oil Belt, containing around 260x109 barrels of oil with less than 14 0API, have been identified in the country. Assuming a recovery of just 15-20%, Venezuela could sustain a production rate of 2x106 bpd during more than two centuries. So it becomes of great importance for Venezuela to develop and to make these energy reserves available, not just for its own benefit, but for the rest of the world. Steam injection is the most promising method for heavy oil extraction. Also, it is unavoidable to process this kind of oil to obtain useful commercial products. Both the extraction and the processing require substantial amounts of medium and high temperature process heat, implying a large demand of energy which might even get close to a negative net energy balance if inefficient energy production methods are employed. Recent important developments in advanced nuclear power technologies open new possibilities which demand their consideration as the main energy sources in the Orinoco Oil Belt development. Moreover, it has been found that extra amounts of hydrogen are required for obtaining light synthetic crudes from heavy oil. High temperature reactors represent a valid option for the production of the required hydrogen. Additional perspectives appear for the future as abundant hydrogen produced by nuclear plants might be used as an energy transportation mean to supply part of the energy demand of the main populated centers of Venezuela. This paper covers a preliminary study, indicating good perspectives for the use of nuclear energy in the exploitation of the extra-heavy oil resources from the Orinoco Oil Belt. (author). 11 refs, 7 figs, 2 tabs

  12. Advancements in Risk-Informed Performance-Based Asset Management for Commercial Nuclear Power Plants

    International Nuclear Information System (INIS)

    Over the past several years, ABSG Consulting Inc. (ABS Consulting) and the South Texas Project Nuclear Operating Company (STPNOC) have developed a decision support process and associated software for risk-informed, performance-based asset management (RIPBAM) of nuclear power plant facilities. RIPBAM applies probabilistic risk assessment (PRA) tools and techniques in the realm of plant physical and financial asset management. The RIPBAM process applies a tiered set of models and supporting performance measures (or metrics) that can ultimately be applied to support decisions affecting the allocation and management of plant resources (e.g., funding, staffing, scheduling, etc.). In general, the ultimate goal of the RIPBAM process is to continually support decision-making to maximize a facility's net present value (NPV) and long-term profitability for its owners. While the initial applications of RIPBAM have been for nuclear power stations, the methodology can easily be adapted to other types of power station or complex facility decision-making support. RIPBAM can also be designed to focus on performance metrics other than NPV and profitability (e.g., mission reliability, operational availability, probability of mission success per dollar invested, etc.). Recent advancements in the RIPBAM process focus on expanding the scope of previous RIPBAM applications to include not only operations, maintenance, and safety issues, but also broader risk perception components affecting plant owner (stockholder), operator, and regulator biases. Conceptually, RIPBAM is a comprehensive risk-informed cash flow model for decision support. It originated as a tool to help manage plant refueling outage scheduling, and was later expanded to include the full spectrum of operations and maintenance decision support. However, it differs from conventional business modeling tools in that it employs a systems engineering approach with broadly based probabilistic analysis of organizational 'value

  13. Nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.

    1985-01-01

    The question 'Do we really need nuclear power' is tackled within the context of Christian beliefs. First, an estimate is made of the energy requirements in the future and whether it can be got in conventional ways. The dangers of all the ways of supplying energy (eg coal mining, oil and gas production) are considered scientifically. Also the cost of each source and its environmental effects are debated. The consequences of developing a new energy source, as well as the consequences of not developing it, are considered. Decisions must also take into account a belief about the ultimate purpose of life, the relation of men to each other and to nature. Each issue is raised and questions for discussion are posed. On the whole the book comes down in favour of nuclear power.

  14. Nuclear power in India

    International Nuclear Information System (INIS)

    Claim for economic superiority of the nuclear power over the coal-based thermal power is advanced on various grounds by the authorities concerned with organization of atomic energy in India. This claim is critically examined. At the outset, it is pointed out that data on cost of nuclear power available to the Indian researchers for detailed and rational analysis of the problem are limited only to whatever appears in official publications and are not adequate for working out reasonable cost estimates for scrutiny. Available official data are summarised. Taking into account the cost factors related to capital outlay, fuel input, transportation of fuel supplies and disposal of nuclear wastes from nuclear power plants, it is shown that the superiority of the nuclear power over the thermal one on economic grounds is not established in India in the present context. (M.G.B.)

  15. Nuclear power debate

    International Nuclear Information System (INIS)

    A recent resurgence of interest in Australia in the nuclear power option has been largely attributed to growing concerns over climate change. But what are the real pros and cons of nuclear power? Have advances in technology solved the sector's key challenges? Do the economics stack up for Australia where there is so much coal, gas and renewable resources? Is the greenhouse footprint' of nuclear power low enough to justify its use? During May and June, the AIE hosted a series of Branch events on nuclear power across Sydney, Adelaide and Perth. In the interest of balance, and at risk of being a little bit repetitive, here we draw together four items that resulted from these events and that reflect the opposing views on nuclear power in Australia. Nuclear Power for Australia: Irrelevant or Inevitable? - a summary of the presentations to the symposium held by Sydney Branch on 8 June 2005. Nuclear Reactors Waste the Planet - text from the flyer distributed by The Greens at their protest gathering outside the symposium venue on 8 June 2005. The Case For Nuclear Power - an edited transcript of Ian Hore-Lacy's presentation to Adelaide Branch on 19 May 2005 and to Perth Branch on 28 June 2005. The Case Against Nuclear Power - an article submitted to Energy News by Robin Chappie subsequent to Mr Hore-Lacy's presentation to Perth Branch

  16. The development of advanced robotics for the nuclear industry -The development of robotic system for the nuclear power plants-

    International Nuclear Information System (INIS)

    The Advanced Robotics Department of the Korea Atomic Energy Research Institute (KAERI) is developing a Dexterous Manipulation System (DMS) and a teleoperated mobile robot, identified as KAEROT/ml, for use in nuclear power plants. The DMS is being developed for performing tasks such as the opening and closing of nozzle dam inside water chamber of steam generator. The DMS has two major subsystems; a master-slave 6 degrees of freedom (dof) manipulator and a support device. The master-slave arms are designed dissimilar kinematically and dynamically, and their functions are performed by a bilateral force-reflecting force control. The slave is a hydraulically powered arm with a 3 dof end effector, and is mounted on the top of the support device for nozzle dam operation. The support device guides the slave arm into the water chamber and supports it during its operation. The DMS can be operated either in teleoperated or supervisory control modes. The KAEROT/ml is designed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. The KAEROT/ml equipped with four-omnidirectional planetary wheels has a 6 dof joint-controlled arm and is capable of ascending and descending stairs and navigating flat surface with zero turning radius. This report describes the mechanical design, features, modeling and control system of both the DMS and the KAEROT/ml. 209 figs, 49 pix, 69 tabs, 62 refs. (Author)

  17. The development of advanced robotics for the nuclear industry -The development of robotic system for the nuclear power plants-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Kim, Kee Hoh; Lee, Jae Kyung; Lee, Yung Kwang; Suh, Yong Chil; Lee, Yong Bum; Kim, Woong Kee; Park, Soon Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    The Advanced Robotics Department of the Korea Atomic Energy Research Institute (KAERI) is developing a Dexterous Manipulation System (DMS) and a teleoperated mobile robot, identified as KAEROT/ml, for use in nuclear power plants. The DMS is being developed for performing tasks such as the opening and closing of nozzle dam inside water chamber of steam generator. The DMS has two major subsystems; a master-slave 6 degrees of freedom (dof) manipulator and a support device. The master-slave arms are designed dissimilar kinematically and dynamically, and their functions are performed by a bilateral force-reflecting force control. The slave is a hydraulically powered arm with a 3 dof end effector, and is mounted on the top of the support device for nozzle dam operation. The support device guides the slave arm into the water chamber and supports it during its operation. The DMS can be operated either in teleoperated or supervisory control modes. The KAEROT/ml is designed to be used in emergency response applications such as monitoring and mapping radiation areas, handling radioactive materials and performing decontamination tasks. The KAEROT/ml equipped with four-omnidirectional planetary wheels has a 6 dof joint-controlled arm and is capable of ascending and descending stairs and navigating flat surface with zero turning radius. This report describes the mechanical design, features, modeling and control system of both the DMS and the KAEROT/ml. 209 figs, 49 pix, 69 tabs, 62 refs. (Author).

  18. Advanced plant maintenance and surveillance system for the nuclear power plants of the next century

    International Nuclear Information System (INIS)

    The traditional approach to nuclear power plant maintenance and surveillance employs a preventive maintenance philosophy that can result in excessive labor being expended and in unnecessary and potentially damaging testing being performed. Plant downtime may also be increased and availability reduced because of the large number of critical tasks that need to be accomplished during a maintenance outage. In addition, modern control equipment is increasingly computerized and software-driven, and thus is not readily accessible or understandable to an operator using conventional surveillance techniques. The proposed advanced approach uses a diagnostic system based on the advanced and still emerging technologies of neural networks and fuzzy expert systems. This system monitors operating conditions of control equipment in real time and also monitors past performance based on maintenance records and equipment specifications entered into a computerized database. Plant system availability can be enhanced and maintenance costs can be reduced by automatically adjusting surveillance periods and maintenance schedules to actual trends in equipment performance. Equipment in multiple redundant instrument channels may need calibration and testing at different times to maintain a system in an optimal state of readiness. Moreover, redundant systems generally use the same type of equipment in the separate channels. Manufacturing defects, wear-out effects, or changes in environmental conditions may result in common-cause failures over a short period of time, thus degrading the protection capability of the safety systems. Normal surveillance may not uncover many of these incipient equipment failures, but a neural-fuzzy expert system that continuously oversees the complex relationships of operating parameters among system equipment can rapidly discern deviations from normal behavior and make maintenance recommendations, including replace-or-repair decisions

  19. Nuclear power data 2016

    International Nuclear Information System (INIS)

    The brochure on nuclear power data 2016 covers the following topics: (I) nuclear power in Germany: nuclear power plants in Germany; shut-down and decommissioned nuclear power plants, gross electricity generation, primary energy consumption; (II) nuclear power worldwide: nuclear electricity production, nuclear power plants.

  20. Use of an advanced document system in post-refuelling updating of nuclear power plant documentation

    International Nuclear Information System (INIS)

    This paper discusses the results of the extensive use of an advanced document system to update documentation prepared by traditional methods and affected by changes in the period between two plant refuellings. The implementation of a system for the capture, retrieval and storage of drawings using optical discs is part of a plan to modernize production and management tools and to thus achieve better control of document configuration. These processes are consequently optimized in that: 1. The deterioration of drawings is detained with the help of an identical, updated, legible, reliable support for all users. 2. The time required to update documentation is reduced. Given the large number of drawings, the implementation method should effectively combine costs and time. The document management tools ensure optical disc storage control so that from the moment a drawing resides in the system, any modification to it is made through the system utilities, thus ensuring quality and reducing schedules. The system described was used to update the electrical drawings of Almaraz Nuclear Power Plant. Changes made during the eighth refuelling of Unit I were incorporated and the time needed to issue the updated drawings was reduced by one month. (author)

  1. Looking back on safety management in construction of advanced thermal nuclear power plant 'Fugen'

    International Nuclear Information System (INIS)

    The safety management of the advanced thermal nuclear power plant ''Fugen'' during the period from the preparation of plant construction in October, 1970, to the full power operation in March, 1979, is looked back and explained. Any large human and material accidents did not occur during the long construction time. The total numbers of persons and hours were 1.397 x 106 workers and 11.55 x 106 hours, respectively. The number of labor accidents was twenty with no dead person, the number of loss days was 645 days, the number of accident rate was 1.73, the intensity rate was 0.06, and the mean rate of labor accidents per year per 1000 workers was 6.4. The radiation exposure dose was 65.27 man-rem for the managed 1804 workers in total, during the testing and operating periods. These data show that the safety management for ''Fugen'' is very excellent, considering the following special features: 1) there were many works which were carried out for the first time, 2) the construction of the plant was conducted by five contractors taking partial charge, there were many kinds of construction works, the construction and testing periods were long, and the workers had to go to the site from Tsuruga city by car and bus. The organization of preventing disasters, the concrete implementation items for safety management, including the planning of activities, various meetings, patrol, education and training, the honoring system, the prevention of traffic accident and so on, and the results of actual safety management are explained with the reflection. (Nakai, Y.)

  2. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  3. Computer visualization for enhanced operator performance for advanced nuclear power plants

    International Nuclear Information System (INIS)

    The operators of nuclear power plants are presented with an often uncoordinated and arbitrary array of displays and controls. Information is presented in different formats and on physically dissimilar instruments. In an accident situation, an operator must be very alert to quickly diagnose and respond to the state of the plant as represented by the control room displays. Improvements in display technology and increased automation have helped reduce operator burden; however, too much automation may lead to operator apathy and decreased efficiency. A proposed approach to the human-system interface uses modern graphics technology and advances in computational power to provide a visualization or ''virtual reality'' framework for the operator. This virtual reality comprises a simulated perception of another existence, complete with three-dimensional structures, backgrounds, and objects. By placing the operator in an environment that presents an integrated, graphical, and dynamic view of the plant, his attention is directly engaged. Through computer simulation, the operator can view plant equipment, read local displays, and manipulate controls as if he were in the local area. This process not only keeps an operator involved in plant operation and testing procedures, but also reduces personnel exposure. In addition, operator stress is reduced because, with realistic views of plant areas and equipment, the status of the plant can be accurately grasped without interpreting a large number of displays. Since a single operator can quickly ''visit'' many different plant areas without physically moving from the control room, these techniques are useful in reducing labor requirements for surveillance and maintenance activities. This concept requires a plant dynamic model continuously updated via real-time process monitoring. This model interacts with a three-dimensional, solid-model architectural configuration of the physical plant

  4. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume VIII. Advanced concepts

    International Nuclear Information System (INIS)

    The six advanced concepts for nuclear power systems that were selected for evaluation are: the fast mixed-spectrum reactor; the denatured molten-salt reactor; the mixed-flow gaseous-core reactor; the linear-accelerator fuel-regenerator reactor; the ternary metal-fueled electronuclear fuel-producer reactor; and the tokamak fusion-fission hybrid reactor. The design assessment was performed by identifying needs in six specific areas: conceptual plant design; reactor-physics considerations; fuel cycle alternatives; mechanical and thermal-hydraulic considerations; selection, development, and availability of materials; and engineering and operability. While none of the six concepts appears to be a credible commercial alternative to the liquid-metal fast-breeder within the Nonproliferation Alternative Systems Assessment Program horizon of 2025, there are a number of reasons for continued interest in the fast mixed-spectrum reactor: it is a once-through cycle fast reactor with proliferation risk characteristics similar to those of the light-water reactor; only about one-third as much uranium is required as for the once-through light-water reactor; the system will benefit directly from fast-breeder development programs; and, finally, the research and development required to develop the high-burnup metal fuel could benefit the on-going liquid-metal fast-breeder reactor program. Accordingly, a limited research and development effort on the high-burnup fuel seems justified, at present

  5. Investigation on the advanced control room design for next generation nuclear power plants

    International Nuclear Information System (INIS)

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. With regard to automation, the automating strategies of emergency operation are developed for achieving safe shutdown in pressurized water reactors. These strategies can make emergency operation optimal, and as well they considerably lengthen the operator response time. Decision-making and control are investigated in order to develop the automating strategies. In decision-making, diagnostic trees are established to automate the diagnostic tasks for selecting appropriate emergency operations, and the decision-making procedure is developed to automate some decisions which must be made on a plant- and event-specific basis. In control, cooldown is planned by

  6. Advanced technologies for conditioning low and medium activity wastes from nuclear power plants. Pt. 1

    International Nuclear Information System (INIS)

    The evolution of CO2 concentration in the Earth's atmosphere is presented for the past 1000 years. A dramatic growth is experienced in the past decades. Many opinions state that, in spite of the hazards of growing CO2 concentration, the nuclear power is more dangerous, partly due to the long-term effects of radioactive wastes. The unit volume of low and medium activity waste has been decreasing continuously. The wastes from nuclear power plants are categorized and characterized. The trends of managing high-level radioactive wastes are discussed. (R.P.)

  7. Advanced techniques for storage and disposal of spent fuel from commercial nuclear power plants

    International Nuclear Information System (INIS)

    Electricity generation using fossil fuel at comparatively low costs forces nuclear energy to explore all economic potentials. The cost advantage of direct disposal of spent nuclear fuel compared to reprocessing gives reason enough to follow that path more and more. The present paper describes components and facilities for long-term storage as well as packaging strategies, developed and implemented under the responsibility of the German utilities operating nuclear power plants. A proposal is made to complement or even to replace the POLLUX cask concept by a system using BSK 3 fuel rod containers together with LB 21 storage casks. (author)

  8. Advanced passive PWR AC-600: Development orientation of nuclear power reactors in China for the next century

    International Nuclear Information System (INIS)

    Based on Qinshan II Nuclear Power Plant that is designed and constructed by way of self-reliance, China has developed advanced passive PWR AC-600. The design concept of AC-600 not only takes the real situation of China into consideration, but also follows the developing trend of nuclear power in the world. The design of AC-600 has the following technical characteristics: Advanced reactor: 18-24 month fuel cycle, low neutron leakage, low power density of the core, no any penetration in the RPV below the level of the reactor coolant nozzles; Passive safety systems: passive emergency residual heat removal system, passive-active safety injection system, passive containment cooling system and main control room habitability system; System simplified and the number of components reduced; Digital I and C; Modular construction. AC-600 inherits the proven technology China has mastered and used in Qirtshan 11, and absorbs advanced international design concepts, but it also has a distinctive characteristic of bringing forth new ideas independently. It is suited to Chinese conditions and therefore is expected to become an orientation of nuclear power development by self-reliance in China for the next century. (author)

  9. Nuclear power experience

    International Nuclear Information System (INIS)

    The International Conference on Nuclear Power Experience, organized by the International Atomic Energy Agency, was held at the Hofburg Conference Center, Vienna, Austria, from 13 to 17 September 1982. Almost 1200 participants and observers from 63 countries and 20 organizations attended the conference. The 239 papers presented were grouped under the following seven main topics: planning and development of nuclear power programmes; technical and economic experience of nuclear power production; the nuclear fuel cycle; nuclear safety experience; advanced systems; international safeguards; international co-operation. The proceedings are published in six volumes. The sixth volume contains a complete Contents of Volume 1 to 5, a List of Participants, Authors and Transliteration Indexes, a Subject Index and an Index of Papers by Number

  10. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  11. Development of an advanced human-machine interface for next generation nuclear power plants

    International Nuclear Information System (INIS)

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. The proposed HMI has been evaluated using the checklists that are extracted from various human factors guidelines. From the evaluation results, it can be concluded that the HMI is so designed as to address the human factors issues reasonably. After sufficient validation, the concept and the design features of the proposed HMI will be reflected in the design of the main control room of the Korean Next Generation Reactor (KNGR)

  12. Advanced techniques for rationalization of the construction of Montalto di Castro nuclear power plant

    International Nuclear Information System (INIS)

    The paper describes the steps taken at the Alto Lazio (Montalto di Castro) nuclear power plant construction site in order to rationalize construction methods and work control systems. They consist mainly of: (a) using models for studying construction sequences and for identifying in advance any modifications that may have to be made in the design; (b) using pre-assembling and prefabrication for civil structures and plant components; and (c) using computerized management and work control procedures. As regards the first of the above measures, models of the more complex civil engineering structures were developed. This made it possible to foresee interferences between reinforcing bars and embedments, thus avoiding delays during the construction phase. As regards the second type of measures, large scale prefabrication and/or pre-assembling was planned and carried out for the following elements: reinforcing bar assemblies of walls, floor slabs and particularly complex and heavy structures; metal structures such as the primary steel container, fuel pool and drywell liners, the dome of the shield building, as well as wholly prefabricated reinforced concrete elements and assemblies of mechanical components. Lastly, computerized systems were devised for rational management of quality and work progress control. It was thus possible to determine the work status in real time and hence to adopt any corrective action necessary. The results of these measures applied in Montalto were positive, in spite of initial difficulties deriving from the fact that prefabrication (and/or pre-assembling) was introduced when work was already under way, so that both the design and the site organization had to be adapted. In addition to reducing construction time, prefabrication also meant a great step forward as regards safety and quality, thanks to better working conditions and ease of control. (author). 4 figs, 1 tab

  13. Overview of thermal management issues for advanced military space nuclear reactor power systems

    International Nuclear Information System (INIS)

    This paper summarizes the functional and system imposed design constraints and development issues related to military space nuclear power thermal management. The envisioned requirements related to power level, power form and profile, operating duration, and life encompass a wide variety of conceptual future military spacecraft missions. ''Baseload,'' near-constant power output, and ''burstload,'' high peak to average power profile requirements introduce a wide spectrum of potential space reactor configuration needs with a corresponding range of steady state and transient, periodic thermal management technological needs. Spacecraft system operational conditions and design constraints (allowable power/payload mass and volume fractions, survivability and endurability, autonomy, integrability, and orbital operations considerations) impose additional thermal management technological needs. Candidate thermal management technologies are described in terms of their attributes and state of development

  14. CAE advanced reactor demonstrators for CANDU, PWR and BWR nuclear power plants

    International Nuclear Information System (INIS)

    CAE, a private Canadian company specializing in full scope flight, industrial, and nuclear plant simulators, will provide a license to IAEA for a suite of nuclear power plant demonstrators. This suite will consist of CANDU, PWR and BWR demonstrators, and will operate on a 486 or higher level PC. The suite of demonstrators will be provided to IAEA at no cost to IAEA. The IAEA has agreed to make the CAE suite of nuclear power plant demonstrators available to all member states at no charge under a sub-license agreement, and to sponsor training courses that will provide basic training on the reactor types covered, and on the operation of the demonstrator suite, to all those who obtain the demonstrator suite. The suite of demonstrators will be available to the IAEA by March 1997. (author)

  15. Description of the tasks of control room operators in German nuclear power plants and support possibilities by advanced computer systems

    International Nuclear Information System (INIS)

    In course of the development of nuclear power plants the instrumentation and control systems and the information in the control room have been increasing substantially. With this background it is described which operator tasks might be supported by advanced computer aid systems with main emphasis to safety related information and diagnose facilities. Nevertheless, some of this systems under development may be helpful for normal operation modes too. As far as possible recommendations for the realization and test of such systems are made. (orig.)

  16. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  17. Advance: research project on aging electrical wiring in nuclear power plants

    International Nuclear Information System (INIS)

    As Nuclear Power Plants get older it is more important to know the real condition of low voltage, instrumentation, power and control cables. Additionally, as new plants are being built, the election of cables and the use of in-situ monitoring techniques to get reliable aging indicators, can be very useful during the plant life. The goal of this Project is to adapt, optimize and asses Condition Monitoring techniques for Nuclear Power Plants cables. These techniques, together with the appropriate acceptance criteria, would allow specialists to know the state of the cable over its entire length and estimate its residual life. In the Project, accelerated ageing is used in cables installed in European NPPs in order to evaluate different techniques to detect local and global ageing. Results are compared with accepted tests to validate its use for the estimation of cables residual life. This paper describes the main stages of the Project and some results. (Author)

  18. Nuclear power plants

    International Nuclear Information System (INIS)

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.)

  19. Advanced light water reactor program at ABB-Combustion Engineering Nuclear Power

    International Nuclear Information System (INIS)

    To meet the needs of Electric Utilities ordering nuclear power plants in the 1990s, ABB-Combustion Engineering is developing two designs which will meet EPRI consensus requirements and new licensing issues. The System 80 Plus design is an evolutionary pressurized water reactor plant modelled after the successful System 80 design in operation in Palo Verde and under construction in Korea. System Plus is currently under review by the US Nuclear Regulatory Commission with final design approval expected in 1991 and design certification in 1992. The Safe Integral Reactor (SIR) plant is a smaller facility with passive safety features and modular construction intended for design certification in the late 1990s. (author)

  20. Proceedings of the NATO Advanced Research Workshop on Nuclear Power and Energy Security

    International Nuclear Information System (INIS)

    The purpose of this NATO workshop is to contribute to the critical assessment of how to prepare for a new national nuclear energy program, and to make recommendations for future action. In addition, our goal is to promote close working relationships between technical people from different countries and with different professional expertise. In particular, the countries that are involved in this workshop are those from NATO and those from the Partner countries such as those in the Commonwealth of Independent States. A NATO workshop is not an international conference or symposium but rather a forum for advanced level, intensive discussions. The presentations are part of the growing font of knowledge on the subject of how to develop a national nuclear energy program. It is heard about the infrastructure that is needed and how the IAEA and countries with existing experience are helping to provide that infrastructure to those working toward a nuclear energy program. It is heard about the experiences of several countries embarking on new nuclear development, with an emphasis on how progress is being made in Armenia. It is also heard about the potential for using small and medium size reactors; something not being pursued by the countries with large nuclear programs

  1. Proceedings of the international topical meeting on advances in human factors in nuclear power systems

    International Nuclear Information System (INIS)

    This book presents the papers given at a conference on the human factors engineering of nuclear power plants. Topics considered at the conference included human modeling, artificial intelligence, expert systems, robotics and teleoperations, organizational issues, innovative applications, testing and evaluation, training systems technology, a modeling framework for crew decisions during reactor accident sequences, intelligent operator support systems, control algorithms for robot navigation, and personnel management

  2. Testing of advance design types of instrument current transformers for Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Current transformers designed and produced in IVEP Brno for the measurement of electric energy, for control and protection of the generator-transformer unit of the Temelin nuclear power plant are described. Presented are tests performed according to the standard test CSN 35 1360 and CSN 35 1361 as well as tests respecting a revision of these standards according to IEC 185. (author) 1 tab., 2 figs., 7 refs

  3. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  4. Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants

    International Nuclear Information System (INIS)

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber-optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are open-quotes being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.close quotes

  5. Future nuclear power generation

    International Nuclear Information System (INIS)

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  6. Impact of Advanced Alarm Systems and Information Displays on Human Reliability in the Digital Control Room of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hyun; Dang, Vinh N [Paul Scherrer Institut, Villigen PSI (Switzerland)

    2011-08-15

    This paper discusses the potential impacts of two advanced features of digital control rooms, alarm systems and information display systems, on the Human Reliability Analysis (HRA) in nuclear power plants. Although the features of digital control rooms have already been implemented in new or upgraded nuclear power plants, HRAs have so far not taken much credit for these features. In this circumstance, this paper aims at examining the potential effects of these features on human performance and discussing how these effects can be addressed with existing HRA methods. A conclusion derivable from past experimental studies is that those features are supportive in the severe conditions such as complex scenarios and knowledge-based works. However, in the less complex scenarios and rule-based work, they may have no difference with or sometimes negative impacts on operator performance. The discussion about the impact on the HRA is provided on the basis on the THERP method.

  7. Impact of Advanced Alarm Systems and Information Displays on Human Reliability in the Digital Control Room of Nuclear Power Plants

    International Nuclear Information System (INIS)

    This paper discusses the potential impacts of two advanced features of digital control rooms, alarm systems and information display systems, on the Human Reliability Analysis (HRA) in nuclear power plants. Although the features of digital control rooms have already been implemented in new or upgraded nuclear power plants, HRAs have so far not taken much credit for these features. In this circumstance, this paper aims at examining the potential effects of these features on human performance and discussing how these effects can be addressed with existing HRA methods. A conclusion derivable from past experimental studies is that those features are supportive in the severe conditions such as complex scenarios and knowledge-based works. However, in the less complex scenarios and rule-based work, they may have no difference with or sometimes negative impacts on operator performance. The discussion about the impact on the HRA is provided on the basis on the THERP method

  8. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to ''seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world''. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. This report was produced by a diverse group of international experts over a period of four years from 2007 to February 2011. The group consisted of twelve chief scientific investigators (CSIs) and many observers. The CSIs and observers contributed equally to the production of this report. Their names are listed at the end of the report. This report was written with the target audience in mind as being utility engineers, end users, researchers, managers and executives, making decisions on implementation of the subject technologies in nuclear facilities or determining the future

  9. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  10. Nuclear power economic database

    International Nuclear Information System (INIS)

    Nuclear power economic database (NPEDB), based on ORACLE V6.0, consists of three parts, i.e., economic data base of nuclear power station, economic data base of nuclear fuel cycle and economic database of nuclear power planning and nuclear environment. Economic database of nuclear power station includes data of general economics, technique, capital cost and benefit, etc. Economic database of nuclear fuel cycle includes data of technique and nuclear fuel price. Economic database of nuclear power planning and nuclear environment includes data of energy history, forecast, energy balance, electric power and energy facilities

  11. Quadruped locomotion system of prototype advanced robot for nuclear power plant facilities

    International Nuclear Information System (INIS)

    The development of the robots for the works in nuclear power stations has been promoted. The demonstration machine developed comprises subsystems so that the design, manufacture, operation, maintenance and so on of the robots are simplified and made convenient, that is, the command for all actions, visual information processing subsystem, manipulation subsystem and movement subsystem. In this report, the elementary technology of movement and the movement subsystem are described. Quadruped walking, intelligent type motion control, and the target specification, movement subsystem and test of the demonstration machine are explained. (K.I.)

  12. Advanced digital instrumentation and control system for nuclear power plant protection

    International Nuclear Information System (INIS)

    The Diverse Protection System (DPS) is described. The DPS is a state-of-the-art digital protection system developed as a back-up to the primary reactor protection system at the Temelin nuclear power plant, featuring a compact hardware design based on VMEbus technology. This technology allows for ease in adding or modifying the number and type of input modules and processors. The DPS software is written in a high level language suitable for safety critical applications. The software is both modular and configurable allowing for potential future modifications and software reuse

  13. Nuclear power's burdened future

    International Nuclear Information System (INIS)

    Although governments of the world's leading nations are reiterating their faith in nuclear power, Chernobyl has brought into focus the public's overwhelming feeling that the current generation of nuclear technology is simple not working. Despite the drastic slowdown, however, the global nuclear enterprise is large. As of mid-1986, the world had 366 nuclear power plants in operation, with a generating capacity of 255,670 MW. These facilities generate about 15% of the world's electricity, ranging from 65% in France to 31% in West Germany, 23% in Japan, 16% in the United States, 10% in the Soviet Union, and non in most developing nations. Nuclear development is clearly dominated by the most economically powerful and technologically advanced nations. The United States, France, the Soviet Union, Japan, and West Germany has 72% of the world's generating capacity and set the international nuclear pace. The reasons for scaling back nuclear programs are almost as diverse as the countries themselves. High costs, slowing electricity demand growth, technical problems, mismanagement, and political opposition have all had an effect. Yet these various factors actually form a complex web of inter-related problems. For example, rising costs usually represent some combination of technical problems and mismanagement, and political opposition often occurs because of safety concerns or rising costs. 13 references

  14. Assessment of United States industry structural codes and standards for application to advanced nuclear power reactors: Appendices. Volume 2

    International Nuclear Information System (INIS)

    Throughout its history, the USNRC has remained committed to the use of industry consensus standards for the design, construction, and licensing of commercial nuclear power facilities. The existing industry standards are based on the current class of light water reactors and as such may not adequately address design and construction features of the next generation of Advanced Light Water Reactors and other types of Advanced Reactors. As part of their on-going commitment to industry standards, the USNRC commissioned this study to evaluate US industry structural standards for application to Advanced Light Water Reactors and Advanced Reactors. The initial review effort included (1) the review and study of the relevant reactor design basis documentation for eight Advanced Light Water Reactors and Advanced Reactor Designs, (2) the review of the USNRCs design requirements for advanced reactors, (3) the review of the latest revisions of the relevant industry consensus structural standards, and (4) the identification of the need for changes to these standards. The results of these studies were used to develop recommended changes to industry consensus structural standards which will be used in the construction of Advanced Light Water Reactors and Advanced Reactors. Over seventy sets of proposed standard changes were recommended and the need for the development of four new structural standards was identified. In addition to the recommended standard changes, several other sets of information and data were extracted for use by USNRC in other on-going programs. This information included (1) detailed observations on the response of structures and distribution system supports to the recent Northridge, California (1994) and Kobe, Japan (1995) earthquakes, (2) comparison of versions of certain standards cited in the standard review plan to the most current versions, and (3) comparison of the seismic and wind design basis for all the subject reactor designs

  15. Assessment of United States industry structural codes and standards for application to advanced nuclear power reactors: Final report. Volume 1

    International Nuclear Information System (INIS)

    Throughout its history, the USNRC has remained committed to the use of industry consensus standards for the design, construction, and licensing of commercial nuclear power facilities. The existing industry standards are based on the current class of light water reactors and as such may not adequately address design and construction features of the next generation of Advanced Light Water Reactors and other types of Advanced Reactors. As part of their on-going commitment to industry standards, the USNRC commissioned this study to evaluate US industry structural standards for application to Advanced Light Water Reactors and Advanced Reactors. The initial review effort included: (1) the review and study of the relevant reactor design basis documentation for eight Advanced Light Water Reactors and Advanced Reactor Designs, (2) the review of the USNRCs design requirements for advanced reactors, (3) the review of the latest revisions of the relevant industry consensus structural standards, and (4) the identification of the need for changes to these standards. The results of these studies were used to develop recommended changes to industry consensus structural standards which will be used in the construction of Advanced Light Water Reactors and Advanced Reactors. Over seventy sets of proposed standard changes were recommended and the need for the development of four new structural standards was identified. In addition to the recommended standard changes, several other sets of information and data were extracted for use by USNRC in other ongoing programs. This information included: (1) detailed observations on the response of structures and distribution system supports to the recent Northridge, California (1994) and Kobe, Japan (1995) earthquakes, (2) comparison of versions of certain standards cited in the standard review plan to the most current versions, and (3) comparison of the seismic and wind design basis for all the subject reactor designs

  16. Off-design temperature effects on nuclear fuel pins for an advanced space-power-reactor concept

    Science.gov (United States)

    Bowles, K. J.

    1974-01-01

    An exploratory out-of-reactor investigation was made of the effects of short-time temperature excursions above the nominal operating temperature of 990 C on the compatibility of advanced nuclear space-power reactor fuel pin materials. This information is required for formulating a reliable reactor safety analysis and designing an emergency core cooling system. Simulated uranium mononitride (UN) fuel pins, clad with tungsten-lined T-111 (Ta-8W-2Hf) showed no compatibility problems after heating for 8 hours at 2400 C. At 2520 C and above, reactions occurred in 1 hour or less. Under these conditions free uranium formed, redistributed, and attacked the cladding.

  17. Advanced nuclear propulsion concepts

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.D. [Los Alamos National Lab., NM (United States)

    1994-12-31

    A preliminary analysis has been carried out for two potential advanced nuclear propulsion systems: a contained pulsed nuclear propulsion engine and an antiproton initiated ICF system. The results of these studies indicate that both concepts have a high potential to help enable manned planetary exploration but require substantial development.

  18. Nuclear power - anyone interested

    International Nuclear Information System (INIS)

    The subject is discussed under the following headings, with illustrative strip cartoons: uranium mining (uranium exploration in Orkney); radiation (hazards); nuclear power and employment; transport (of radioactive materials); nuclear reactor safety (reference to the accident to Three Mile Island-2 reactor); energy in the future; sources of energy; nuclear weapons; suggestions for action; insulation and heating buildings; nuclear security; working in a nuclear power station; nuclear waste; the anti-nuclear movement; nuclear power and politics. (U.K.)

  19. Advance: research project on aging electrical wiring in nuclear power plants; Advance: proyecto de investigacion de envejecimiento en cableado electrico en centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J. C.; Ruiz, S.

    2013-07-01

    As Nuclear Power Plants get older it is more important to know the real condition of low voltage, instrumentation, power and control cables. Additionally, as new plants are being built, the election of cables and the use of in-situ monitoring techniques to get reliable aging indicators, can be very useful during the plant life. The goal of this Project is to adapt, optimize and asses Condition Monitoring techniques for Nuclear Power Plants cables. These techniques, together with the appropriate acceptance criteria, would allow specialists to know the state of the cable over its entire length and estimate its residual life. In the Project, accelerated ageing is used in cables installed in European NPPs in order to evaluate different techniques to detect local and global ageing. Results are compared with accepted tests to validate its use for the estimation of cables residual life. This paper describes the main stages of the Project and some results. (Author)

  20. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    International Nuclear Information System (INIS)

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented here. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions; and (2) magnetic field effects on the energy transfer between the ions and the electrons. Both NES and the equilibration modifications affect the flow of power to the plasma ions, which is an important factor in the analysis of advanced-fuels. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D-3He plasmas, due to the changes in the allowable T/sub i/T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  1. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  2. An Investigation for Arranging the Video Display Unit Information in a Main Control Room of Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chong Cheng; Yang, Chih Wei [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan (China)

    2014-08-15

    Current digital instrumentation and control and main control room (MCR) technology has extended the capability of integrating information from numerous plant systems and transmitting needed information to operations personnel in a timely manner that could not be envisioned when previous generation plants were designed and built. A MCR operator can complete all necessary operating actions on the video display unit (VDU). It is extremely flexible and convenient for operators to select and to control the system display on the screen. However, a high degree of digitalization has some risks. For example, in nuclear power plants, failures in the instrumentation and control devices could stop the operation of the plant. Human factors engineering (HFE) approaches would be a manner to solve this problem. Under HFE considerations, there exists 'population stereotype' for operation. That is, the operator is used to operating a specific display on the specific VDU for operation. Under emergency conditions, there is possibility that the operator will response with this habit population stereotype, and not be aware that the current situation has already changed. Accordingly, the advanced nuclear power plant should establish the MCR VDU configuration plan to meet the consistent teamwork goal under normal operation, transient and accident conditions. On the other hand, the advanced nuclear power plant should establish the human factors verification and validation plan of the MCR VDU configuration to verify and validate the configuration of the MCR VDUs, and to ensure that the MCR VDU configuration allows the operator shift to meet the HFE consideration and the consistent teamwork goal under normal operation, transient and accident conditions. This paper is one of the HF V V plans of the MCR VDU configuration of the advanced nuclear power plant. The purpose of this study is to confirm whether the VDU configuration meets the human factors principles and the consistent

  3. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  4. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    Science.gov (United States)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  5. Regulatory perspective on digital instrumentation and control systems for future advanced nuclear power plants

    International Nuclear Information System (INIS)

    This paper deals with the question of using digital technology in instrumentation and control systems for modern nuclear power reactors. The general opinion in the industry and among NRC staff is that such technology provides the opportunity for enhanced safety and reliable reactor operations. The major concern is the safe application of this technology so as to avoid common mode or common cause failures in systems. There are great differences between digital and analog system components. SECY-91-292 identifies some general regulatory concerns with regard to digital systems. There is clearly a lack of adequate regulatory direction on the application of digital equipment at this time, but the issue is being addressed by the industry, outside experts, and NRC staff. NRC staff presents a position on the issue of defense-in-depth and diversity with regard to insuring plant safety. Independent manual controls and readouts must be available to allow safe shutdown and monitoring of the plant in the event of safety system failures

  6. US nuclear power programs

    International Nuclear Information System (INIS)

    In the United States, coal provided 56 percent of the electricity generated in 1992. Nuclear energy was the next largest contributor, supplying 22 percent. Natural gas provided 9 percent, while hydro-electric and renewables together supplied another 9 percent. Currently, the 109 nuclear power plants in the U.S. have an overall generating capacity of 99,000 MWe. To improve efficiency, safety, and performance, the lessons of 30 years of experience with nuclear powerplants are being incorporated into design criteria for the next generation of U.S. plants. The new Advanced Light Water Reactor plants will feature simpler designs, which will enable more cost-effective construction and maintenance. To enhance safety, design margins are being increased, and human factors are being considered and incorporated into the designs

  7. Nuclear power in Canada

    International Nuclear Information System (INIS)

    The Canadian Nuclear Association believes that the CANDU nuclear power generation system can play a major role in achieving energy self-sufficiency in Canada. The benefits of nuclear power, factors affecting projections of electric power demand, risks and benefits relative to other conventional and non-conventional energy sources, power economics, and uranium supply are discussed from a Canadian perspective. (LL)

  8. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  9. Advanced breaking technology on the Mochovce nuclear power plant building site

    International Nuclear Information System (INIS)

    Observing the given deadlines of the construction of the Mochovce nuclear power plant and the required volumes of breaking to the total value of 6.2 million m3 of rock, the required output was derived for the 7th five year plan to the value of 200,000 m3 per month, i.e., 10,000 m3 per day and 700 m3 per hour. The basic task is to build a flat building site with an area of 2,300 by 700 m2 which requires the removal of a masiff of rocks rising to a height of 37 m, and by compacting the mined rock to build heaps to a height of 20 m. The rocks were disintegrated by blasting. Surface blasting was used for mining faces and ribs. POLONIT 2 or PERMON DAP 1 were mainly used for blasting (ammonium nitrate explosives). The Danubit 1 detonator was used in holes flooded with water. For drilling a combination was used of drilling machines HBM 70 Hausherr with a drilling diameter of 130 to 155 mm and Ingersol Rand ECM 350 with a drilling diameter of 80 mm. The compressors used are Atlas Copco XRHS 350 Dd and PTS 900 Dd. As the optimal combination of machines for the removal of disengaged material for the daily output of 15,000 m3 the combination was used of 6 excavators with a shovel volume of 2.5 m3 ORENSTEIN-KOPPEL RH 25 with 12 Kockum 445 trucks and 18 ORENSTEIN-KOPPEL RH 40 excavators with a shovel volume of 4 m3 and a total of 64 Caterpillar 769 C, Belaz 548 A, Tatra T 200 and T 138 S1 trucks. The planned targets are being fulfilled and the work performed up to now on the Mochovce site equals 2.5 million m3 of excavated and removed rock. (B.S.)

  10. Nuclear power and nuclear insurance

    International Nuclear Information System (INIS)

    Fanned by the Chernobyl reactor accident the discussion about the safety and insurability of nuclear power plants has also been affecting the insurance companies. The related analyses of the safety concepts of German nuclear power plants have been confirming the companies' risk philosophy of maintaining the insurability of nuclear power plants either meeting German safety standards or equivalent safety standards. Apart from the technical evaluation of the safety of nuclear power plants the fundamental discussion about the pros and cons of nuclear power has also been stressing the damages and liability problem. The particular relevance of possible considerable transfrontier contaminations clearly reveals the urgency of establishing internationally standardized reactor accident liability regulations. (orig./HP)

  11. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

    International Nuclear Information System (INIS)

    With recent theoretical and empirical research in basic and applied psychology, human factors, and engineering, it is now sufficient to define an integrated approach to the deign of advanced displays for present and future nuclear power plants. Traditionally, the conventional displays have shown operators the individual variables on gauges, meters, strip charts, etc. This design approach requires the operators to mentally integrate the separately displayed variables and determine the implications for the plant state. This traditional approach has been known as the single-sensor-single-indicator display design and it places an intolerable amount of mental workload on operators during transients and abnormal conditions. This report discusses a new alternative approach which is the use of direct perception interfaces. Direct perception a interfaces display the underlying physical and system constraints of the situation in a directly perceptual way, such that the viewer need not reason about what is seen to identify system states, but can identify the state of the system perceptually. It is expected that displays which show the dynamics of fundamental physical laws should better support operator decisions and diagnoses of plant states. The purpose of this research project is to develop a suite of direct perception displays for PWR nuclear power plant operations

  12. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1962-01-01

    Advances in Nuclear Science and Technology, Volume 1 provides an authoritative, complete, coherent, and critical review of the nuclear industry. This book covers a variety of topics, including nuclear power stations, graft polymerization, diffusion in uranium alloys, and conventional power plants.Organized into seven chapters, this volume begins with an overview of the three stages of the operation of a power plant, either nuclear or conventionally fueled. This text then examines the major problems that face the successful development of commercial nuclear power plants. Other chapters consider

  13. Applying the crew reliability model for team error analysis in the modernized main control room of advanced nuclear power plants

    International Nuclear Information System (INIS)

    This study implemented a crew reliability model (CRM) for analyzing human errors in a modernized main control room of advanced nuclear power plants. Instrumentation and controls systems in the main control room recently have changed most significantly with the digitalization of human-system interfaces. Ensuring the safe operation of nuclear power plants is an important driving force of these changes. Probabilistic risk assessment (PRA) is one of the most common methods to respond to these changes. PRA uses human reliability analysis (HRA) to assess human risk. In emergency situation, failure to detect a problem can have significant influences in process control and considerable effort has been invested in attempting to minimize this error through improved interface design, training, and the allocation of responsibilities within a control room team. This study provides a direction related to the crew errors. Furthermore, this study found that implementing the CRM fully considers the influences of team errors on the target system. The proposed model can be applied to specific systems in conjunction with a consideration of critical elements; they are design basis accidents, critical human actions, human error modes, and performance shaping factors. This model can be used to assist human error analysis in the main control room. Advanced technologies can reduce the occurrence of existed human errors from tradition human-system interfaces. However, the highly integrated room may hide some potential human errors that need to be further investigated. Furthermore, the use of a single example in this study is insufficient. Investigation of further examples in a future study would be useful for verification and validation of the proposed model. (author)

  14. Prospects for Nuclear Power

    OpenAIRE

    Davis, Lucas W.

    2011-01-01

    Nuclear power has long been controversial because of concerns about nuclear accidents, storage of spent fuel, and how the spread of nuclear power might raise risks of the proliferation of nuclear weapons. These concerns are real and important. However, emphasizing these concerns implicitly suggests that unless these issues are taken into account, nuclear power would otherwise be cost effective compared to other forms of electricity generation. This implication is unwarranted. Throughout the h...

  15. Advancing against nuclear terrorism

    International Nuclear Information System (INIS)

    Meeting a day before the summit, Bush and Putin announced a new Global Initiative to Combat Nuclear Terrorism; a plan for multiple, multilateral guaranteed suppliers of nuclear fuel to States that forgo building their own enrichment plants; and a Civil Nuclear Agreement that will lift restrictions on cooperation between the two countries in developing peaceful nuclear power. Each of these initiatives provides a framework for dozens of specific actions that can measurably reduce the risk of terrorists acquiring a nuclear weapon. The significance of the Global Initiative against Nuclear Terrorism lies not only in its substance but in Russia's visible joint ownership of the Initiative. After years in which Washington lectured Moscow about this threat, Putin's joint leadership in securing nuclear material worldwide should give added impetus to this undertaking inside Russia as well. Globally, this initiative calls for work plans in five arenas: prevention, detection, disruption, mitigation of consequences after an attack, and strengthening domestic laws and export controls against future A.Q. Khans. The guaranteed nuclear fuel supply tightens the noose around Iran as it seeks to exploit a loophole in the global Nuclear Non-Proliferation Treaty. By guaranteeing States that six separate international suppliers will provide backup guarantees against interruption of supply for any reason other that breech of commitments under the NPT, this proposal eliminates Iran's excuse for Natanz-the enrichment plant it is rushing to finish today. This system for supply will be subject to the supervision by the IAEA, which will also have nuclear fuel reserves that allow it to be a supplier of last resort. The Civil Nuclear Agreement will allow joint research on next-generation, proliferation-proof reactors, including technologies where Russian science is the best in the world. It will permit sale to Russia of US technologies that can improve the safety and efficiency of Russian nuclear

  16. Nuclear power, nuclear weapons, and international stability

    International Nuclear Information System (INIS)

    The National Energy Plan included as one of its key components a revision of this country's long-standing policy on the development of civilian nuclear power. The proposed change, which would have the effect of curtailing certain aspects of the U.S. nuclear-power program and of placing new restrictions on the export of nuclear materials, equipment, and services, was based explicitly on the assumption that there is a positive correlation between the worldwide spread of nuclear-power plants and their associated technology on the one hand, and the proliferation of nuclear weapons and the risk of nuclear war on the other. The authors advance here the heretical proposition that the supposed correlation may go the other way, and that the recent actions and statements of the U.S. Government have taken little account of this possibility. In brief, they suggest that if the U.S. were to forgo the option of expanding its nuclear-energy supply, the global scarcity of usable energy resources would force other countries to opt even more vigorously for nuclear power and, moreover, to do so in ways that would tend to be internationally destabilizing. Thus, actions taken with the earnest intent of strengthening world security would ultimately weaken it. They believe further that any policy that seeks to divide the world into nuclear ''have'' and ''have not'' nations by attempting to lock up the assets of nuclear technologywill lead to neither a just nor a sustainable world society but to the inverse. In any event the technology itself probably cannot be effectively contained. They believe that the dangers of nuclear proliferation can be eliminated only by building a society that sees no advantage in having nuclear weapons in the first place. Accordingly, they view the problem of the proliferation of nuclear weapons as an important issue not just in the context of nuclear power but in a larger context

  17. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    International Nuclear Information System (INIS)

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions, and (2) magnetic field effects on the energy transfer between the ions and the electrons. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D-3He plasmas, due to the changes in the allowable T/sub i//T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  18. Evaluation of an advanced fault detection system using Koeberg nuclear power plant data / H.L. Pelo.

    OpenAIRE

    Pelo, Herbert Leburu

    2013-01-01

    The control and protection system of early nuclear power plants (Generation II) have been designed and built on the then reliable analog system. Technology has evolved in recent times and digital system has replaced most analog technology in most industries. Due to safety precautions and robust licensing requirements in the nuclear industry, the analog and digital system works concurrent to each other in most control and protection systems of nuclear power plants. Due to the ageing, regular m...

  19. Nuclear power to aid development

    International Nuclear Information System (INIS)

    Before nuclear power can play its full role in contributing to the development of less advanced countries, full understanding of the capital investment, fuel costs and other economic factors as well as of the place it must take in existing power programmes is essential. Some insight into the problems and prospects was gained at the symposium arranged by the Agency, and held in Istanbul in October, on 'Nuclear Energy Costs and Economic Development'. (author)

  20. Evaluation of operators' mental workload of human-system interface automation in the advanced nuclear power plants

    International Nuclear Information System (INIS)

    It has been expected that the automation of certain tasks in a control room would help decrease operators' mental workload, enhance situation awareness, and improve the whole system performance. However, there have been too many automation-induced system failures that would warrant a fresh look on the influences of automation. Automation problems include the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills. This study evaluates operators' mental workload and system performance during a human-system interface (HSI) automation in an advanced nuclear power plant (NPP). The reactor shutdown task and alarm reset task simulations were conducted in this study to evaluate operators' mental workload and performance. The results of this study indicated that for ensuring safe operating in NPPs, the design of automation needs to be carefully implemented. Task characteristics and degrees of automation should be carefully evaluated while designing HSIs. The reactor shutdown tasks studied in this paper suggest that a high level of automation design for the long period and low workload would be sufficient. On the other hand, the degree of automation of alarm reset task does not show a significant difference to the operator's mental workload. In conclusion, the human-system interface automation in advanced NPPs is suggested to be more flexible and needs to be continually improved.

  1. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    International Nuclear Information System (INIS)

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies

  2. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    DiNunzio, Camillo A. [Framatome ANP DE& S, Marlborough, MA (United States); Gupta, Abhinav [Univ. of North Carolina, Raleigh, NC (United States); Golay, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Luk, Vincent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turk, Rich [Westinghouse Electric Company Nuclear Systems, Windsor, CT (United States); Morrow, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jin, Geum-Taek [Korea Power Engineering Company Inc., Yongin-si, Gyeonggi-do (Korea, Republic of)

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  3. Nuclear power prospects

    International Nuclear Information System (INIS)

    A survey of the nuclear power needs of the less-developed countries and a study of the technology and economics of small and medium scale power reactors are envisioned by the General Conference. Agency makes its services available to Member States to assist them for their future nuclear power plans, and in particular in studying the technical and economic aspects of their power programs. The Agency also undertakes general studies on the economics of nuclear power, including the collection and analysis of cost data, in order to assist Member States in comparing and forecasting nuclear power costs in relation to their specific situations

  4. Advanced control systems to improve nuclear power plant reliability and efficiency. Working material. Report of an advisory group meeting held in Vienna, 13-17 March, 1995

    International Nuclear Information System (INIS)

    The Advisory Group Meeting as a consequence of the recommendations of the IAEA International Working Group on Nuclear Power Plant Control and Instrumentation to produce a practical guidance on the application of the advanced control systems available for nuclear power plant operation. The objective of the IAEA advisory group meeting were: To provide an international forum of exchange of ideas and views for the purpose of enhancement of nuclear power plant reliability and efficiency by adopting advanced control technologies; to develop a scope, table of content, and extended outlines for an IAEA technical document on the subject. The present volume contains summary report, materials prepared by the meeting, and reports presented by national delegates. Refs, figs and tabs

  5. Development of advanced digital control and monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    For the latest Operating Japanese PWR Plant, to enhance reliability, operability and maintainability, the state of the art computer technology and human factors engineering has been applied for Main Control Boards, and the digital technology has been applied for main control system of the latest operating Japanese PWR plant. For the next Japanese PWR plant (APWR; Advanced PWR), it is planed to apply digital technology for all the instrumentation and control (I and C) system including the safety grade system and also apply advanced Main Control Boards which utilize soft operation, to enhance the system capability. This paper describes the system concepts, configuration, features and enhanced maintainability of integrated digital I and C system. And also describes prototype system validation. (author)

  6. Advances in reliability analysis and probabilistic safety assessment for nuclear power reactors

    International Nuclear Information System (INIS)

    The meeting was attended by 79 participants from 23 countries. The 41 papers presented at the meeting address recent developments in the area of probabilistic safety assessment (PSA) applications as well as advanced techniques/methods for various applications. In addition, comprehensive information was presented concerning PSA programmes in central and eastern European countries and the newly independent states of the former USSR. Refs, figs and tabs

  7. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    Science.gov (United States)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC

  8. Advanced Magnetic-Nuclear Power Systems for Reliability Demanding Applications Including Deep Space Missions

    OpenAIRE

    Tsvetkov, Pavel; Guy, Troy

    2010-01-01

    The MAGNUS concept, which is based on the FFMCR approach, offers space power and propulsion technology with a number of unique characteristics such as: ï‚· Direct FF energy conversion is uniquely suitable for space operation; ï‚· High efficiency DEC promises reduced thermal control and radiators; ï‚· High specific impulse allows short trip times and extends exploration to the outer reaches of the solar system and beyond; ï‚· Achievability of long-term operation assures power for missions with...

  9. Alarm Reduction Processing of Advanced Nuclear Power Plant Using Data Mining and Active Database Technologies

    International Nuclear Information System (INIS)

    The purpose of the Advanced Alarm Processing (AAP) is to extract only the most important and the most relevant data out of large amount of available information. It should be noted that the integrity of the knowledge base is the most critical in developing a reliable AAP. This paper proposes a new approach to an AAP by using Event-Condition-Action(ECA) rules that can be automatically triggered by an active database. Also this paper proposed a knowledge acquisition method using data mining techniques to obtain the integrity of the alarm knowledge

  10. RETHINKING NUCLEAR POWER SAFETY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Fukushima nuclear accident sounds alarm bells in China’s nuclear power industry In the wake of the Fukushima nucleara ccident caused by the earthquake andt sunami in Japan,the safety of nuclearp ower plants and the development of nuclear power have raised concerns,

  11. Sustainable development of nuclear power

    International Nuclear Information System (INIS)

    A treatise consisting of the following sections: Economic efficiency of nuclear power (Growth of nuclear power worldwide; State of the art in the development of nuclear power reactors; Competitiveness of contemporary nuclear power); Environmental acceptability of nuclear power (Non-proliferation of nuclear weapons; Nuclear safety and radioactive waste disposal; Environmental awareness and environmental movements). (P.A.)

  12. Three-dimensional porous media based numerical investigation of spatial power distribution effect on advanced nuclear fuel rod bundles critical power

    International Nuclear Information System (INIS)

    The influence of spatial power generation shape on thermal-hydraulics behaviour of the fuel rod bundle has been investigated. Particularly, the occurrence of the local Boiling Transition has been analysed, indicating that conditions for the Critical Heat Flux (CHF) are reached somewhere within the boiling water channels in the assembly. The two-phase coolant flow within the bundle is represented with the two-fluid model in 3D space. The porous medium concept is applied in the simulation of the two-phase flow through the rod bundle implying nonequilibrium thermal and flow conditions. The governing equations in three-dimensions are discretized with the control volume method. The 3D numerical simulation and analyses of thermal-hydraulics in a complex geometry of an advanced nuclear fuel assembly are performed for conditions of a partial and/or complete rods uncovering indicating occurrence of high quality CHF - Dryout. The obtained results from numerical simulations are compared with experimental Critical Power data obtained from full scale tests. Employed is an electrically heated test rod bundle with real 1:1 geometry. Different radial and axial power distributions are used with wide range of inlet mass flow rates (2 - 19 kg/s) and coolant inlet subcooling (25 - 185 kJ/kg). The coolant pressure, equal to 6.9 MPa, is typical for BWRs conditions. Comparison of the predicted Critical Power values with measured data shows encouraging agreements for all analysed power distributions and the results completely reflect measured two-phase mixture cross flows, steam void distribution and spatial positions of Dryout onsets. Based on performed numerical investigation, an improvement of Dryout criteria is proposed. Dynamic effects of power shape change on spatial thermal hydraulics and hence on CHF occurrence as well as the influence of transfer function on thermal hydraulics under cyclic power and/or flow rate changes are also being analysed. Experiments for such verifications

  13. Three-dimensional porous media based numerical investigation of spatial power distribution effect on advanced nuclear fuel rod bundles critical power

    Energy Technology Data Exchange (ETDEWEB)

    Stosic, Zoran V. [Framatome ANP GmbH . NBTT, Erlangen (Germany)], e-mail: Zoran.Stosic@Framatome-ANP.de; Stevanovic, Vladimir D. [Framatome ANP GmbH, Erlangen (Germany); Iguchi, Tadashi [Japan Atomic Energy Research Institute (JAERI), Ibaraki (Japan)

    2001-07-01

    The influence of spatial power generation shape on thermal-hydraulics behaviour of the fuel rod bundle has been investigated. Particularly, the occurrence of the local Boiling Transition has been analysed, indicating that conditions for the Critical Heat Flux (CHF) are reached somewhere within the boiling water channels in the assembly. The two-phase coolant flow within the bundle is represented with the two-fluid model in 3D space. The porous medium concept is applied in the simulation of the two-phase flow through the rod bundle implying nonequilibrium thermal and flow conditions. The governing equations in three-dimensions are discretized with the control volume method. The 3D numerical simulation and analyses of thermal-hydraulics in a complex geometry of an advanced nuclear fuel assembly are performed for conditions of a partial and/or complete rods uncovering indicating occurrence of high quality CHF - Dryout. The obtained results from numerical simulations are compared with experimental Critical Power data obtained from full scale tests. Employed is an electrically heated test rod bundle with real 1:1 geometry. Different radial and axial power distributions are used with wide range of inlet mass flow rates (2 - 19 kg/s) and coolant inlet subcooling (25 - 185 kJ/kg). The coolant pressure, equal to 6.9 MPa, is typical for BWRs conditions. Comparison of the predicted Critical Power values with measured data shows encouraging agreements for all analysed power distributions and the results completely reflect measured two-phase mixture cross flows, steam void distribution and spatial positions of Dryout onsets. Based on performed numerical investigation, an improvement of Dryout criteria is proposed. Dynamic effects of power shape change on spatial thermal hydraulics and hence on CHF occurrence as well as the influence of transfer function on thermal hydraulics under cyclic power and/or flow rate changes are also being analysed. Experiments for such verifications

  14. Study of advanced nuclear fuel cycles in Candu type power reactors

    International Nuclear Information System (INIS)

    The fuel burn up can be increased to a large extent, up to 14, 0000 MWD/te, by using the slightly enriched uranium or Pu mixed fuel in CANDU type power reactors. In the present study, the previous work was extended to compare the isotopic inventories and corresponding activities of important nuclides for different fuel cycles of a CANDU 600 type power reactor. The detail can be found in our studies. The calculations were performed using the computer code WIMSD4. The isotopic inventories and corresponding activities were calculated versus the fuel burn-up for the natural UO/sub 2/ fuel, 1.2 % enriched UO/sub 2/ fuel and 0.45 % PuO/sub 2/-UO/sub 2/ fuel. It was found that 1.2 % enriched uranium fuel has the lowest activity as compared to other two fuel cycles. It means that improvement in the fuel cycle technology of CANDU type power reactors can lead to high burn up which results in the reduction of actinide content in the spent fuel, and hence has a good environmental impact. (orig./A.B.)

  15. Nuclear power newsletter. Vol. 1, no. 1

    International Nuclear Information System (INIS)

    This first issue of newsletter describes the Nuclear Power Division of the Department of Nuclear Energy responsible for implementation of the IAEA programme on Nuclear Power. The mission of the Division is to increase the capability of interested Member States to implement and maintain competitive and sustainable nuclear power programmes and to develop and apply advanced nuclear technologies. The topics covered in this publication are: Engineering and Management Support for Competitive Nuclear Power; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; The International Conference on 'Fifty Years of Nuclear Power - the Next Fifty Years'. A list of documents published recently by the Nuclear Power Division in enclosed

  16. Condensation nuclear power plants with water-cooled graphite-moderated channel type reactors and advances in their development

    International Nuclear Information System (INIS)

    Consideration is being given to results of technical and economical investigations of advisability of increasing unit power by elevating steam generating capacity as a result of inserting numerous of stereotype sectional structural elements of the reactor with similar thermodynamic parameters. It is concluded that construction of power units of condensation nuclear power plants with water-cooled graphite-moderated channel type reactors of 2400-3200 MWe and higher unit power capacity represents the real method for sharp growth of efficiency and labour productivity in power industry. It can also provide the required increase of the rate of putting electrogenerating powers into operation

  17. Advances in inspection and maintenance of nuclear power plants of Electricite de France (EDF)

    International Nuclear Information System (INIS)

    The paper presents a survey of activities and results in the field of maintenance over the past 15 years. The measures initiated since the year 1990 have achieved until present an overall availablity of approx. 82%, and there is good reason to expect that availability will have been stabilised at 85% towards the end of the century. Application of the ALARA principle has brought down the collective dose from 2.3 to 1.7 manSv per power plant unit and year, and is expected to be cut down to 1.2 manSv over the next few years. (orig./HP)

  18. Nuclear Power in Sweden

    International Nuclear Information System (INIS)

    This book presents how Swedish technology has combined competence in planning, building, commissioning, maintenance, and operation of nuclear power and waste facilities. The items are elaborated in the following chapters: Nuclear power today and for the future, Sweden and its power supply, The history of nuclear power in Sweden, Nuclear Sweden today, Operating experience in 10 nuclear power units, Maintenance experience, Third-generation BWR-plants commissioned in five years, Personnel and training, Reactor safety, Quality assurance and quality control, Characteristic features of the ASEA-ATOM BWR, Experience of PWR steam generators, Nuclear fuel supply and management, Policy and techniques of radioactive waste management, Nuclear energy authorities and Inherently safe LWR. The publication is concluded by facts in brief and a statement by the Director General of IAEA. (G.B.)

  19. Advanced semiautonomous robotic system for hazardous response work at nuclear power stations

    International Nuclear Information System (INIS)

    The performance of the robotic systems used by the Russians at Chernobyl, which suffered extensive mechanical and electronic failures in attempting to operate in extremely radioactive debris fields, indicated the need for a highly mobile, hardened robot system. The Advanced Technology Development Division of the US Dept. of Energy is currently sponsoring research to develop the next generation of robotic systems. The Univ. of Florida, with Odetics Corporation as lead subcontractor, is developing an articulated transporter/manipulation system (ATMS). Odetics and the University of Florida have proposed that multiple articulated segments could operate effectively and move through complex patterns of obstructions via the method of segments that successively follow the path of a lead segment. The paper reports on the ATMS structure and the control system being developed for it. The most important challenge has involved the harmonious control of all the interconnected parts. This integration has involved the robot/graphics connection, the vision system to graphics display connection, and the plant data base to graphics display

  20. Advanced space power systems

    International Nuclear Information System (INIS)

    A review of electrical power source concepts for application to near term space missions is presented along with a comparison of their weight and area estimates. The power sources reviewed include photovoltaic solar arrays, solar concentrators, radioisotopic thermoelectric generators (RTG), Dynamic Isotope Power Subsystems (DIPS) and nuclear reactors. The solar arrays are found to be the lightest systems in the 1-6 kWe range for a 10 year mission life but they have the largest area of the practicable sources. Solar dynamics has the smallest area of the solar systems and has the lightest mass above 20 kWe of all the solar sources when a closed Brayton cycle power conversion system is used. The DIPS is the lightest weight system from 6 to 11 kWe above which the thermionic reactor is the lightest assuming a 38 foot boom is used to minimize shield weight

  1. Nuclear power and safety

    International Nuclear Information System (INIS)

    The paper deals with the problem of necessity to develop nuclear power, conceivable consequences of this development, its disadvantages and advantages. It is shown that the nuclear power is capable of supplying the world's economy with practically unlimited and the most low-cost energy resources providing the transition from the epoch of organic fuel to the epoch with another energy sources. The analysis of various factors of nuclear power effects on population and environment is presented. Special attention is focused on emergency situations at NPPs. The problem of raising the nuclear power safety is considered. 11 refs.; 5 figs.; 2 tabs

  2. Nuclear power newsletter Vol. 4, no. 1, March 2007

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: Workshop on Issues for the Introduction of Nuclear Power; Message from the Director of the Division of Nuclear Power: The Nuclear Energy Series documents: Structure and the process; Nuclear power plant operation; Strengthening nuclear power infrastructures; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional posts in Nuclear Power Division; Meetings in 2007

  3. Sydkraft and nuclear power

    International Nuclear Information System (INIS)

    This article summarizes the report made by G. Ekberg for the Swedish Sydkraft Power Co. at the company's annual meeting in June 1976. The report comprises the year 1975 and the first five months of 1976 and largely discusses nuclear power. Experience with the running of Oskarshamn and Barsebaeck nuclear power stations is reported. Nuclear power has enabled production in the oil-fired power stations at Karlshamn and Malmoe to be reduced. 750 000 tons of oil have been saved. In the first five months of 1976, nuclear power accounted for 48% of Sydkraft's electricity production, water power 36% and oil only 16%. In 1975, Sydkraft produced 13% of Sweden's electricity. (H.E.G.)

  4. The nuclear power decisions

    International Nuclear Information System (INIS)

    Nuclear power has now become highly controversial and there is violent disagreement about how far this technology can and should contribute to the Western energy economy. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but the risk is now seen to be very large indeed. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. That is, it spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government - what the author terms 'private' politics to distinguish them from the very 'public' or open politics which have characterised the period since 1974. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making has had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear debate were misunderstood by the decision makers themselves. (author)

  5. Advances in Nuclear Monitoring Technologies

    Science.gov (United States)

    Park, Brent

    2006-03-01

    Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.

  6. Nuclear power in Belgium

    International Nuclear Information System (INIS)

    In the energy sector Belgium is 90% dependent on imports. This was clearly felt by the electricity generating economy when the share of hydrocarbons in the energy resources used for electricity generation increased to more than 85% in 1973 as a consequence of rising electricity consumption. Although Belgium had been early to start employing nuclear power for peaceful purposes, only little use had initially been made of this possibility. After the first oil price crisis the Belgian electricity utilities turned more attention to nuclear power. To this day, seven nuclear power plants have been started up, and Belgian utilities hold a fifty percent share in a French nuclear power plant, while the French EdF holds fifty percent in one Belgian nuclear generating unit. The Belgian nuclear power plants, which were built mostly by Belgian industries, have an excellent operating record. Their availabilities are considerably above the worldwide average and they contributed some 60% to the electricity production in Belgium in 1985. Thanks to nuclear power, the cumulative percentage shares of heating oil and gas in electricity production were reduced to well over 15%, compared to 1973, thus meeting the objectives of using nuclear power, i.e., to save foreign exchange and become self-sufficient in supplying the country's needs. The use of nuclear power allowed the Belgian utilities to reduce the price per kilowatthour of electricity and, in this way, remain competitive with other countries. The introduction of nuclear power continues to have a stabilizing influence on electricity generating costs. In the light of the forecast future development of consumption it is regarded as probable that another nuclear power plant of 1390 MWe will have to be built and commissioned before the year 2000. (orig.)

  7. Nuclear power economics

    International Nuclear Information System (INIS)

    The economical comparison of nuclear power plants with coal-fired plants in some countries or areas are analyzed. It is not difficult to show that nuclear power will have a significant and expanding role to play in providing economic electricity in the coming decades. (Liu)

  8. Balakovo nuclear power station

    International Nuclear Information System (INIS)

    A key means of improving the safety and reliability of nuclear power plants is through effective training of plant personnel. The goal of this paper is to show the progress of the training at the Balakovo Nuclear Power Plant, and the important role that international cooperation programs have played in that progress

  9. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  10. Talk About Nuclear Power

    Science.gov (United States)

    Tremlett, Lewis

    1976-01-01

    Presents an overview of the relation of nuclear power to human health and the environment, and discusses the advantages and disadvantages of nuclear power as an energy source urging technical educators to inculcate an awareness of the problems associated with the production of energy. Describes the fission reaction process, the hazards of…

  11. Economics of nuclear power

    International Nuclear Information System (INIS)

    A comparison of the economics of nuclear and coal-fired power plants operated by Commonwealth Edison was developed. In this comparison, fuel costs, total busbar costs and plant performance were of particular interest. Also included were comparisons of construction costs of nuclear and coal-fired power plants over the past two decades

  12. Nuclear power - a reliable future

    International Nuclear Information System (INIS)

    development of advanced fuels based on slightly enriched uranium recovered from enriched fuel treatment as well as on fuel cycles using the spent fuel from PWR reactors in CANDU reactors. The paper addresses also legal aspects of nuclear power, international conventions and agreements and international cooperation in the nuclear field

  13. Nuclear power status 1998

    International Nuclear Information System (INIS)

    The document gives general statistical information (by country) about electricity produced by nuclear power plants in the world in 1998, and in a table the number of nuclear reactors in operation, under construction, nuclear electricity supplied in 1998, and total operating experience as of 31 December 1998

  14. Nuclear power plant outages

    International Nuclear Information System (INIS)

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  15. Nuclear Power Day '86

    International Nuclear Information System (INIS)

    The proceedings in two volumes of the event ''Nuclear Power Day '86'' held in the Institute of Nuclear Research, contain full texts of 13 papers which all fall under the INIS Scope. The objective of the event was to acquaint broad technical public with the scope of the State Research and Development Project called ''Development of Nuclear Power till the Year 2000''. The papers were mainly focused on increased safety and reliability of nuclear power plants with WWER reactors, on the development of equipment and systems for disposal and burial of radioactive wastes, the introduction of production of nuclear power facilities of an output of 1,000 MW, and on the construction of nuclear heat sources. (Z.M.)

  16. The nuclear power station

    International Nuclear Information System (INIS)

    The processes taking place in a nuclear power plant and the dangers arising from a nuclear power station are described. The means and methods of controlling, monitoring, and protecting the plant and things that can go wrong are presented. There is also a short discourse on the research carried out in the USA and Germany, aimed at assessing the risks of utilising nuclear energy by means of the incident tree analysis and probability calculations. (DG)

  17. Advanced digital I and C technology in nuclear power plants. A success story from Finland and China

    International Nuclear Information System (INIS)

    FRAMATOME ANP together with Siemens PGL have just commissioned the I and C systems for the Chinese Nuclear Power Plant Tianwan Unit 1, design the I and C systems for the first European Pressurized Water Reactor Olkiluoto 3 in Finland and started one of the most extensive and ambitious modernization project in a nuclear power plant for Loviisa NPP in Finland. The presentation delivers an insight into the problematic of digital I and C systems integration and focuses on aspects regarding design criteria, Structure and test approaches. (author)

  18. Advanced Power Electronics Components

    Science.gov (United States)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  19. Nuclear power under strain

    International Nuclear Information System (INIS)

    The German citizen faces the complex problem of nuclear power industry with slight feeling of uncertainty. The topics in question can only be briefly dealt with in this context, e.g.: 1. Only nuclear energy can compensate the energy shortage. 2. Coal and nuclear energy. 3. Keeping the risk small. 4. Safety test series. 5. Status and tendencies of nuclear energy planning in the East and West. (GL)

  20. Nuclear power constructions

    International Nuclear Information System (INIS)

    The feasibility study and the project design and their role in the process of nuclear power plant construction are analyzed in detail. From the point of view of systems aspects of scientific management, the nuclear power plant is considered to be an element of the power generation and transmission system as well as an intersection of capital investment, scientific and technical development and project designing. Foreign experience is summed up with the planning, designing and building of nuclear power plants. Attention is centred to the feasibility study and project design stages of nuclear power plant construction in the CSSR. The questions are discussed of capital investment, territorial planning activities, pre-project and project documentation; a survey is presented of legislative provisions involving the project design and capital investment spheres. Briefly outlined are topics for further rationalization of feasibility studies, such as standardization and complex project designs of WWER type nuclear power plants, the introduction of data processing in capital investment provision of WWER type nuclear power plants, and international scientific and technical cooperation including the establishment of a international consultancy centre for the designing and methodology of controlling the building, repairs, reconstruction and the decommissioning of WWER type nuclear power plants. (Z.M.). 81 figs., 2 tabs., 12 refs

  1. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  2. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  3. Nuclear Power in Space

    Science.gov (United States)

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  4. The nuclear power cycle

    International Nuclear Information System (INIS)

    Fifty years after the first nuclear reactor come on-line, nuclear power is fourth among the world's primary energy sources, after oil, coal and gas. In 2002, there were 441 reactors in operation worldwide. The United States led the world with 104 reactors and an installed capacity of 100,000 MWe, or more than one fourth of global capacity. Electricity from nuclear energy represents 78% of the production in France, 57% in Belgium, 46% in Sweden, 40% in Switzerland, 39% in South Korea, 34% in Japan, 30% in Germany, 30% in Finland, 26% in Spain, 22% in Great Britain, 20% in the United States and 16% in Russia. Worldwide, 32 reactors are under construction, including 21 in Asia. This information document presents the Areva activities in the nuclear power cycle: the nuclear fuel, the nuclear reactors, the spent fuel reprocessing and recycling and nuclear cleanup and dismantling. (A.L.B.)

  5. Prospects for the Republic of Korea of costs, risks and externalities for research and development and commercialization of advanced nuclear power systems

    International Nuclear Information System (INIS)

    In order to improve public acceptance and the economics of nuclear power, the R and D development programme for advanced nuclear power systems has been executed as part of a two pronged approach since 1992. The new efforts seek to identify and develop an advanced nuclear power reactor with innovative passive system concepts suitable for requirements in the Republic of Korea in parallel with the evolutionary development of the 'Korean standardized' PWR and CANDU reactors. The R and D for next generation reactor technologies are being carefully and selectively implemented, with due consideration for mutually beneficial and viable co-operation with other Member States. The costs and risks are assessed a priori and will be reassessed in due course at the project implementation stage, and fed back to readjust the targets and implementing strategies. With this approach, the necessary costs and inherent risks for R and D, externalities, and commercialization could well be minimized and the project will be implemented efficiently. The role of the IAEA would be to provide an objective assessment of potential viable advanced LWR concepts and identify the key R and D areas. The major R and D efforts of interested Member States could be incorporated as an IAEA Co-ordinated Research Programme. For the improvement of public acceptance, the IAEA could play a key role in providing objective and authoritative information materials to Member States. Finally, the IAEA could co-ordinate an international advanced nuclear power system project through cost effective international co-operation for timely demonstration and commercialization. 1 tab

  6. Commercial nuclear power 1990

    International Nuclear Information System (INIS)

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs

  7. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  8. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  9. The use of nuclear energy for district heating. The branch program of activities. NIKIET design efforts on the advanced nuclear co-generation plant with VK-300 reactor, the Ruta nuclear heating plant and small power units

    International Nuclear Information System (INIS)

    Full text: District heating is among the top priorities of the state economic and energy policy of Russia and is the largest and expanding sector of the national power industry. The nuclear sources of energy are regarded as the promising option for this sector of the power industry. The branch program of activities which is being implemented is intended for developing the policy and program of nuclear district heating. The priority task is to provide co-generated heat from the NPPs and nuclear co-generation plants to the amount of 30 mln Gcal/year by 2020 as specified in the Energy Policy of Russia for the period until 2020. NIKIET named after N.A. Dollezhal has been developing the special purpose reactor facilities for the power units of the nuclear co-generation plants and nuclear heating plants. The detailed design of the power unit with the simplified passive boiling water reactor VK-300 has been developed for the nuclear co-generation plant (NCP) intended to be deployed in the large-scale power industry. It has been demonstrated that NCP with VK-300 reactor is competitive with respect to the operating and advanced fossil thermal co-generation plants. It is envisaged to construct the four-unit first of-the-kind NCP with VK-300 reactor in Arkhangelsk region. The nuclear heating plant based on the pool RUTA reactors operating under atmospheric pressure is being developed for the small towns. It is planned to construct the pilot plant of such kind on the site of RF State Research Center FEI, Obninsk. In the frame of conversion of the defense-oriented works NIKIET has developed the UNITHERM reactor facility for a small NPP to be located in the distant and difficult-to access regions of Russia. To provide heat and electricity to the small communities, meteorological observatories, lighthouses and radio navigation stations in a reliable and safe way, it is possible to use non-attended small nuclear power plants based on the self-regulating water-water reactor and

  10. Nuclear power newsletter Vol. 4, no. 2, June 2007

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: International Conference on Non-Electric Application of Nuclear Power; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management systems, nuclear power infrastructures and human resources; Technology developments and applications for advanced reactors; New staff in Nuclear Power Division; Current vacancy notice for professional post in Nuclear Power Division; Upcoming meetings; 2nd International Symposium on PLiM; 8th IAEA-FORATOM Joint Workshop

  11. Development of nuclear power

    International Nuclear Information System (INIS)

    An extensive discussion of problems concerning the development of nuclear power took place at the fifth regular session of the IAEA General Conference in September-October 1961. Not only were there many references in plenary meetings to the nuclear power plans of Member States, but there was also a more specific and detailed debate on the subject, especially on nuclear power costs, in the Program, Technical and Budget Committee of the Conference. The Conference had before it a report from the Board of Governors on the studies made by the Agency on the economics of nuclear power. In addition, it had been presented with two detailed documents, one containing a review of present-day costs of nuclear power and the other containing technical and economic information on several small and medium-sized power reactors in the United States. The Conference was also informed of the report on methods of estimating nuclear power costs, prepared with the assistance of a panel of experts convened by the Agency, which was reviewed in the July 1961 issue of this Bulletin

  12. 600 MW nuclear power database

    International Nuclear Information System (INIS)

    600 MW Nuclear power database, based on ORACLE 6.0, consists of three parts, i.e. nuclear power plant database, nuclear power position database and nuclear power equipment database. In the database, there are a great deal of technique data and picture of nuclear power, provided by engineering designing units and individual. The database can give help to the designers of nuclear power

  13. Nuclear power's dim future

    International Nuclear Information System (INIS)

    The future of nuclear power in the United States is behind us. At the end of 1992, about one-fifth of the U.S. supply of baseload electric power was generated by nuclear plants. The percentage of the nation's electricity produced by nuclear power will decline and the industry's prospects will remain dim. A main damper on the industry's clear plants for the United States in the last 15 years, and none are expected. Other factors that have hurt the American nuclear power industry include escalating capital and operating costs, lengthening licensing and construction times (which contributed substantially to capital cost escalation), allegations of questionable management at several facilities, and seemingly intractable technical problems that include the storage and disposal of increasing amounts of high- and low-level radioactive wastes

  14. Future nuclear power

    International Nuclear Information System (INIS)

    There is no future without nuclear power. Although this view is contested vehemently by dyed-in-the-wool nuclear opponents, more and more indications pointing to a future with nuclear power can be derived from international developments, but are also evident from first principles of the connection between technical development and power supply, especially in the light of global changes over very long periods of time. A qualitative comparison is made of pre-industrial, industrial and post-industrial modes of technical production; the characteristics of the latter are derived from the need for consistency with the unlimited technical possibilities of automation of human labor. It is seen that future requirements to be met in energy supply will be determined chiefly by contraints of reproducing nature. Given proper further development, nuclear power will be able to meet these requirements quickly and extensively. Other sources of primary energy are indispensable over interim periods of time. (orig.)

  15. Safeguarding nuclear power stations

    International Nuclear Information System (INIS)

    The basic features of nuclear fuel accounting and control in present-day power reactors are considered. Emphasis is placed on reactor operations and spent-fuel characteristics for Light-Water Reactors (LWRs) and Heavy-Water Reactors (HWRs)

  16. Nuclear power plant construction

    International Nuclear Information System (INIS)

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.)

  17. Safety and nuclear power

    International Nuclear Information System (INIS)

    Representatives of the supporters and opponents of civil nuclear power put forward the arguments they feel the public should consider when making up their mind about the nuclear industry. The main argument in favour of nuclear power is about the low risk in comparison with other risks and the amount of radiation received on average by the population in the United Kingdom from different sources. The aim is to show that the nuclear industry is fully committed to the cause of safety and this has resulted in a healthy workforce and a safe environment for the public. The arguments against are that the nuclear industry is deceitful, secretive and politically motivated and thus its arguments about safety, risks, etc, cannot be trusted. The question of safety is considered further - in particular the perceptions, definitions and responsibility. The economic case for nuclear electricity is not accepted. (U.K.)

  18. Review on the role of nuclear power

    International Nuclear Information System (INIS)

    This report consists of 2 parts. The first part reviews opinions against nuclear power on the aspects: waste disposal, safety and environment, financial; technology, etc. and gives results of a preliminary survey for nuclear power in Vietnam among scientists in 1990. The second part presents advanced reactor concepts and advantages of nuclear power to economy and environment in comparison with other energy sources. (N.H.A). 39 refs, 9 figs, 2 tabs

  19. Globalization and nuclear power

    International Nuclear Information System (INIS)

    Different aspects of the experience of nuclear power as recounted by well-known commentators and new contributors are included in two special issues. In general, the discussions are historical and theoretical and most are retrospective. The current position of nuclear power world wide is considered. Its future seems less than secure especially as it will have to compete alongside other energy sources with many problems of control of its materials still unresolved. (UK)

  20. Commercial nuclear power 1989

    International Nuclear Information System (INIS)

    This report presents historical data on commercial nuclear power in the United States, with projections of domestic nuclear capacity and generation through the year 2020. The report also gives country-specific projections of nuclear capacity and generation through the year 2010 for other countries in the world outside centrally planned economic areas (WOCA). Information is also presented regarding operable reactors and those under construction in countries with centrally planned economies. 39 tabs

  1. Nuclear power plant erection

    International Nuclear Information System (INIS)

    The erection of a nuclear power plant covers all the installation operations related to mechanical and electrical equipment in buildings designed for this specific purpose. Some of these operations are described: erection of the nuclear boiler, erection work carried out in the building accomodating the nuclear auxiliary and ancillary equipment and the methods and the organization set up in order to carry out this work satisfactorily are analyzed

  2. The Korean nuclear power program

    International Nuclear Information System (INIS)

    Although the world nuclear power industry may appear to be in decline, continued nuclear power demand in Korea indicates future opportunities for growth and prosperity in this country. Korea has one of the world's most vigorous nuclear power programs. Korea has been an active promoter of nuclear power generation since 1978, when the country introduced nuclear power as a source of electricity. Korea now takes pride in the outstanding performance of its nuclear power plants, and has established a grand nuclear power scheme. This paper is aimed at introducing the nuclear power program of Korea, including technological development, international cooperation, and CANDU status in Korea. (author). 2 tabs

  3. Nuclear power and leukaemia

    International Nuclear Information System (INIS)

    This booklet describes the nature of leukaemia, disease incidence in the UK and the possible causes. Epidemiological studies observing rates of leukaemia near nuclear power stations in the UK and other parts of the world are discussed. Possible causes of leukaemia excesses near nuclear establishments include radioactive discharges into the environment, paternal radiation exposure and viral causes. (UK)

  4. Turkey's nuclear power effort

    International Nuclear Information System (INIS)

    This paper discusses the expected role of nuclear energy in the production of electric power to serve the growing needs of Turkey, examining past activities and recent developments. The paper also reviews Turkey's plans with respect to nuclear energy and the challenges that the country faces along the way

  5. No to nuclear power

    International Nuclear Information System (INIS)

    Kim Beazley has again stated a Labor Government would not pursue nuclear power because the economics 'simply don't stack up'. 'We have significant gas, coal and renewable energy reserves and do not have a solution for the disposal of low-level nuclear waste, let alone waste from nuclear power stations.' The Opposition Leader said developing nuclear power now would have ramifications for Australia's security. 'Such a move could result in our regional neighbours fearing we will use it militarily.' Instead, Labor would focus on the practical measures that 'deliver economic and environmental stability while protecting our national security'. Mr Beazley's comments on nuclear power came in the same week as Prime Minister John Howard declined the request of Indian Prime Minister Manmohan Singh for uranium exports, although seemingly not ruling out a policy change at some stage. The Prime Ministers held talks in New Delhi over whether Australia would sell uranium to India without it signing the Nuclear Non-Proliferation Treaty. An agreement reached during a visit by US President George W. Bush gives India access to long-denied nuclear technology and guaranteed fuel in exchange for allowing international inspection of some civilian nuclear facilities. Copyright (2006) Crown Content Pty Ltd

  6. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  7. Nuclear power in space

    International Nuclear Information System (INIS)

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  8. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  9. Nuclear power for tomorrow

    International Nuclear Information System (INIS)

    The evolution of nuclear power has established this energy source as a viable mature technology, producing at comparative costs more than 16% of the electricity generated world-wide. After outlining the current status of nuclear power, extreme future scenarios are presented, corresponding respectively to maximum penetration limited by technical-economic characteristics, and nuclear phase-out at medium term. The situation is complex and country specific. The relative perception of the importance of different factors and the compensation of advantages vs. disadvantages, or risk vs. benefits, has predominant influence. In order to proceed with an objective and realistic estimate of the future role of nuclear power worldwide, the fundamental factors indicated below pro nuclear power and against are assessed, including expected trends regarding their evolution: Nuclear safety risk; reduction to levels of high improbability but not zero risk. Reliable source of energy; improvements towards uniform standards of excellence. Economic competitiveness vs. alternatives; stabilization and possible reduction of costs. Financing needs and constraints; availability according to requirements. Environmental effects; comparative analysis with alternatives. Public and political acceptance; emphasis on reason and facts over emotions. Conservation of fossil energy resources; gradual deterioration but no dramatic crisis. Energy supply assurance; continuing concerns. Infrastructure requirements and availability; improvements in many countries due to overall development. Non-proliferation in military uses; separation of issues from nuclear power. IAEA forecasts to the year 2005 are based on current projects, national plans and policies and on prevailing trends. Nuclear electricity generation is expected to reach about 18% of total worldwide electricity generation, with 500 to 580 GW(e) installed capacity. On a longer term, to 2030, a stabilized role and place among available viable

  10. Country nuclear power profiles

    International Nuclear Information System (INIS)

    The preparation of Country Nuclear Power Profiles was initiated within the framework of the IAEA's programme for nuclear power plant performance assessment and feedback. It responded to a need for a database and a technical document containing a description of the energy and economic situation and the primary organizations involved in nuclear power in IAEA Member States. The task was included in the IAEA's programmes for 1993/1994 and 1995/1996. In March 1993, the IAEA organized a Technical Committee meeting to discuss the establishment of country data ''profiles'', to define the information to be included in the profiles and to review the information already available in the IAEA. Two expert meetings were convened in November 1994 to provide guidance to the IAEA on the establishment of the country nuclear profiles, on the structure and content of the profiles, and on the preparation of the publication and the electronic database. In June 1995, an Advisory Group meeting provided the IAEA with comprehensive guidance on the establishment and dissemination of an information package on industrial and organizational aspects of nuclear power to be included in the profiles. The group of experts recommended that the profiles focus on the overall economic, energy and electricity situation in the country and on its nuclear power industrial structure and organizational framework. In its first release, the compilation would cover all countries with operating power plants by the end of 1995. It was also recommended to further promote information exchange on the lessons learned from the countries engaged in nuclear programmes. For the preparation of this publication, the IAEA received contributions from the 29 countries operating nuclear power plants and Italy. A database has been implemented and the profiles are supporting programmatic needs within the IAEA; it is expected that the database will be publicly accessible in the future

  11. Support for cooperative control and maintenance operation in advanced nuclear power plant from generalized and intuitive viewpoints

    International Nuclear Information System (INIS)

    To keep safety and effectiveness in control and maintenance operations of large and complex plants like nuclear power plants, cooperative operation among human and machine agents is proposed. The concept is that the cooperation augments human capability as an individual by closely related team members with adequate interfaces. This paper describes a basic concept of the cooperation, necessary interface functions, infrastructure of the cooperation and communication logging for accumulation and sharing of knowledge. (author)

  12. Nuclear power plants for protecting the atmosphere

    International Nuclear Information System (INIS)

    Some figures are presented comparing date on the CO2 emission and oxygen consumption of nuclear, natural gas fired, advanced coal fired and oil fired power plants, for the same amounts of electricity generated. The data were deduced from the Paks Nuclear Power Plant, Hungary. (R.P.)

  13. Nuclear power newsletter Vol. 2, no. 1

    International Nuclear Information System (INIS)

    This newsletter presents information on the following topics: 7th meeting of the INPRO Steering Committee; Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure; Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors; 1st European Nuclear Assembly

  14. The possibility of building nuclear power plant free from severe accident risk: PWR NPP with advanced all passive safety cooling systems (AAP SCS)

    International Nuclear Information System (INIS)

    A complete set of advanced all passive safety cooling systems (AAP SCS) for PWR NPP, actuated by natural force has been put forward in the article. Here the natural force mainly means the fore, which created by change of pressure distribution in the first loop of PWR as a result of operational regime conversion from one to another, including occurrence of accident situation. Correspondent safety cooling system will be actuated naturally and then put it into passive operation after occurring some kind of accident, so accidental situation will be mitigated right after it's occurrence and core residual heat will be naturally moved from the active core to the ultimate heat sink. There is no need to rely on automatic control system, any active equipment and human actions in all working process of the AAP SCS, which can reduce the probability of severe accident to zero, so as to exclude the need of evacuation plan around AAP nuclear power plant and eliminate the public's concern and doubt about nuclear power safety. Implementation of the AAP SCS concept is only based on use of evolutionary measures and state-of-the-art technology. So at present time it can be used for design of new-type third generation PWR nuclear power plant without severe accident risk, and for modernization of existing second generation nuclear power plant. (authors)

  15. Advances in nuclear science and technology

    CERN Document Server

    Greebler, Paul

    1968-01-01

    Advances in Nuclear Science and Technology Volume 4 provides information pertinent to the fundamental aspects of advanced reactor concepts. This book discusses the advances in various areas of general applicability, including modern perturbation theory, optimal control theory, and industrial application of ionizing radiations.Organized into seven chapters, this volume begins with an overview of the technology of sodium-cooled fast breeder power reactors and gas-cooled power reactors. This text then examines the key role of reactor safety in the development of fast breeder reactors. Other chapt

  16. The reality of nuclear power

    International Nuclear Information System (INIS)

    The following matters are discussed in relation to the nuclear power programmes in USA and elsewhere: siting of nuclear power plants in relation to a major geological fault; public attitudes to nuclear power; plutonium, radioactive wastes and transfrontier contamination; radiation and other hazards; economics of nuclear power; uranium supply; fast breeder reactors; insurance of nuclear facilities; diversion of nuclear materials and weapons proliferation; possibility of manufacture of nuclear weapons by developing countries; possibility of accidents on nuclear power plants in developing countries; radiation hazards from use of uranium ore tailings; sociological alternative to use of nuclear power. (U.K.)

  17. Recent advances in nuclear cardiology

    DEFF Research Database (Denmark)

    Gutte, H.; Petersen, C. Leth; Kjaer, A.;

    2008-01-01

    Nuclear cardiology is an essential part of functional, non-invasive, cardiac imaging. Significant advances have been made in nuclear cardiology since planar (201)thallium ((201)TI) scintigraphy was introduced for the evaluation of left ventricular (LV) perfusion nearly 40 years ago. The use......-coronary cardiac diseases. The advances in nuclear cardiology are discussed under the four headlines of: 1) myocardial perfusion, 2) cardiac performance including LV and right ventricular (RV) function, 3) myocardial metabolism, and 4) experimental nuclear cardiology Udgivelsesdato: 2008/6...

  18. France without nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Charmant, A.; Devezeaux de Lavergne, J.-G.; Ladoux, N.; Vielle, M. (Atomic Energy Commission, Paris (France))

    1993-01-01

    As environmental issues (particularly questions associated with the greenhouse effect) become a matter of increasing current concern, so the French nuclear power programme can, in retrospect, be seen to have had a highly positive impact upon emissions of atmospheric pollutants. The most spectacular effect of this programme has been the reduction of carbon dioxide emissions from 530 million tonnes per annum in 1973 to 387 million tonnes per annum today. Obviously, this result cannot be considered in isolation from the economic consequences of the nuclear power programme, which have been highly significant. The most obvious consequence of nuclear power has been the production of cheap electricity, while a further consequence has been the stability of electricity prices resulting from the increasing self-sufficiency of France in energy supplies (from 22% in 1937 to 47% in 1989). The French nuclear industry is also a source of exports, contributing FF 20 billion to the credit side of the balance of payments in 1989. The authors therefore feel that a numerical assessment of the macroeconomic impact of the nuclear power programme is essential to any accurate evaluation of the environmental consequences of that programme. This assessment is set out in the paper using the Micro-Melodie macroeconomic and energy supply model developed by the CEA (Atomic Energy Commission). An assessment of the role of nuclear power in combatting the greenhouse effect is made. 9 refs., 13 figs., 13 tabs.

  19. The nuclear power alternative

    International Nuclear Information System (INIS)

    The Director General of the IAEA stressed the need for energy policies and other measures which would help to slow and eventually halt the present build-up of carbon dioxide, methane and other so-called greenhouse gases, which are held to cause global warming. He urged that nuclear power and various other sources of energy, none of which contribute to global warming, should not be seen as alternatives, but should all be used to counteract the greenhouse effect. He pointed out that the commercially used renewable energies, apart from hydropower, currently represent only 0.3% of the world's energy consumption and, by contrast, the 5% of the world's energy consumption coming from nuclear power is not insignificant. Dr. Blix noted that opposition for nuclear power stems from fear of accidents and concern about the nuclear wastes. But no generation of electricity, whether by coal, hydro, gas or nuclear power, is without some risk. He emphasized that safety can never be a static concept, and that many new measures are being taken by governments and by the IAEA to further strengthen the safety of nuclear power

  20. Nuclear power in perspective

    International Nuclear Information System (INIS)

    The nuclear power debate hinges upon three major issues: radioactive waste disposal, reactor safety and proliferation. An alternative strategy for waste disposal is advocated which involves disposing of the radwaste (immobilized in SYNROC, a titanate ceramic waste form) in deep (4 km) drill-holes widely dispersed throughout the entire country. It is demonstrated that this strategy possesses major technical (safety) advantages over centralized, mined repositories. The comparative risks associated with coal-fired power generation and with the nuclear fuel cycle have been evaluated by many scientists, who conclude that nuclear power is far less hazardous. Considerable improvements in reactor design and safety are readily attainable. The nuclear industry should be obliged to meet these higher standards. The most hopeful means of limiting proliferation lies in international agreements, possibly combined with international monitoring and control of key segments of the fuel cycle, such as reprocessing

  1. LDC nuclear power: Egypt

    International Nuclear Information System (INIS)

    This chapter reviews the evolution of Egypt's nuclear program, the major factors that influenced the successive series of nuclear decisions, and the public debate over the far-reaching program attempted by the late President Anwar El-Sadat. Egypt's program is important, not only because it was the first Arab country to enter the nuclear age, but because it is an ambitious program that includes the installation of eight reactors at a time when many countries are reducing their commitment to nuclear power. Major obstacles remain in terms of human, organizational, and natural resource constraints. 68 references, 1 table

  2. Nuclear power in Japan

    International Nuclear Information System (INIS)

    The Japanese movement against nuclear energy reached a climax in its upsurge in 1988 two years after the Chernobyl accident. At the outset of that year, this trend was triggered by the government acknowledgement that the Tokyo market was open to foods contaminated by the fallout from Chernobyl. Anti-nuclear activists played an agitating role and many housewives were persuaded to join them. Among many public opinion surveys conducted at that time by newspapers and broadcasting networks, I would like to give you some figures of results from the poll carried out by NHK: Sixty percent of respondents said that nuclear power 'should be promoted', either 'vigorously' 7 or 'carefully' 53%). Sixty-six percent doubted the 'safety of nuclear power', describing it as either 'very dangerous' 20%) or 'rather dangerous' (46%). Only 27% said it was 'safe'. In other words, those who acknowledged the need for nuclear power were almost equal in number with those who found it dangerous. What should these figures be taken to mean? I would take note of the fact that nearly two-thirds of valid responses were in favor of nuclear power even at the time when public opinion reacted most strongly to the impact of the Chernobyl accident. This apparently indicates that the majority of the Japanese people are of the opinion that they would 'promote nuclear power though it is dangerous' or that they would 'promote it, but with the understanding that it is dangerous'. But the anti-nuclear movement is continuing. It remains a headache for both the government and the electric utilities. But we can regard the anti-nuclear movement in Japan as not so serious as that faced by other industrial nations

  3. Steps to nuclear power

    International Nuclear Information System (INIS)

    The recent increase in oil prices will undoubtedly cause the pace at which nuclear power is introduced in developing countries to quicken in the next decade, with many new countries beginning to plan nuclear power programmes. The guidebook is intended for senior government officials, policy makers, economic and power planners, educationalists and economists. It assumes that the reader has relatively little knowledge of nuclear power systems or of nuclear physics but does have a general technical or management background. Nuclear power is described functionally from the point of view of an alternative energy source in power system expansion. The guidebook is based on an idealized approach. Variations on it are naturally possible and will doubtless be necessary in view of the different organizational structures that already exist in different countries. In particular, some countries may prefer an approach with a stronger involvement of their Atomic Energy Commission or Authority, for which this guidebook has foreseen mainly a regulatory and licensing role. It is intended to update this booklet as more experience becomes available. Supplementary guidebooks will be prepared on certain major topics, such as contracting for fuel supply and fuel cycle requirements, which the present book does not go into very deeply

  4. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  5. Nuclear power newsletter Vol. 2, no. 2

    International Nuclear Information System (INIS)

    The main topics in the newsletter are: International Ministerial Conference 'Nuclear Power for the 21st Century 'NPP operating performance and life cycle management; improving human performance quality and technical infrastructure; and technology development and applications for advanced reactors

  6. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1976-01-01

    Advances in Nuclear Science and Technology, Volume 9 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of the possible consequences of a large-scale release of radioactivity from a nuclear reactor in the event of a serious accident. This text then discusses the extension of conventional perturbation techniques to multidimensional systems and to high-order approximations of the Boltzmann equation.

  7. Advanced nuclear precleaner

    International Nuclear Information System (INIS)

    This Phase II Small Business Innovation Research (SBIR) program's goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station

  8. Advanced nuclear precleaner

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.R. [InnovaTech, Inc., Durham, NC (United States)

    1997-10-01

    This Phase II Small Business Innovation Research (SBIR) program`s goal is to develop a dynamic, self-cleaning air precleaner for high-efficiency particulate air (HEPA) filtration systems that would extend significantly the life of HEPA filter banks by reducing the particulate matter that causes filter fouling and increased pack pressure. HEPA filters are widely used in DOE, Department of Defense, and a variety of commercial facilities. InnovaTech, Inc. (Formerly Micro Composite materials Corporation) has developed a proprietary dynamic separation device using a concept called Boundary Layer Momentum Transfer (BLMT) to extract particulate matter from fluid process streams. When used as a prefilter in the HVAC systems or downstream of waste vitrifiers in nuclear power plants, fuel processing facilities, and weapons decommissioning factories, the BLMT filter will dramatically extend the service life and increase the operation efficiency of existing HEPA filtration systems. The BLMT filter is self cleaning, so there will be no degraded flow or increased pressure drop. Because the BLMT filtration process is independent of temperature, it can be designed to work in ambient, medium, or high-temperature applications. During Phase II, the authors are continuing development of the computerized flow simulation model to include turbulence and incorporate expansion into a three-dimensional model that includes airflow behavior inside the filter housing before entering the active BLMT device. A full-scale (1000 ACFM) prototype filter is being designed to meet existing HEPA filter standards and will be fabricated for subsequent testing. Extensive in-house testing will be performed to determine a full range of performance characteristics. Final testing and evaluation of the prototype filter will be conducted at a DOE Quality Assurance Filter Test Station.

  9. Space technology needs nuclear power

    International Nuclear Information System (INIS)

    Space technology needs nuclear power to solve its future problems. Manned space flight to Mars is hardly feasible without nuclear propulsion, and orbital nuclear power lants will be necessary to supply power to large satellites or large space stations. Nuclear power also needs space technology. A nuclear power plant sited on the moon is not going to upset anybody, because of the high natural background radiation level existing there, and could contribute to terrestrial power supply. (orig./HP)

  10. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Last year, 2002, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 213 plants with an aggregate net capacity of 171 814 MWe and an aggregate gross capacity of 181 135 MWe were in operation. One unit, i.e. Temelin-2 in the Czech Republic went critical for the first time and started test operation after having been connected to the grid. Temelin-2 adds about 1 000 MWe (gross) and 953 MWe (net) to the electricity production capacity. The operator of the Bradwell A-1 and Bradwell A-2 power plants in the United Kingdom decided to permanently shut down the plants due to economical reasons. The units Kozloduj-1 and Kozloduj-2 in Bulgaria were permanently shut down due to a request of the European Union. Last year, 9 plants were under construction in Romania (1), Russia (4), Slovakia (2), and the Ukraine (2), that is only in East European Countries. The Finnish parliament approved plans for the construction of the country's fifth nuclear power reactor by a majority of 107 votes to 92. It is the first decision to build a new nuclear power plant in Western Europe since ten years. In eight countries of the European Union 141 nuclear power plants have been operated with an aggregate gross capacity of 128 580 MWe and an aggregate net capacity of 122 517 MWe. Net electricity production in 2002 in the EU amounts to approx. 887.9 TWh gross, which means a share of about 34 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. They reach 81% in Lithuania, 78% in France, 58% in Belgium, 55% in the Slovak Republic, and 47% in Sweden. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy

  11. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  12. Nuclear power industry

    International Nuclear Information System (INIS)

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people's republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  13. Nuclear power. Europe report

    International Nuclear Information System (INIS)

    Last year, 2001, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In 8 of the 15 member countries of the European Union nuclear power plants have been in operation. In 7 of the 13 EU Candidate Countries nuclear energy was used for power production. A total of 216 plants with an aggregate net capacity of 171 802 MWe and an aggregate gross capacity of 181 212 MWe were in operation. One unit, i.e. Volgodonsk-1 in Russia went critical for the first time and started test operation after having been connected to the grid. Volgodonsk-1 adds about 1 000 MWe (gross) nd 953 MWe (net) to the electricity production capacity. The operator of the Muehlheim-Kaerlich NPP field an application to decommission and dismantle the plant; this plant was only 13 months in operation and has been shut down since 1988 for legal reasons. Last year, 10 plants were under construction in Romania (1), Russia (4), Slovakia (2), the Czech Republic (1) and the Ukraine (2), that is only in East European Countries. In eight countries of the European Union 143 nuclear power plants have been operated with an aggregate gross capacity of 128 758 MWe and an aggregate net capacity of 122 601 MWe. Net electricity production in 2001 in the EU amounts to approx. 880.3 TWh gross, which means a share of 33,1 per cent of the total production in the whole EU. Shares of nuclear power differ widely among the operator countries. The reach 75.6% in France, 74.2% in Lithuania, 58.2% in Belgium, 53.2% in the Slovak Republic, and 47.4% in the Ukraine. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal, and Austria. On May 24th, 2002 the Finnish Parliament voted for the decision in principle to build a fifth nuclear power plant in the country. This launches the next stage in the nuclear power plant project. The electric output of the plant unit will be 1000-1600 MW

  14. France without nuclear power

    International Nuclear Information System (INIS)

    As environmental issues (particularly questions associated with the greenhouse effect) become a matter of increasing current concern, the French nuclear power programme can, in retrospect, be seen to have had a highly positive impact upon emissions of atmospheric pollutants. The most spectacular effect of this programme was the reduction of carbon dioxide emissions from 530 million tonnes per annum in 1973 to 387 million tonnes per annum today. Obviously, this result cannot be considered in isolation from the economic consequences of the nuclear power programme, which have been highly significant.The most obvious consequence of nuclear power has been the production of cheap electricity, while a further consequence has been the stability of electricity prices resulting from the increasing self-sufficiency of France in energy supplies (from 22% in 1973 to 49.% in 1992). Moreover, French nuclear industry exports. In 1993, 61.7 TW·h from nuclear production were exported, which contributed F.Fr. 14.2 billion to the credit side of the balance of payment. For the same year, Framatome exports are assessed at about F.Fr. 2 billion, corresponding to manufacturing and erection of heavy components, and maintenance services. Cogema, the French nuclear fuel operator, sold nuclear materials and services for F.Fr. 9.3 billion. Thus, nuclear activities contributed more than F.Fr. 25 billion to the balance of payment. Therefore, a numerical assessment of the macroeconomic impact of the nuclear power programme is essential for any accurate evaluation of the environmental consequences of that programme. For this assessment, which is presented in the paper, the Micro-Melodie macroeconomic and energy supply model developed by the Commissariat a l'energie atomique has been used. (author). 6 refs, 4 figs, 1 tab

  15. Nuclear Power after Fukushima

    International Nuclear Information System (INIS)

    On 11 March 2011 Japan suffered an earthquake of very high magnitude, followed by a tsunami that left thousands dead in the Sendai region, the main consequence of which was a major nuclear disaster at the Fukushima power station. The accident ranked at the highest level of severity on the international scale of nuclear events, making it the biggest since Chernobyl in 1986. It is still impossible to gauge the precise scope of the consequences of the disaster, but it has clearly given rise to the most intense renewed debates on the nuclear issue. Futuribles echoes this in the 'Forum' feature of this summer issue which is entirely devoted to energy questions. Bernard Bigot, chief executive officer of the technological research organization CEA, looks back on the Fukushima disaster and what it changes (or does not change) so far as the use of nuclear power is concerned, particularly in France. After recalling the lessons of earlier nuclear disasters, which led to the development of the third generation of power stations, he reminds us of the currently uncontested need to free ourselves from dependence on fossil fuels, which admittedly involves increased use of renewables, but can scarcely be envisaged without nuclear power. Lastly, where the Fukushima disaster is concerned, Bernard Bigot shows how it was, in his view, predominantly the product of a management error, from which lessons must be drawn to improve the safety conditions of existing or projected power stations and enable the staff responsible to deliver the right response as quickly as possible when an accident occurs. In this context and given France's high level of dependence on nuclear power, the level of use of this energy source ought not to be reduced on account of the events of March 2011. (author)

  16. Reviewing nuclear power

    International Nuclear Information System (INIS)

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  17. France without nuclear power

    International Nuclear Information System (INIS)

    As coal production declined and France found herself in a condition of energy dependency, the country decided to turn to nuclear power and a major construction program was undertaken in 1970. The consequences of this step are examined in this article, by imagining where France would be without its nuclear power. At the end of the sixties, fuel-oil incontestably offered the cheapest way of producing electricity; but the first petroleum crisis was to upset the order of economic performance, and coal then became the more attractive fuel. The first part of this article therefore presents coal as an alternative to nuclear power, describing the coal scenario first and then comparing the relative costs of nuclear and coal investment strategies and operating costs (the item that differs most is the price of the fuel). The second part of the article analyzes the consequences this would have on the electrical power market, from the supply and demand point of view, and in terms of prices. The third part of the article discusses the macro-economic consequences of such a step: the drop in the level of energy dependency, increased costs and the disappearance of electricity exports. The article ends with an analysis of the environmental consequences, which are of greater and greater concern today. The advantage here falls very much in favor of nuclear power, if we judge by the lesser emissions of sulfur dioxide, nitrogen oxides and especially carbon dioxide. 22 refs.; 13 figs.; 10 tabs

  18. Nuclear power and climate change

    International Nuclear Information System (INIS)

    In the Kyoto Protocol, agreed upon by the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) in December 1997, Annex I countries committed to reduce their greenhouse gas (GHG) emissions. Also, the Protocol states that Annex I countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. One important option that could be covered by the last phrase, and is not specifically mentioned, is nuclear energy which is essentially carbon-free. Nuclear Energy Agency (NEA) has investigated the role that nuclear power could play in alleviating the risk of global climate change. The main objective of the study is to provide a quantitative basis for assessing the consequences for the nuclear sector and for the reduction of GHG emissions of alternative nuclear development paths. The analysis covers the economic, financial, industrial and potential environmental effects of three alternative nuclear power development paths ('nuclear variants'). (K.A.)

  19. Advanced development and using of space nuclear power systems as a part of transport power supply modules for general purpose spacecraft

    International Nuclear Information System (INIS)

    Nuclear transport power systems (NTPS) can provide solving such important science, commerce and defense tasks in space as radar surveillance, information affording, global ecological monitoring, defense of Earth from dangerous space objects, manufacturing in space, investigations of asteroids, comets and solar systems close-quote planets (Kuzin et al. 1993a, 1993b). The creation of NTPS for real space systems, however, must be based on proved NTPS effectiveness in comparison with other power and propulsion systems such as, nonnuclear electric-rocket systems and so on. When the NTPS effectiveness is proved, the operation safety of such systems must be suited to the UN requirements for all stages of the life cycle in view of possible failures. A nuclear transport power module provides both a large amount of thermal and electrical power and a long acting time (about 6 endash 7 years after completing the delivery task). For this reason such module is featured with the high power supplying-mass delivery effectiveness and the considerable increasing of the total effectiveness of a spacecraft with the module. In the report, the such NTPS three types, namely the system on the base of thermionic reactor-converter with electric rocket propulsion system (ERPS), the dual mode thermionic nuclear power system with pumping of working fluid through the active reactor zone, and the system on the base of the nuclear thermal rocket engine technology is compared with the transport power modules on the base of solar power system from the point of view of providing the highest degree of the effectiveness. copyright 1996 American Institute of Physics

  20. The politics of nuclear power

    International Nuclear Information System (INIS)

    The contents of the book are: introduction; (part 1, the economy of nuclear power) nuclear power and the growth of state corporatism, ownership and control - the power of the multi-nationals, economic and political goals - profit or control, trade union policy and nuclear power; (part 2, nuclear power and employment) nuclear power and workers' health and safety, employment and trade union rights, jobs, energy and industrial strategy, the alternative energy option; (part 3, political strategies) the anti-nuclear movement, trade unions and nuclear power; further reading; UK organisations. (U.K.)

  1. Environment and nuclear power

    International Nuclear Information System (INIS)

    Aimed at the general public this leaflet, one of a series prepared by AEA Technology, on behalf of the British Nuclear Industry Forum, seeks to put the case for generating electricity to meet United Kingdom and world demand using nuclear power. It examines the environmental problems linked to the use of fossil-fuels in power stations and other uses, such as the Greenhouse Effect. Problems associated with excess carbon dioxide emissions are also discussed, such as acid rain, the effects of deforestation and lead in petrol. The role of renewable energy sources is mentioned briefly. The leaflet also seeks to reassure on issues such as nuclear waste managements and the likelihood and effects of nuclear accidents. (UK)

  2. Nuclear power production costs

    International Nuclear Information System (INIS)

    The economic competitiveness of nuclear power in different highly developed countries is shown, by reviewing various international studies made on the subject. Generation costs (historical values) of Atucha I and Embalse Nuclear Power Plants, which are of the type used in those countries, are also included. The results of an international study on the economic aspects of the back end of the nuclear fuel cycle are also reviewed. This study shows its relatively low incidence in the generation costs. The conclusion is that if in Argentina the same principles of economic racionality were followed, nuclear energy would be economically competitive in the future, as it is today. This is of great importance in view of its almost unavoidable character of alternative source of energy, and specially since we have to expect an important growth in the consumption of electricity, due to its low share in the total consumption of energy, and the low energy consumption per capita in Argentina. (Author)

  3. Thai Nuclear Power Program

    International Nuclear Information System (INIS)

    The Electricity Generating Authority of Thailand (EGAT), the main power producer in Thailand, was first interested in nuclear power as an electricity option in 1967 when the electricity demand increased considerably for the first time as a result of the economic and industrial growth. Its viability had been assessed several times during the early seventies in relation to the changing factors. Finally in the late 1970s, the proceeding with nuclear option was suspended for a variety of reasons, for instance, public opposition, economic repercussion and the uncovering of the indigenous petroleum resources. Nonetheless, EGAT continued to maintain a core of nuclear expertise. During 1980s, faced with dwindling indigenous fossil fuel resources and restrictions on the use of further hydro as an energy source, EGAT had essentially reconsidered introducing nuclear power plants to provide a significant fraction to the long term future electricity demand. The studies on feasibility, siting and environmental impacts were conducted. However, the project was never implemented due to economics crisis in 1999 and strong opposition by environmentalists and activists groups. The 1986 Chernobyl disaster was an important cause. After a long dormant period, the nuclear power is now reviewed as one part of the solution for future energy supply in the country. Thailand currently relies on natural gas for 70 percent of its electricity, with the rest coming from oil, coal and hydro-power. One-third of the natural gas consumed in Thailand is imported, mainly from neighbouring Myanmar. According to Power Development Plan (PDP) 2007 rev.2, the total installed electricity capacity will increase from 28,530.3 MW in 2007 to 44,281 MW by the end of plan in 2021. Significantly increasing energy demand, concerns over climate change and dependence on overseas supplies of fossil fuels, all turn out in a favor of nuclear power. Under the current PDP (as revised in 2009), two 1,000- megawatt nuclear

  4. Perspectives of nuclear power in Germany

    International Nuclear Information System (INIS)

    Only if Germany continues to use nuclear power, and develops it further, we will have a chance to make German safety standards accepted internationally. It would be irresponsible to keep German safety know-how from other countries. It is important for Germany to preserve and advance its nuclear competence, which was acquired at great industrial expense. After all, nuclear power means almost 40,000 highly qualified jobs. These people must have a perspective for their future. They will get it only if the political courage is mustered again to build an advanced nuclear reactor with improved safety features in Germany. (orig.)

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    Before the economical adaptability of nuclear power plants was achieved, many ways were tried to technically use nuclear fission. In the course of a selection process, of numerous types of reactors, only a few have remained which are now taking part in the competition. The most important physical fundamentals, the occurence of various reactor concepts and the most important reactor types are the explained. (orig./TK)

  6. Nuclear power in Germany

    International Nuclear Information System (INIS)

    I want to give some ideas on the situation of public and utility acceptance of nuclear power in the Federal Republic of Germany and perhaps a little bit on Europe. Let me start with public perception. I think in Germany we have a general trend in the public perception of technology during the last decade that has been investigated in a systematic manner in a recent study. It is clear that the general acceptance of technology decreased substantially during the last twenty years. We can also observe during this time that aspects of the benefits of technology are much less reported in the media, that most reporting by the media now is related to the consequences of technologies, such as negative environmental consequences. hat development has led to a general opposition against new technological projects, in particular unusual and large. That trend is related not only to nuclear power, we see it also for new airports, trains, coal-fired plants. here is almost no new technological project in Germany where there is not very strong opposition against it, at least locally. What is the current public opinion concerning nuclear power? Nuclear power certainly received a big shock after Chernobyl, but actually, about two thirds of the German population wants to keep the operating plants running. Some people want to phase the plants out as they reach the end-of-life, some want to substitute newer nuclear technology, and a smaller part want to increase the use of nuclear power. But only a minority of the German public would really like to abandon nuclear energy

  7. Nuclear power: Europe report

    International Nuclear Information System (INIS)

    Last year, 1999, nuclear power plants were available for energy supply, respectively, in 18 countries all over Europe. In eight of the fifteen member countries of the European Union nuclear power plants have been in operation. A total of 218 plants with an aggregate net capacity of 181,120 MWe and an aggregate gross capacity of 171,802 MWe were in operation. Two units, i.e. Civaux 2 in France and Mochovce-2 in Slovakia went critical for the first time and started commercial operation after having been connected to the grid. Three further units in France, Chooz 1 and 2 and Civaux 1, started commercial operation in 1999 after the completion of technical measures in the primary circuit. Last year, 13 plants were under construction in Romania, Russia, Slovakia and the Czech Republic, that is only in East European countries. In eight countries of the European Union 146 nuclear power plants have been operated with an aggregate gross capacity of 129.772 MWe and an aggregate net capacity of 123.668 MWe. Net electricity production in 1999 in the EU amounts to approx. 840.2 TWh, which means a share of 35 per cent of the total production. Shares of nuclear power differ widely among the operator countries. They reach 75 per cent in France, 73 per cent in Lithuania, 58 per cent in Belgium and 47 per cent in Bulgaria, Sweden and Slovakia. Nuclear power also provides a noticeable share in the electricity supply of countries, which operate no own nuclear power plants, e.g. Italy, Portugal and Austria. (orig.)

  8. How nuclear power began

    International Nuclear Information System (INIS)

    Many of the features of the story of nuclear power, both in nuclear weapons and nuclear power stations, derive from their timing. Usually, in the history of science the precise timing of discovery does not make much difference, but in the case of nuclear fission there was the coincidence that crucial discoveries were made and openly published in the same year, 1939, as the outbreak of the Second World War. It is these events of the 1930s and the early post-war era that are mainly discussed. However, the story began a lot earlier and even in the early 1900s the potential power within the atom had been foreseen by Soddy and Rutherford. In the 1930s Enrico Fermi and his team saw the technological importance of their discoveries and took out a patent on their process to produce artificial radioactivity from slow neutron beams. The need for secrecy because of the war, and the personal trusts and mistrusts run through the story of nuclear power. (UK)

  9. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Redding, J.R. [GE Nuclear Energy, San Jose, CA (United States)

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  10. Nuclear power energy mixes

    International Nuclear Information System (INIS)

    The report contains the papers presented at the conference held on 23/24 February 1994 at the RWTH in Aachen. The goal of this conference was to analyse key issues of future energy management from different viewpoints and to attempt to achieve objective estimations. This VDI Report treats the following main themes: - is the climate question relevant? - chances and limits of renewable energy sources - does nuclear power have a future? - are the nuclear and non-nuclear waste problems solvable? - external costs in energy management -company and energy management decision criteria. (orig.)

  11. Nuclear Power for Sustainable Development : Current Status and Future Prospects

    OpenAIRE

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactor...

  12. Nuclear power plants for mobile applications

    Science.gov (United States)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  13. The future of nuclear power

    International Nuclear Information System (INIS)

    When it was announced in June that France had beaten Japan in the race to host the world's next big fusion lab, the news made headlines around the world. The media reported in generally positive tones how the 10 bn Euro International Thermonuclear Experimental Reactor (ITER) will be the next step on the path to a commercially viable nuclear fusion reactor (Physics World August p5). The coverage was a clear sign of the growing debate surrounding the future of nuclear power. Nuclear Renaissance is a welcome contribution to that debate. The book bills itself as a 'semi-technical overview of modern technologies', which perhaps underplays what the author has achieved. It reviews past, current and prospective nuclear technologies, but links them clearly to the wider topics of energy policy, climate change and energy supply. Apart from being 'semi-technical', the book is also 'semi-British'. Although those sections on technology have a global scope, the lengthy first part - devoted to the 'policy landscape' - is firmly UK in its perspective. It provides a basic description of nuclear power, the economics of nuclear generation, and how nuclear energy could combat climate change. The contribution of nuclear power to a balanced energy supply and its links with weapons proliferation are also discussed. This opening part ends with a chapter on waste management. While the first part of the book could be a stand-alone introduction to nuclear power for layreaders, the second and third parts - on nuclear fission and nuclear fusion - seem to be aimed at a different readership altogether. In particular, they will help students who have some scientific training to understand in more detail how specific types of nuclear technology work. If you want to know how a Westinghouse Advanced Passive Reactor differs from a European Pressurised Water Reactor - or learn the specifics of the Canadian CANDU reactor or the South African pebble-bed modular reactor - then this is for you. Nuttall

  14. Japan's nuclear power tightrope

    International Nuclear Information System (INIS)

    This paper reports that early in February, just as Japan's nuclear energy program was regaining a degree of popular support after three years of growing opposition, an aging pressurized-water reactor at Mihama in western Japan sprang a leak in its primary cooling system. The event occasioned Japan's first nontest use of an emergency core-cooling system. It also elicited a forecast of renewed public skepticism about nuclear power form the Ministry of International Trade and Industry (MITI), the Government body responsible for promoting and regulating Japan's ambitious nuclear power program. Public backing for this form of energy has always been a delicate flower in Japan, where virtually every school child visits the atomic bomb museums at Hiroshima and Nagasaki. Yet the country, which imports 80 percent of its energy and just about all its oil, is behind only the United States, France, and the Soviet Union in installed nuclear capacity. In fiscal 1989, which started in April, Japan's 39 nuclear power stations accounted for 25.5 percent of electricity generated - the largest contribution - followed b coal and natural gas. Twelve more plants are under construction

  15. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  16. Nuclear Power in Japan.

    Science.gov (United States)

    Powell, John W.

    1983-01-01

    Energy consumption in Japan has grown at a faster rate than in any other major industrial country. To maintain continued prosperity, the government has embarked on a crash program for nuclear power. Current progress and issues/reactions to the plan are discussed. (JN)

  17. Biblis nuclear power station

    International Nuclear Information System (INIS)

    A short constructive description of the components of the Biblis nuclear power station is given here. In addition to the heat flow diagram, the coolant cycle and the turbine control system, some details of construction and reactor safety are presented. (TK/AK)

  18. Fessenheim nuclear power station

    International Nuclear Information System (INIS)

    The Fessenheim nuclear power plant includes two PWR type units each with net electrical output of 890MW(e). The site and layout of the station, geological features and cooling water characteristics are described. Reference is made to other aspects of the environment such as population density and agronomy. (U.K.)

  19. The abuse of nuclear power

    International Nuclear Information System (INIS)

    Different aspects of possible abuse of nuclear power by countries or individuals are discussed. Special attention is paid to the advantage of nuclear power, despite the risk of weapon proliferation or terrorism. The concepts of some nuclear power critics, concerning health risks in the nuclear sector are rejected as untrue and abusive

  20. Labor and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Logan, R.; Nelkin, D.

    1980-03-01

    The AFL-CIO is officially pro-nuclear, but tensions within unions are taking issue over ideological differences. The Labor movement, having looked to nuclear power development as an economic necessity to avoid unemployment, has opposed efforts to delay construction or close plants. As many as 42% of union members or relatives of members, however, were found to oppose new power plants, some actively working against specific construction projects. The United Mine Workers and Teamsters actively challenged the nuclear industry while the auto workers have been ambivalent. The differences between union orientation reflects the history of unionism in the US and explains the emergence of social unionism with its emphasis on safety and working conditions as well as economic benefits. Business union orientation trends to prevail during periods of prosperity; social unions during recessions. The labor unions and the environmentalists are examined in this conext and found to be hopeful. 35 references. (DCK)

  1. Nuclear power and nuclear safety 2007

    International Nuclear Information System (INIS)

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2007 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  2. Nuclear power and nuclear safety 2006

    International Nuclear Information System (INIS)

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  3. Nuclear power and nuclear safety 2005

    International Nuclear Information System (INIS)

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  4. Nuclear power and nuclear safety 2004

    International Nuclear Information System (INIS)

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  5. Nuclear power and nuclear safety 2008

    International Nuclear Information System (INIS)

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  6. Nuclear power plant simulator

    International Nuclear Information System (INIS)

    In this paper, real time nuclear power plant simulator for student education is described. The simulator is composed of a hybrid computer and an operating console. Simulated power plant is a 36 MWt PWR plant, and the average temperature of the primary coolant within the reactor is controlled to be constant. Reactor Kinetics, fuel temperature, primary coolant temperature, temperature and pressure of steam within the steam generator, steam flow, control rod driving system, and feed water controlling system are simulated. The use of the hybrid computer made it possible to simulate a relatively large scale power plant with a comparatively small size computing system. (auth.)

  7. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1973-01-01

    Advances in Nuclear Science and Technology, Volume 7 provides information pertinent to the fundamental aspects of nuclear science and technology. This book discusses the safe and beneficial development of land-based nuclear power plants.Organized into five chapters, this volume begins with an overview of irradiation-induced void swelling in austenitic stainless steels. This text then examines the importance of various transport processes for fission product redistribution, which depends on the diffusion data, the vaporization properties, and the solubility in the fuel matrix. Other chapters co

  8. Advanced nuclear reactor systems - an Indian perspective

    International Nuclear Information System (INIS)

    The Indian nuclear power programme envisages use of closed nuclear fuel cycle and thorium utilisation as its mainstay for its sustainable growth. The current levels of deployment of nuclear energy in India need to be multiplied nearly hundred fold to reach levels of electricity generation that would facilitate the country to achieve energy independence as well as a developed status. The Indian thorium based nuclear energy systems are being developed to achieve sustainability in respect of fuel resource along with enhanced safety and reduced waste generation. Advanced Heavy Water Reactor and its variants have been designed to meet these objectives. The Indian High Temperature Reactor programme also envisages use of thorium-based fuel with advanced levels of passive safety features. (author)

  9. A study on the advanced methods for on-line signal processing by using artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    In order to assist the operators at the transient states of a nuclear power plant, the automation of signal processing is needed. This study has the objective to process the signals from a nuclear power plant for the purpose of advising the operator. To meet this objective, in this study, two kinds of on-line signal processing system based on AI techniques are developed for the nuclear power plant application with on-line signals. First, an artificial neural network for signal prediction is developed for the adequate countermoves at transient states. The steam generator water level is adopted as the example and the outputs of a simulation program for the dynamics of steam generator combined with noises are used as the training patterns. For the training of the artificial neural network, the modified backpropagation algorithm is proposed for escaping quickly from local minima. The modified algorithm is different from the ordinary backpropagation algorithm in the aspect that the training rate coefficient is repeatedly adjusted randomly and taken when the training is improved. This trial has an effect to search for an adequate magnitude of a training rate coefficient. The comparison result shows that the modified algorithm enables the neural network to be trained more quickly. The simulation result shows that the outputs of the artificial neural network are not sensitive to noises. Using the artificial neural networks proposed in this thesis, the operators can predict the next status of a plant and can take actions to maintain the stability of plant. Second, the multi sensor integration system has been developed for the identification of transient states. The developed system is divided into two parts; pre-processors and a fusion part. An artificial neural network is adopted in the fusion part to include the knowledge about the identification and to make a decision of the transient state. The developed pre-processors play a role of classifying the trend types of

  10. Facts about nuclear power

    International Nuclear Information System (INIS)

    The argument concerning the introduction and the further expansion of nuclear energy in the Federal Republic of Germany has been existing for several years in differing intensities and most different forms. The arguments and theses of the discussion deal with the various aspects of the reciprocity between nuclear energy and environment. This is the key-note for the scientists to treat the relevant problems and questions in the discussion about nuclear energy. The controversy in which often emotional theses are stated instead of reasonably deliberating the pros and contras includes civil initiatives, societies, and environment protection organisations on the one hand and authorities, producers, and operators of nuclear-technical plants on the other. And the scale of the different opinions reaches from real agreement to deep condemnation of a technology which represents an option to meet the energy need in the future. In this situation, this book is an attempt to de-emotionalize the whole discussion. Most of the authors of the articles come from research centres and have been working on the problems they deal with for years. The spectrum of the topics includes the energy-political coherences of nuclear energy, the technical fundaments of the individual reactor types, safety and security of nuclear-technical plants the fuel cycle, especially the waste management in nuclear power plants, environmental aspects of energy generation in general and nuclear energy in special, the question of Plutonium and the presentation of alternative energy sources including nuclear fusion. The arrangement of these topics is meant to help to clarify the complex coherences of nuclear energy and to help those interested in problems of energy policy to make their own personal decisions. (orig./RW)

  11. Economics of nuclear power

    International Nuclear Information System (INIS)

    The economics of electricity supply and production in the FRG is to see on the background of the unique European interconnected grid system which makes very significant contributions to the availability of standby energy and peak load power. On this basis and the existing high voltage grid system, we can build large nuclear generating units and realise the favorable cost aspects per installed KW and reduced standby power. An example of calculating the overall electricity generating costs based on the present worth method is explained. From the figures shown, the sensitivity of the generating costs with respect to the different cost components can be derived. It is apparent from the example used, that the major advantage of nuclear power stations compared with fossil fired stations lies in the relatively small percentage fraction contributed by the fuel costs to the electricity generating costs. (orig.)

  12. Conceptual differences between existing and advanced reactors and criteria affecting the development of new types of nuclear power plants world-wide

    International Nuclear Information System (INIS)

    A comparison of the nuclear safety principles and the design and operating parameters between existing and advanced reactors is presented, and criteria affecting the development of new types of nuclear reactor are outlined

  13. Small nuclear power: challenges and solutions

    International Nuclear Information System (INIS)

    Estimates show that, for remote localities difficult of access, nuclear power technologies offer a reasonable alternative to conventional power based on fossil fuels. Still, the deployment of nuclear power sources in the country's northern and eastern territories with hard climatic and complicated social conditions calls for novel designs that satisfy to the requirements beyond the scope of those for the conventional nuclear plant designs. A small nuclear power plant with a water-cooled water-moderated reactor facility, called Unitherm, is one of the most advanced autonomous nuclear heat and power supply designs that satisfies the best to the above requirements, based on the experience in design, manufacture and operation of nuclear propulsion systems. (author)

  14. Nuclear Power Prospects

    International Nuclear Information System (INIS)

    The present trend is to construct larger plants: the average power of the plants under construction at present, including prototypes, is 300 MW(e), i.e. three times higher than in the case of plants already in operation. Examples of new large-scale plants ares (a) Wylfa, Anglesey, United Kingdom - scheduled power of 1180 MW(e) (800 MW to be installed by 1967), to be completed in 1968; (b) ''Dungeness B'', United Kingdom - scheduled power of 1200 MW(e); (c) second unit for United States Dresden power plant - scheduled power of 715 MW(e) minimum to almost 800 MW(e). Nuclear plants on the whole serve the same purpose as conventional thermal plants

  15. Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant

    International Nuclear Information System (INIS)

    During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

  16. Advanced pipe replacement procedure for a defective CRDM housing nozzle enables continued normal operation of a nuclear power plant

    International Nuclear Information System (INIS)

    During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

  17. Nuclear power for desalination

    International Nuclear Information System (INIS)

    Water is one of the most important assets to mankind and without which the human race would cease to exist. Water is required by us right from domestic to industrial levels. As notified by the 'American Nuclear Society' and 'World Nuclear Association' about 1/5th of the world population does not access to portable water especially in the Asian and African subcontinent. The situation is becoming adverse day by day due to rise in population and industrialization. The need of alternative water resource is thus becoming vital. About 97.5% of Earth is covered by oceans. Desalination of saline water to generate potable water is thus an important topic of research. Currently about 12,500 desalination plants are operating worldwide with a capacity of about 35 million m3/day using mainly fossil fuels for generation of large amount of energy required for processing water. These thermal power station release large amount of carbon dioxide and other green house gases. Nuclear reactors are capable of delivering energy to the high energy-intensive processes without any environmental concerns for climate change etc., giving a vision to sustainable growth of desalination process. These projects are currently employed in Kazakhstan, India, Japan, and Pakistan and are coupled to the nuclear reactor for generating electricity and potable water as well. The current climatic scenario favors the need for expanding dual purpose nuclear power plants producing energy and water at the same location. (author)

  18. Impact on the bar value in hot by the introduction of advanced control bars in the Unit 1 of the Laguna Verde Nuclear power plant

    International Nuclear Information System (INIS)

    In recent dates the Laguna Verde Nuclear Power station (CNLV) has acquired new designs of control bars, this new type of bars presents modifications important in their design. For what is important to analyze their performance inside those reactors of this nuclear power station. Presently work is shown the behavior of the nucleus of the reactor in hot condition (HFP) when three different types of control bar are used. The first of them corresponds the one that initially has been used in this power station and that we will call original. The second type of control bars, it corresponds to an advanced type and it is the first design different from the original and it corresponds to a bar design that it includes Hafnium (Hf) like one of their neutronic absorption characteristics. The third, denoted as 2AV, include besides the material of the second type new design characteristics, and it is the last finish bar type that it has been introduced in the operation of the reactors of the CNLV. With base in the studied cases is found that the bars 2AV have a total power value, 7.6 % bigger respect the bars 1AV; and in turn the bars 1AV, 6.1 % bigger with respect the ORG control bars. (Author)

  19. Economics of nuclear power projects

    International Nuclear Information System (INIS)

    Nuclear power development in Taiwan was initiated in 1956. Now Taipower has five nuclear units in smooth operation, one unit under construction, two units under planning. The relatively short construction period, low construction costs and twin unit approach had led to the significant economical advantage of our nuclear power generation. Moreover betterment programmes have further improved the availability and reliability factors of our nuclear power plants. In Taipower, the generation cost of nuclear power was even less than half of that of oil-fired thermal power in the past years ever since the nuclear power was commissioned. This made Taipower have more earnings and power rates was even dropped down in March 1983. As Taiwan is short of energy sources and nuclear power is so well-demonstrated nuclear power will be logically the best choice for Taipower future projects

  20. Nuclear power newsletter Vol. 1, no. 2

    International Nuclear Information System (INIS)

    The newsletter provides information on: Nuclear Power Plant Operating Performance and Life Cycle Management; Improving Human Performance, Quality and Technical Infrastructure Co-ordination of International Collaboration for the Development of Innovative Nuclear Technology; Technology Developments and Applications for Advanced Reactors

  1. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    The report provides data and assessments of the status and prospects of nuclear power and the nuclear fuel cycle. The report discusses the economic competitiveness of nuclear electricity generation, the extent of world uranium resources, production and requirements, uranium conversion and enrichment, fuel fabrication, spent fuel treatment and radioactive waste management. A review is given of the status of nuclear fusion research

  2. Nuclear power and ethics

    International Nuclear Information System (INIS)

    The author can see no sense in demanding an ethical regime to be applied exclusively to nuclear power but rather calls for an approach that discusses nuclear power as one constituent of the complex energy issue in a way spanning all dimensions involved, as e.g. the technological, economic, cultural, humanitarian, and humanistic aspects. An ethical approach does not question scientific research, or science or technology, but examines their relation to man and the future of humanity, so that an ethical approach will first of all demand that society will bring forward conscientious experts as reliable partners in the process of discussing the ethical implications of progress and development in a higly industrialised civilisation. (orig./CB)

  3. Nuclear turbine power plant

    International Nuclear Information System (INIS)

    Purpose : To improve the heat cycle balance in a nuclear turbine power plant or the like equipped with a moisture separating and reheating device, by eliminating undesired overcooling of the drains in the pipes of a heat transmission pipe bundle. Constitution : A high pressure turbine is driven by main steams from a steam generator. The steams after driving the high pressure turbine are removed with moistures by way of a moisture separator and then re-heated. Extracted steams from the steam generator or the high pressure turbine are used as a heating source for the reheating. In the nuclear turbine power plant having such a constitution, a vessel for separating the drains and the steams resulted from the heat exchange is provided at the outlet of the reheating device and the steams in the vessel are introduced to the inlet of the moisture separator. (Aizawa, K.)

  4. Kruemmel nuclear power plant

    International Nuclear Information System (INIS)

    This short description of the site and the nuclear power plant with information on the presumable effects on the environment and the general public is to provide some data material to the population in a popular form so that the citizens may in form themselves about the plant. In this description which shall be presented to the safety report, the site, the technical design and the operation mode of the nuclear power plant are described. Some problems of the emission and the effects of radioactive materials as well as other issues related to the plant which are of interest to the public are dealt with. The supposed accidents and their handling are discussed. The description shows that the selected site is suitable for both setting-up and operation of the plant without affecting the safety of the people living there and that in admissible burdens of the environment shall not have to be expected. (orig./HP)

  5. Jobs and nuclear power

    International Nuclear Information System (INIS)

    To guarantee the existence of Germany as an industrialized country, and to protect jobs, the country needs a comprehensive energy consensus not restricted to the solution of the debate about the future of nuclear power. From the point of view of IGBCE, the Mining, Chemistry and Energy Workers Union, striving for continuity remains a basic prerequisite. The energy mix currently existing offers the best preconditions for a future energy supply in the light of the worldwide development to be expected. Nuclear power cannot be replaced for a foreseeable time without this giving rise to considerable damage to the national economy and ecology alike. An overall objective should be to keep electricity generation in the country. Consistent resource conservation, more efficient energy use, and stricter energy conservation must further enhance the environmental acceptability of energy generation and energy consumption. (orig.)

  6. Nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To suppress corrosion at the inner surfaces of equipments and pipeways in nuclear power plants. Constitution: An injection device comprising a chemical injection tank and a plunger type chemical injection pump for injecting hydrazine as an oxygen remover and ammonia as a pH controller is disposed to the downstream of a condensate desalter column for primary coolant circuits. Since dessolved oxygen in circuit water injected with these chemicals is substantially reduced to zero and pH is adjuted to about 10 - 11, occurrence of stress corrosion cracks in carbon steels and stainless steels as main constituent materials for the nuclear power plant and corrosion products are inhibited in high temperature water, and of corrosion products are inhibited from being introduced as they are through leakage to the reactor core, by which the operators' exposure does can be decreased significantly. (Sekiya, K.)

  7. Nuclear power generation

    International Nuclear Information System (INIS)

    The case for nuclear power, from both a world and a British standpoint, is first discussed, with particular reference to oil supply and demand. It is considered that oil and gas should in future be used as a feedstock for the chemical industry, for transportation purposes, and as a starting point for protein food for animals and later for humans; to squander so much by burning simply as a crude fuel cannot be right. It is considered that Britain should continue constructing nuclear stations at a steady modest rate, and that the fast reactor should receive increasing attention, despite the anti-nuclear lobby. The case for the fast breeder reactor is discussed in detail, including its development at UKAEA Harwell and Dounreay. Accusations against the fast reactor are considered, particularly those concerned with safety, and with the use or misuse of Pu. Public debates are discussed. (U.K.)

  8. Pragmatics of nuclear power

    International Nuclear Information System (INIS)

    In context of depletion of fossil fuels and continuous increase of global warming, nuclear power is highly solicited by world energy congress for solving energy crisis for ever. No doubt, a small amount of nuclear fuel can provide immense amount of energy but in exchange of what? Safety, security, large compensation and huge risk of lives, gift of radio-activity to environment and so many adverse effects. Yet are we in a position to reject or neglect it exclusively? Can we show such luxury? Again are we capable to control such a demon for the benefit of human being. Either is it magic lamp of Aladdin or a Frankenstein? Who will give the answer? Likely after nuclear war, is there anybody left in this planet to hide or is there any place available to hide. Answers are not yet known. (author)

  9. Preparedness against nuclear power accidents

    International Nuclear Information System (INIS)

    This booklet contains information about the organization against nuclear power accidents, which exist in the four Swedish counties with nuclear power plants. It is aimed at classes 7-9 of the Swedish schools. (L.E.)

  10. Initiative against nuclear power plants

    International Nuclear Information System (INIS)

    This publication of the Initiative of Austrian Nuclear Power Plant Opponents contains articles on radiactive waste dispoasal in Austria and and discusses safety issues of the nuclear power plant 'Zwentendorf'. (kancsar)

  11. Nuclear power and public perceptions

    International Nuclear Information System (INIS)

    This text presents and analyzes a survey dealing with public opinion about nuclear power. The author suggests ways to improve communication and information in order to lead people to have a better opinion concerning nuclear power. (TEC)

  12. Nuclear Power: Epilogue or Prologue?

    OpenAIRE

    Harold R. Denton

    1983-01-01

    Judging by the continuing stream of nuclear power plant cancellations and downward revisions of nuclear energy forecasts, there is nothing riskier than predicting the future of commercial nuclear power. U.S. Nuclear Regulation Commissioner John Ahearne (1981) likens the recent events affecting the nuclear power industry in the United States to a Greek tragedy. Others, particularly other nations, take a different view about the future.

  13. Ethical aspects of nuclear power

    International Nuclear Information System (INIS)

    The nuclear controversy comprises many ethical aspects, e.g. the waste disposal problem. Nuclear opponents should not neglect the environmental protection aspect; for example, the use of nuclear power alone brought about an 8% reduction of the CO2 burden in 1987. Our responsibility towards nature and humans in the Third World leaves us no alternative to nuclear power. On the other hand, the nuclear power debate should not become a matter of religious beliefs. (DG)

  14. Advanced teleoperation in nuclear applications

    International Nuclear Information System (INIS)

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colorgraphic displays and menu-driven tough screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  15. Vietnam and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.T.; Hong, L.V. [Viet Nam Atomic Energy Commission (VAEC), Hanoi (Viet Nam)

    1997-12-31

    Economy of Vietnam is developing fast and the electricity demand is growing drastically, last five years about 12.5% per year. The Government puts high target for the future with GDP rating about 8% per year up to 2020. In this case, the electricity demand in 2020 will be tenfold bigger in comparison with 1995`s level. The deficient of domestic resources and the security of energy supply invoke the favorable consideration on nuclear power. (author)

  16. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    The lecture describes the energy-political situation in Sweden after the change of Government in October 1976. The present announced nuclear power plant-hostile energy politic, has to face the viewpoints of a technical and economical dependent reality. Disagreements and transgressions of political competences must be reduced, due to the fact that a constructive cooperation between politicians and energy producing corporations is a necessity, to guarantee a safe energy supply in Sweden. (orig.)

  17. Vietnam and nuclear power

    International Nuclear Information System (INIS)

    Economy of Vietnam is developing fast and the electricity demand is growing drastically, last five years about 12.5% per year. The Government puts high target for the future with GDP rating about 8% per year up to 2020. In this case, the electricity demand in 2020 will be tenfold bigger in comparison with 1995's level. The deficient of domestic resources and the security of energy supply invoke the favorable consideration on nuclear power. (author)

  18. Nuclear power generation device

    International Nuclear Information System (INIS)

    In a PWR type reactor, a free piston type stirling engine is disposed instead of a conventional steam generator and a turbine. Since the stirling engine does not cause radiation leakage in view of the structure, safety and reliability of the nuclear power generation are improved. Further, the thermal cycle, if it operates theoretically, is equivalent with a Carnot cycle having the highest thermodynamical heat efficiency, thereby enabling to obtain a high heat efficiency in an actual engine. (N.H.)

  19. Nuclear power in Italy

    International Nuclear Information System (INIS)

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  20. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  1. World status: nuclear power

    International Nuclear Information System (INIS)

    The nuclear power situation in 1988 in briefly reviewed. The prospects for the 1990s are then considered. Apart from the use of nuclear power to fuel spacecraft the prospects are not that bright. The European fast breeder programme is coming to a premature end with the winding down of the fast breeder research centre at Dounreay and the delay with the French programme because of the sodium leak at Superphenix. If plutonium is no longer needed to fuel the fast breeder reactors, the reprocessing of spent fuels is less attractive. However, seven new reprocessing plants are due to be commissioned in the next six years. The THORP plant in Britain may be affected by the privatization plans for the electricity supply industry. Decommissioning and waste storage/disposal are issues which will have to be resolved in the 1990s. The risk of accidents especially from aircraft crashes is discussed. Altogether the prospects for nuclear power are not very good. The keynote of the decade will be cleaning up rather than expansion. (U.K.)

  2. Submarine nuclear power plant

    International Nuclear Information System (INIS)

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  3. Korean experiences on nuclear power technology

    International Nuclear Information System (INIS)

    This paper describes the outstanding performance of the indigenous development program of nuclear power technology such as the design and fabrication of both CANDU and PWR fuel and in the design and construction of nuclear steam supply system in Korea. The success has been accomplished through the successful technology transfer from foreign suppliers and efficient utilization of R and D manpower in the design and engineering of nuclear power projects. In order to implement the technology transfer successfully, the joint design concept has been introduced along with effective on-the-job training and the transfer of design documents and computer codes. Korea's successful development of nuclear power program has resulted in rapid expansion of nuclear power generation capacity in a short time, and the nuclear power has contributed to the national economy through lowering electricity price by about 50 % as well as stabilizing electricity supply in 1980s. The nuclear power is expected to play a key role in the future electricity supply in Korea. Now Korea is under way of taking a step toward advanced nuclear technology. The national electricity system expansion plan includes 18 more units of NPPs to be constructed by the year 2006. In this circumstance, the country has fixed the national long-term nuclear R and D program (lgg2-2001) to enhance the national capability of nuclear technology. This paper also briefly describes future prospects of nuclear technology development program in Korea

  4. The future of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power is an extremely sensitive issue and its future has been hotly debated. Conflicting arguments have been put forward regarding the viability of nuclear power. The question of whether the world should look to nuclear power for its electricity generating needs is addressed. 2 ills

  5. Overview paper on nuclear power

    International Nuclear Information System (INIS)

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power

  6. Advanced handbook for accident analyses of German nuclear power plants; Weiterentwicklung eines Handbuches fuer Stoerfallanalysen deutscher Kernkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, Alexander; Broecker, Annette; Hartung, Juergen; Mayer, Gerhard; Pallas Moner, Guim

    2014-09-15

    The advanced handbook of safety analyses (HSA) comprises a comprehensive electronic collection of knowledge for the compilation and conduction of safety analyses in the area of reactor, plant and containment behaviour as well as results of existing safety analyses (performed by GRS in the past) with characteristic specifications and further background information. In addition, know-how from the analysis software development and validation process is presented and relevant rules and regulations with regard to safety demonstration are provided. The HSA comprehensively covers the topic thermo-hydraulic safety analyses (except natural hazards, man-made hazards and malicious acts) for German pressurized and boiling water reactors for power and non-power operational states. In principle, the structure of the HSA-content represents the analytical approach utilized by safety analyses and applying the knowledge from safety analyses to technical support services. On the basis of a multilevel preparation of information to the topics ''compilation of safety analyses'', ''compilation of data bases'', ''assessment of safety analyses'', ''performed safety analyses'', ''rules and regulation'' and ''ATHLET-validation'' the HSA addresses users with different background, allowing them to enter the HSA at different levels. Moreover, the HSA serves as a reference book, which is designed future-oriented, freely configurable related to the content, completely integrated into the GRS internal portal and prepared to be used by a growing user group.

  7. Nuclear eclectic power.

    Science.gov (United States)

    Rose, D J

    1974-04-19

    The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The "hydrogen economy." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses. By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600 degrees C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements. Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also

  8. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  9. Nuclear power R and D in China

    International Nuclear Information System (INIS)

    As one of the fastest developing countries, China is anxious for enormous electricity supply. To meet the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a medium and long term electrical power development program has been established. It is estimated that the nuclear power capacity will reach at 40000 megawatts from the current 8700 megawatts by the year of 2020, the nuclear power share will account for 4.0-5.0 percent of the total installed capacity. In the 1970s, the Chinese government started developing nuclear technology for power generation, and succeeded in developing Qinshan-1 nuclear power plant with the capacity of 300 MWe, high temperature gas-cooled experiment reactor with the thermal power of 10 MW. Now China fast experiment reactor with the capacity of 50 MWe is under construction. The Chinese government will strengthen self-reliance innovation of nuclear power R and D in the medium and long term, the focal points of the works will comprise: advanced PWR nuclear power unit with 1000 MWe class (meets the requirements of URD or EUR), spent fuel disposal, high temperature gas cooled reactor, fast neutron reactor, integrated reactor, supercritical water cooled reactor, nuclear fusion etc. The government encourages and supports the international exchange and cooperation in the nuclear field. (authors)

  10. The Canadian nuclear power program

    International Nuclear Information System (INIS)

    A brief review of the Canadian nuclear power program is presented. Domestically developed CANDU (CANada Deuterium Uranium) reactors account for all of Canada's nuclear electric capacity (5000 MWe in operation and 10,000 MWe under construction or in commissioning) and have also been exported. CANDU reactors are reliable, efficient, and consistently register in the world's top ten in performance. The safety record is excellent. Canada has excess capability in heavy water and uranium production and can easily service export demands. The economic activity generated in the nuclear sector is high and supports a large number of jobs. The growth in nuclear commitments has slowed somewhat as a result of the worldwide recession; however, the nuclear share of expected electricity demand is likely to continue to rise in the next decade. Priorities in the future direction of the program lie in the areas of maintaining high response capability to in-service problems, improving technology, high-level waste management, and advanced fuel cycles. (author)

  11. Public concerns and alternative nuclear power systems

    International Nuclear Information System (INIS)

    The basic task undertaken in this study was to assess the relative public acceptability of three general types of nuclear power systems as alternatives to the existing Light Water Reactor (LWR) system. Concerns registered toward nuclear power constituted the basic data for this assessment. The primary measure adopted for determining the significance of concerns was the degree of difficulty posed by the concern to the nuclear power decisional structure in the establishment and maintenance of norms to control risks or to advance intended energy objectives. Alleviations or exacerbations of concern resulting from particular attributes of alternative systems were measured from an LWR baseline

  12. Super-simulator for nuclear power plant

    International Nuclear Information System (INIS)

    The super-simulator is a conceptual name for future innovative simulators of nuclear power plants which surpass, to a large extent, the capabilities and performances of existing nuclear power plant simulators for operator training, plant analyzers for engineering studies or computer codes for dynamics analysis. Such super-simulators will be realized by employing highly advanced methods of mathematical modeling of the physical chemical and other related processes in the nuclear power plants and innovative methods of numerical computation using rapidly evolving high performance computing systems. (author)

  13. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  14. The need for nuclear power

    International Nuclear Information System (INIS)

    This leaflet examines our energy future and concludes that nuclear power is an essential part of it. The leaflet also discusses relative costs, but it does not deal with social and environmental implications of nuclear power in any detail, since these are covered by other British Nuclear Forum publications. Headings are: present consumption; how will this change in future; primary energy resources (fossil fuels; renewable resources; nuclear); energy savings; availability of fossil fuels; availability of renewable energy resources; the contribution of thermal nuclear power; electricity; costs for nuclear power. (U.K.)

  15. World and domestic status nuclear power development

    International Nuclear Information System (INIS)

    Worldwide, reflecting the current recession, the demand of electric power is stagnant. Nevertheless, nuclear power development has advanced steadily mainly with LWRs, and now it is at the level of 170 million kW. In FBR development, due to the delay of technology advance and the rise of construction costs, the stage of its practical utilization appears to be postponed farther in the future. In Japan, since the first commercial nuclear power generation in July, 1966, the aggregate capacity is now 17,177,000 kW with a total of 24 power plants. Of the total 43 nuclear power plants including those for the future, 22 are BWRs and 20 are PWRs. The plant factor has increased to the level of 60 % on the average. The following matters are described: the world situation, the trend in overseas countries, and the trend in Japan. (Mori, K.)

  16. Economics of nuclear power

    International Nuclear Information System (INIS)

    Difficulties of nuclear power include higher than expected generating costs, rising construction costs, problems of safety and waste disposal, and the general level of excess capacity in the electric utilities sector. Recently, the debate has turned to cost effectiveness, with critics proposing that nuclear power is not competitive with other generating technologies. Despite the importance of costs in evaluating the nuclear option, there has never been a careful examination of the cost structure of the industry. Much of the existing literature on the subject has either focused on the rising capital costs in the industry or has made strong assumptions about the production process. Aspects of the technology, such as returns to scale or input responses to changing prices, have been omitted from consideration. This thesis, carefully examines the industry's cost structure. This study accounts for the many features peculiar to the technology such as the stoichastic nature of production and the inability of firms to optimize overall inputs. In addition, particular attention is given to make sure that capital is measured consistently. The results of the model indicate that significant substitution possibilities exist among inputs, that increasing returns to scale is present throughout the range of observed output and that plants in the sample tend to be overcapitalized. Further, no evidence of embodied technical change is found

  17. Nuclear power regional analysis

    International Nuclear Information System (INIS)

    In this study, a regional analysis of the Argentine electricity market was carried out considering the effects of regional cooperation, national and international interconnections; additionally, the possibilities of insertion of new nuclear power plants in different regions were evaluated, indicating the most suitable areas for these facilities to increase the penetration of nuclear energy in national energy matrix. The interconnection of electricity markets and natural gas due to the linkage between both energy forms was also studied. With this purpose, MESSAGE program was used (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts), promoted by the International Atomic Energy Agency (IAEA). This model performs a country-level economic optimization, resulting in the minimum cost for the modelling system. Regionalization executed by the Wholesale Electricity Market Management Company (CAMMESA, by its Spanish acronym) that divides the country into eight regions. The characteristics and the needs of each region, their respective demands and supplies of electricity and natural gas, as well as existing and planned interconnections, consisting of power lines and pipelines were taken into account. According to the results obtained through the model, nuclear is a competitive option. (author)

  18. Nuclear Power Plant 1996

    International Nuclear Information System (INIS)

    Again this year, our magazine presents the details of the conference on Spanish nuclear power plant operation held in February and that was devoted to 1996 operating results. The Protocol for Establishment of a New Electrical Sector Regulation that was signed last December will undoubtedly represent a new challenge for the nuclear industry. By clearing stating that current standards of quality and safety should be maintained or even increased if possible, the Protocol will force the Sector to improve its productivity, which is already high as demonstrated by the results of the last few years described during this conference and by recent sectorial economic studies. Generation of a nuclear kWh that can compete with other types of power plants is the new challenge for the Sector's professionals, who do not fear the new liberalization policies and approaching competition. Lower inflation and the resulting lower interest rates, apart from being representative indices of our economy's marked improvement, will be very helpful in facing this challenge. (Author)

  19. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1975-01-01

    Advances in Nuclear Science and Technology, Volume 8 discusses the development of nuclear power in several countries throughout the world. This book discusses the world's largest program of land-based electricity production in the United States.Organized into six chapters, this volume begins with an overview of the phenomenon of quasi-exponential behavior by examining two mathematical models of the neutron field. This text then discusses the finite element method, which is a method for obtaining approximate solutions to integral or differential equations. Other chapters consider the status of

  20. Program increasing of nuclear power plant safeness

    International Nuclear Information System (INIS)

    The results achieved within the project of national task 'Program increasing of nuclear power plant safeness' are presented in the document. The project was aimed to extend and deepen activities relating to safety increase of nuclear power units WWER-440 which play significant part in electricity production in the Slovak Republic. The application of advanced foreign calculating programs and calculation of radionuclide spreading in environment and techniques will influence the increase of extent, quality and international acceptance of safety analysis of nuclear power plant blocks WWER-440 and the risk valuation from operating nuclear power plants. Methodic resources for coping in emergency situation in nuclear energetics will be used for support in decision making in real time during radiation emergency on nuclear plant, region and state level. A long-term strategy in dealing with burnt fuel and radioactive substance formatting during nuclear power plant liquidation particularly with waste which is un acceptable in regional dump, has developed into a theoretical and practical preparation of solvable group for operating the converting centre Bohunice and in inactivating the nuclear power plant A-1. The diagnostic activities in nuclear power plants in the Slovak Republic have been elaborated into a project of norm documents in accordance with international norms for diagnostic systems. Presentation of new technologies and materials for repairs and reconstructions of components and nuclear power plant knots qualify increase in their reliability, safety and life. New objective methods and criterions for valuation and monitoring of the residual life and safety of fixed nuclear power plants. Results of problem solving linked with connecting the blocks of nuclear power plants to frequency regulation in electric network in the Slovak Republic are also presented in the document

  1. Nuclear power in Sweden

    International Nuclear Information System (INIS)

    Sweden uses 16,000 kWh of electricity per person, by far the highest consumption in EU. The reason is a well-developed electricity intensive industry and a cold climate with high share of electric heating. The annual power consumption has for several years been about 140 TWh and a normal year almost 50 per cent is produced by hydro and 50 percent by nuclear. A new legislation, giving the Government the right to ordering the closure nuclear power plants of political reasons without any reference to safety, has been accepted by the Parliament. The new act, in force since January 1, 1998, is a specially tailored expropriation act. Certain rules for the economical compensation to the owner of a plant to be closed are defined in the new act. The common view in the Swedish industry is that the energy conservation methods proposed by the Government are unrealistic. During the first period of about five years the import from coal fired plants in Denmark and Germany is the only realistic alternative. Later natural gas combi units and new bioenergy plants for co-production of heat and power (CHP) might be available. (orig.)

  2. Is nuclear power acceptable

    International Nuclear Information System (INIS)

    The energy shortage forecast for the early 21st century is considered. Possible energy sources other than fossil fuel are stated as geothermal, fusion, solar and fission, of which only fission has been demonstrated technically and economically. The environmental impacts of fission are examined. The hazards are discussed under the following headings: nuclear accident, fatality risk, safe reactor, property damage, acts of God, low-level release of radioactivity, diversion of fissile material and sabotage, radioactive waste disposal, toxicity of plutonium. The public reaction to nuclear power is analyzed, and proposals are made for a programme of safety and security which the author hopes will make it acceptable as the ultimate energy source. (U.K.)

  3. Recent Advances in Nuclear Cardiology.

    Science.gov (United States)

    Lee, Won Woo

    2016-09-01

    Nuclear cardiology is one of the major fields of nuclear medicine practice. Myocardial perfusion studies using single-photon emission computed tomography (SPECT) have played a crucial role in the management of coronary artery diseases. Positron emission tomography (PET) has also been considered an important tool for the assessment of myocardial viability and perfusion. However, the recent development of computed tomography (CT)/magnetic resonance imaging (MRI) technologies and growing concerns about the radiation exposure of patients remain serious challenges for nuclear cardiology. In response to these challenges, remarkable achievements and improvements are currently in progress in the field of myocardial perfusion imaging regarding the applicable software and hardware. Additionally, myocardial perfusion positron emission tomography (PET) is receiving increasing attention owing to its unique capability of absolute myocardial blood flow estimation. An F-18-labeled perfusion agent for PET is under clinical trial with promising interim results. The applications of F-18 fluorodeoxyglucose (FDG) and F-18 sodium fluoride (NaF) to cardiovascular diseases have revealed details on the basic pathophysiology of ischemic heart diseases. PET/MRI seems to be particularly promising for nuclear cardiology in the future. Restrictive diseases, such as cardiac sarcoidosis and amyloidosis, are effectively evaluated using a variety of nuclear imaging tools. Considering these advances, the current challenges of nuclear cardiology will become opportunities if more collaborative efforts are devoted to this exciting field of nuclear medicine. PMID:27540423

  4. Natural circulation data and methods for advanced water cooled nuclear power plant designs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The complex set of physical phenomena that occur in a gravity environment when a geometrically distinct heat sink and heat source are connected by a fluid flow path can be identified as natural circulation (NC). No external sources of mechanical energy for the fluid motion are involved when NC is established. Within the present context, natural convection is used to identify the phenomena that occur when a heat source is put in contact with a fluid. Therefore, natural convection characterizes a heat transfer regime that constitutes a subset of NC phenomena. This report provides the presented papers and summarizes the discussions at an IAEA Technical Committee Meeting (TCM) on Natural Circulation Data and Methods for innovative Nuclear Power Plant Design. While the planned scope of the TCM involved all types of reactor designs (light water reactors, heavy water reactors, gas-cooled reactors and liquid metal-cooled reactors), the meeting participants and papers addressed only light water reactors (LWRs) and heavy water reactors (HWRs). Furthermore, the papers and discussion addressed both evolutionary and innovative water cooled reactors, as defined by the IAEA. The accomplishment of the objectives of achieving a high safety level and reducing the cost through the reliance on NC mechanisms, requires a thorough understanding of those mechanisms. Natural circulation systems are usually characterized by smaller driving forces with respect to the systems that use an external source of energy for the fluid motion. For instance, pressure drops caused by vertical bends and siphons in a given piping system, or heat losses to environment are a secondary design consideration when a pump is installed and drives the flow. On the contrary, a significant influence upon the overall system performance may be expected due to the same pressure drops and thermal power release to the environment when natural circulation produces the coolant flow. Therefore, the level of knowledge for

  5. Experiences Gained from Independent Assessment in Licensing of Advanced I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Operational benefits and enlarged functionality of modern technology, but also the physical and the technological aging of conventional instrumentation and control (I and C) systems, are motivations for modernization of I and C systems in nuclear power plants (NPPs). In case of safety-relevant I and C systems, the licensing authorities require the demonstration of sufficient safety of the systems.In several countries ongoing research and development projects are directed to provide a scientific basis and engineering solutions for cost-effective assessment of software-based I and C systems important to safety in NPPs. International initiatives have been started to develop a harmonized safety assessment methodology. The Institute for Safety Technology (ISTec) has been engaged in national and international programs as well as in establishing a two-phase qualification approach, which comprises a generic plant-independent qualification of hardware and software components and a plant-specific system qualification phase.In both generic qualification and plant-specific system qualification, ISTec has been involved as an independent third-party assessor for the relevant state authority. This paper reports experiences from the ISTec involvement in the assessment projects, e.g., in the assessment of the I and C important to safety in the new German High-Flux Research Reactor (FRM-2) in Munich and in the assessments of I and C modernization in NPPs of foreign countries (Bohunice, Slovak Republic; Paks, Hungary; and others). Conclusions are drawn from the experiences with respect to the practicability of the two-phase qualification concept and from the major findings in the plant-specific I and C assessments

  6. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

    International Nuclear Information System (INIS)

    Traditional Single-Sensor-Single Indicator (SSSI) displays are poorly matched to the cognitive abilities of operators, especially for large and complex systems. It is difficult for operators to monitor very large arrays of displays and controls, and to integrate the information displayed therein. In addition, standard operating procedures (SOPs) are bulky (running to many hundreds of pages) and difficult to use, and operators may become lost. For these reasons, and also because it is becoming increasingly difficult to find replacements for aging hardware components, there is a trend towards computerized graphical interfaces for nuclear power plants (NPPs). There is, however, little rational theory for display design in this domain. This report describes some recent theoretical developments and shows how to develop displays which will greatly reduce the cognitive load on the operator and allow the use of perceptual rather than cognitive mechanisms while using SON and to support state diagnosis and fault management. The report outlines the conceptual framework within which such a new approach could be developed, and provides an example of how the operating procedures for the start-up sequence of a NPP could be realized. A detailed description of a set of displays for a graphical interface for the SON of the feedwater system is provided as an example of how the proposed approach could be realized, and a general account of how it would fit into the overall start-up sequence is given. Examples of open-quotes direct perceptionclose quotes or open-quotes ecologicalclose quotes configural state space displays to support the use of the proposed direct manipulation SOP interface are provided, and also a critical discussion which identifies some difficulties which may be anticipated should the general approach herein advocated be adopted

  7. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.G.; Shaheen, S.; Moray, N. [and others

    1997-08-01

    Traditional Single-Sensor-Single Indicator (SSSI) displays are poorly matched to the cognitive abilities of operators, especially for large and complex systems. It is difficult for operators to monitor very large arrays of displays and controls, and to integrate the information displayed therein. In addition, standard operating procedures (SOPs) are bulky (running to many hundreds of pages) and difficult to use, and operators may become lost. For these reasons, and also because it is becoming increasingly difficult to find replacements for aging hardware components, there is a trend towards computerized graphical interfaces for nuclear power plants (NPPs). There is, however, little rational theory for display design in this domain. This report describes some recent theoretical developments and shows how to develop displays which will greatly reduce the cognitive load on the operator and allow the use of perceptual rather than cognitive mechanisms while using SON and to support state diagnosis and fault management. The report outlines the conceptual framework within which such a new approach could be developed, and provides an example of how the operating procedures for the start-up sequence of a NPP could be realized. A detailed description of a set of displays for a graphical interface for the SON of the feedwater system is provided as an example of how the proposed approach could be realized, and a general account of how it would fit into the overall start-up sequence is given. Examples of {open_quotes}direct perception{close_quotes} or {open_quotes}ecological{close_quotes} configural state space displays to support the use of the proposed direct manipulation SOP interface are provided, and also a critical discussion which identifies some difficulties which may be anticipated should the general approach herein advocated be adopted.

  8. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  9. Nuclear power and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Australian Nuclear Science and Technology Organization maintains an ongoing assessment of the world's nuclear technology developments, as a core activity of its Strategic Plan. This publication reviews the current status of the nuclear power and the nuclear fuel cycle in Australia and around the world. Main issues discussed include: performances and economics of various types of nuclear reactors, uranium resources and requirements, fuel fabrication and technology, radioactive waste management. A brief account of the large international effort to demonstrate the feasibility of fusion power is also given. 11 tabs., ills

  10. Floating nuclear power plants

    International Nuclear Information System (INIS)

    This article examines the legal regime for floating nuclear power plants (FNPs), in view of the absence of specific US legislation and the very limited references to artificial islands in the Law of the Sea Convention. The environmental impacts of FNPs are examined and changes in US regulation following the Three Mile Island accident and recent US court decisions are described. References in the Law of the Sea Convention relevant to FNPs are outlined and the current status of international law on the subject is analysed. (author)

  11. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  12. Nuclear Security for Floating Nuclear Power Plants

    International Nuclear Information System (INIS)

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  13. High power proton accelerator for nuclear power plant

    International Nuclear Information System (INIS)

    The novel nuclear power system--Energy Amplifier, proposed by C. Rubbia, attracts the interest as a prior option for the development of the next generation nuclear power plant in the first half of the 21st century. The accelerator used to drive the system should provide proton beam power tens higher than that of LAMPF. The accelerator physics and technology have been advancing greatly since LAPMF was built more than 20 years ago. These new progresses become the essential basis for the intense beam accelerator to advance up to a much higher beam power. However, some challenges are still being faced, including beam loss, high efficiency, reliability, as well as some technical issues associated with high power CW operation. The accelerator design options to tackle with the difficulties are discussed. The suggestions on R and D of high power accelerator in China are presented

  14. Nuclear power and nuclear safety 2011

    International Nuclear Information System (INIS)

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  15. Nuclear power and nuclear safety 2010

    International Nuclear Information System (INIS)

    The report is the eighth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2010 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, and conflicts and the Fukushima accident. (LN)

  16. Nuclear power and nuclear safety 2009

    International Nuclear Information System (INIS)

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  17. Nuclear power and nuclear safety 2012

    International Nuclear Information System (INIS)

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  18. Advanced nuclear plants meet the economic challenge

    International Nuclear Information System (INIS)

    Nuclear power plants operated in the baseload regime are economically competitive even when compared with plants burning fossil fuels. As they do not produce emissions when operated, they do not pollute the environment. This is clearly reflected also in the internalized costs. After 2000, many new power plants are expected to be constructed in the USA and worldwide. An important role in this phase will be played by advanced light water reactors of the ABWR and SBWR types representing the future state of the art in technology and safety as well as in cost and plant operations management. (orig.)

  19. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  20. International nuclear power status 2002

    International Nuclear Information System (INIS)

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  1. International nuclear power status 2001

    International Nuclear Information System (INIS)

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  2. Voices of nuclear power monitors

    International Nuclear Information System (INIS)

    The system of nuclear power monitors was started in fiscal 1977 for the purpose of hearing the opinions of general people on nuclear energy development and utilization and reflecting them to the nuclear power administration. The monitors were a total of 509 persons selected throughout the nation. First, the voices received in the period from January to March, 1980, are summarized. Then, the results of a questionnaire survey conducted in January, 1980, are presented. The survey was made by means of the questionnaire sent by mail. Of the total 509 persons, 372 (73.1%) answered the questions. The items of the questionnaire were: Atomic Energy Day, energy problem, nuclear power development, nuclear power safety administration. Three Mile Island nuclear power accident in U.S., and nuclear power P.R. activities. (J.P.N.)

  3. International nuclear power status 1999

    International Nuclear Information System (INIS)

    This report is the sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  4. The Brazilian nuclear power programme

    International Nuclear Information System (INIS)

    The booklet contains survey articles on the nuclear power problems of Brazil, the German-Brazilian nuclear power agreement, the application of international safety measures, and 'Brazil and the non-proliferation of nuclear weapons'. The agreement is given in full wording. (HP)

  5. Nuclear power plant

    International Nuclear Information System (INIS)

    The present invention provides a nuclear power plant which generates thermoelectric power by utilizing heat generated by fission reaction. Namely, a fuel/thermoelectric material is made of a semiconductor material containing fission products or a semimetal material containing fission products. A reactor container contains the fuel/thermoelectric material and a reactor core constituted by the fuel/thermoelectric material. The reactor container comprises coolants for removing heat generated by nuclear reaction of fission products from the reactor core and a high temperature side electrode connected to a central portion of the fuel/thermoelectric material and a low temperature side electrode connected to the outside of the fuel/thermoelectric material. Electromotive force is caused in the fuel/thermoelectric material by temperature difference upon combustion caused at the central portion and the outer surface of the fuel/thermoelectric material. The electromotive force is taken out of the high temperature side electrode and the low temperature side electrode. (I.S.)

  6. Standard problem of nuclear power localization in China

    International Nuclear Information System (INIS)

    French nuclear power standard system includes the French nuclear laws, principal safety guides, RCC serial standard and technical documents. The RCC serial standard reaches on the design and construction of nuclear power plants, and is principally a closed standard system. The RCC serial standard have been used for the design and construction of Qinshan phase-II, the RCC-M have been used for the mechanical components of nuclear island. It is suggested that the Chinese nuclear power governing body research the problems relating nuclear power standard during the localization in China, the present condition of the Chinese nuclear power standards, and begin to develop the Chinese nuclear power standard based on the ASMEB and PVC, RCC serial standard and Chinese practical experienced in nuclear power engineering. Chinese nuclear power standard should be the strict, well applicable and advanced in the world, and should be continuously updated according to the accumulated operating experiences, technological progress and changes in regulatory requirement

  7. Obrigheim nuclear power plant

    International Nuclear Information System (INIS)

    The gross output of the 345MWe pressurized water nuclear power station at Obrigheim, operation on base load, amounted to about 2.57TWh in 1974, the net power fed to the grid being about 2.44TWh. The core was used to its full capacity until 10 May 1974. Thereafter, the reactor was on stretch-out operation with steadily decreasing load until refuelled in August 1974. Plant availability in 1974 amounted to 92.1%. Of the 7.9% non-availability, 7.87% was attributable to the refuelling operation carried out from 16 August to 14 September and to the inspection, overhaul and repair work and the routine tests performed during this period. The plant was in good condition. Only two brief shutdowns occurred in 1974, the total outage time being 21/2 hours. From the beginning of trial operation in March 1969 to the end of 1974, the plant achieved an availability factor of 85.2%. The mean core burnup at the end of the fifth cycle was 19600 MWd/tonne U, with one fuel element that had been used for four cycles achieving a mean burnup of 39000 MWd/tonne U. The sipping test on the fuel elements revealed defective fuel-rods in a prototype plutonium fuel element, a high-efficiency uranium fuel element and a uranium fuel element. The quantities of radioactive substances released to the environment in 1974 were far below the officially permitted values. In july 1974, a reference preparation made up in the nuclear power station in October 1973 was discovered by outsiders on the Obrigheim municipality rubbish tip. The investigations revealed that this reference preparation had very probably been abstracted from the plant in October 1973 and arrived at the rubbish tip in a most irregular manner shortly before its discovery

  8. Advanced Nuclear Steam Turbine for Highest Power Output%先进的具高出力的核电汽轮机

    Institute of Scientific and Technical Information of China (English)

    Andreas Wichtmann; Norbert Schindler; Wilfried Ulm

    2003-01-01

    介绍了西门子设计制造先进大功率核电汽轮机的长期运行经验,并发展半速饱和蒸汽核电汽轮机,功率达1700MW,末级长叶片高度为1829mm,从设计、工艺、材料选择等方面论述了提高机组出力、提高机组效率、减少腐蚀的方法,其中包括套装叶轮设计、3DSTM叶片技术、高压透平和低压透平等.%The paper introduces long operational experience of nuclear power plant at Siemens which has been developing the half speed saturated steam turboset for high power output up to 1700MWel with the longest blade length up to 1829mm/72 inch. The advanced design methods, process and appropriate material selection have been proved to increase the highest power output and efficiency, decrease erosion and corrosion. The features of the shrunk-on disk design, 3DSTM blade technique, high pressure turbine and low pressure turbine are also described in the paper.

  9. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  10. A future for nuclear power

    International Nuclear Information System (INIS)

    , which is currently being built by the French state-owned firm Areva and Siemens of Germany. It is set to open in 2009. Three companies in the US have said they intend to apply for permits to build two 'advanced passive' AP-1000 power stations each, while France, Taiwan and China are either planning or building new stations. Looking further into the future, the prospects are even more exciting. In 2000 the US Department of Energy launched an international initiative known as Generation IV, which seeks to carry out research into new nuclear power stations that could be ready to build by 2030. The initiative now includes nine countries - Argentina, Brazil, Canada, France, Japan, North Korea, South Korea, South Africa and Switzerland - plus the UK, which joined last year. (The European Union's Euratom programme is also a member on behalf of other European countries.). (U.K.)

  11. Nuclear power: An economic geography

    Energy Technology Data Exchange (ETDEWEB)

    Mounfield, P.R.

    1988-01-01

    This book presents a major study of the economic and social geography of nuclear power. Starting with descriptions of the distribution of nuclear power on a national and international level using maps and graphs, the book goes on to discuss a whole range of topics ranging from reactor design to the socio-economic impact of nuclear power stations. The book discuses the issues as they apply throughout the world.

  12. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  13. Manpower development for nuclear power

    International Nuclear Information System (INIS)

    This Guidebook provides policy-makers and managers of nuclear power programmes with information and guidance on the role, requirements, planning and implementation of manpower development programmes. It presents and discusses the manpower requirements associated with the activities of a nuclear power programme, the technical qualifications of this manpower and the manpower development corresponding to these requirements and qualifications. The Guidebook also discusses the purpose and conditions of national participation in the activities of a nuclear power programme

  14. Nuclear power program in Korea

    International Nuclear Information System (INIS)

    Korea is a nation making great progress with its nuclear power development program despite the current worldwide nuclear industry slump resulting from the global recession. The reason for this is that Korea does not have sufficient energy resources to meet demand. Six 950 MW nuclear power plants are under construction, and these units are scheduled for completion by 1989. This paper describes the status of Korea's nuclear power development program and the activities of local nuclear industries. It also discusses the efforts being made by local industries to achieve self-reliance

  15. France's nuclear power programme

    International Nuclear Information System (INIS)

    The prospects of development of France's consumption of electricity will widen the deficit of her national energy resources. Nuclear power stations should enable this deficit to be reduced, provided a certain number of uncertainties prevailing today are resolved. The first programme, put forward by Messrs. AILLERET and TARANGER at the 1955 Geneva Conference aimed at commissioning 850 MWe by 1965; the programme was devoted to developing the natural uranium graphite-gas sequence and reaches its completion with the construction of EDF 3, the world's first unit capable of 500 MWe. Before changing over from the prototype stage to their duplication, Electricite De France decided, in agreement with the Commissariat A L'energie Atomique to build EDF 4, which, while reproducing EDF 3's reactor, together with the referring equipment, the entire control equipment and various other systems, pioneers an important innovation by incorporating the heat exchangers and fans inside the prestressed concrete pressure vessel housing the core. At the same time, studies are being carried on on the same type of reactor enabling possible use of a new annular-shaped fuel element, whose use would considerably improve the performance of EDF 5, to be envisaged. On the heavy water side, the construction of EL 4 at Brennilis jointly by the Commissariat A L'energie Atomique and Electricite De France is continuing. Design work on a 500 MWe reactor of this type has already started. As regards pressurized water reactors, the Chooz power station is built jointly by Electricite De France and Belgian Utilities. Finally, the Commissariat A L'energie Atomique is continuing the construction of the 'Rapsodie' rapid neutron reactor at Cadarache, together with studies on a larger power reactor. It may thus be seen that the technical and economic knowledge gained on these various types of reactor mean that an equipment program may be contemplated which will endow nuclear power stations with a place of ever

  16. Nuclear power reactor physics

    International Nuclear Information System (INIS)

    The purpose of this book is to explain the physical working conditions of nuclear reactors for the benefit of non-specialized engineers and engineering students. One of the leading ideas of this course is to distinguish between two fundamentally different concepts: - a science which could be called neutrodynamics (as distinct from neutron physics which covers the knowledge of the neutron considered as an elementary particle and the study of its interactions with nuclei); the aim of this science is to study the interaction of the neutron gas with real material media; the introduction will however be restricted to its simplified expression, the theory and equation of diffusion; - a special application: reactor physics, which is introduced when the diffusing and absorbing material medium is also multiplying. For this reason the chapter on fission is used to introduce this section. In practice the section on reactor physics is much longer than that devoted to neutrodynamics and it is developed in what seemed to be the most relevant direction: nuclear power reactors. Every effort was made to meet the following three requirements: to define the physical bases of neutron interaction with different materials, to give a correct mathematical treatment within the limit of necessary simplifying hypotheses clearly explained; to propose, whenever possible, numerical applications in order to fix orders of magnitude

  17. Advanced nuclear reactor public opinion project

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  18. Advanced nuclear reactor public opinion project

    International Nuclear Information System (INIS)

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions

  19. Nuclear power ecology: comparative analysis

    International Nuclear Information System (INIS)

    Ecological effects of different energy sources are compared. Main actions for further nuclear power development - safety increase and waste management, are noted. Reasons of restrained public position to nuclear power and role of social and political factors in it are analyzed. An attempt is undertaken to separate real difficulties of nuclear power from imaginary ones that appear in some mass media. International actions of environment protection are noted. Risk factors at different energy source using are compared. The results of analysis indicate that ecological influence and risk for nuclear power are of minimum

  20. The function of the alarm system in advanced control rooms: an analysis of operator visual activity during a simulated nuclear power plant disturbance

    International Nuclear Information System (INIS)

    In 1996, the US Nuclear Regulatory Commission, Brookhaven National Laboratory (US), and the OECD Halden Reactor Project conducted a large experiment, investigating the effects of alarm reduction and display on operator and plant performance (O'Hara et al., 1997), The results from this experiment indicated that the number of alarms presented to the operators, and the type of alarm display, had no impact on human performance during simulated disturbances. One possible interpretation of these surprising results is that operators in advanced control rooms use the alarm system only for limited purposes, i.e., the introduction of process formats, trend curves, overview displays, and computerized support systems have made the alarm system superfluous. Given the massive efforts put into the design and development of sophisticated alarm systems intended to maximize safety, this would be a paradoxical conclusion. To explore the role of the alarm system in more detail, we performed an analysis of eye-movement tracking data collected in the Halden Man-Machine Laboratory (HAMMLAB). The objective of the study was to examine to which extent, and for what purposes, licensed operators use the alarm system in advanced control rooms during complex problem solving. According to Funke (1991), complex problem solving situations are non-transparent, ill-defined, and dynamic, i.e., the underlying state of the system must be inferred from symptoms, the goal state is ambiguous, and the problem is in continuous change. This seems to be an appropriate description of the working conditions when operators are confronted with challenging scenarios in a full scope nuclear simulator. Five experts on nuclear power plant operation from the OECD Halden Reactor Project were convened in order to generate initial hypotheses about the operators' use of the alarm system. The expert panel estimated that operators in advanced control rooms would use the alarm system less than 10 percent of the available

  1. Nuclear power perspective in China

    International Nuclear Information System (INIS)

    China started developing nuclear technology for power generation in the 1970s. A substantial step toward building nuclear power plants was taken as the beginning of 1980 s. The successful constructions and operations of Qinshan - 1 NPP, which was an indigenous PWR design with the capacity of 300 MWe, and Daya Bay NPP, which was an imported twin-unit PWR plant from France with the capacity of 900 MWe each, give impetus to further Chinese nuclear power development. Now there are 8 units with the total capacity of 6100 MWe in operation and 3 units with the total capacity of 2600 MWe under construction. For the sake of meeting the increasing demand for electricity for the sustainable economic development, changing the energy mix and mitigating the environment pollution impact caused by fossil fuel power plant, a near and middle term electrical power development program will be established soon. It is preliminarily predicted that the total power installation capacity will be 750-800GWe by the year 2020. The nuclear share will account for at least 4.0-4.5 percent of the total. This situation leaves the Chinese nuclear power industry with a good opportunity but also a great challenge. A practical nuclear power program and a consistent policy and strategy for future nuclear power development will be carefully prepared and implemented so as to maintain the nuclear power industry to be healthfully developed. (author)

  2. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  3. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  4. Nuclear power - the Hydra's head

    International Nuclear Information System (INIS)

    Following the accident at Chernobyl, the nuclear policies of many governments have been reconsidered and restated. Those in favour of nuclear power are those with highly centralised state bureaucracies, such as France and the USSR, where public opinion is disregarded. In more democratic countries, where referenda are held, such as Austria and Sweden, the people have chosen to do away with nuclear power. Indeed, the author states that nuclear power represents the State against the people, the State against democracy. Reference is made to the IAEA Reactor Safety Conference held in September, 1986, in Vienna, and the declaration sent to it by AntiAtom International. This called for the United Nations to promote the phasing out of nuclear power facilities throughout the world. It also called on the IAEA to support the phasing out of nuclear power and promote benign energy forms instead. (UK)

  5. Nuclear power and the UK

    International Nuclear Information System (INIS)

    This series of slides describes the policy of the UK government concerning nuclear power. In January 2008 the UK Government published the White Paper on the Future of Nuclear Power. The White Paper concluded that new nuclear power stations should have a role to play in this country's future energy mix. The role of the Government is neither to build nuclear power plants nor to finance them. The White Paper set out the facilitative actions the Government planned to take to reduce regulatory and planning risks associated with investing in new nuclear power stations. The White Paper followed a lengthy period of consultation where the UK Government sought a wide variety of views from stakeholders and the public across the country on the future of nuclear power. In total energy companies will need to invest in around 30-35 GW of new electricity generating capacity over the next two decades. This is equivalent to about one-third of our existing capacity. The first plants are expected to enter into service by 2018 or sooner. The Office for Nuclear Development (OND) has been created to facilitate new nuclear investment in the UK while the Nuclear Development Forum (NDF) has been established to lock in momentum to secure the long-term future of nuclear power generation in the UK. (A.C.)

  6. Nuclear power in human medicine

    International Nuclear Information System (INIS)

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  7. Trends in nuclear power developments

    International Nuclear Information System (INIS)

    Modern state and prospects of nuclear power development in industrial states are considered. Structure of power consumption, dynamics of nuclear capacity commissioning, the growth of specific capital expenses for reactor construction, orders for NPP production are analyzed. Electric power production costs at NPPs and coal TPPs in Canada, USA, Western Europe and Japan are compared. It is underlined that inspite of certain depressions nuclear power is being developed further on. Increase of electric power consumption for commercial and public purposes and growth of fresh water shortage appear to be the main prerequisites of its further development

  8. Nuclear power newsletter Vol. 3, no. 2, June 2006

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors

  9. Power peaking nuclear reliability factors

    International Nuclear Information System (INIS)

    The Calculational Nuclear Reliability Factor (CNRF) assigned to the limiting power density calculated in reactor design has been determined. The CNRF is presented as a function of the relative power density of the fuel assembly and its radial local. In addition, the Measurement Nuclear Reliability Factor (MNRF) for the measured peak hot pellet power in the core has been evaluated. This MNRF is also presented as a function of the relative power density and radial local within the fuel assembly

  10. Development of nuclear power control technology

    International Nuclear Information System (INIS)

    The status on the development of nuclear power control(NPC) technology were reviewed. The advance of the fuzzy control and neural network(NN) control method for nuclear power plant was analyzed emphatically. The new trend of NPC technology advance was explored. The results of analysis reveal that the advancing tendency of NRC technology is developing from classical control to advanced control and intelligent control in the control method; the NPC technology is developing from simulated technology to digital (computer) technology and network technology in the hardware technology; the NPC system is progressing from single loop control to supervisory control, distributed computer control and control network-based in the the hierarchy of control system. In the NPC system, the PID method is still a most important control method, the fuzzy control method have good performance and the neural network method has great potential for the control of nuclear power plant. However, it is necessary to test and demonstrate for the application of neural network control to the nuclear power plant. (authors)

  11. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO

  12. Nuclear power newsletter Vol. 3, no. 4, December 2006

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: The 1st Joint IAEA-EPRI Workshop on Modernization of Instrumentation and Control Systems in Nuclear Power Plants; Message from the Director of the Division of Nuclear Power; Nuclear power plant operation; Management system, infrastructure and training; International Project on Innovative Nuclear Reactors and Fuel Cycles; Technology developments and applications for advanced reactors; Planned meetings in 2007

  13. Application of complex engineering solutions through advanced composite innovation (for repair of degraded buried pipe at Vandellos II Nuclear Power Plant); Reparacion de tuberias de un sistema de servicios no esenciales con recubrimiento interno de fibra de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J. M.; Raji, B. B.

    2011-07-01

    This technical presentation is focused on introducing an engineering solution approach and identification of sensitivity of applications of advanced carbon fiber in a pressurized wet environment: Engineering design, quality assurance of installation, inspection, and a comprehensive testing program to validate and bench mark the design data and compliance with code requirements in nuclear power plants.

  14. Nuclear power project in Thailand

    International Nuclear Information System (INIS)

    Full text: Thailand has been highly relied on fossil fuels for electricity generation. In fact 66% of today's electric power is supplied from natural gas. With current unprecedented increase of oil and gas prices, the country is in need of alternative energy sources more than ever. The Government recognizes the problem and seeks sustainable solution not only to improve energy security but also to reduce greenhouse gases emission, the root of threatening global warming problem. For base load power generation, however, nuclear power is perhaps the only practical option currently available. As a result, in Thailand Power Development Plan 2007-2021 (PDP 2007), there will be a 1,000 MWe nuclear power plant commercialized in 2020 and another in 2021. By the end of 2021, nuclear share of electricity generation of Thailand will be about 5%. Due to the fact that this is Thailand's first nuclear power plant, necessary infrastructures are not currently in place. To cope with this requirement, on April 11, 2007, the National Energy Policy Council (NEPC) appointed the Nuclear Power Infrastructure Preparation Committee (NPIPC) to develop the Nuclear Power Infrastructure Establishment Plan (NPIEP). NPIEP comprises two major plans: nuclear power infrastructure and nuclear power utility preparation plans. Required infrastructures include: legal and regulatory systems and international commitments; industrial infrastructure and commerce; technology development and transfer and human resources development; nuclear safety and environmental protection; and public relations and public acceptance. Utility planning comprises preparations for setting up organizational structure to accommodate a nuclear power project, technology selection, assessment of nuclear safety and technical aspects of nuclear power generation, and implementation of project feasibility study and site selection. NPIEP had been effectively developed under guidelines and technical support from the International Atomic

  15. Low-power nuclear reactors

    International Nuclear Information System (INIS)

    A brief development history of low-power nuclear reactors is presented in this paper. Nowadays, some countries have plans to build a series of small nuclear power plants (also floating ones) for use in remote regions. Present constructions of such NPP are presented in this paper. (author)

  16. Competitive economics of nuclear power

    International Nuclear Information System (INIS)

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics

  17. Islands for nuclear power stations

    International Nuclear Information System (INIS)

    The safety principles, design criteria and types of artificial island for an offshore nuclear power station are discussed with particular reference to siting adjacent to an industrial island. The paper concludes that the engineering problems are soluble and that offshore nuclear power stations will eventually be built but that much fundamental work is still required. (author)

  18. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    Lin Chengge; Li Shulan

    2009-01-01

    @@ China's nuclear power industry experienced such three stages as initiation, moderate development and active development. So far, there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW. In addition, there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  19. Nuclear power - the moral question

    International Nuclear Information System (INIS)

    Nuclear power has raised moral and ethical as well as technological issues and the British Council of churches, recognising this, has participated in the UK nuclear power debate. In this short article, Mr Philip Searby, Secretary of the UKAEA, considers some of the views adopted by the Council. (author)

  20. International nuclear power status 2000

    International Nuclear Information System (INIS)

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  1. Nuclear power supply (Japan Nuclear Safety Institute)

    International Nuclear Information System (INIS)

    After experienced nuclear disaster occurred on March 11, 2011, role of nuclear power in future energy share in Japan became uncertain because most public seemed to prefer nuclear power phase out to energy security or costs. Whether nuclear power plants were safe shutdown or operational, technologies were requisite for maintaining their equipment by refurbishment, partly replacement or pressure proof function recovery works, all of which were basically performed by welding. Nuclear power plants consisted of tanks, piping and pumps, and considered as giant welded structures welding was mostly used. Reactor pressure vessel subject to high temperature and high pressure was around 200mm thick and made of low-alloy steels (A533B), stainless steels (308, 316) and nickel base alloys (Alloy 600, 690). Kinds of welding at site were mostly shielded-metal arc welding and TIG welding, and sometimes laser welding. Radiation effects on welding of materials were limited although radiation protection was needed for welding works under radiation environment. New welding technologies had been applied after their technical validation by experiments applicable to required regulation standards. Latest developed welding technologies were seal welding to prevent SCC propagation and temper-bead welding for cladding after removal of cracks. Detailed procedures of repair welding of Alloy 600 at the reactor outlet pipe at Oi Nuclear Power Plants unit 3 due to PWSCC were described as an example of crack removal and water jet peening, and then overlay by temper-bead welding using Alloy 600 and clad welding using Alloy 690. (T. Tanaka)

  2. Nuclear power generation and nuclear non-proliferation

    International Nuclear Information System (INIS)

    The main points existing between nuclear energy development and nuclear non-proliferation policy are reviewed. The solar energy and other energy will replace for nuclear fission energy in the twenty first century, but it may not occur in the first half, and the structure has to be established to continue the development of nuclear fission technology, including breeder reactor technology. In the near future, it should be encouraged to use advanced thermal reactors if they are economic and operated with safety. Miserable results may be created in the worldwide scale, if a serious accident occurs anywhere or nuclear power reactors are utilized for military object. It is estimated to be possible to develop the ability of manufacturing nuclear weapons within two or three years in the countries where the industry is highly developed so as to generate nuclear power. It is also difficult to take measures so that nuclear power generation does not increase nuclear proliferation problems, and it is necessary to mitigate the motive and to establish the international organization. Concensus exists that as the minimum security action, the storage and transportation of materials, which can be directly utilized for nuclear weapons, should be decided by the international system. The most portions of sensitive nuclear fuel cycle should be put under the international management, as far as possible. This problem is discussed in INFCE. Related to the nuclear nonproliferation, the difference of policy in fuel cycle problems between USA and the other countries, the enrichment of nuclear fuel material, especially the reasons to inhibit the construction of additional enrichment facilities, nuclear fuel reprocessing problems, radioactive waste disposal, plutonium stock and plutonium recycle problems are reviewed. (Nakai, Y.)

  3. The collapse of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, J.W. (Birkbeck Coll., London (UK))

    1991-06-01

    The decision of the UK government of 9 November 1989, withdrawing all nuclear stations from privatization and cancelling the three PWRs which were to have followed on from Sizewell B, was a shattering blow to the nuclear industry. The reversal (at least temporarily) of decades of government support for nuclear power, and the figures which were becoming available of its relatively high-cost (confirmed by the levy on electricity sales to subsidize nuclear and other non-fossil generation), caused the House of Commons Energy Select Committee to conduct the inquiry culminating in its Report The Cost of Nuclear power. (author).

  4. Nuclear power and the environment

    International Nuclear Information System (INIS)

    The IAEA Director General pointed out that continued and expanded use of nuclear power must be one among several measures to restrain the use of fossil fuels and thereby limit the emissions of greenhouse gases. With regards to future trends in world electricity demands, the Director General emphasized the existing gap between the frequent claims as to what conservation can achieve and actual energy plans. The objections to nuclear power which are related to safety, waste disposal and the risk of proliferation of nuclear weapons are also discussed. His conclusion is that nuclear power can help significantly to meet growing needs of electricity without contributing to global warming, acid rains or dying forests, responsible management and disposal of nuclear wastes is entirely feasible, and the safety of nuclear power must be continuously strengthened through technological improvement and methods of operation

  5. Nuclear power systems for Lunar and Mars exploration

    International Nuclear Information System (INIS)

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications

  6. Nuclear power training programmes in Spain

    International Nuclear Information System (INIS)

    The introduction of nuclear power in Spain is developing very rapidly. At present 1.1GW(e) are installed in Spain and this is expected to increase to 8GW(e) in 1980 and to 28GW(e) in 1990. Spanish industry and technology are also rapidly increasing their participation in building nuclear stations, in manufacturing the necessary components and in the activities related to the nuclear fuel cycle. All of this requires properly trained personnel, which is estimated to become approximately 1200 high-level technicians, 1100 medium-level technicians and 1500 technical assistants by 1980. This personnel is trained: (a) in engineering schools; (b) in the Nuclear Studies Institute; (c) in the electric companies with nuclear programmes. The majority of the high-level engineering schools in the country include physics and basic nuclear technology courses in their programmes. Some of them have an experimental low-power nuclear reactor. The Nuclear Studies Institute is an official organism dependent on the Nuclear Energy Commission and responsible, among other subjects, for training personnel for the peaceful use and development of nuclear energy in the country. The electric companies also participate in training personnel for future nuclear stations and they plan to have advanced simulators of PWR and BWR type stations for operator training. The report deals with the personnel requirement forecasts and describes the training programmes. (author)

  7. Nuclear power in developing countries

    International Nuclear Information System (INIS)

    In early 1988, 417 nuclear power plants were in opration worldwide, which is twenty more than in early 1987. The total installed power of 300 GWe corresponds to 11% of the total generating capacity and contributes more than 16% of the worldwide electricity production. Fifty of these nuclear power plants, with an aggregate 28 GWe, have been built in developing countries, where they contribute 7% to the electricity requirement. With respect to installed power, the growth of nuclear power lags behind the plans made ten years ago, because some developing countries have stretched out their nuclear power programs for the next decade. This is due to various reasons. In some cases, the availability of alternative energies has reduced the use of nuclear power. In other cases, the delay has been due to funding and to the long planning and construction periods. The main problem facing the developing countries, however, is financing nuclear power plant projects in the light of the high capital costs of nuclear power plants. (orig.)

  8. Construction costs - nuclear power stations

    International Nuclear Information System (INIS)

    According to present development plans in the western industrial nations nuclear power will be able to cover 35 to 45% of power requirements in the mid 1980's. Although specific investment costs are higher for nuclear power plants than for other thermal power stations, nuclear plants are in a position today to generate power more economically than fossil fired plants into the upper part of the middle load sector. The relatively high proportion of fixed costs of the total power generation costs, and a still considerable potential to exploit the economy of scale, will contribute to minimize the inflationary burden on electric power generation. Nevertheless price development of nuclear power plants should be watched attentively, rapid price escalation for components, extremely long planning and construction times and exaggerated environmental protection requirements which serve no real purpose may reduce the economic benefit gained by nuclear energy. Electrical utilities will try to hold investment cost down by all means; for instance they will encourage standardization of nuclear power plants or order twin stations. For long term utilization of nuclear energy the development of high temperature reactors and fast breeders is a logical step forward. (author)

  9. Developing countries curtail nuclear power

    International Nuclear Information System (INIS)

    The nuclear power programmes in developing countries, following the accident at the Chernobyl power plant are summarized. Many of these have abandoned plans for nuclear power (eg Gabon), mothballed existing reactors (eg Philippines) or deferred decisions on a reactor programme (eg Egypt, Taiwan, Libya). Economic and political pressures are usually the underlying reasons, but the Chernobyl incident has proved a useful excuse. Other countries (Nigeria, Korea, India, Pakistan) have not let the accident change their nuclear policy. In China, Israel and Turkey the debate about nuclear power has been sharpened by the accident. Although Chernobyl has hastened decisions on nuclear power in some countries it has not affected the long-term policies of developing countries. (UK)

  10. Strategy for utilizing nuclear power

    International Nuclear Information System (INIS)

    One of the national goals is to achieve independence in the area of energy supplies in the next few years. It is believed that attaining this goal will require extensive utilization of nuclear power in conventional fission reactors. It is proposed that the best way to develop the nuclear resource is through government ownership of the reactors. It is argued that this will minimize the risks associated with the nuclear-power option and clear the way for its exploitation

  11. Special aspects of nuclear power

    International Nuclear Information System (INIS)

    This paper discusses how, with almost 300 nuclear power plants operating worldwide, the safety of nuclear power will soon be better known. Over the next decade we will learn whether or not the lessons learned from these accidents have made nuclear power safer. In the meantime, we must be well prepared to take care of patients injured in accidents at normally operating and at malfunctioning power plants. It would be tragic if lack of preparation and/or fear of radiation resulted in mistreatment of patients

  12. Medical perspective on nuclear power

    International Nuclear Information System (INIS)

    Is generating electricity with nuclear power safe in the United States? Could the explosion of a nuclear power reactor cause widespread dissemination of radioactivity, as the Chernobyl explosion did in 1986? How do power reactors operate, and what principles safeguard their operation? What should be the role of the physician with regard to nuclear power? A recent report of the Council on Scientific Affairs of the American Medical Association (AMA) considered such questions. The report, prepared by an expert committee, received the endorsement of the AMA's House of Delegates. Major issues delineated in the report and all of its conclusions appear in this summary. 20 refs

  13. Garigliano nuclear power plant

    International Nuclear Information System (INIS)

    During the period under review, the Garigliano power station produced 1,028,77 million kWh with a utilization factor of 73,41% and an availability factor of 85,64%. The disparity between the utilization and availability factors was mainly due to a shutdown of about one and half months owing to lack of staff at the plant. The reasons for nonavailability (14.36%) break down as follows: nuclear reasons 11,49%; conventional reasons 2,81%; other reasons 0,06%. During the period under review, no fuel replacements took place. The plant functioned throughout with a single reactor reticulation pump and resulting maximum available capacity of 150 MWe gross. After the month of August, the plant was operated at levels slightly below the maximum available capacity in order to lengthen the fuel cycle. The total number of outages during the period under review was 11. Since the plant was brought into commercial operation, it has produced 9.226 million kWh

  14. Nuclear reactor power monitor

    International Nuclear Information System (INIS)

    The device of the present invention monitors phenomena occurred in a nuclear reactor more accurately than usual case. that is, the device monitors a reactor power by signals sent from a great number of neutron monitors disposed in the reactor. The device has a means for estimating a phenomenon occurred in the reactor based on the relationship of a difference of signals between each of the great number of neutron monitors to the positions of the neutron monitors disposed in the reactor. The estimation of the phenomena is conducted by, for example, conversion of signals sent from the neutron monitors to a code train. Then, a phenomenon is estimated rapidly by matching the code train described above with a code train contained in a data base. Further. signals sent from the neutron monitors are processed statistically to estimate long term and periodical phenomena. As a result, phenomena occurred in the reactor are monitored more accurately than usual case, thereby enabling to improve reactor safety and operationability. (I.S.)

  15. Obrigheim nuclear power plant

    International Nuclear Information System (INIS)

    In 1973 the 345 MW pressurized water nuclear power plant at Obrigheim operated on base load, generating approximately 2.63 TWh, approximately 2.5 TWh of which was supplied to the KWO members. The plant availability for the year was 89.9%. Of the 10.1% non-availability, 6.4% (23 d) was caused by refuelling, including inspection, overhaul and repair operations and routine tests carried out in September 1973. 3.3% was due to stoppages for repairs to a steam generator and the two main cooling pumps, while 0.4% resulted from failures in the electrical section of the plant. The plant was shut down seven times in all, including three scrams. The average core burnup at the end of the fourth cycle (1 September 1973) was 18900 MWd/tU, representing an average burnup of approximately 37500 MWd/tU for a fuel element used in all four cycles. The operating performance of the steam generators and the result of the steam generator inspection carried out during refuelling in 1973 suggest no progressive damage. The quantities of radioactive materials released to the environment in 1973 were well below the officially permitted levels. The availability of the plant from the beginning of pilot operation in 1969 to the end of 1973 was 83.7 %

  16. Argentina: Nuclear power development and Atucha 2

    International Nuclear Information System (INIS)

    In 2014, nuclear energy generated about 5,257 GWh of electricity or a total share of 4.05 % of the total electrical energy of about 129,747.63 GWh kWh produced in Argentina and there has been a trend for this production to increase. Argentina currently has a nuclear production capacity of 1,010 megawatts of electrical energy. However, when the Atucha 2 nuclear power plant is completed and starts commercial operation, it will add 745 megawatts to this electrical production capacity. There are two sites with nuclear power plants in Argentina: Atucha and Embalse. The Embalse nuclear power plant went into operation in 1984. At the Atucha site, the Atucha-1 nuclear power plant started operation in 1974. It was the first nuclear power plant in Latin America. Construction of Atucha-2 started in 1981 but advanced slowly due to funding and was suspended in 1994 when the plant was 81 % built. In 2003, new plans were approved to complete the Atucha 2. I summer 2014 the plant went critical for the first time. The construction was completed under a contract with AECL.

  17. Argentina: Nuclear power development and Atucha 2

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2015-08-15

    In 2014, nuclear energy generated about 5,257 GWh of electricity or a total share of 4.05 % of the total electrical energy of about 129,747.63 GWh kWh produced in Argentina and there has been a trend for this production to increase. Argentina currently has a nuclear production capacity of 1,010 megawatts of electrical energy. However, when the Atucha 2 nuclear power plant is completed and starts commercial operation, it will add 745 megawatts to this electrical production capacity. There are two sites with nuclear power plants in Argentina: Atucha and Embalse. The Embalse nuclear power plant went into operation in 1984. At the Atucha site, the Atucha-1 nuclear power plant started operation in 1974. It was the first nuclear power plant in Latin America. Construction of Atucha-2 started in 1981 but advanced slowly due to funding and was suspended in 1994 when the plant was 81 % built. In 2003, new plans were approved to complete the Atucha 2. I summer 2014 the plant went critical for the first time. The construction was completed under a contract with AECL.

  18. Climate change and nuclear power

    International Nuclear Information System (INIS)

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  19. Nuclear power newsletter Vol. 3, no. 1, April 2006

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: Nuclear power technology and operations databases; Message from the Director of the Division of Nuclear Power; Announcement of Mr. Atam Rao, the new Head of Nuclear Power Technology Development Section; Nuclear power plant operating performance and life cycle management; Improving human performance, quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; Division of Nuclear Power Web site links; The 7th IAEA - FORATOM Joint Workshop on Successful Management of Organizational Change

  20. Effects of crew resource management training on the team performance of operators in an advanced nuclear power plant

    International Nuclear Information System (INIS)

    The objectives of the study are twofold: the development of a CRM training program appropriate to Korean NPPs and the evaluation of CRM training effectiveness. Firstly, the CRM program was developed with a focus on nontechnical skills - such as leadership, situational awareness, teamwork, and communication - which have been widely known to be critical for improving operational performance. Secondly, the effectiveness tests were conducted for two different crews of operators, performing six different emergency operation scenarios during a four-week period. All the crews (crews A and B) participated in the training program for the technical knowledge and skills, which were required to operate the simulator of the MCR during the first week. However, for the verification of the effectiveness of the CRM training program, only crew A was randomly selected to attend the CRM training after the technical knowledge and skills training. The results of the experiments showed that the CRM training program improved the individual attitudes of crew A with a statistical significance. The team skills of crew A were found to be significantly more advanced than those of crew B. However, the CRM training did not have a positive effect on enhancing the individual performance of crew A, as compared with that of crew B. (author)

  1. Nuclear power for environmental protection

    International Nuclear Information System (INIS)

    Nuclear power does not produce CO2 or other greenhouse gases, and also does not produce any SO2, NOx or other gases which contribute to acid rain. These characteristics of nuclear power are especially important in comparison to coal-fired generation of electricity. As an example, in comparison with a coal-fired power plant of the same size, with abatement systems, a 1300 MW(e) nuclear power plant eliminates annually emissions to the air of about: 2000 t of particulates; 8.5 million t of CO2: 12,000 t of SO2; and 6,000 t of NOx, the precise quantities being dependent on coal quality, power plant design and thermal efficiency, and on the effectiveness of the abatement systems. Opponents of nuclear power concede these facts, but argue that nuclear power is such a small part of the world energy balance that it is insignificant to the big issue of CO2. This is hardly correct. Today, 16% of the world's electricity (and 5% of the world's total primary energy) is generated using nuclear power. If this electricity were to have been generated using coal, it would have resulted in about 1600 million tons of CO2 annually. This is 8% of the 20,000 million tons of CO2 now emitted annually from the burning of fossil fuels, an amount which the Toronto Conference proposed should be cut by 20% up to the year 2005. A further major difference in the two energy systems is that the relatively smaller amount of nuclear wastes is fully isolated from the environment. In addition to discussing the global contributions of nuclear power to environmental improvement, the paper presents actual results achieved in a number of countries, demonstrating the positive contribution which nuclear power has made to reducing the environmental impacts of electricity production. 7 figs, 12 tabs

  2. Nuclear power sector in Romania

    International Nuclear Information System (INIS)

    According to a recent Romanian Government Decision on restructuring strategy of the power sector in Romania the first step was the creation of the National Power Company (CONEL) and splitting off the nuclear research, design-engineering and some support activities. At the same time, the former Nuclear Power Group split into the National Nuclear Electric Company ('Nuclearelectrica'-S.A.) and Regia Autonoma pentru Activitati Nucleare. The 'Nuclearelectrica'-S.A. (SNN) includes three subsidiaries, one for nuclear power production, CNE-PROD (Cernavoda Unit 1), one for nuclear power development, CNE-INVEST (Cernavoda Units 2 to 5) and one for nuclear fuel fabrication FCN (Pitesti Nuclear Fuel Plant). The other branches of the former Nuclear Power Group, as Heavy Water Plant (ROMAG-Drobeta), Institute for Nuclear Research (INR-Pitesti) and Center for Nuclear Projects Engineering (CITON-Bucharest) are parts of the new created 'Regia Autonoma pentru Activitati Nucleare'. On 11 July 1996 Romania joined the 'Nuclear Club' and the first nuclear megawatt-hour was supplied by the Cernavoda NPP into our national grid. On December 2, 1996 the Cernavoda Unit 1 reached the level of commercial operation. Planned to produce 4.5 TWh yearly the Cernavoda NPP-Unit 1 represents about 10% of the overall power production of the country. Up to the end of August 1998, the Unit 1 generated a total of 9.17 TWh at a gross capacity factor of 85%. The plant's good performance to date demonstrates the SNN's total commitment to meet world class standards and to ensure that Cernavoda NPP Unit 1 is among the best performing stations in the world. Romanian Power Sector Least Cost Development Studies demonstrate the opportunity to complete and put Unit 2 of Cernavoda NPP in commercial operation up to the year 2001, in cooperation with AECL and ANSALDO. The author emphasizes the strong help and support which the IAEA granted to Romania Nuclear Power Program, especially after 1989 in all areas of

  3. Nuclear power development: global challenges and strategies

    International Nuclear Information System (INIS)

    This article highlights key factors that will determine today and tomorrow's optimal energy strategies. It addresses methods to utilize the high potential energy content of uranium. Plutonium used as fuel in a nuclear reactors is discussed as is the future potential of a thorium fuel cycle. Various strategies to increase the economic viability of nuclear power are brought out. Technological means to further minimize environmental impacts and to enhance safety are covered as they are a major factor in public acceptance. Also covered are advances anticipated by mid-century in nuclear reactor and fuel cycle technologies

  4. Nuclear power, economy and environment

    International Nuclear Information System (INIS)

    The explanations in this article aim at clarifying the background of the problem of nuclear energies. Why did countries give up developing nuclear energy? Which roles do economic political and psychological factors play in making energy political decisions? How could a balance be found in using the various energy sources which must meet the constantly increasing demand for electric power? Which preconditions must be fulfilled to return to nuclear energy world-wide (as using coal is connected with many environmental risks) and how long would it take? If, however, nuclear power is even to be included in the energy-political discussions of the governments and the public opinions in each country, there are a number of sensitive topics waiting for an answer: Safety and costs of power plants; recycling and storing nuclear wastes; the relationship between civil energy and the availability of nuclear weapons and the future plutonium economy. (orig./UA)

  5. Nuclear power for sustainable development

    International Nuclear Information System (INIS)

    Energy demand continues to grow in spite of drastic efforts, especially in OECD countries for efficiency and energy savings. At the same time, the concept of sustainable development is calling for the alleviating and/or mitigating of environmental impacts. A limited number of options, that are technically mature and economically competitive, can substitute fossil fuel burning for electricity generation. Nuclear power is one of the electricity generating options that can contribute to an environmentally friendly development. The paper investigates the potential role of nuclear power in global energy supply up to 2050 and analyses the opportunities and challenges, for governments and nuclear industries, of a broad nuclear power deployment in response to environmental concerns. It concludes that, in the long term, increasing substantially the share of nuclear power in electricity generation is feasible and would contribute significantly to enhancing the sustainability of energy supply systems world-wide. (author)

  6. Nuclear power: a Greek tragedy

    International Nuclear Information System (INIS)

    The present state and expected future of nuclear power and its regulation in the United States is outlined. The two major influences on the nuclear regulatory environment in the US, outside of the Three Mile Island accident, are the legal profession and the Congress. The increasing influence of the lawyers and the diverse and increasing interaction with the Congress is examined. It is concluded that nuclear power in the US has one fatal flaw - it cannot get public acceptance. The deep hatred and divisions within the US public on the issues of nuclear power, the uncertainties of accidents, the confusion over what is radiation, the fear of abnormalities and serious cancers in future generations, the author believes will lead to the demise of commercial nuclear power in the US. (U.K.)

  7. Nuclear power: a Greek tragedy

    Energy Technology Data Exchange (ETDEWEB)

    Ahearne, J. (Nuclear Regulatory Commission, Washington, DC (USA))

    1981-01-01

    The present state and expected future of nuclear power and its regulation in the United States is outlined. The two major influences on the nuclear regulatory environment in the US, outside of the Three Mile Island accident, are the legal profession and the Congress. The increasing influence of the lawyers and the diverse and increasing interaction with the Congress is examined. It is concluded that nuclear power in the US has one fatal flaw - it cannot get public acceptance. The deep hatred and divisions within the US public on the issues of nuclear power, the uncertainties of accidents, the confusion over what is radiation, the fear of abnormalities and serious cancers in future generations, the author believes will lead to the demise of commercial nuclear power in the US.

  8. Nuclear power in the Midwest

    International Nuclear Information System (INIS)

    The Twelfth Annual Illinois Energy Conference, held in Chicago, Illinois, October 1984 was sponsored by the Energy Resources Center, University of Illinois at Chicago in cooperation with the U.S. Department of Energy, the Illinois Department of Energy and Natural Resources, the Illinois Energy Resources Commission, and the Illinois Commerce Commission. The theme for the conference was ''Nuclear Power in the Midwest.'' The topic of Nuclear Power is particularly appropriate in view of the fact that the State of Illinois, as well as the Midwest region, has made a major commitment to the use of this option for electric power generation. This is evidenced by the fact that some twenty-three of the eighty-six currently licensed nuclear reactors in the United States are located in the Midwest region. Illinois alone contains ten licensed nuclear reactors with four other nuclear plants either under construction or waiting for an operating license. In rated capacity of electric power generated by nuclear reactors, the region is capable of producing 21.5% of the national total of 70,000 MWe. The problems surrounding nuclear power involve complex technologies, environmental and public health concerns, economic and legal factors as well as numerous other policy questions. The goal of the 12th Annual Illinois Energy Conference was to review these issues in order to educate the public and to assist government policy makers in making rational judgements regarding the use and development of the nuclear power option

  9. Towards sustainable nuclear power development

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Andrei A.; Murogov, Victor M.; Kuptsov, Ilya S. [Obninsk Institute for Nuclear Power Engineering of NNRU MEPhl, Obninsk, Kaluga Region (Russian Federation)

    2014-05-15

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  10. Towards sustainable nuclear power development

    International Nuclear Information System (INIS)

    The review of the current situation in the nuclear energy sector carried out in this article brings to light key problems and contradictions, development trends and prospects, which finally determine the role and significance of nuclear power as a factor ensuring a sustainable energy development. Authors perspectives on the most appropriate developments of nuclear power, which should be based on a balanced use of proven innovative nuclear technologies and comprehensive multilateral approaches to the nuclear fuel cycle are expressed. The problems of wording appropriate and essential requirements for new countries with respect to their preparedness to develop nuclear programs, taking into account their development level of industry and infrastructure as well as national heritages and peculiarities, are explained. It is also indicated that one of the major components of sustainability in the development of nuclear power, which legitimates its public image as a power technology, is the necessity of developing and promoting the concepts of nuclear culture, nuclear education, and professional nuclear ethics. (orig.)

  11. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  12. Development study on hydraulic three-dimensional seismic isolation system applied to advanced nuclear power plant. Development study on hydraulic rocking suppression system

    International Nuclear Information System (INIS)

    Three-dimensional (3D) seismic isolation devices have been developed for the base isolation system of the Fast Breeder Reactor (FBR) that is an advanced nuclear reactor power plant building. The developed seismic isolation system consists of the hydraulic type vertical springs with rocking suppression mechanism and the laminated rubber bearings for horizontal direction. The isolation performances, i.e. natural period, damping, and rocking-suppression, have already been evaluated by the technical feasibility study and performance tests on a system which consists of down-sized devices on the shaking table, but in the seismic simulation on the real size building with this system, high hydraulic pressure was generated by rocking-suppression device under an extremely large seismic motion. In this paper, it is reported the frictional characteristics on high hydraulic pressure condition from the experiments on the 1/2 size of real device. To improve the damping performance of rocking-suppression, the orifice was added to the cylinder. At first the linear seismic simulation model of the real size system was constructed and damping coefficient was optimized by using that linear model. Finally, the detailed nonlinear simulation model was constructed, and time history analysis under simultaneous horizontal and vertical seismic motion was carried out, and the damping performance of rocking-suppression device was verified. (author)

  13. Research on advancement of method for evaluating aseismatic ability of rock discontinuity plane in ground and surrounding slopes of nuclear power facilities

    International Nuclear Information System (INIS)

    The purpose of this research is to carry out the technical development required for exploring with high accuracy the distribution and shapes of the discontinuity planes in rocks in the ground and surrounding cut-off slopes of nuclear power facilities, and to advance the techniques of interpreting and evaluating quantitatively the stability against earthquakes of the discontinuity planes. This research consists of two themes: the research on the method of investigating the three-dimensional distribution of the crevices in the ground and the research on the method of evaluating the aseismatic ability in the slopes. As for the first theme, one of the techniques for exploring underground structure with elastic waves, tomography, is explained, and the development of the 12 channel receiver and the program for the multi-channel analysis and processing of waveform are reported. As for the second theme, the stability analysis was carried out on three actual cases of landslide. The equation for stability analysis is shown, and the results are reported. The strength at the time of forming separation plane gives the most proper result. (K.I.)

  14. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  15. Advanced nuclear reactor types and technologies

    International Nuclear Information System (INIS)

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary

  16. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    This Guide applies to nuclear power plants for which the total power supply comprises normal power supply (which is electric) and emergency power supply (which may be electric or a combination of electric and non-electric). In its present form the Guide provides general guidance for all types of emergency power systems (EPS) - electric and non-electric, and specific guidance (see Appendix A) on the design principles and the features of the emergency electric power system (EEPS). Future editions will include a second appendix giving specific guidance on non-electric power systems. Section 3 of this Safety Guide covers information on considerations that should be taken into account relative to the electric grid, the transmission lines, the on-site electrical supply system, and other alternative power sources, in order to provide high overall reliability of the power supply to the EPS. Since the nuclear power plant operator does not usually control off-site facilities, the discussion of methods of improving off-site reliability does not include requirements for facilities not under the operator's control. Sections 4 to 11 of this Guide provide information, recommendations and requirements that would apply to any emergency power system, be it electric or non-electric

  17. Nuclear power prospects in Pakistan

    International Nuclear Information System (INIS)

    As part of its programme to assist the development of nuclear power, IAEA undertakes, on r e quest, reviews of the prospects for nuclear power in individual Member States. A general finding of the Pakistan report is that nuclear power should be considered 'a leading contender for the supply of future energy needs'. A principal reason for this is that the conventional energy resources available, both of hydroelectric energy and of fossil fuels, appear insufficient by themselves to give in the long run the high per capita consumption of electricity which is characteristic of a developed country. Thus, an alternative source of energy to supplement the existing resources appears desirable. The analysis comparing nuclear power economics with those of conventional alternatives is performed separately for the Karachi area, for West Pakistan and for East Pakistan, since the power supply systems serving these regions are not now, nor in the near future likely to be, interconnected

  18. Checking nuclear power station safety

    International Nuclear Information System (INIS)

    The paper describes the test facilities and research projects for Sizewell-B and other nuclear power stations, directed by the National Nuclear Corporation (NNC). The NNC is Britain's nuclear power station design and construction company, and is currently carrying out commissioning on both the Heysham and Torness AGRs. A description is given of NNC's nuclear research and development work, which includes: the production of Cobalt-free alloy, coatings for the primary containment shell, and ''fitness for purpose'' tests on reactor components using its 'Loki' rig to put the equipment through postulated accident conditions. NNC also has a rig to test structural features under extreme thermal shock conditions. (U.K.)

  19. On PA of nuclear power

    International Nuclear Information System (INIS)

    Present state of things relating to the nuclear power generation are described first, focusing on the Chernobyl accident, power control test, old-wave and new-wave antinuclear movements, move toward elimination of nuclear power plants, and trend in government-level argument concerning nuclear power generation. Then the importance of public relations activities for nuclear power generation is emphasized. It is stressed that information should be supplied positively to the public to obtain public understanding and confidence. Various activities currently made to promote public relations for nuclear power generation are also outlined, focusing on the improvement in the nuclear power public relations system and practical plans for these activities. Activities for improvement in the public relations system include the organization of public relations groups, establishment and effective implementation of an overall public relations plan, training of core workers for public relations, and management of the public relations system. Other practical activities include the encouragement of the public to come and see the power generation facilities and distribution of pamphlets, and use of the media. (N.K.)

  20. Emergency power systems at nuclear power plants

    International Nuclear Information System (INIS)

    This Safety Guide was prepared as part of the Nuclear Safety Standards programme for establishing Codes and Safety Guides relating to nuclear power plants (NPPs). The first edition of the present Safety Guide was developed in the early 1980s. The text has now been brought up-to-date, refined in several details and amended to include non-electrical diverse and independent power sources. This Guide applies to NPP for which the total power supply comprises a normal power supply and an emergency power supply (EPS), which may be electrical or a combination of electrical and non-electrical. The Guide provides general guidance for all types of EPS and specific guidance on the design safety requirements and the features of the electrical and non-electrical portions of the EPS. 9 figs, 2 tabs

  1. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  2. The economics of nuclear power

    International Nuclear Information System (INIS)

    Nuclear power is seen by some as a partial solution to climate change. The obvious supporters include nuclear establishments, but the 'surprising' supporters comprise some environmentalists like James Lovelock. One of the 15 strategies proposed by Stephen Pacala and Robert Socolow as part of their wedge model is to substitute nuclear power for coal power. The addition of 700 GW of nuclear power, i.e. roughly twice the current global capacity, would constitute one wedge and could reduce one billion tonnes of carbon by mid-century. (The other 14 strategies include: efficient vehicles; reduced use of vehicles; efficient buildings; efficient baseload coal plants; gas baseload power for coal baseload power capture CO2 at baseload power plant capture CO2 at H2 plant; capture CO2 at coal-to-synfuels plant and geological storage; wind power for coal power; PV power for coal power; wind H2 in fuel-cell car for gasoline in hybrid car; biomass fuel for fossil fuel; reduced deforestation, plus reforestation, afforestation, and new plantations, and conservation tillage

  3. Nuclear power stations licensing

    International Nuclear Information System (INIS)

    The judicial aspects of nuclear stations licensing are presented. The licensing systems of the United States, Spain, France and Federal Republic of Germany are focused. The decree n0 60.824 from July 7 sup(th), 1967 and the following legislation which define the systematic and area of competence in nuclear stations licensing are analysed

  4. Nuclear power: An evolving scenario

    International Nuclear Information System (INIS)

    The past two years have found the IAEA often in the spotlight - primarily because of our role as the world's 'nuclear watchdog', as we are sometimes referred to on the evening news. The most visible, and often controversial, peaceful nuclear application is the generation of electricity, the focus of this article largely from a European perspective. At the end of last year there were 440 nuclear power units operating worldwide. Together, they supply about 16% of the world's electricity. That percentage has remained relatively steady for almost 20 years. Expansion and growth prospects for nuclear power are centred in Asia. Of the 31 units under construction worldwide, 18 are located in India, Japan, South Korea and China, including Taiwan. Twenty of the last 29 reactors to be connected to the grid are also in the Far East and South Asia. That is probably more active construction than most Europeans would guess, given how little recent growth has occurred in the West. For Western Europe and North America, nuclear construction has been a frozen playing field - the last plant to be completed being Civaux-2 in France in 1999. That should raise a question: with little to no new construction, how has nuclear power been able to keep up with other energy sources, to maintain its share of electricity generation? Interestingly enough, the answer is tied directly to efforts to improve safety performance. The accident at Chernobyl in 1986 prompted the creation of the World Association of Nuclear Operators (WANO), and revolutionized the IAEA approach to nuclear power plant safety. Some analysts believe the case for new nuclear construction in Europe is gaining new ground, for a number of reasons: efforts to limit greenhouse gas emissions and reduce the risk of climate change; security of energy supply; Comparative Public Health Risk; different set of variables when choosing Each country's and region energy strategy. Looking to the future, certain key challenges are, of direct

  5. Nuclear power development in China

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-01

    The Chinese nuclear power programme for electricity generation is in an early stage. Two nuclear power stations are under construction. One is the Qinshan nuclear power plant, a 300-mega-watt-electric (MWe) unit located in the Zhejiang Province. The plant was domestically designed and most of its equipment was manufactured in China. It is expected to be connected to the electrical grid in 1991. The other nuclear power station is being built at Daya Bay in Guangdong Province. It has two 900-MWe units purchased from foreign suppliers that are scheduled to be put into operation in 1992 and 1993. Overall, China's nuclear power programme for electricity generation has progressed very slowly in contrast to the successful experience in other areas of nuclear development over the last 30 years. Many factors have influenced the development of nuclear power, in particular the structure and development of the national economy and energy system, which is based on domestic energy resources. (author).

  6. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    Nuclear Power is a new, innovative technology for energy production, seen in the longer historic perspective. Nuclear technology has a large potential for further development and use in new applications. To achieve this potential the industry needs to develop the arguments to convince policy makers and the general public that nuclear power is a real alternative as part of a sustainable energy system. This paper examines the basic concept of sustainable development and gives a quality review of the most important factors and requirements, which have to be met to quality nuclear power as sustainable. This paper intends to demonstrate that it is not only in minimising greenhouse gas emissions that nuclear power is a sustainable technology, also with respect to land use, fuel availability waste disposal, recycling and use of limited economic resources arguments can be developed in favour of nuclear power as a long term sustainable technology. It is demonstrated that nuclear power is in all aspects a sustainable technology, which could serve in the long term with minimal environmental effects and at minimum costs to the society. And the challenge can be met. But to achieve need political leadership is needed, to support and develop the institutional and legal framework that is the basis for a stable and long-term energy policy. Industry leaders are needed as well to stand up for nuclear power, to create a new industry culture of openness and communication with the public that is necessary to get the public acceptance that we have failed to do so far. The basic facts are all in favour of nuclear power and they should be used

  7. Nuclear power and the environment

    International Nuclear Information System (INIS)

    The environmental impacts and the impacts on man are compared for nuclear power plants and solid-fossil-fuel power plants. Practical experience points to significant advantages of nuclear power facilities. While coal-fired power plants in normal operation pollute the environment up to 30% of the permissible limits, the actual exposures caused by nuclear power plants are less than one per mille of the limits given by legal regulations. Some problems are also discussed of radiation protection. It is stated that thanks to the systematic research in this field which has been carried out for nearly sixty years, the knowledge of ionizing radiation hazards is now much more profound and complex than, e.g., that of toxic chemical pollutants released from fossil-fuel power plants and from chemical plants or contained in vehicle exhaust gases. (Z.M.). 5 tabs

  8. Nuclear power for economic development

    International Nuclear Information System (INIS)

    Various sources of energy available in India are discussed and it is emphatically stated that nuclear power is the only answer to the energy problem of the world and in particular of India. Advantages of atomic power over other sources of energy such as oil, hydel, coal etc. are described. Oil is still imported and petrolium consumption is required in petro-chemical industries and transportation. Hydro-electric potential available in India is limited as estimated by the erstwhile Central Water and Power Commission. As regards coal, India cannot entirely depend on this source for production of electricity since uneven distribution of the coal deposits necessitates its transportation over long distances from the mines to the points of consumption. Transportation required for nuclear fuel is almost non-existant as compared to that required for coal-fired plant, hence the generation cost is also low. Nuclear power potential, taking breeding into consideration turns out to be enormous. As regards safety, results of analysis carried out in the U.S. are given to show that safety of mining for nuclear power is much superior to that for coal-fired power plants. It is stated that there is no fear about nuclear wastes getting into water streams since they are carefully stored in underground depositories. Nuclear power program in India is described in brief. (B.G.W.)

  9. Present state of nuclear power business in China

    International Nuclear Information System (INIS)

    This article presented present state of nuclear power business in China based on latest information obtained at visit at nuclear power related facilities in December 2010. China Atomic Energy Authority (CAEA) promoted nuclear power, while National Nuclear Safety Administration (NNSA) was an independent regulatory body of nuclear power. Construction of nuclear power was promoted by three national nuclear engineering development corporations: China National Nuclear Corporation (CNNC), China Guangdon Nuclear Power Corporation (CGNPC) and State Nuclear Power Technology Corporation (SNPTC). In China, 13 nuclear power reactors were in operation and 27 under construction. Shortage of nuclear engineers became evident with rapid growth of nuclear power, which forced delay of nuclear power construction schedule. Future strategies of reactor type varied domestic, French and US ones respectively dependent on CNNC, CGNPC and SNPTC, CNNC seemed to change from third generation reactor (CNP 1000) to second one (CP 1000) due to regulatory licensing difficulty of NNSA. As for advanced reactor development, large scale PWR project, HTR project and FBR development project were proceeding. As HTR project was selected as high-priority project, an experimental reactor (HTR-10) was critical in 2000 and construction of demonstration reactor started in 2009. (T. Tanaka)

  10. Recent achievements in regulating nuclear power activities in taiwan

    International Nuclear Information System (INIS)

    Full text: The energy resources in Taiwan are very scarce with more than 98% of the fuel sources imported from foreign countries. The nuclear power became essential because of its stability and economy in price. There are six operating nuclear power units in Taiwan, and two more advanced boiling water reactor units under construction. As the country's nuclear power still plays an important role, the Atomic Energy Council (AEC) devotes its great efforts working on reactor safety regulation, radiation protection, nuclear security, nuclear emergency preparedness, nuclear waste management and environmental monitoring. Recent achievements of AEC on the above mentioned topics will be covered in this presentation

  11. The debate on nuclear power

    International Nuclear Information System (INIS)

    The need for nuclear power is pointed out. The Study Group on Nuclear Fuel Cycles of the American Physical Society has studied the problem of waste disposal in detail and has found that geological emplacement leads to safe waste disposal. The relation between nuclear power and weapons proliferation is discussed. The problem of preventing proliferation is primarily a political problem, and the availability of nuclear power will contribute little to the potential for proliferation. However, to further reduce this contribution, it may be desirable to keep fast-breeder reactors under international control and to use only converters for national reactors. The desirable converter is one which has a high conversion ratio, probably one using the thorium cycle, 233U, and heavy water as the moderator. The nuclear debate in the United States of America is discussed. Work on physical and technical safeguards in the USA against diversion of fissile materials is mentioned. (author)

  12. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  13. Multimegawatt nuclear power systems for nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  14. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  15. The politics of nuclear power

    International Nuclear Information System (INIS)

    The Long Island Lighting Company (LILCO) built the Shoreham Nuclear Power plant, on New York State's Long Island, at a cost of over $5 billion. In 1989, the United States Nuclear Regulatory Commission granted LILCO a full operating license for Shoreham. yet, that year New York State and LILCO signed an agreement under which LILCO would sell the plant to New York State for $1. new York, in turn, would dismantle Shoreham, despite great uncertainties regarding future power supplies for Long Island. The Shoreham project brought a major public utility to the brink of bankruptcy, forced the question of state versus federal control of nuclear power, and for over a decade dominated the politics of a region of 2.7 million people. This book examines how technology, economics, managements, politics, and personal commitments interacted to produce one of the most spectacular and pivotal failures of nuclear power policy in the United States

  16. The future of nuclear power

    International Nuclear Information System (INIS)

    Energy production and use will contribute to global warming through greenhouse gas emissions in the next 50 years. Although nuclear power is faced with a lot of problems to be accepted by the public, it is still a significant option for the world to meet future needs without emitting carbon dioxide (CO2) and other atmospheric pollutants. In 2002, nuclear power provided approximately 17% of world energy consumption. There is belief that worldwide electricity consumption will increase in the next few years, especially in the developing countries followed by economic growth and social progress. Official forecasts shows that there will be a mere increase of 5% in nuclear electricity worldwide by 2020. There are also predictions that electricity use may increase at 75%. These predictions require a necessity for construction of new nuclear power plants. There are only a few realistic options for reducing carbon dioxide emissions from electricity generation: Increase efficiency in electricity generation and use; Expand use of renewable energy sources such as wind, solar, biomass and geothermal; Capture carbon dioxide emissions at fossil-fuelled electric generating plants and permanently sequester the carbon; Increase use of nuclear power. In spite of the advantages that nuclear power has, it is faced with stagnation and decline today. Nuclear power is faced with four critical problems that must be successfully defeat for the large expansion of nuclear power to succeed. Those problems are cost, safety, waste and proliferation. Disapproval of nuclear power is strengthened by accidents that occurred at Three Mile Island in 1979, at Chernobyl in 1986 and by accidents at fuel cycle facilities in Japan, Russia and in the United States of America. There is also great concern about the safety and security of transportation of nuclear materials and the security of nuclear facilities from terrorist attack. The paper will provide summarized review regarding cost, safety, waste and

  17. Nuclear power - razing and creating

    International Nuclear Information System (INIS)

    In the book a studies fulfilled by the author is summarized, and issues of modern status for nuclear reactors safety; worldwide statement of nuclear power; nuclear waste disposal; radiation ecology; military polygons infrastructure conversion are considered. Works - fulfilled under scientific supervision of the author - on getting a new information about nuclear tests consequences on the Kazakhstan territory, its effect on the environment and human health, problems of determination of radiation contamination levels of the Republic's regions, suffered population rehabilitation from these tests, reimbursement of former agricultural areas after nuclear tests activity into national economy are discussed, and implementation of up-to-date technologies is given. The book is intended for a wide circle of readers, specialists, teachers, postgraduates and students and all who are interesting of nuclear power use issues for a prosperity and well-being of mankind

  18. History on foundation of Korea nuclear power

    International Nuclear Information System (INIS)

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  19. Investor perceptions of nuclear power

    International Nuclear Information System (INIS)

    Evidence is provided that investor concerns about nuclear power have recently been reflected in the common stock returns of all utilities with such facilities and have resulted in a risk premium. In particular, over the 1978-1982 period, three nuclear-related events occurred at the same time as, and therefore appear to have caused, significant drops in the market values of nuclear utilities relative to their non-nuclear counterparts. The three events were as follows: the accident at TMI, which occurred in March 1979; the realization in the summer of 1980 that an accident of the magnitude of TMI could result in cleanup costs of over $1 billion, which are not completely insurable and could therefore result in substantial losses; and the summer 1982 decision by the Tennessee Valley Authority (TVA) to cancel some if its nuclear power plant construction projects, and the Nuclear Regulatory Commission (NRC) decision to stop work on the construction of the Zimmer reactor, followed by a warning that it might close the Indian Point 2 and 3 reactors. If an individual had invested $100 in an average nuclear utility on the day before the TMI accident and reinvested all dividends, the value of this investment would have fallen by 10% relative to an identical investment in the average non-nuclear utility. The risk of investments in nuclear power versus conventional generating technologies shows nuclear power to be a relatively risky investment. However, relative to all investments, nuclear power was less risky in terms of the type of risk that would cause investors to require a premium before purchasing their securities. 6 figures, 6 tables

  20. Nuclear power and CO2

    International Nuclear Information System (INIS)

    Temperatures in the atmosphere have risen by nearly one degree in the twentieth century. To contain changes in global climate and their consequences, worldwide emissions of CO2 need to be curbed drastically in the future. Even if CO2 emissions are not taken into account, nuclear power has no economic disadvantages compared to fossil fuels. On the basis of an amount of money per ton of carbon emitted, nuclear power is cheaper than coal and, in most cases, also than natural gas. Actually, the worldwide CO2 problem and energy generation are part of the ongoing 'sustainability' debate. The following arguments, among others, used in the discussion show the sustainable character of nuclear power: - Comparison of the risks associated with major accidents for various sources of energy show nuclear power to be relatively free from hazard. - The introduction of fast breeders and other technical factors will make it possible to use nuclear fission as an important source of energy for many centuries. - The radiotoxicity of waste over very long periods of time can be influenced, for instance, by transmutation. The need to further develop CO2-free nuclear power has been recognized by many countries, among them Switzerland. The Generation IV International Forum (GIF) works towards developing a new generation of nuclear power plants by 2030. It will be the symbiosis of the new types of reactors with today's modern plants which finally will establish CO2-free nuclear fission as a sustainable cornerstone of energy generation worldwide. That nuclear power has this potential for further development must be acknowledged generally. (orig.)

  1. IMPULSE - advanced nuclear thermal propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenok, J.F. III; Wett, J.F. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1993-12-31

    The IMPULSE nuclear thermal rocket concept provides an evolutionary step toward high thrust-to-weight and specific impulse over a wide operating range. Most of the components and features of the concept are based on demonstrated or proven technology from the NER VA/Rover program. The performance increase is due to the use of a new solid nuclear fuel shape. The new fuel shape provides a large flow area while maintaining flow control and eliminating hot spots due to fuel-to-fuel contact. The control and eliminating hot spots due to fuel-to-fuel contact. The IMPULSE reactor utilizes a multi-pass, series flow configuration to provide excess turbine power while improving the thermal efficiency of the overall system. This configuration also provides a large area for moderator. The IMPULSE concept can provide a specific impulse of up to 1000 seconds and trust to weight ratios approaching 40. The improved performance will reduce the Initial Mass In Low Earth Orbit (IMLEO) and provide a consequent reduction in launch costs and logistics problems.

  2. Nuclear power newsletter Vol. 2, no. 4, December 2005

    International Nuclear Information System (INIS)

    The topics presented in this newsletter are: Small and medium sized reactors for developing countries and remote applications; Message from the Director of the Division of Nuclear Power; International workshop on external flooding hazards at nuclear power plant sites; Nuclear power plant operating performance and life cycle management; Improving human performance, Quality and technical infrastructure; Technology developments and applications for advanced reactors; Recent publications; Planned meetings in 2006; WebSite link

  3. The economics of nuclear power

    International Nuclear Information System (INIS)

    Generating electricity from nuclear power involves a complicated chain of processes, from mining uranium ore through to managing the wastes for hundreds of thousands of years. In trying to understand the economics of nuclear power we have to consider both the individual stages and the whole system. It is possible for some individual stages to be profitable (especially when they are heavily subsidised by taxpayers) and for the whole system to be uneconomical.

  4. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  5. Nuclear Power Development in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China's nuclear power industry experienced such three stages as initiation,moderate development and active development.So far,there have been 11 nuclear power units in service in the Chinese mainland with a total installed capacity of 9 100 MW.In addition,there are 24 units being constructed or to be constructed as listed in the 11th Five-Year Plan.

  6. Nuclear power and childhood leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Grimston, M. (AEA Technology, London (UK))

    1991-06-19

    The possibility of illness caused by exposure to emissions from nuclear power plants continues to raise enormous public concern. Nowhere is this more evident than in the debate over the aetiology of childhood leukaemias. This review explores the evidence in relation to this and other diseases which are linked in the public's mind to nuclear power. The scientific evidence presented suggests that these links are more tenuous than is commonly believed. (author).

  7. Nuclear power: Issues and misunderstandings

    International Nuclear Information System (INIS)

    A sizeable sector of the public remains hesitant or opposed to the use of nuclear power. With other groups claiming nuclear power has a legitimate role in energy programs, there is a need to openly and objectively discuss the concerns limiting its acceptance: the perceived health effects, the consequences of severe accidents, and the disposal of high level waste. This paper discusses these concerns using comparisons with other energy sources. (author)

  8. Country nuclear power profiles. 2001 ed

    International Nuclear Information System (INIS)

    . Statistical data about nuclear plant operations, population, energy and electricity use are largely drawn from the PRIS and EEDB sources as of yearend 2000 and from the national contributions. However, the 2000 EEDB data are extrapolated based on trends in the second half of the 90 ties. Economic data are taken from the World Bank statistics as of 1999 and from national contributions. Five annexes have been added to the profiles: Annex I provides an overview of the global development of advanced nuclear power plants covering all reactor lines, i.e. water-cooled reactors, gas-cooled reactors, and liquid metal cooled reactors. Annex II provides 4 summary tables for the year 2000 with PRIS and EEDB data. It contains the status of nuclear power reactors in Member States, individual reactors connected to the grid and under construction and the main EEDB data (population, economic, energy, electricity and energy related ratio data). Annex III is prepared in HTML format to facilitate easy and direct access to web sites of nuclear related organizations on the CD-ROM edition and is not reproduced for this hard copy edition. However, each country profile contains an Appendix 'Directory of the main organizations, institutions and companies involved in nuclear power related activities', with addresses, telephone and facsimile numbers and web sites. Annexes IV and V contain information from a few countries involved with nuclear power programme planning, i.e. Bangladesh and Indonesia. These countries have submitted relevant information in the framework of the IAEA activity on integrated approach of nuclear power programme planning. In addition, the Secretariat has added the EEDB data and the international agreements

  9. Nuclear power cap opposed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-17

    This article is a review of litigation in Canada that challenges the country`s Nuclear Liability Act. Both parties agree that repeal of this law would raise operating costs, lead to earlier closing of older units, and reduce the likelihood of future plant construction. The suit is brought by the city of Toronto and the Energy Probe watchdog group. Comments by the plaintiffs and several Canadian nuclear utilities are offered.

  10. Nuclear power - the future

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, R. (Nuclear Electric plc. (United Kingdom))

    1993-09-01

    Following the Coal Review earlier this year, the UK government took the decision to bring forward the Nuclear Review from 1994 to this year. When the nuclear element was removed from the privatisation of the UK electricity industry, decommissioning costs were perceived to be too great a burden for the private sector to bear. Four years on a more optimistic picture is beginning to emerge. (author).

  11. Space nuclear power systems

    International Nuclear Information System (INIS)

    Materials of the 19-th Symposium on Space Nuclear Energetic and Engine Units taking place in 2002, in Albuquerque, USA are reviewed. Reports on transformation of heat energy produced by nuclear reactors in electrical one are presented in the reports. Result of works on improvement as traditional (Brayton and Rankine cycles, thermoelectricity and thermionic emission), so innovation converter systems (Stirling engine, alkali metal thermal to electric converter - AMTEC, thermoacoustic engine) are represented

  12. Nuclear power: policy and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.M.S. (ed.)

    1987-01-01

    This comprehensive book covers many aspects of nuclear power. The first section is on the technical background and covers the physical principles, nuclear reactor types, the nuclear fuel cycle and the uses of nuclear energy other than to generate electricity. The next section deals with areas of public interest; radiation, safety, risks, waste management and decommissioning. Experience of nuclear power, its development, current position and future prospects in the United States of America, France, Canada, the United Kingdom, the Federal Republic of Germany, Japan, India and the developing countries is discussed in section III. The opportunities for the civil nuclear industry are considered in the next section; the present world scene, the potential possible if nuclear power is developed, the incentives for developing this method, the constraints on this development and a summary of the past, present and future of nuclear power is made. The appendices, on discounting and the case for economic growth are also included. All the chapters and the appendices are indexed separately (24 chapters in total). (U.K.).

  13. Nuclear power and sustainable development

    International Nuclear Information System (INIS)

    In Romania, the nuclear power is an element of sustainable development, being competitive, efficient and viable in the market economy. Fuel supply is ensured as nuclear fuel is manufactured in the country out of local uranium resources available in Romania. As for the environmental protection, it is known that, unlike the thermal power plants, the nuclear power plants do not release sulfur and nitrogen oxides, carbon dioxide and do not generate slag and ashes. The operation of nuclear power units does not release pollutants and, accordingly, these stations can contribute to the limitation and the abatement of environmental pollution. After seven years of Cernavoda NPP Unit 1 operation, a facility for storing low and medium level nuclear fuel wastes was built at the plant site as well as an intermediate dry storage for spent nuclear fuel whose first modules were commissioned in July 2003. They shall provide safe storage conditions for nuclear fuel wastes for many decades ahead. After Chernobyl accident in 1986, many improvements have been initiated and effected in area of both engineering solutions and plant operation practices. These have led to the increase of the nuclear safety level and, accordingly, to better production performance. (author)

  14. Sustainable development and nuclear power

    International Nuclear Information System (INIS)

    The sustainability of specific technology became the important issue in future developement perspective as the environmental issue occupies the most priority in adopting the relevant technology. This study summarizes the concepts of sustainable development and analyses the nuclear future under the pressure of sustainable development. Also, it shows the fields that need the concentrated research in nuclear power

  15. Is nuclear power safe enough

    International Nuclear Information System (INIS)

    The vice-chairman of the Nuclear Power Safety Commission presents here the background for the Commission's work. He summarises informally the conclusions reached and quotes the minority dissensions. He also criticises many of the arguments made by anti-nuclear organisations. (JIW)

  16. Nuclear power - the reason why

    International Nuclear Information System (INIS)

    The subject is covered in sections, entitled: mankind's need for energy; energy sources; energy conservation; safety; what level of safety is acceptable; the effects of nuclear accidents; the risks of nuclear power in normal operation; waste disposal; plutonium; quantity and cost; which reactor; wider issues (socio-economic aspects). (U.K.)

  17. Operate a Nuclear Power Plant.

    Science.gov (United States)

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  18. Nuclear power: the political challenge

    International Nuclear Information System (INIS)

    A brief overview of the political and economical situation and nuclear energy problems in Europe is given. The author presented his opinion on topic such as need of nuclear power, Kozloduy NPP units 1-4 shutdown, climate change , energy security, environmental problems

  19. The dangerous dream: Nuclear power

    International Nuclear Information System (INIS)

    After Chernobyl: Necessary basic knowledge and information, data on safety hazards and risks, sketches of all German nuclear power plants and brief accounts of incidents reported so far, consequences of the Chernobyl and Harrisburg accidents for man and the environment, emergency control plans. With an attached short dictionary of terms in nuclear energy. (orig./HP)

  20. Public attitudes to nuclear power

    International Nuclear Information System (INIS)

    The British public is very poorly informed about nuclear power. 55 % express concern about it, but few can explain why. Some of the reasons given are extraordinary: 37 % of the public think nuclear power causes acid rain which pollutes lakes and kills trees; 47 % think coal is a safer fuel for making electricity than nuclear; a quarter think natural radiation is less harmful than that from nuclear stations. And a very large number of people have greatly exaggerated views of the amount of radiation released from power stations and the harm that it is doing people. Also, a quarter of everyone asked thought that nuclear power stations make bombs as well as electricity. Most of these concerns come from the media, and in particular from television which has broadcast many programmes which are strongly anti-nuclear, often inaccurate, and usually sensational. Fortunately, the effect of these stories is less damaging than one might think. At present about 42 % of the adult British population are not in favour of nuclear power, so there is still a majority who are not against. About 44 % are positively in favour, and the remainder are not sure or have no view