WorldWideScience

Sample records for advanced nmr-based techniques

  1. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  2. Advanced Techniques in Biophysics

    CERN Document Server

    Arrondo, José Luis R

    2006-01-01

    Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.

  3. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  4. International NMR-based Environmental Metabolomics Intercomparison Exercise

    Science.gov (United States)

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  5. Advanced analytical techniques

    International Nuclear Information System (INIS)

    Mrochek, J.E.; Shumate, S.E.; Genung, R.K.; Bahner, C.T.; Lee, N.E.; Dinsmore, S.R.

    1976-01-01

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  6. Advanced techniques in immunoassay

    International Nuclear Information System (INIS)

    Toth, G.

    1982-01-01

    A brief overview of the development history of radioimmunoassay and related techniques with their theory and practice are given. A comparison of radioimmunoassay (RIA), enzyme immunoassay (EIA), spin immunoassay (SIA), sequential saturation analysis (SSA) etc., based on their main parameters, and their fields of application and recent trends are presented. (Sz.J.)

  7. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1988-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century

  8. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    Johnson, A.

    1987-01-01

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century. (author)

  9. Advanced qualification techniques

    International Nuclear Information System (INIS)

    Winokur, P.S.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Fleetwood, D.M.

    1993-01-01

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co 60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments

  10. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2010-01-01

    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  11. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  12. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  13. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  14. Advanced Intellect-Augmentation Techniques.

    Science.gov (United States)

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  15. Advances of the IBIC technique

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M B.H.; Laird, J S; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    The ion beam induced charge (IBIC) technique has been used for a wide variety of analytical applications in the study of semiconductor materials. This paper briefly reviews these uses and identifies those areas which require further development in order to facilitate the more widespread use of the IBIC method. Progress towards implementing these improvements is discussed. 14 refs., 1 fig.

  16. Advances of the IBIC technique

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H.; Laird, J.S.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1993-12-31

    The ion beam induced charge (IBIC) technique has been used for a wide variety of analytical applications in the study of semiconductor materials. This paper briefly reviews these uses and identifies those areas which require further development in order to facilitate the more widespread use of the IBIC method. Progress towards implementing these improvements is discussed. 14 refs., 1 fig.

  17. Advances phase-lock techniques

    CERN Document Server

    Crawford, James A

    2008-01-01

    From cellphones to micrprocessors, to GPS navigation, phase-lock techniques are utilized in most all modern electronic devices. This high-level book takes a systems-level perspective, rather than circuit-level, which differentiates it from other books in the field.

  18. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  19. Advanced Techniques of Stress Analysis

    Directory of Open Access Journals (Sweden)

    Simion TATARU

    2013-12-01

    Full Text Available This article aims to check the stress analysis technique based on 3D models also making a comparison with the traditional technique which utilizes a model built directly into the stress analysis program. This comparison of the two methods will be made with reference to the rear fuselage of IAR-99 aircraft, structure with a high degree of complexity which allows a meaningful evaluation of both approaches. Three updated databases are envisaged: the database having the idealized model obtained using ANSYS and working directly on documentation, without automatic generation of nodes and elements (with few exceptions, the rear fuselage database (performed at this stage obtained with Pro/ ENGINEER and the one obtained by using ANSYS with the second database. Then, each of the three databases will be used according to arising necessities.The main objective is to develop the parameterized model of the rear fuselage using the computer aided design software Pro/ ENGINEER. A review of research regarding the use of virtual reality with the interactive analysis performed by the finite element method is made to show the state- of- the-art achieved in this field.

  20. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  1. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  2. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  3. Pediatric brain MRI. Pt. 2. Advanced techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Mai-Lan; Campeau, Norbert G.; Welker, Kirk M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Ngo, Thang D. [Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States); Udayasankar, Unni K. [University of Arizona, Department of Radiology, Tucson, AZ (United States)

    2017-05-15

    Pediatric neuroimaging is a complex and specialized field that uses magnetic resonance (MR) imaging as the workhorse for diagnosis. MR protocols should be tailored to the specific indication and reviewed by the supervising radiologist in real time. Targeted advanced imaging sequences can be added to provide information regarding tissue microstructure, perfusion, metabolism and function. In part 2 of this review, we highlight the utility of advanced imaging techniques for superior evaluation of pediatric neurologic disease. We focus on the following techniques, with clinical examples: phase-contrast imaging, perfusion-weighted imaging, vessel wall imaging, diffusion tensor imaging, task-based functional MRI and MR spectroscopy. (orig.)

  4. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  5. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  6. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  7. Fundamentals and advanced techniques in derivatives hedging

    CERN Document Server

    Bouchard, Bruno

    2016-01-01

    This book covers the theory of derivatives pricing and hedging as well as techniques used in mathematical finance. The authors use a top-down approach, starting with fundamentals before moving to applications, and present theoretical developments alongside various exercises, providing many examples of practical interest. A large spectrum of concepts and mathematical tools that are usually found in separate monographs are presented here. In addition to the no-arbitrage theory in full generality, this book also explores models and practical hedging and pricing issues. Fundamentals and Advanced Techniques in Derivatives Hedging further introduces advanced methods in probability and analysis, including Malliavin calculus and the theory of viscosity solutions, as well as the recent theory of stochastic targets and its use in risk management, making it the first textbook covering this topic. Graduate students in applied mathematics with an understanding of probability theory and stochastic calculus will find this b...

  8. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  9. Evaluation of Pacific white shrimp (Litopenaeus vannamei health during a superintensive aquaculture growout using NMR-based metabolomics.

    Directory of Open Access Journals (Sweden)

    Tracey B Schock

    Full Text Available Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc. The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production.

  10. Evaluation of Pacific White Shrimp (Litopenaeus vannamei) Health during a Superintensive Aquaculture Growout Using NMR-Based Metabolomics

    Science.gov (United States)

    Schock, Tracey B.; Duke, Jessica; Goodson, Abby; Weldon, Daryl; Brunson, Jeff; Leffler, John W.; Bearden, Daniel W.

    2013-01-01

    Success of the shrimp aquaculture industry requires technological advances that increase production and environmental sustainability. Indoor, superintensive, aquaculture systems are being developed that permit year-round production of farmed shrimp at high densities. These systems are intended to overcome problems of disease susceptibility and of water quality issues from waste products, by operating as essentially closed systems that promote beneficial microbial communities (biofloc). The resulting biofloc can assimilate and detoxify wastes, may provide nutrition for the farmed organisms resulting in improved growth, and may aid in reducing disease initiated from external sources. Nuclear magnetic resonance (NMR)-based metabolomic techniques were used to assess shrimp health during a full growout cycle from the nursery phase through harvest in a minimal-exchange, superintensive, biofloc system. Aberrant shrimp metabolomes were detected from a spike in total ammonia nitrogen in the nursery, from a reduced feeding period that was a consequence of surface scum build-up in the raceway, and from the stocking transition from the nursery to the growout raceway. The biochemical changes in the shrimp that were induced by the stressors were essential for survival and included nitrogen detoxification and energy conservation mechanisms. Inosine and trehalose may be general biomarkers of stress in Litopenaeus vannamei. This study demonstrates one aspect of the practicality of using NMR-based metabolomics to enhance the aquaculture industry by providing physiological insight into common environmental stresses that may limit growth or better explain reduced survival and production. PMID:23555690

  11. Recent advances on Charpy specimen reconstitution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  12. Recent advances on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.

    2017-01-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  13. ARDENT to develop advanced dosimetric techniques

    CERN Document Server

    Antonella Del Rosso

    2012-01-01

    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  14. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  15. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  16. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  17. Labview advanced programming techniques, second edition

    CERN Document Server

    Bitter, Rick; Nawrocki, Matt

    2006-01-01

    Whether seeking deeper knowledge of LabVIEW®'s capabilities or striving to build enhanced VIs, professionals know they will find everything they need in LabVIEW: Advanced Programming Techniques. Now accompanied by LabVIEW 2011, this classic second edition, focusing on LabVIEW 8.0, delves deeply into the classic features that continue to make LabVIEW one of the most popular and widely used graphical programming environments across the engineering community. The authors review the front panel controls, the Standard State Machine template, drivers, the instrument I/O assistant, error handling functions, hyperthreading, and Express VIs. It covers the introduction of the Shared Variables function in LabVIEW 8.0 and explores the LabVIEW project view. The chapter on ActiveX includes discussion of the Microsoft™ .NET® framework and new examples of programming in LabVIEW using .NET. Numerous illustrations and step-by-step explanations provide hands-on guidance. Reviewing LabVIEW 8.0 and accompanied by the latest s...

  18. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  19. Noise diagnostic: An advanced technique in Cuba

    International Nuclear Information System (INIS)

    Aguilar, O.

    1992-01-01

    This paper examines the main steps of the noise analysis technique implementation in our country from 1988. The review identifies two main areas, improvements of Nuclear Power Plant operational surveillance techniques and non-nuclear industrial applications. Also reported are some of the on going researches programs including projects on noise analysis instrumentation developments at the Higher Institute for Nuclear Sciences and Technology

  20. Advances in FACE and manipulation techniques

    DEFF Research Database (Denmark)

    Beier, Claus; Larsen, Klaus S.; Mikkelsen, Teis Nørgaard

    Experimental techniques to expose plants and ecosystems to elevated CO2 have been around for decades, starting out with branch cuvettes, chambers and green houses and in the 90ies leading to the development of the FACE (Free Air Carbon Enrichment) technique, which has been and still is widely used....... The FACE technique is used under field conditions and has been developed over the years to be applied for many types of ecosystems from low stature shrub, grass and arable lands to high stature forest trees. These experiments have provided extensive knowledge and data on CO2 effects on individual plants...

  1. Advances in speckle metrology and related techniques

    CERN Document Server

    Kaufmann, Guillermo H

    2010-01-01

    Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the l

  2. Market implications of advanced enrichment techniques

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1987-01-01

    The only commercial outlet for uranium is for nuclear reactors and the uranium market will be closely linked to the nuclear power market for the forseeable future. Any production cost saving in the uranium cycle clearly, therefore, increases the chances for world-wide expansion of the nuclear industry. Thus, although there is overcapacity in enrichment, development of cheaper, new or more efficient established techniques, is important. The atomic vapour laser isotope separation process is considered and discussed against this background. Separative work units are explained for this technique. The problems of integrating laser isotope separation into the fuel cycle are discussed. The effects on the amount of natural uranium required for different recycling strategies, and for different laser tails assay and time schedules are illustrated. Over the next twenty years laser-based enrichment will have an important effect on the fuel cycle industry. COGEMA is expected to play a part in developing these new techniques. (U.K.)

  3. Advanced MRI techniques of the fetal brain

    International Nuclear Information System (INIS)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D.

    2013-01-01

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [de

  4. Advances in process research by radionuclide techniques

    International Nuclear Information System (INIS)

    Merz, A.; Vogg, H.

    1978-01-01

    Modifications and transformations of materials and their technical implementation in process systems require movement of materials. Radionuclide techniques can greatly help in understanding and describing these mechanisms. The specialized measuring technique is demonstrated by three examples selected from various fields of process technology. Radioactive tracer studies performed on a rotary kiln helped, inter alia, to establish a subdivision into process zones and to pinpoint areas of dust generation. Mixing and feeding actions were studied in a twin screw extruder equipped with a special screw and mixer disk arrangement. Tracer experiments conducted in two secondary settling basins indicate the differences in the mechanisms of movement of the aqueous phase if the mean residence time and the residence time distribution may be influenced not only by hydraulic loads, but also by design variants of the overflow flumes. (orig./HP) [de

  5. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.

    1988-11-01

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  6. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  7. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  8. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  9. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  10. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    Science.gov (United States)

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  11. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cappuccio, G.; Terranova, M.L.

    1996-09-01

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  12. Camtasia Studio 8 advanced editing and publishing techniques

    CERN Document Server

    Dixon, Claire Broadley

    2013-01-01

    A practical guide packed with examples that will show you how to implement the different features of Camtasia Studio 8 and create professional looking projects.If you are familiar with Camtasia Studio and you want to experiment with more advanced techniques, then this is the guide you have been looking for!

  13. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    Science.gov (United States)

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  14. Advanced of X-ray fluorescence logging technique in China

    International Nuclear Information System (INIS)

    Zhou Sichun; Ge Liangquan; Lai Wanchang; Yang Qiang

    2010-01-01

    The paper discuses principle of X-ray fluorescence logging, and introduces advanced of X-ray fluorescence logging technique in China. By 2009, third generation XRF logging instrument has been developed in China, and good logging result has been obtained in Lala copper mine. (authors)

  15. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  16. Effect of magnetic field strength on NMR-based metabonomic human urine data. Comparative study of 250, 400, 500, and 800 MHz

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Malmendal, Anders; Petersen, Bent O.

    2007-01-01

    Metabonomic analysis of urine utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to an intervention. To assess the effect of magnetic field strength on information contained in NMR-based metabonomic data sets, 1H NMR...

  17. NMR-based metabolomics in human disease diagnosis: Applications, limitations, and recommendations

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2013-04-03

    Metabolomics is a dynamic and emerging research field, similar to proteomics, transcriptomics and genomics in affording global understanding of biological systems. It is particularly useful in functional genomic studies in which metabolism is thought to be perturbed. Metabolomics provides a snapshot of the metabolic dynamics that reflect the response of living systems to both pathophysiological stimuli and/or genetic modification. Because this approach makes possible the examination of interactions between an organism and its diet or environment, it is particularly useful for identifying biomarkers of disease processes that involve the environment. For example, the interaction of a high fat diet with cardiovascular disease can be studied via such a metabolomics approach by modeling the interaction between genes and diet. The high reproducibility of NMR-based techniques gives this method a number of advantages over other analytical techniques in large-scale and long-term metabolomic studies, such as epidemiological studies. This approach has been used to study a wide range of diseases, through the examination of biofluids, including blood plasma/serum, urine, blister fluid, saliva and semen, as well as tissue extracts and intact tissue biopsies. However, complicating the use of NMR spectroscopy in biomarker discovery is the fact that numerous variables can effect metabolic composition including, fasting, stress, drug administration, diet, gender, age, physical activity, life style and the subject\\'s health condition. To minimize the influence of these variations in the datasets, all experimental conditions including sample collection, storage, preparation as well as NMR spectroscopic parameters and data analysis should be optimized carefully and conducted in an identical manner as described by the local standard operating protocol. This review highlights the potential applications of NMR-based metabolomics studies and gives some recommendations to improve sample

  18. Recent Advances in Wireless Indoor Localization Techniques and System

    Directory of Open Access Journals (Sweden)

    Zahid Farid

    2013-01-01

    Full Text Available The advances in localization based technologies and the increasing importance of ubiquitous computing and context-dependent information have led to a growing business interest in location-based applications and services. Today, most application requirements are locating or real-time tracking of physical belongings inside buildings accurately; thus, the demand for indoor localization services has become a key prerequisite in some markets. Moreover, indoor localization technologies address the inadequacy of global positioning system inside a closed environment, like buildings. Based on this, though, this paper aims to provide the reader with a review of the recent advances in wireless indoor localization techniques and system to deliver a better understanding of state-of-the-art technologies and motivate new research efforts in this promising field. For this purpose, existing wireless localization position system and location estimation schemes are reviewed, as we also compare the related techniques and systems along with a conclusion and future trends.

  19. Advanced Morphological and Functional Magnetic Resonance Techniques in Glaucoma

    Directory of Open Access Journals (Sweden)

    Rodolfo Mastropasqua

    2015-01-01

    Full Text Available Glaucoma is a multifactorial disease that is the leading cause of irreversible blindness. Recent data documented that glaucoma is not limited to the retinal ganglion cells but that it also extends to the posterior visual pathway. The diagnosis is based on the presence of signs of glaucomatous optic neuropathy and consistent functional visual field alterations. Unfortunately these functional alterations often become evident when a significant amount of the nerve fibers that compose the optic nerve has been irreversibly lost. Advanced morphological and functional magnetic resonance (MR techniques (morphometry, diffusion tensor imaging, arterial spin labeling, and functional connectivity may provide a means for observing modifications induced by this fiber loss, within the optic nerve and the visual cortex, in an earlier stage. The aim of this systematic review was to determine if the use of these advanced MR techniques could offer the possibility of diagnosing glaucoma at an earlier stage than that currently possible.

  20. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  1. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    Axe, J.D.; Hewat, A.W.; Maier, J.; Margaca, F.M.A.; Rauch, H.

    1999-01-01

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa 2 Cu 2 O 7 , XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  2. Advanced Inspection and Repair Welding Techniques for SCC Countermeasures

    International Nuclear Information System (INIS)

    Takagi, T.; Nishimoto, K.; Uchimoto, T.

    2012-01-01

    Feasibility studies of advanced inspection and repair welding techniques were conducted in the framework of the Nuclear and Industry Safety Agency of Japan (NISA) project on the enhancement of ageing management and maintenance of NPPs. In this paper, features of NDE methods investigated in the projects, main results of research activities and prospect of nickel based alloy weld inspection are discussed. We also make a review for the integrity and reliability evaluation techniques for repair welding of ageing plants which were intensively investigated in view of regulatory criteria, in NISA project. (author)

  3. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  4. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; Mascaro, A. L. Allegra; Lotti, J.; Sacconi, L.; Pavone, F. S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  5. Advanced inspection and repair techniques for primary side components

    International Nuclear Information System (INIS)

    Elm, Ralph

    1998-01-01

    The availability of nuclear power plant mainly depends on the components of the Nuclear Steam Supply System (NSSS) such as reactor pressure vessel, core internals and steam generators. The last decade has been characterized by intensive inspection and repair work on PWR steam generators. In the future, it can be expected, that the inspection of the reactor pressure vessel and the inspection and repair of its internals, in both PWR and BWR will be one of the challenges for the nuclear community. Due to this challenge, new, advanced inspection and repair techniques for the vital primary side components have been developed and applied, taking into account such issues as: use of reliable and fast inspection methods, repair of affected components instead of costly replacement, reduction of outage time compared to conventional methods, minimized radiation exposure, acceptable costs. This paper reflects on advanced inspection and repair techniques such as: Baffle Former Bolt inspection and replacement, Barrel Former Bolt inspection and replacement, Mechanized UT and visual inspection of reactor pressure vessels, Steam Generator repair by advanced sleeving technology. The techniques described have been successfully applied in nuclear power plants and improved the operation performance of the components and the NPP. (author). 6 figs

  6. Advanced neuroimaging techniques for the term newborn with encephalopathy.

    Science.gov (United States)

    Chau, Vann; Poskitt, Kenneth John; Miller, Steven Paul

    2009-03-01

    Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.

  7. Teaching advanced wound closure techniques using cattle digits.

    Science.gov (United States)

    Khalil, Philipe N; Kanz, Karl-Georg; Siebeck, Matthias; Mutschler, Wolf

    2011-03-01

    To evaluate a model used to impart advanced wound closure skills because available models do not meet the necessary requirements to a substantial degree. Seventy-one residents were asked to evaluate a 75-minute-long skills course using cadaveric cattle digits to learn Z-plasty, V-Y-plasty, and oval-shaped rotational flaps. A short film and the course instructor demonstrated each technique first. A Likert rating scale ranging from 1 to 6 was used for questions in the survey given to the residents. There was strong agreement among residents (1.65 ± 1.17 years of experience) that advanced wound closure training courses are necessary (5.73 ± 0.73), which corresponded to the residents' low level of knowledge and self-assessment of practical skills and present experience (2.84 ± 1.01). The course was evaluated with high acceptance, even though it was found to be demanding for the trainees (5.84 ± 0.40). This might also be related to the high rating of the model itself, which was found to be a suitable method for teaching advanced wound closure techniques (5.50 ± 0.71) that was easily comprehensible (5.73 ± 0.53). Skills training courses for young trainees are warranted to impart advanced wound closure techniques. The curriculum using cattle digits presented here is recommended. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  8. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    International Nuclear Information System (INIS)

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing; Pei Fengkui; Li Weisheng; Wu Yijie

    2008-01-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The 1 H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine

  9. Advances in the use of intravenous techniques in ambulatory anesthesia

    Directory of Open Access Journals (Sweden)

    Eng MR

    2015-07-01

    Full Text Available Matthew R Eng,1 Paul F White1,2 1Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2White Mountain Institute, The Sea Ranch, CA, USA Summary statement: Advances in the use of intravenous techniques in ambulatory anesthesia has become important for the anesthesiologist as the key perioperative physician in outpatient surgery. Key techniques and choices of anesthetics are important in accomplishing fast track goals of ambulatory surgery. Purpose of review: The anesthesiologist in the outpatient environment must focus on improving perioperative efficiency and reducing recovery times while accounting for patients' well-being and safety. This review article focuses on recent intravenous anesthetic techniques to accomplish these goals. Recent findings: This review is an overview of techniques in intravenous anesthesia for ambulatory anesthesia. Intravenous techniques may be tailored to accomplish outpatient surgery goals for the type of surgical procedure and individual patient needs. Careful anesthetic planning and the application of the plans are critical to an anesthesiologist's success with fast-track ambulatory surgery. Conclusion: Careful planning and application of intravenous techniques are critical to an anesthesiologist's success with fast-track ambulatory surgery. Keywords: intravenous anesthesia, outpatient anesthesia, fast-track surgery

  10. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    Science.gov (United States)

    Mohammadi Ardehali, Mojtaba; Samimi, Seyyed Hadi; Bakhshaee, Mehdi

    2014-01-01

    Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection. Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor. Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases) at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days. Conclusion: Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages. PMID:24505571

  11. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadi Ardehali

    2014-01-01

    Full Text Available Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection.   Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor.   Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days.   Conclusion:  Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages.

  12. Automated defect location and sizing by advanced ultrasonic techniques

    International Nuclear Information System (INIS)

    Murgatroyd, R.A.

    1983-01-01

    From this assessment of advanced automated defect location and sizing techniques it is concluded that, 1. Pulse-echo techniques, when used at high sensitivity, are capable of detecting all known defects in the test weldments inspected; 2. Search sensitivity has a marked influence on defect detection at both 1 and 2 MHz, and it is considered that 20% DAC is the highest amplitude threshold level which could be prudently adopted at the search stage; 3. The important through-thickness dimension of deeply buried defects in the height range 5 to 50mm can be sized to an estimated accuracy of +2mm using the Silk technique and that applying a SAFT-type algorithm to the data gives good lateral positioning of defects; 4. The 70 0 longitudinal wave twin-crystal technique has proved to be a highly effective method of detecting underclad cracks. A 70 0 shear wave, pulse-echo technique and a 0 0 longitudinal wave twin crystal method also give good detection results in the near surface region; 5. The Silk technique has been effective in sizing defects in the height range 5 to 35mm in the near-surface region

  13. Development of an advanced educational system using AI techniques

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi

    1990-01-01

    This paper describes an advanced educational system that realizes effective education using AI techniques. The system is composed of three devices. One is a knowledge-processing computer that evaluates the operator's knowledge level and presents educational materials. Another is a computer for displaying transients. The other is a computer for voice input and output. The educational materials utilize cause-and-effect relationships. The relationships enable to perform effective education by pointing out the parts the operator failed to understand. An evaluation test was performed by actually operating the system. As a result, the system's fundamental characteristics, such as the ease of understanding the relationships, and the usefulness of the advanced evaluation of the operator's knowledge level, were evaluated highly. (author)

  14. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    Science.gov (United States)

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  15. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  16. Creating motion graphics with After Effects essential and advanced techniques

    CERN Document Server

    Meyer, Chris

    2010-01-01

    * 5th Edition of best-selling After Effects book by renowned authors Trish and Chris Meyer covers the important updates in After Effects CS4 and CS5 * Covers both essential and advanced techniques, from basic layer manipulation and animation through keying, motion tracking, and color management * Companion DVD is packed with project files for version CS5, source materials, and nearly 200 pages of bonus chapters Trish and Chris Meyer share over 17 years of hard-earned, real-world film and video production experience inside this critically acclaimed text. More than a step-by-step review of th

  17. Advanced detection techniques for educational experiments in cosmic ray physics

    International Nuclear Information System (INIS)

    Aiola, Salvatore; La-Rocca, Paola; Riggi, Francesco; Riggi, Simone

    2013-06-01

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  18. Advanced Equalization Techniques for Digital Coherent Optical Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria

    approach based on joint encoding and equalization technique, known as Turbo Equalization (TE). This scheme is demonstrated to be powerful in transmission impairments mitigation for high order modulations formats, such as 16 Quadrature Amplitude Modulation (QAM), considered a key technology for high speed...... a lower complexity convolutional code compared to state of the art reports. Furthermore, in order to fulfill the strict constrains of spectral efficiency, this thesis shows the application of digital adaptive equalizer for reconfigurable and Ultra Dense Wavelength Division Multiplexing (U......-over-Fiber (RoF) transmission system for a stand alone case and mixed modulation mixed bit rates transmission scheme. In conclusion, this PhD thesis demonstrates the flexibility, upgrade-ability and robustness offered by rising advanced digital signal processing techniques, for future high-speed, high...

  19. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  20. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  1. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  2. Advances in zymography techniques and patents regarding protease analysis.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2012-08-01

    Detection of enzymatic activity on gel electrophoresis, namely zymography, is a technique that has received increasing attention in the last 10 years, according to the number of articles published. A growing amount of enzymes, mainly proteases, are now routinely detected by zymography. Detailed analytical studies are beginning to be published, as well as new patents have been developed. This new article updates the information covered in our last review, condensing the recent publications dealing with the identification of proteolytic enzymes in electrophoretic gel supports and its variations. The new advances of this method are basically focused towards two dimensional zymography and transfer zymography. Though comparatively fewer patents have been published, they basically coincide in the study of matrix metalloproteases. The tendency is foreseen to be very productive in the area of zymoproteomics, combining electrophoresis and mass spectrometry for the analysis of proteases.

  3. Advanced techniques using the plant as indicator of irrigation management

    Directory of Open Access Journals (Sweden)

    Barbara dos Santos Esteves

    2015-05-01

    Full Text Available The methodologies which are considered the most promising for irrigation management are those based on the analysis of the water status of the plants themselves. This justifies the study and improvement of indicators based on automatic and continuous measures to enable real-time monitoring data, as indices from sap flow, dendrometry and leaf turgor pressure techniques. The aim of this paper is to analyze such methodologies in order to demonstrate their principles, advantages and challenges. In conclusion, the methodologies analyzed still have many technological advances and challenges before being presented to the final user. The future research should work these tools for elaboration of technical indexes that allow their simplification, on the instrumental point of view, and the interpretation of their results.

  4. Advanced endografting techniques: snorkels, chimneys, periscopes, fenestrations, and branched endografts.

    Science.gov (United States)

    Kansagra, Kartik; Kang, Joseph; Taon, Matthew-Czar; Ganguli, Suvranu; Gandhi, Ripal; Vatakencherry, George; Lam, Cuong

    2018-04-01

    The anatomy of aortic aneurysms from the proximal neck to the access vessels may create technical challenges for endovascular repair. Upwards of 30% of patients with abdominal aortic aneurysms (AAA) have unsuitable proximal neck morphology for endovascular repair. Anatomies considered unsuitable for conventional infrarenal stent grafting include short or absent necks, angulated necks, conical necks, or large necks exceeding size availability for current stent grafts. A number of advanced endovascular techniques and devices have been developed to circumvent these challenges, each with unique advantages and disadvantages. These include snorkeling procedures such as chimneys, periscopes, and sandwich techniques; "homemade" or "back-table" fenestrated endografts as well as manufactured, customized fenestrated endografts; and more recently, physician modified branched devices. Furthermore, new devices in the pipeline under investigation, such as "off-the-shelf" fenestrated stent grafts, branched stent grafts, lower profile devices, and novel sealing designs, have the potential of solving many of the aforementioned problems. The treatment of aortic aneurysms continues to evolve, further expanding the population of patients that can be treated with an endovascular approach. As the technology grows so do the number of challenging aortic anatomies that endovascular specialists take on, further pushing the envelope in the arena of aortic repair.

  5. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  6. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  7. A review of hemorheology: Measuring techniques and recent advances

    Science.gov (United States)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  8. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Mahmoud, H.K.A.E.

    2012-01-01

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  9. Sculpting 3D worlds with music: advanced texturing techniques

    Science.gov (United States)

    Greuel, Christian; Bolas, Mark T.; Bolas, Niko; McDowall, Ian E.

    1996-04-01

    Sound within the virtual environment is often considered to be secondary to the graphics. In a typical scenario, either audio cues are locally associated with specific 3D objects or a general aural ambiance is supplied in order to alleviate the sterility of an artificial experience. This paper discusses a completely different approach, in which cues are extracted from live or recorded music in order to create geometry and control object behaviors within a computer- generated environment. Advanced texturing techniques used to generate complex stereoscopic images are also discussed. By analyzing music for standard audio characteristics such as rhythm and frequency, information is extracted and repackaged for processing. With the Soundsculpt Toolkit, this data is mapped onto individual objects within the virtual environment, along with one or more predetermined behaviors. Mapping decisions are implemented with a user definable schedule and are based on the aesthetic requirements of directors and designers. This provides for visually active, immersive environments in which virtual objects behave in real-time correlation with the music. The resulting music-driven virtual reality opens up several possibilities for new types of artistic and entertainment experiences, such as fully immersive 3D `music videos' and interactive landscapes for live performance.

  10. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    Science.gov (United States)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  11. Development of advanced strain diagnostic techniques for reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  12. Advanced Beta Dosimetry Techniques.Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    David M. Hamby, PhD

    2006-01-01

    Final report describing NEER research on Advanced Beta Dosimetry Techniques. The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of which was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work and that digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector

  13. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  14. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2014-01-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide complex

  15. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2014-07-01

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide

  16. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  17. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  18. The application of NMR-based milk metabolite analysis in milk authenticity identification.

    Science.gov (United States)

    Li, Qiangqiang; Yu, Zunbo; Zhu, Dan; Meng, Xianghe; Pang, Xiumei; Liu, Yue; Frew, Russell; Chen, He; Chen, Gang

    2017-07-01

    Milk is an important food component in the human diet and is a target for fraud, including many unsafe practices. For example, the unscrupulous adulteration of soymilk into bovine and goat milk or of bovine milk into goat milk in order to gain profit without declaration is a health risk, as the adulterant source and sanitary history are unknown. A robust and fit-for-purpose technique is required to enforce market surveillance and hence protect consumer health. Nuclear magnetic resonance (NMR) is a powerful technique for characterization of food products based on measuring the profile of metabolites. In this study, 1D NMR in conjunction with multivariate chemometrics as well as 2D NMR was applied to differentiate milk types and to identify milk adulteration. Ten metabolites were found which differed among milk types, hence providing characteristic markers for identifying the milk. These metabolites were used to establish mathematical models for milk type differentiation. The limit of quantification (LOQ) of adulteration was 2% (v/v) for soymilk in bovine milk, 2% (v/v) for soymilk in goat milk and 5% (v/v) for bovine milk in goat milk, with relative standard deviation (RSD) less than 10%, which can meet the needs of daily inspection. The NMR method described here is effective for milk authenticity identification, and the study demonstrates that the NMR-based milk metabolite analysis approach provides a means of detecting adulteration at expected levels and can be used for dairy quality monitoring. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Science.gov (United States)

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  20. Pressure tube replication techniques using the advanced NDE system

    International Nuclear Information System (INIS)

    Isherwood, A.; Jarron, D.; Travers, J.; Hanley, K.

    2006-01-01

    Periodic and in-service inspections of fuel channels are essential for the proper assessment of the structural integrity of these vital components. The arrival of new delivery devices for fuel channel inspections has driven new tooling for gathering and analyzing NDE data. The Advanced Non-Destructive Examination (ANDE) Replication System has been designed to compliment the ANDE Inspection System by providing a two plate replica system. These plates deliver a compound that makes a positive 3D mould of known ID flaws to gather information for flaw assessment. The two plate system, and the ability to retrieve and recharge the moulds in the reactor vault allows for gathering defect information with minimal critical path time. The ANDE Replication System was built on the foundation of CIGAR experience by a solid design team familiar with 3D CAD and manufacturing techniques. The tooling and controls went through a series of integration stages in the laboratory and then later with the Universal Delivery Machine (UDM) before being used on reactor starting in 2003. Once the inspection phase of an outage has been completed, the analysis team provides a list of flaw candidates that require 'root radius' information to complete the flaw assessment. This is a measure of how sharp the corners are in the defect. This data is used as part of the stress calculation that ultimately determines how many shutdown cycles that the reactor can have before that flaw must be re-inspected. The inspection tool is then swapped out of the delivery machine in the reactor vault using the versatile connectorized umbilical. The replication tool is loaded on the machine, charged with replica compound on each of the two plates, and then sent to the target channel(s). On channel, the operators use the same console as the ANDE Inspection System, but have a separate control system with a graphical display of the tool that shows its position in the channel with respect to the E-face. The axial and

  1. Integration of advanced feedback control techniques on Tore Supra

    International Nuclear Information System (INIS)

    Barana, O.; Basiuk, V.; Bucalossi, J.

    2006-01-01

    Tore Supra tokamak plays an important role in development and optimisation of steady-state scenarios. Its real-time feedback control system is a key instrument to improve plasma performances. For this reason, new feedback control schemes have been recently put into operation and others are being developed. This work deals with the implementation in Tore Supra of these advanced algorithms, reports the technical details and shows the first positive results that have been achieved. For instance, encouraging results have been obtained in the field of profiles control. Controls of the full width at half maximum of the suprathermal electrons local emission profile at very low loop voltage and of the maximum of the thermal Larmor radius, normalised to the characteristic length of the electron temperature gradient, have been attained. While the first quantity can be directly associated to the current profile, the second one characterises the pressure profile. A new feedback control algorithm, employed to maximise a given quantity by means of a '' Search Optimisation '' technique, has been effectively tested too: the hard X-ray width has been maximised with simultaneous use of lower hybrid heating power and wave parallel index as actuators. These and other promising results, whose detailed description will be given in the article, have been obtained thanks to the real-time availability of several diagnostic systems. Using a shared memory network as communication layer, they send their measurements to a central computing unit that, in its turn, dispatches the necessary requirements to the actuators. A key issue is the possibility to integrate these controls in such a way as to cope with different requests at the same time. As an example, simultaneous control of the plasma current by means of the lower hybrid heating power, of the loop voltage by means of the poloidal field system and of the hard X-ray width through the lower hybrid heating phase shift has been successfully

  2. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    Science.gov (United States)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  3. 1H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis

    Directory of Open Access Journals (Sweden)

    Negar Ghazi

    2016-01-01

    Full Text Available Background: So far, non-invasive diagnostic approaches such as ultrasound, magnetic resonance imaging, or blood tests do not have sufficient diagnostic power for endometriosis disease. Lack of a non-invasive diagnostic test contributes to the long delay between onset of symptoms and diagnosis of endometriosis. Objective: The present study focuses on the identification of predictive biomarkers in serum by pattern recognition techniques and uses partial least square discriminant analysis, multi-layer feed forward artificial neural networks (ANNs and quadratic discriminant analysis (QDA modeling tools for the early diagnosis of endometriosis in a minimally invasive manner by 1H- NMR based metabolomics. Materials and Methods: This prospective cohort study was done in Pasteur Institute, Iran in June 2013. Serum samples of 31 infertile women with endometriosis (stage II and III who confirmed by diagnostic laparoscopy and 15 normal women were collected and analyzed by nuclear magnetic resonance spectroscopy. The model was built by using partial least square discriminant analysis, QDA, and ANNs to determine classifier metabolites for early prediction risk of disease. Results: The levels of 2- methoxyestron, 2-methoxy estradiol, dehydroepiandrostion androstendione, aldosterone, and deoxy corticosterone were enhanced significantly in infertile group. While cholesterol and primary bile acids levels were decreased. QDA model showed significant difference between two study groups. Positive and negative predict value levels obtained about 71% and 78%, respectively. ANNs provided also criteria for detection of endometriosis. Conclusion: The QDA and ANNs modeling can be used as computational tools in noninvasive diagnose of endometriosis. However, the model designed by QDA methods is more efficient compared to ANNs in diagnosis of endometriosis patients.

  4. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  5. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  6. Ischemic stroke progress evaluation by {sup 31}P NMR-based metabonomic of human serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P.S.; Barison, Andersson, E-mail: andernmr@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica. Centro de RMN; Lange, Marcos C.; Novak, Felipe T. M. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Hospital de Clínicas. Divisao de Neurologia; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departmento de Farmacia

    2014-07-01

    In this work, chemometric analyses over {sup 31}P{"1"H} NMR (nuclear magnetic resonance) spectra of human blood serum permitted to discriminated ischemic stroke patients from health individuals due to changes in the chemical composition of phosphorus-containing compounds. These results indicate that {sup 31}P NMR-based metabonomic allowed insights over the mechanism triggered by ischemic stroke. (author)

  7. NMR-based metabolomics for identification of α-amylase inhibitors in rowan berries (Sorbus spp.)

    DEFF Research Database (Denmark)

    Broholm, Sofie L.; Gramsbergen, Simone; Nyberg, Nils

    Type 2 diabetes is a metabolic disorder estimated to affect millions of people all over the world.1 One way of reducing diabetes-related complications is to control postprandial glucose.2 Inhibition of the carbohydrate digestive enzyme α-amylase is a therapeutic target for maintaining low blood g...... a 1H-NMR method suitable for NMR-based metabolomics...

  8. Ischemic stroke progress evaluation by 31P NMR-based metabonomic of human serum

    International Nuclear Information System (INIS)

    Grandizoli, Caroline W.P.S.; Barison, Andersson; Lange, Marcos C.; Novak, Felipe T. M.; Campos, Francinete R.

    2014-01-01

    In this work, chemometric analyses over 31 P{ 1H } NMR (nuclear magnetic resonance) spectra of human blood serum permitted to discriminated ischemic stroke patients from health individuals due to changes in the chemical composition of phosphorus-containing compounds. These results indicate that 31 P NMR-based metabonomic allowed insights over the mechanism triggered by ischemic stroke. (author)

  9. Recent advances in FIB-TEM specimen preparation techniques

    International Nuclear Information System (INIS)

    Li Jian; Malis, T.; Dionne, S.

    2006-01-01

    Preparing high-quality transmission electron microscopy (TEM) specimens is of paramount importance in TEM studies. The development of the focused ion beam (FIB) microscope has greatly enhanced TEM specimen preparation capabilities. In recent years, various FIB-TEM foil preparation techniques have been developed. However, the currently available techniques fail to produce TEM specimens from fragile and ultra-fine specimens such as fine fibers. In this paper, the conventional FIB-TEM specimen preparation techniques are reviewed, and their advantages and shortcomings are compared. In addition, a new technique suitable to prepare TEM samples from ultra-fine specimens is demonstrated

  10. Advanced operating technique using the VR database system

    International Nuclear Information System (INIS)

    Lee, Il-Suk; Yoon, Sang-Hyuk; Suh, Kune Y.

    2003-01-01

    For the timely and competitive response to rapidly changing energy environment in the twenty-first century, there is a growing need to build the advanced nuclear power plants in the unlimited workspace of virtual reality (VR) prior to commissioning. One can then realistically evaluate their construction time and cost per varying methods and options available from the leading-edge technology. In particular, a great deal of efforts have yet to be made for time- and cost-dependent plant simulation and dynamically coupled database construction in the VR space. The present work is being proposed in the three-dimensional space and time plus cost coordinates, i.e. four plus dimensional (4 + D) coordinates. The 4 + D VR technology TM will help the preliminary VR simulation capability for the plants will supply the vital information not only for the actual design and construction of the engineered structures but also for the on-line design modification. Quite a few companies and research institutions have supplied various information services to the nuclear market. A great deal of the information exists in the form of reports, articles, books, which are just kind of simple texts and graphic images. But if very large and important information transfer methods are developed for the nuclear plants by means of the 4 + D technology database, they will tend to greatly benefit the designers, manufacturers, users and even the public. Moreover, one can understand clearly the total structure of the nuclear plants if the 4 + D VR technology TM database operates together with the transient analysis simulator. This technique should be available for public information about the nuclear industry as well as nuclear plant structure and components. By using the 4 + D VR technology TM one can supply the information to users which couldn't have been expressed by the existing technology. Users can not only spin or observe closely the structural elements by simple mouse control, but also know

  11. Review of advanced techniques for waste canister labeling

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Bhagi, B.K.; Kanjerla, A.

    1994-01-01

    Technology has produced several new labeling techniques that may meet the needs of a nuclear waste repository. New methods must be capable of providing permanent labels to clearly identify the contents of each package containing high-level spent nuclear fuel. Several new techniques, along with their benefits and problems, are discussed

  12. Recent advances in nuclear techniques for environmental radioactivity monitoring

    International Nuclear Information System (INIS)

    Kumar, Ajay; Tripathi, R.M.

    2016-01-01

    The environmental radioactivity monitoring was first started in the late 1950s following the global fallout from testing of nuclear weapons in the atmosphere. Nuclear analytical techniques are generally classified into two categories: destructive and non-destructive. Destructive techniques are carried out through several analytical methods such as α-spectrometry, liquid Scintillation counting system, solid state nuclear track detector, spectrophotometry, fluorimetry, atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), chromatography techniques, electro-analytical techniques etc. However, nondestructive methods include gamma spectrometry, X-Ray fluorescence (XRF) spectrometry, neutron activation analysis (NAA) etc. The development of radiochemical methods and measurement techniques using alpha and gamma spectrometry have been described in brief

  13. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim; Muller, Hendrik; Adam, Frederick M.; Panda, Saroj K.; Witt, Matthias; Al-Hajji, Adnan A.; Sarathy, Mani

    2015-01-01

    cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated

  14. A Secure Test Technique for Pipelined Advanced Encryption Standard

    Science.gov (United States)

    Shi, Youhua; Togawa, Nozomu; Yanagisawa, Masao; Ohtsuki, Tatsuo

    In this paper, we presented a Design-for-Secure-Test (DFST) technique for pipelined AES to guarantee both the security and the test quality during testing. Unlike previous works, the proposed method can keep all the secrets inside and provide high test quality and fault diagnosis ability as well. Furthermore, the proposed DFST technique can significantly reduce test application time, test data volume, and test generation effort as additional benefits.

  15. Survey of Green Radio Communications Networks: Techniques and Recent Advances

    Directory of Open Access Journals (Sweden)

    Mohammed H. Alsharif

    2013-01-01

    Full Text Available Energy efficiency in cellular networks has received significant attention from both academia and industry because of the importance of reducing the operational expenditures and maintaining the profitability of cellular networks, in addition to making these networks “greener.” Because the base station is the primary energy consumer in the network, efforts have been made to study base station energy consumption and to find ways to improve energy efficiency. In this paper, we present a brief review of the techniques that have been used recently to improve energy efficiency, such as energy-efficient power amplifier techniques, time-domain techniques, cell switching, management of the physical layer through multiple-input multiple-output (MIMO management, heterogeneous network architectures based on Micro-Pico-Femtocells, cell zooming, and relay techniques. In addition, this paper discusses the advantages and disadvantages of each technique to contribute to a better understanding of each of the techniques and thereby offer clear insights to researchers about how to choose the best ways to reduce energy consumption in future green radio networks.

  16. Advancement of neutron radiography technique in JRR-3M

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito

    1999-01-01

    The JRR-3M thermal neutron radiography facility (JRR-3M TNRF) was completed in the JRR-3M of the Japan Atomic Energy Research Institute in 1991 and has been utilized as research tools for various kinds of research fields such as thermal hydraulic researches, agricultural researches, medical researches, archaeological researches and so on. High performance of the JRR-3M TNRF such as high neutron flux, high collimator ratio and wide radiographing field has enabled advanced researches and stimulated developments of advanced neutron radiography (NR) systems for higher spatial resolution and for higher temporal resolution. Static NR systems using neutron imaging plates or cooled CCD camera with high spatial resolution, a real-time NR system using a silicon intensifier target tube camera and a high-frame-rate NR system using a combination of an image intensifier and a high speed digital video camera with high temporal resolution have been developed to fill the requirements from researchers. (author)

  17. Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yining [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in whole cell walls from native plant tissue and treated biomass are also discussed.

  18. Advanced Instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Makino, Maomi; Naito, Norio

    1992-01-01

    Toshiba has been promoting the development of an advanced instrumentation and control system for nuclear power plants to fulfill the requirements for increased reliability, improved functionality and maintainability, and more competitive economic performance. This system integrates state-of-the-art technologies such as those for the latest man-machine interface, digital processing, optical multiplexing signal transmission, human engineering, and artificial intelligence. Such development has been systematically accomplished based on a schematic view of integrated digital control and instrumentation systems, and the development of whole systems has now been completed. This paper describes the purpose, design philosophy, and contents of newly developed systems, then considers the future trends of advanced man-machine systems. (author)

  19. Advances in oriental document analysis and recognition techniques

    CERN Document Server

    Lee, Seong-Whan

    1999-01-01

    In recent years, rapid progress has been made in computer processing of oriental languages, and the research developments in this area have resulted in tremendous changes in handwriting processing, printed oriental character recognition, document analysis and recognition, automatic input methodologies for oriental languages, etc. Advances in computer processing of oriental languages can also be seen in multimedia computing and the World Wide Web. Many of the results in those domains are presented in this book.

  20. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  1. Advances in appendage joining techniques for PHWR fuel cladding

    International Nuclear Information System (INIS)

    Desai, P.B.; Ray, T.K.; Date, V.G.; Purushotham, D.S.C.

    1995-01-01

    This paper describes work carried out at the BARC on the development of a technique to join tiny appendages (spacers and bearing pads) to thin cladding (before loading of UO 2 pellets) by resistance welding for PHWR fuel assemblies. The work includes qualifying the process for production environment, designing prototype equipment for regular production and quality monitoring. In the first phase of development, welding of appendages on UO 2 loaded elements was successfully developed, and is being used in production. Welding of appendages on to empty clad tubes is a superior technique for several reasons. Many problems associated with development of welding on empty tubes were resolved. work was initiated, in the second phase of the development task, to select a suitable technique to join appendages on empty clad tubes without any collapse of thin clad. Several alternatives were reviewed and assessed such as laser, full face welding, shim welding and shrink fitting ring spacers. Selection of a method using a mandrel and a modified electrode geometry was fully developed. Results were optimized and process development successfully completed. Appropriate weld monitoring techniques were also reviewed for their adaptation. This technique is useful for 19, 22 as well as 37 element assemblies. (author)

  2. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  3. Advanced instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Hayakawa, Hiroyasu; Makino, Maomi

    1989-01-01

    Toshiba has been promoting the development and improvement of control and instrumentation (C and I) systems employing the latest technologies, to fulfill the requirements of nuclear power plants for increased reliability, the upgrading of functions, improved maintainability, and reasonable cost. Such development has been systematically performed based on a schematic view of integrated digital control and instrumentation systems, actively adopting state-of-the-art techniques such as the latest man-machine interfaces, digital and optical multiplexing techniques, and artificial intelligence. In addition, comprehensive feedback has been obtained from the accumulation of operating experience. This paper describes the purpose, contents and status of applications of representative newly-developed systems. (author)

  4. DATA ANALYSIS TECHNIQUES IN SERVICE QUALITY LITERATURE: ESSENTIALS AND ADVANCES

    Directory of Open Access Journals (Sweden)

    Mohammed naved Khan

    2013-05-01

    Full Text Available Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among researchers to rely on higher order multivariate techniques viz. confirmatory factor analysis, structural equation modeling etc. to generate and analyze complex models, while at times ignoring very basic and yet powerful procedures such as mean, t-Test, ANOVA and correlation. The marked shift in orientation of researchers towards using sophisticated analytical techniques can largely beattributed to the competition within the community of researchers in social sciences in general and those working in the area of service quality in particular as also growing demands of reviewers ofjournals. From a pragmatic viewpoint, it is expected that the paper will serve as a useful source of information and provide deeper insights to academic researchers, consultants, and practitionersinterested in modelling patterns of service quality and arriving at optimal solutions to increasingly complex management problems.

  5. Benefits of advanced software techniques for mission planning systems

    Science.gov (United States)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-10-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  6. Advances in SSTR techniques for dosimetry and radiation damage measurements

    International Nuclear Information System (INIS)

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1979-01-01

    Solid state track recorders (SSTR) have been applied in the diverse nuclear reactor research. Two recent advances are described which possess outstanding relevance for reactor research, namely the evolvement of SSTR radiation damage monitors and the development of CR-39, a new plastic SSTR of extremely high sensitivity. Results from high fluence irradiations of natural quartz crystal SSTR are used to illustrate the concept of the SSTR radiation damage monitor. Response characteristics of CR-39 are presented with emphasis on the remarkable proton sensitivity of this new SSTR

  7. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  8. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques.

    Science.gov (United States)

    Pindelska, Edyta; Sokal, Agnieszka; Kolodziejski, Waclaw

    2017-08-01

    The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of advanced handling techniques to transportation cask design

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1992-01-01

    Sandia National Laboratories supports the US Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) applying technology to the safe transport of nuclear waste. Part of that development effort includes investigation of advanced handling technologies for automation of cask operations at nuclear waste receiving facilities. Although low radiation levels are expected near transport cask surfaces, cumulative occupational exposure at a receiving facility can be significant. Remote automated cask handling has the potential to reduce both the occupational exposure and the time necessary to process a cask. Thus, automated handling is consistent with DOE efforts to reduce the lifecycle costs of the waste disposal system and to maintain public and occupational radiological risks as low as reasonably achievable. This paper describes the development of advanced handling laboratory mock-ups and demonstrations for spent fuel casks. Utilizing the control enhancements described below, demonstrations have been carried out including cask location and identification, contact and non-contact surveys, impact limiter removal, tiedown release, uprighting, swing-free movement, gas sampling, and lid removal operations. Manually controlled movement around a cask under off-normal conditions has also been demonstrated

  10. Advanced techniques for digital angiography of the heart

    International Nuclear Information System (INIS)

    Hoehne, K.H.; Obermoeller, U.; Riemer, M.; Witte, G.

    1987-01-01

    Digital angiography is widely considered as being simply a method in which images taken at different times are subtracted from each other. This paper presents some techniques which are performed in the frequency domain after the application of the Fourier Transform. Nonselective bypass angiograms and intravenous ventriculograms are taken as examples to show that simple procedures utilizing these techniques exhibit the advantages of improved signal to noise ratio in the subtraction images, reduction of motion artefacts, easy application of phase-synchronous subtraction, integration and quantitative visualization of blood propagation. Furthermore it is shown that the storage of the angiographic image sequence as Fourier-coefficients leads to data compression and convenient data access in an image database. (Auth.)

  11. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  12. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Henderson, P. J.

    2013-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  13. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Henderson, Philip J

    2014-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  14. Recent advances in bioprinting techniques: approaches, applications and future prospects.

    Science.gov (United States)

    Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang

    2016-09-20

    Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.

  15. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  16. Advanced computer graphics techniques as applied to the nuclear industry

    International Nuclear Information System (INIS)

    Thomas, J.J.; Koontz, A.S.

    1985-08-01

    Computer graphics is a rapidly advancing technological area in computer science. This is being motivated by increased hardware capability coupled with reduced hardware costs. This paper will cover six topics in computer graphics, with examples forecasting how each of these capabilities could be used in the nuclear industry. These topics are: (1) Image Realism with Surfaces and Transparency; (2) Computer Graphics Motion; (3) Graphics Resolution Issues and Examples; (4) Iconic Interaction; (5) Graphic Workstations; and (6) Data Fusion - illustrating data coming from numerous sources, for display through high dimensional, greater than 3-D, graphics. All topics will be discussed using extensive examples with slides, video tapes, and movies. Illustrations have been omitted from the paper due to the complexity of color reproduction. 11 refs., 2 figs., 3 tabs

  17. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    OpenAIRE

    Rist, Manuela; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-01-01

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine sample...

  18. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  19. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  20. Advances in PEM fuel cells with CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric; Cunha, Edgar Ferrari da; Zararya, Ahmed; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], Email: eric@ipen.br; Cekinski, Efrain [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2010-07-01

    This paper presents some applications of computational fluid dynamics techniques in the optimization of Proton Exchange Membrane Fuel Cell (PEMFC) designs. The results concern: modeling of gas distribution channels, the study for both porous anode and cathode and the three-dimensional modeling of a partial geometry layer containing catalytic Gas Diffusion Layers (GDL) and membrane. Numerical results of the simulations of graphite plates flow channels, using ethanol as fuel, are also presented. Some experimental results are compared to the corresponding numerical ones for several cases, demonstrating the importance and usefulness of this computational tool. (author)

  1. Advances in dental local anesthesia techniques and devices: An update

    Science.gov (United States)

    Saxena, Payal; Gupta, Saurabh K.; Newaskar, Vilas; Chandra, Anil

    2013-01-01

    Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available. PMID:24163548

  2. Advances in dental veneers: materials, applications, and techniques.

    Science.gov (United States)

    Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

    2012-01-01

    Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers.

  3. Advances in dental local anesthesia techniques and devices: An update.

    Science.gov (United States)

    Saxena, Payal; Gupta, Saurabh K; Newaskar, Vilas; Chandra, Anil

    2013-01-01

    Although local anesthesia remains the backbone of pain control in dentistry, researches are going to seek new and better means of managing the pain. Most of the researches are focused on improvement in the area of anesthetic agents, delivery devices and technique involved. Newer technologies have been developed that can assist the dentist in providing enhanced pain relief with reduced injection pain and fewer adverse effects. This overview will enlighten the practicing dentists regarding newer devices and methods of rendering pain control comparing these with the earlier used ones on the basis of research and clinical studies available.

  4. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  5. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  6. Advanced analytical techniques: platform for nano materials science

    International Nuclear Information System (INIS)

    Adams, F.; Van Vaeck, L.; Barrett, R.

    2005-01-01

    This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field

  7. Advances in dynamic relaxation techniques for nonlinear finite element analysis

    International Nuclear Information System (INIS)

    Sauve, R.G.; Metzger, D.R.

    1995-01-01

    Traditionally, the finite element technique has been applied to static and steady-state problems using implicit methods. When nonlinearities exist, equilibrium iterations must be performed using Newton-Raphson or quasi-Newton techniques at each load level. In the presence of complex geometry, nonlinear material behavior, and large relative sliding of material interfaces, solutions using implicit methods often become intractable. A dynamic relaxation algorithm is developed for inclusion in finite element codes. The explicit nature of the method avoids large computer memory requirements and makes possible the solution of large-scale problems. The method described approaches the steady-state solution with no overshoot, a problem which has plagued researchers in the past. The method is included in a general nonlinear finite element code. A description of the method along with a number of new applications involving geometric and material nonlinearities are presented. They include: (1) nonlinear geometric cantilever plate; (2) moment-loaded nonlinear beam; and (3) creep of nuclear fuel channel assemblies

  8. Recent advances in periodontal microbiology: An update on cultivation techniques

    Directory of Open Access Journals (Sweden)

    Kishore G Bhat

    2014-01-01

    Full Text Available Microbial members of the subgingival plaque community play a major role in the initiation and progression of periodontal diseases. Majority of these bacteria are anaerobic in nature and several anaerobic systems have been used for their cultivation. Among them anaerobic jars are the most popular and are routinely used for the detection of periodontal pathogens from clinical samples. Despite best efforts, a significant portion of oral microbes have not yet been cultivated and several hypotheses have been put forth to explain this anomaly. This has led to renewed efforts to cultivate the oral bacteria so far identified only by their molecular signatures resulting in improvisation of existing culture techniques and devising novel methods of isolation. Several devices have been used on environmental samples successfully: One method called "minitrap" has been successfully adapted to oral cavity and has shown great promise in isolation of not yet cultivated oral bacterial species. These newer techniques are sure to shed more light on the role of microbes in the etiology of periodontal diseases.

  9. Research on advancement of technique for assessing ground seismic intensity

    International Nuclear Information System (INIS)

    Tamura, Keiichi; Kaneko, Masahiro; Honda, Riki; Tabuchi, Yoshihiro

    1997-01-01

    In the aseismatic design of nuclear power stations, as the characteristics of earthquake motion inputted in released base surface, the maximum amplitude and the frequency characteristics of earthquake motion, the presumption of earthquake motion using fault model, the time of continuation and the change of amplitude envelope with time are to be examined. In this research, in order to upgrade the earthquake motion used for aseismatic design, the method of evaluating quantitatively the amplifying characteristics of earthquake motion in unfair ground and the technique of setting design earthquake motion that can consider the change of structural state were investigated. The course of the research carried out so far is outlined. As to the amplifying characteristics of earthquake motion in unfair ground, the technique of analysis, the index showing the degree of amplifying of earthquake motion, the index showing the degree of unfairness of ground, the amplifying characteristics of earthquake motion in tray type base, and the evaluation of frequency zone of large degree of amplifying are reported. As to the design earthquake motion taking the plasticizing of structures in consideration, the analysis condition, the equivalent peculiar frequency and the equivalent damping constant and the design earthquake motion taking the plasticizing of structures in consideration are reported. (K.I.)

  10. Sediment tolerance mechanisms identified in sponges using advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Brian W. Strehlow

    2017-11-01

    Full Text Available Terrestrial runoff, resuspension events and dredging can affect filter-feeding sponges by elevating the concentration of suspended sediments, reducing light intensity, and smothering sponges with sediments. To investigate how sponges respond to pressures associated with increased sediment loads, the abundant and widely distributed Indo-Pacific species Ianthella basta was exposed to elevated suspended sediment concentrations, sediment deposition, and light attenuation for 48 h (acute exposure and 4 weeks (chronic exposure. In order to visualise the response mechanisms, sponge tissue was examined by 3D X-ray microscopy and scanning electron microscopy (SEM. Acute exposures resulted in sediment rapidly accumulating in the aquiferous system of I. basta, although this sediment was fully removed within three days. Sediment removal took longer (>2 weeks following chronic exposures, and I. basta also exhibited tissue regression and a smaller aquiferous system. The application of advanced imaging approaches revealed that I. basta employs a multilevel system for sediment rejection and elimination, containing both active and passive components. Sponges responded to sediment stress through (i mucus production, (ii exclusion of particles by incurrent pores, (iii closure of oscula and pumping cessation, (iv expulsion of particles from the aquiferous system, and (v tissue regression to reduce the volume of the aquiferous system, thereby entering a dormant state. These mechanisms would result in tolerance and resilience to exposure to variable and high sediment loads associated with both anthropogenic impacts like dredging programs and natural pressures like flood events.

  11. NMR-based metabolomics and hyphenated NMR techniques – a perfect match in natural products research

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Wubshet, Sileshi Gizachew; Stærk, Dan

    2015-01-01

    therapeutics across a range of conditions including CNS disorders, cancer, bone and joint health and parasitic diseases. The final part is devoted to regional perspectives covering all continents, providing a state-of-the –art assessment of the status of ethnopharmacological research globally....

  12. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    OpenAIRE

    Xihui "Paul" Zhang; John D. Crabtree

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We present a classic brain teaser that is used to communicate and demonstrate advanced software development concepts and techniques. Our results show th...

  13. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... in the period 2005–2006 following a series of investigatory measurements and facility updates during 2003–2005. Antenna diagnostics by a SWE-to-PWE transformation presents a case where highly accurate antenna measurements and a plane wave back-projection enable antenna diagnostics by examination...

  14. Fault tree technique: advances in probabilistic and logical analysis

    International Nuclear Information System (INIS)

    Clarotti, C.A.; Amendola, A.; Contini, S.; Squellati, G.

    1982-01-01

    Fault tree reliability analysis is used for assessing the risk associated to systems of increasing complexity (phased mission systems, systems with multistate components, systems with non-monotonic structure functions). Much care must be taken to make sure that fault tree technique is not used beyond its correct validity range. To this end a critical review of mathematical foundations of reliability fault tree analysis is carried out. Limitations are enlightened and potential solutions to open problems are suggested. Moreover an overview is given on the most recent developments in the implementation of an integrated software (SALP-MP, SALP-NOT, SALP-CAFT Codes) for the analysis of a wide class of systems

  15. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Science.gov (United States)

    2010-07-27

    ... Advanced Lithography Techniques and Products Containing Same; Notice of Investigation AGENCY: U.S... violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain semiconductor products made by advanced...

  16. Advances of Single-Cell Sequencing Technique in Tumors

    Directory of Open Access Journals (Sweden)

    Ji-feng FENG

    2017-03-01

    Full Text Available With the completion of human genome project (HGP and the international HapMap project as well as rapid development of high-throughput biochip technology, whole genomic sequencing-targeted analysis of genomic structures has been primarily finished. Application of single cell for the analysis of the whole genomics is not only economical in material collection, but more importantly, the cell will be more purified, and the laboratory results will be more accurate and reliable. Therefore, exploration and analysis of hereditary information of single tumor cells has become the dream of all researchers in the field of basic research of tumors. At present, single-cell sequencing (SCS on malignancies has been widely used in the studies of pathogeneses of multiple malignancies, such as glioma, renal cancer and hematologic neoplasms, and in the studies of the metastatic mechanism of breast cancer by some researchers. This study mainly reviewed the SCS, the mechanisms and the methods of SCS in isolating tumor cells, and application of SCS technique in tumor-related basic research and clinical treatment.

  17. Preventing Advanced Carious Lesions with Caries Atraumatic Restorative Technique.

    Science.gov (United States)

    Byrd, Tammi O

    2016-06-01

    An alternative approach to controlling dental caries and preventing the associated pain, called atraumatic restorative technique (ART), is described for populations in need, where dental hygienists restore decayed teeth with glass ionomer restorations without prior removal of all decayed tooth structure. There are populations whose decay needs are not adequately being met within the current oral health care delivery system. These include those in poverty conditions, vulnerable children, and the elderly who are often in long-term care facilities without adequate resources or opportunities for traditional dentistry. ART provides a viable option for controlling caries and relieving the pain of untreated decay. The purpose of this article is to suggest that the evidence surrounding ART be viewed objectively and that dental hygienists, with additional education in this approach, can contribute to relieving the pain of untreated dental decay. Evidence suggests that teeth can be effectively restored with ART. Dental hygienists represent an appropriate workforce to provide ART with their current background and education combined plus a brief training program; it is suggested that dental hygiene educational programs include ART within the curriculum. Along with dental sealants and fluoride varnish application, ART can be an important component of a comprehensive preventive program to address the unmet needs of vulnerable populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Recent advances on ionic liquid uses in separation techniques.

    Science.gov (United States)

    Berthod, A; Ruiz-Ángel, M J; Carda-Broch, S

    2018-07-20

    The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Advances in Current Rating Techniques for Flexible Printed Circuits

    Science.gov (United States)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  20. Advanced accountability techniques for breeder fuel fabrication facilities

    International Nuclear Information System (INIS)

    Bennion, S.I.; Carlson, R.L.; DeMerschman, A.W.; Sheely, W.F.

    1978-01-01

    The United States Department of Energy (DOE) has assigned the Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, the project lead in developing a uniform nuclear materials reporting system for all contractors on the Hanford Reservation. The Hanford Nuclear Inventory System (HANISY) is based upon HEDL's real-time accountability system, originally developed in 1968. The HANISY system will receive accountability data either from entry by process operators at remote terminals or from nondestructive assay instruments connected to the computer network. Nuclear materials will be traced from entry, through processing to final shipment through the use of minicomputer technology. Reports to DOE will be formed directly from the realtime files. In addition, HEDL has established a measurement program that will complement the HANISY system, providing direct interface to the computer files with a minimum of operator intervention. This technology is being developed to support the High Performance Fuels Laboratory (HPFL) which is being designed to assess fuel fabrication techniques for proliferation-resistant fuels

  1. Advanced Infusion Techniques with 3-D Printed Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Nuttall, David [ORNL; Elliott, Amy M [ORNL; Post, Brian K [ORNL; Love, Lonnie J [ORNL

    2016-05-10

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanning and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is

  2. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  3. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    Energy Technology Data Exchange (ETDEWEB)

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  4. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2014-11-21

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  5. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review.

    Science.gov (United States)

    Emwas, Abdul-Hamid; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M; Ryan, Danielle; Merzaban, Jasmeen S; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G A; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  6. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M.; Ryan, Danielle; Merzaban, Jasmeen; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G. A.; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S.

    2014-01-01

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  7. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Monica Scognamiglio

    2015-01-01

    Full Text Available An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  8. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics.

    Science.gov (United States)

    Scognamiglio, Monica; D'Abrosca, Brigida; Esposito, Assunta; Fiorentino, Antonio

    2015-01-01

    An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.

  9. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  10. Mac OS X Snow Leopard for Power Users Advanced Capabilities and Techniques

    CERN Document Server

    Granneman, Scott

    2010-01-01

    Mac OS X Snow Leopard for Power Users: Advanced Capabilities and Techniques is for Mac OS X users who want to go beyond the obvious, the standard, and the easy. If want to dig deeper into Mac OS X and maximize your skills and productivity using the world's slickest and most elegant operating system, then this is the book for you. Written by Scott Granneman, an experienced teacher, developer, and consultant, Mac OS X for Power Users helps you push Mac OS X to the max, unveiling advanced techniques and options that you may have not known even existed. Create custom workflows and apps with Automa

  11. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    2015-01-01

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  12. Parental Attitudes Toward Advanced Behavior Guidance Techniques Used in Pediatric Dentistry.

    Science.gov (United States)

    Patel, Monica; McTigue, Dennis J; Thikkurissy, Sarat; Fields, Henry W

    2016-01-01

    To re-examine parental attitudes toward advanced behavior management techniques in pediatric dentistry and determine whether cost, urgency, and amount of treatment influence parental preferences. Parents viewed previously validated videotaped clinical vignettes of four advanced behavior guidance techniques: (1) passive immobilization; (2) active immobilization; (3) general anesthesia; and (4) oral sedation. The study was conducted in a children's hospital dental clinic and a suburban private pediatric dentistry office. Parents rated overall acceptance of the techniques, and acceptance under specified conditions using an anchored visual analogue scale. One hundred five parents completed the survey; 55 from the children's hospital and 50 from private practice. Oral sedation was rated as the most acceptable technique, followed by general anesthesia, active immobilization, and passive immobilization. As urgency, convenience, and previous experience increased, parental acceptance of the technique increased. As cost of treatment increased, parental acceptance decreased. Ratings between the children's hospital group and private practice group differed, as did the demographic variables of insurance, income, and race. The hierarchy of parental acceptance of advanced behavior guidance techniques is changing with increasing approval of pharmacological management and decreasing approval of physical management. The health care delivery system, urgency, convenience, previous experience, and cost all influence parental acceptance.

  13. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  14. Iterative Method of Regularization with Application of Advanced Technique for Detection of Contours

    International Nuclear Information System (INIS)

    Niedziela, T.; Stankiewicz, A.

    2000-01-01

    This paper proposes a novel iterative method of regularization with application of an advanced technique for detection of contours. To eliminate noises, the properties of convolution of functions are utilized. The method can be accomplished in a simple neural cellular network, which creates the possibility of extraction of contours by automatic image recognition equipment. (author)

  15. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    Science.gov (United States)

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  16. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, J [comp.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments.

  17. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    Lehner, J.

    1998-09-01

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  18. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    Science.gov (United States)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  19. Advances in surgical techniques in non-small cell lung cancer.

    Science.gov (United States)

    Kim, Anthony W; Detterbeck, Frank C

    2013-12-01

    Thoracic surgery is a dynamic field, and many scientific, technological, technical, and organizational changes are occurring. A prominent example is the use of less invasive approaches to major resection of non-small cell lung cancer (NSCLC), both thoracoscopic and robotic. Sophisticated technology corroborated by clinical data has led to these approaches becoming accepted additions to the armamentarium. Additionally, improvements in perioperative pain management have also contributed to dramatically changing the experience of patients who undergo modern thoracic surgery. Lung cancer is being detected more often at an early stage. At the same time, advances in techniques, patient care, clinical science, and multidisciplinary treatment support an increased role for aggressive resection in the face of larger locally advanced tumors or for those with limited metastatic disease. These advances, conducted in the setting of multidisciplinary decision making, have resulted in real and palpable advancements for patients with lung cancer. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Magnetic force microscopy: advanced technique for the observation of magnetic domains

    International Nuclear Information System (INIS)

    Asenjo, A.; Garcia, J. M.; Vazquez, M.

    2001-01-01

    An overview on the Magnetic Force Microscopy, MFM, as an advanced technique to observe magnetic domains and walls is displayed. Basic concepts are first introduced on the domain structure formation as well as on other techniques to observe magnetic domains. Afterwards, the MFM instrumentation is described making also an emphasis in micro magnetic consideration to interpret the images. Finally, a set of selected advanced magnetic materials with different domain structures is chosen to show the wide possibilities of this techniques to characterise the surface magnetic behaviour. The domain structure of materials as commercial magnetic recording media, thin films and multilayers, amorphous micro tubes, nanocrystalline ribbons, perovskites or magnetic nano wires is shown. (Author) 16 refs

  1. Advanced disassembling technique of irradiated driver fuel assembly for continuous irradiation of fuel pins

    International Nuclear Information System (INIS)

    Ichikawa, Shoichi; Haga, Hiroyuki; Katsuyama, Kozo; Maeda, Koji; Nishinoiri, Kenji

    2012-01-01

    It was necessary to carry out continuous irradiation tests in order to obtain the irradiation data of high burn-up fuel and high neutron dose material for FaCT (Fast Reactor Cycle Technology Development) project. There, the disassembling technique of an irradiated fuel assembly was advanced in order to realize further continuous irradiation tests. Although the conventional disassembling technique had been cutting a lower end-plug of a fuel pin needed to fix fuel pins to an irradiation vehicle, the advanced disassembling technique did not need cutting a lower end-plug. As a result, it was possible to supply many irradiated fuel pins to various continuous irradiation tests for FaCT project. (author)

  2. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    Science.gov (United States)

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  3. Comparison of Fruits of Forsythia suspensa at Two Different Maturation Stages by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Jinping Jia

    2015-05-01

    Full Text Available Forsythiae Fructus (FF, the dried fruit of Forsythia suspensa, has been widely used as a heat-clearing and detoxifying herbal medicine in China. Green FF (GF and ripe FF (RF are fruits of Forsythia suspensa at different maturity stages collected about a month apart. FF undergoes a complex series of physical and biochemical changes during fruit ripening. However, the clinical uses of GF and RF have not been distinguished to date. In order to comprehensively compare the chemical compositions of GF and RF, NMR-based metabolomics coupled with HPLC and UV spectrophotometry methods were adopted in this study. Furthermore, the in vitro antioxidant and antibacterial activities of 50% methanol extracts of GF and RF were also evaluated. A total of 27 metabolites were identified based on NMR data, and eight of them were found to be different between the GF and RF groups. The GF group contained higher levels of forsythoside A, forsythoside C, cornoside, rutin, phillyrin and gallic acid and lower levels of rengyol and β-glucose compared with the RF group. The antioxidant activity of GF was higher than that of RF, but no significant difference was observed between the antibacterial activities of GF and RF. Given our results showing their distinct chemical compositions, we propose that NMR-based metabolic profiling can be used to discriminate between GF and RF. Differences in the chemical and biological activities of GF and RF, as well as their clinical efficacies in traditional Chinese medicine should be systematically investigated in future studies.

  4. NMR-based lipidomic analysis of blood lipoproteins differentiates the progression of coronary heart disease.

    Science.gov (United States)

    Kostara, Christina E; Papathanasiou, Athanasios; Psychogios, Nikolaos; Cung, Manh Thong; Elisaf, Moses S; Goudevenos, John; Bairaktari, Eleni T

    2014-05-02

    Abnormal lipid composition and metabolism of plasma lipoproteins play a crucial role in the pathogenesis of coronary heart disease (CHD). A (1)H NMR-based lipidomic approach was used to investigate the correlation of coronary artery stenosis with the atherogenic (non-HDL) and atheroprotective (HDL) lipid profiles in 99 patients with CHD of various stages of disease and compared with 60 patients with normal coronary arteries (NCA), all documented in coronary angiography. The pattern recognition models created from lipid profiles predicted the presence of CHD with a sensitivity of 87% and a specificity of 88% in the HDL model and with 90% and 89% in the non-HDL model, respectively. Patients with mild, moderate, and severe coronary artery stenosis were progressively differentiated from those with NCA in the non-HDL model with a statistically significant separation of severe stage from both mild and moderate. In the HDL model, the progressive differentiation of the disease stages was statistically significant only between patients with mild and severe coronary artery stenosis. The lipid constituents of lipoproteins that mainly characterized the initial stages and then the progression of the disease were the high levels of saturated fatty acids in lipids in both HDL and non-HDL particles, the low levels of HDL-phosphatidylcholine, HDL-sphingomyelin, and omega-3 fatty acids and linoleic acid in lipids in non-HDL particles. The conventional lipid marker, total cholesterol, found in low levels in HDL and in high levels in non-HDL, also contributed to the onset of the disease but with a much lower coefficient of significance. (1)H NMR-based lipidomic analysis of atherogenic and atheroprotective lipoproteins could contribute to the early evaluation of the onset of coronary artery disease and possibly to the establishment of an appropriate therapeutic option.

  5. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    Science.gov (United States)

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  6. Development of the staffing evaluation technique for mental tasks of the advanced main control room

    International Nuclear Information System (INIS)

    Hsieh Tsungling; Yang Chihwei; Lin Chiuhsiangjoe

    2011-01-01

    The key goals of staffing and qualifications review element are to ensure that the right numbers of people with the appropriate skills and abilities are available to support plant operations and events. If the staffing level is too few, excessive stress that caused human errors possibly will be placed on the operators. Accordingly, this study developed a staffing evaluation technique based on CPM-GOMS for the mental tasks such as operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation technique. The results indicated the performance of evaluated staffing level via the staffing evaluation technique was significantly higher than that of non-evaluated staffing level; thus, validity of the staffing evaluation technique can be accepted. Finally, the implications for managerial practice on the findings of this study were discussed. (author)

  7. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  8. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jing Hong

    2016-07-01

    Full Text Available Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR, Fourier transform infrared spectroscopy (FT-IR, thermal gravimetric analysis/infrared spectroscopy (TGA/IR and headspace gas chromatography (HS-GC, have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented.

  9. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Corry, June; D'Costa, Leta; Porceddu, Sandro; Peters, Lester J.; Hornby, Colin; Fisher, Richard; Rischin, Danny

    2004-01-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patient: with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. Thi; is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailec delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc field' for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced

  10. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer.

    Science.gov (United States)

    Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J

    2004-06-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced

  11. Impact of advanced MRI techniques for the diagnosis of dementia: comparison with PET

    DEFF Research Database (Denmark)

    Steffensen, Elena; Prakash, Vineet; Vestergård, Karsten

    Introduction: The use of high magnetic fields in combination with fast algorithms for computer-based postprocessing has moved advanced MRI techniques into clinical practice. MRI provides in analogy with PET physiological information in addition to more traditional morphological images. Evaluation...... with suspected Alzheimer's disease (AD); 4 with suspected frontotemporal dementia (FTD), and 2 were found normal. Mean FA and ADC values in cingulum and in CC for the patient group compared with controls are presented in Table 1. ADC values in CC were higher comparing with controls and higher for patients...... with suspected FTD than for patients with suspected AD. Conclusion: CBF measurements and characteristics obtained by advanced MRI techniques have a potential to facilitate early diagnosis and understanding of dementia....

  12. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    Directory of Open Access Journals (Sweden)

    Xihui "Paul" Zhang

    2015-06-01

    Full Text Available Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We present a classic brain teaser that is used to communicate and demonstrate advanced software development concepts and techniques. Our results show that students with varied academic experiences and goals, assuming at least one procedural/structured programming pre-requisite, can benefit from and also be challenged by such an exercise. Although this problem has been used by others in the classroom, we believe that our use of this problem in imparting such a broad range of topics to a diverse student population is unique.

  13. NMR-based metabonomic analysis of the hepatotoxicity induced by combined exposure to PCBs and TCDD in rats

    International Nuclear Information System (INIS)

    Lu Chunfeng; Wang Yimei; Sheng Zhiguo; Liu Gang; Fu Ze; Zhao Jing; Zhao Jun; Yan Xianzhong; Zhu Benzhan; Peng Shuangqing

    2010-01-01

    A metabonomic approach using 1 H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. 1 H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary 1 H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.

  14. (1)H NMR-based metabonomics revealed protective effect of Naodesheng bioactive extract on ischemic stroke rats.

    Science.gov (United States)

    Luo, Lan; Zhen, Lifeng; Xu, Yatao; Yang, Yongxia; Feng, Suxiang; Wang, Shumei; Liang, Shengwang

    2016-06-20

    Stroke is a leading cause of death and disability in the world. However, current therapies are limited. Naodesheng, a widely used traditional Chinese medicine prescription, has shown a good clinical curative effect on ischemic stroke. Also, Naodesheng has been suggested to have neuroprotective effect on focal cerebral ischemia rats, but the underlying molecular mechanism remains unclear. The present study was designed to evaluate the effect of Naodesheng bioactive extract on the metabolic changes in brain tissue, plasma and urine induced by cerebral ischemia perfusion injury, and explore the possible metabolic mechanisms by using a (1)H NMR-based metabonomics approach. A middle cerebral artery occlusion rat model was established and confirmed by the experiments of neurobehavioral abnormality evaluation, brain tissue TTC staining and pathological examination. The metabolic changes in brain tissue, plasma and urine were then assessed by a (1)H NMR technique combined with multivariate statistical analysis method. These NMR data showed that cerebral ischemia reperfusion induced great metabolic disorders in brain tissue, plasma and urine metabolisms. However, Naodesheng bioactive extract could reverse most of the imbalanced metabolites. Meanwhile, it was found that both the medium and high dosages of Naodesheng bioactive extract were more effective on the metabolic changes than the low dosage, consistent with histopathological assessments. These results revealed that Naodesheng had protective effect on ischemic stroke rats and the underlying mechanisms involved multiple metabolic pathways, including energy metabolism, amino acid metabolism, oxidative stress and inflammatory injury. The present study could provide evidence that metabonomics revealed its capacity to evaluate the holistic efficacy of traditional Chinese medicine and explore the underlying mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Lactose Binding Induces Opposing Dynamics Changes in Human Galectins Revealed by NMR-Based Hydrogen-Deuterium Exchange.

    Science.gov (United States)

    Chien, Chih-Ta Henry; Ho, Meng-Ru; Lin, Chung-Hung; Hsu, Shang-Te Danny

    2017-08-16

    Galectins are β-galactoside-binding proteins implicated in a myriad of biological functions. Despite their highly conserved carbohydrate binding motifs with essentially identical structures, their affinities for lactose, a common galectin inhibitor, vary significantly. Here, we aimed to examine the molecular basis of differential lactose affinities amongst galectins using solution-based techniques. Consistent dissociation constants of lactose binding were derived from nuclear magnetic resonance (NMR) spectroscopy, intrinsic tryptophan fluorescence, isothermal titration calorimetry and bio-layer interferometry for human galectin-1 (hGal1), galectin-7 (hGal7), and the N-terminal and C-terminal domains of galectin-8 (hGal8 NTD and hGal8 CTD , respectively). Furthermore, the dissociation rates of lactose binding were extracted from NMR lineshape analyses. Structural mapping of chemical shift perturbations revealed long-range perturbations upon lactose binding for hGal1 and hGal8 NTD . We further demonstrated using the NMR-based hydrogen-deuterium exchange (HDX) that lactose binding increases the exchange rates of residues located on the opposite side of the ligand-binding pocket for hGal1 and hGal8 NTD , indicative of allostery. Additionally, lactose binding induces significant stabilisation of hGal8 CTD across the entire domain. Our results suggested that lactose binding reduced the internal dynamics of hGal8 CTD on a very slow timescale (minutes and slower) at the expense of reduced binding affinity due to the unfavourable loss of conformational entropy.

  16. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-11-01

    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  17. Advanced chemical quality control techniques for use in the manufacture of (U-Pu) MOX fuels

    International Nuclear Information System (INIS)

    Panakkal, J.P.; Prakash, Amrit

    2010-01-01

    Analytical chemistry plays a very important role for nuclear fuel cycle activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to various stringent chemical specifications like B, rare earths, H, O/M heavy metal content etc. Selection of technique is very important to determine the true specification. This is important particularly when the analyses has to be performed inside leak tight enclosure. The present paper describes the details of the advanced techniques being developed and used in the manufacture of (U,Pu) MOX fuels. (author)

  18. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  19. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  20. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    Science.gov (United States)

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. © 2014 Australian Veterinary Association.

  1. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  2. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    Science.gov (United States)

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  3. Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems

    OpenAIRE

    Herrera, Manuel; Meniconi, Silvia; Alvisi, Stefano; Izquierdo, Joaquin

    2018-01-01

    This document is intended to be a presentation of the Special Issue “Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems”. The final aim of this Special Issue is to propose a suitable framework supporting insightful hydraulic mechanisms to aid the decision-making processes of water utility managers and practitioners. Its 18 peer-reviewed articles present as varied topics as: water distribution system design, optimization of network perf...

  4. A new surgical technique for concealed penis using an advanced musculocutaneous scrotal flap.

    Science.gov (United States)

    Han, Dong-Seok; Jang, Hoon; Youn, Chang-Shik; Yuk, Seung-Mo

    2015-06-19

    Until recently, no single, universally accepted surgical method has existed for all types of concealed penis repairs. We describe a new surgical technique for repairing concealed penis by using an advanced musculocutaneous scrotal flap. From January 2010 to June 2014, we evaluated 12 patients (12-40 years old) with concealed penises who were surgically treated with an advanced musculocutaneous scrotal flap technique after degloving through a ventral approach. All the patients were scheduled for regular follow-up at 6, 12, and 24 weeks postoperatively. The satisfaction grade for penile size, morphology, and voiding status were evaluated using a questionnaire preoperatively and at all of the follow-ups. Information regarding complications was obtained during the postoperative hospital stay and at all follow-ups. The patients' satisfaction grades, which included the penile size, morphology, and voiding status, improved postoperatively compared to those preoperatively. All patients had penile lymphedema postoperatively; however, this disappeared within 6 weeks. There were no complications such as skin necrosis and contracture, voiding difficulty, or erectile dysfunction. Our advanced musculocutaneous scrotal flap technique for concealed penis repair is technically easy and safe. In addition, it provides a good cosmetic appearance, functional outcomes and excellent postoperative satisfaction grades. Lastly, it seems applicable in any type of concealed penis, including cases in which the ventral skin defect is difficult to cover.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  6. Proceedings of the symposium on advanced measurement techniques and instrumentation: abstract book

    International Nuclear Information System (INIS)

    Kale, Y.B.; Kushwaha, M.; Somkuwar, S.P.; Ajayakumar, S.; Sampathkumar, R.

    2011-01-01

    In order to consolidate the existing knowledge base and further to focus on the future directions of the field of advanced measurement techniques and instrumentation, Bhabha Atomic Research Centre has organized a three-day symposium on 'Advanced Measurement Techniques and Instrumentation' at Multi Purpose Hall, Training School Hostel, Anushaktinagar, Mumbai during February 02-04, 2011. The symposium is aimed at providing a forum to discuss the emerging trends and challenges ahead in the important area of measurement science and technology. This is a unique symposium, which brings together scientists and engineers from all disciplines and provides them a platform for close interaction to exchange ideas, methodologies and expertise, which is extremely important for synergic growth of this field. The symposium consists of 27 talks, which include keynote address, plenary and invited talks, and 63 contributory papers. The abstracts of these papers are brought to you in this volume. Readers may observe that the scientific programme of the symposium covers a wide ranging issues including advanced scientific concepts in measurements, instrumentation strategies, mathematical techniques and development of devices for applications in fundamental physics, astrophysics, fusion plasmas, nuclear reactors, accelerators, environment, chemical and biological sciences, and national security. Papers relevant to INIS are indexed separately

  7. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-03-01

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  8. Recent advances in the instrumental techniques for the analysis of modern materials (II)

    International Nuclear Information System (INIS)

    Ahmed, M.

    1990-01-01

    Inductively Coupled Plasma Mass Spectrometry ICP-MS a logical development of equally established sister technique of ICP-AEA discussed in part-1 of this series of article on modern analytical techniques. The rapid adaptation of argon plasma as ion source for time of flight quadrupole mass analyser has led to the development of truly integrated instrumental technique for analysis of solutions and slurries. The powerful combination with laser ablation device has made the direct analysis of geological, geochemical and other complex conducting and non conducting samples possible in days rather months at sub ppm levels. Parallel development in computer hardware and software has made the instrumental optimization easy enabling the generation of meaningful analytical data a matter of routine. The limitations imposed by spectroscopic and non restricted the variety of matrices and materials covered by ICP-MS of LA-ICP-MS. The technique has provided it formidable analytical power in wide areas of industrial environmental, social, biological and break through advanced materials used in space mass communication, transportation and general areas of advanced analytical chemistry. It is expected that in combination with other instrumental methods as HPLC, ETC, ion chromatography. ICP-MS shall continue to dominate well into the 21st century. (author)

  9. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

    Directory of Open Access Journals (Sweden)

    Helena Kupcova Skalnikova

    2017-12-01

    Full Text Available Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot, multiplex assays (chemiluminescent, bead-based (Luminex and planar antibody arrays, ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay, to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics. Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.

  10. Advanced field-solver techniques for RC extraction of integrated circuits

    CERN Document Server

    Yu, Wenjian

    2014-01-01

    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  11. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  12. Nanopositioning techniques development for synchrotron radiation instrumentation applications at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu Deming

    2010-01-01

    At modern synchrotron radiation sources and beamlines, high-precision positioning techniques present a significant opportunity to support state-of-the-art synchrotron radiation research. Meanwhile, the required instrument positioning performance and capabilities, such as resolution, dynamic range, repeatability, speed, and multiple axes synchronization are exceeding the limit of commercial availability. This paper presents the current nanopositioning techniques developed for the Argonne Center for Nanoscale Materials (CNM)/Advanced Photon Source (APS) hard x-ray nanoprobe and high-resolution x-ray monochromators and analyzers for the APS X-ray Operations and Research (XOR) beamlines. Future nanopositioning techniques to be developed for the APS renewal project will also be discussed.

  13. Evaluation of an advanced physical diagnosis course using consumer preferences methods: the nominal group technique.

    Science.gov (United States)

    Coker, Joshua; Castiglioni, Analia; Kraemer, Ryan R; Massie, F Stanford; Morris, Jason L; Rodriguez, Martin; Russell, Stephen W; Shaneyfelt, Terrance; Willett, Lisa L; Estrada, Carlos A

    2014-03-01

    Current evaluation tools of medical school courses are limited by the scope of questions asked and may not fully engage the student to think on areas to improve. The authors sought to explore whether a technique to study consumer preferences would elicit specific and prioritized information for course evaluation from medical students. Using the nominal group technique (4 sessions), 12 senior medical students prioritized and weighed expectations and topics learned in a 100-hour advanced physical diagnosis course (4-week course; February 2012). Students weighted their top 3 responses (top = 3, middle = 2 and bottom = 1). Before the course, 12 students identified 23 topics they expected to learn; the top 3 were review sensitivity/specificity and high-yield techniques (percentage of total weight, 18.5%), improving diagnosis (13.8%) and reinforce usual and less well-known techniques (13.8%). After the course, students generated 22 topics learned; the top 3 were practice and reinforce advanced maneuvers (25.4%), gaining confidence (22.5%) and learn the evidence (16.9%). The authors observed no differences in the priority of responses before and after the course (P = 0.07). In a physical diagnosis course, medical students elicited specific and prioritized information using the nominal group technique. The course met student expectations regarding education of the evidence-based physical examination, building skills and confidence on the proper techniques and maneuvers and experiential learning. The novel use for curriculum evaluation may be used to evaluate other courses-especially comprehensive and multicomponent courses.

  14. Impact of metal pollution on shrimp Crangon affinis by NMR-based metabolomics

    International Nuclear Information System (INIS)

    Ji, Chenglong; Yu, Deliang; Wang, Qing; Li, Fei; Zhao, Jianmin; Wu, Huifeng

    2016-01-01

    Both cadmium and arsenic are the important metal/metalloid pollutants in the Bohai Sea. In this work, we sampled the dominant species, shrimp Crangon affinis, from three sites, the Middle of the Bohai Sea (MBS), the Yellow River Estuary (YRE) and the Laizhou Bay (LZB) along the Bohai Sea. The concentrations of metals/metalloids in shrimps C. affinis indicated that the YRE site was polluted by Cd and Pb, while the LZB site was contaminated by As. The metabolic differences between shrimps C. affinis from the reference site (MBS) and metal-pollution sites (YRE and LZB) were characterized using NMR-based metabolomics. Results indicated that the metal pollutions in YRE and LZB induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. In addition, a combination of alanine and arginine might be the biomarker of Cd contamination, while BCAAs and tyrosine could be the biomarkers of arsenic contamination in C. affinis. - Highlights: •YRE and LZB are mainly polluted by Cd and As, respectively. •Metal pollutions caused differential effects in C. affinis from different sites. •Metabolomics is useful to elucidate metal pollution-induced biological effects.

  15. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2010-08-03

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  16. NMR-Based Identification of Metabolites in Polar and Non-Polar Extracts of Avian Liver.

    Science.gov (United States)

    Fathi, Fariba; Brun, Antonio; Rott, Katherine H; Falco Cobra, Paulo; Tonelli, Marco; Eghbalnia, Hamid R; Caviedes-Vidal, Enrique; Karasov, William H; Markley, John L

    2017-11-16

    Metabolites present in liver provide important clues regarding the physiological state of an organism. The aim of this work was to evaluate a protocol for high-throughput NMR-based analysis of polar and non-polar metabolites from a small quantity of liver tissue. We extracted the tissue with a methanol/chloroform/water mixture and isolated the polar metabolites from the methanol/water layer and the non-polar metabolites from the chloroform layer. Following drying, we re-solubilized the fractions for analysis with a 600 MHz NMR spectrometer equipped with a 1.7 mm cryogenic probe. In order to evaluate the feasibility of this protocol for metabolomics studies, we analyzed the metabolic profile of livers from house sparrow ( Passer domesticus ) nestlings raised on two different diets: livers from 10 nestlings raised on a high protein diet (HP) for 4 d and livers from 12 nestlings raised on the HP diet for 3 d and then switched to a high carbohydrate diet (HC) for 1 d. The protocol enabled the detection of 52 polar and nine non-polar metabolites in ¹H NMR spectra of the extracts. We analyzed the lipophilic metabolites by one-way ANOVA to assess statistically significant concentration differences between the two groups. The results of our studies demonstrate that the protocol described here can be exploited for high-throughput screening of small quantities of liver tissue (approx. 100 mg wet mass) obtainable from small animals.

  17. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Burkhard Luy

    2013-04-01

    Full Text Available It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at −20 °C, on dry ice, at −80 °C or in liquid nitrogen and then stored at −20 °C, −80 °C or in liquid nitrogen vapor phase for 1–5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at −20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  18. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics.

    Science.gov (United States)

    Rist, Manuela J; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-04-09

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at -20 °C, on dry ice, at -80 °C or in liquid nitrogen and then stored at -20 °C, -80 °C or in liquid nitrogen vapor phase for 1-5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at -20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  19. NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis.

    Science.gov (United States)

    Cui, Jiajia; Liu, Yuetao; Hu, Yinghuan; Tong, Jiayu; Li, Aiping; Qu, Tingli; Qin, Xuemei; Du, Guanhua

    2017-01-05

    Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, 1 H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods

    International Nuclear Information System (INIS)

    Rodrigues, J.E.A.; Erny, G.L.; Barros, A.S.; Esteves, V.I.; Brandao, T.; Ferreira, A.A.; Cabrita, E.; Gil, A.M.

    2010-01-01

    The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.

  1. [Monitoring of chemical components with different color traits of Tussilago farfara using NMR-based metabolomics].

    Science.gov (United States)

    Mi, Xi; Li, Zhen-yu; Qin, Xue-mei; Zhang, Li-zeng

    2013-11-01

    The quality and grade of traditional Chinese medicinal herbs were assessed by their characteristics traditionally. According to traditional experience, the quality of the purple Flos Farfarae is better than that of yellow buds. NMR-based metabolomic approach combined with significant analysis of microarray (SAM) and Spearman rank correlation analysis were used to investigate the different metabolites of the Flos Farfarae with different color feature. Principal component analysis (PCA) showed clear distinction between the purple and yellow flower buds of Tussilago farfara. The S-plot of orthogonal PLS-DA (OPLS-DA) and t test revealed that the levels of threonine, proline, phosphatidylcholine, creatinine, 4, 5-dicaffeoylquinic acid, rutin, caffeic acid, kaempferol analogues, and tussilagone were higher in the purple flower buds than that in the yellow buds, in agreement with the results of SAM and Spearman rank correlation analysis. The results confirmed the traditional medication experience that "purple flower bud is better than the yellow ones", and provide a scientific basis for assessing the quality of Flos Farfarae by the color features.

  2. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  3. Advancement in solar evaporation techniques for volume reduction of chemical effluents

    Energy Technology Data Exchange (ETDEWEB)

    Parakasamurthy, K S [Nuclear Fuel Complex, Hyderabad (India); Pande, D P [Process Engineering and Systems Development Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    A typical example of advancement of a unit operation for the given requirement is described. The solar evaporation ponds (SEP) have technical and economic advantages compared to other evaporation methods for concentrating chemical effluents. The operation of SEP is strongly dependent on the environmental and site conditions. Tropical conditions with high solar incidence, good wind speed along with hot and dry weather provide suitable climate for efficient operation of solar evaporation ponds. The particular site selected for the ponds at Nuclear Fuel Complex (NFC) has a rocky terrain with murrum over sheet with very low water table and small velocity of groundwater. During the past twenty five years extensive theoretical and experimental investigations have been carried out for advancement of solar evaporation technique. (author). 7 refs.

  4. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Frain, R.G.; Caudill, H.L.; Faulhaber, R.

    1987-01-01

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF 6 to UO 2 powder, and increased use of automated and computerized inspection techniques. (author)

  5. Advancement in solar evaporation techniques for volume reduction of chemical effluents

    International Nuclear Information System (INIS)

    Parakasamurthy, K.S.; Pande, D.P.

    1994-01-01

    A typical example of advancement of a unit operation for the given requirement is described. The solar evaporation ponds (SEP) have technical and economic advantages compared to other evaporation methods for concentrating chemical effluents. The operation of SEP is strongly dependent on the environmental and site conditions. Tropical conditions with high solar incidence, good wind speed along with hot and dry weather provide suitable climate for efficient operation of solar evaporation ponds. The particular site selected for the ponds at Nuclear Fuel Complex (NFC) has a rocky terrain with murrum over sheet with very low water table and small velocity of groundwater. During the past twenty five years extensive theoretical and experimental investigations have been carried out for advancement of solar evaporation technique. (author)

  6. 16th International workshop on Advanced Computing and Analysis Techniques in physics (ACAT)

    CERN Document Server

    Lokajicek, M; Tumova, N

    2015-01-01

    16th International workshop on Advanced Computing and Analysis Techniques in physics (ACAT). The ACAT workshop series, formerly AIHENP (Artificial Intelligence in High Energy and Nuclear Physics), was created back in 1990. Its main purpose is to gather researchers related with computing in physics research together, from both physics and computer science sides, and bring them a chance to communicate with each other. It has established bridges between physics and computer science research, facilitating the advances in our understanding of the Universe at its smallest and largest scales. With the Large Hadron Collider and many astronomy and astrophysics experiments collecting larger and larger amounts of data, such bridges are needed now more than ever. The 16th edition of ACAT aims to bring related researchers together, once more, to explore and confront the boundaries of computing, automatic data analysis and theoretical calculation technologies. It will create a forum for exchanging ideas among the fields an...

  7. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    International Nuclear Information System (INIS)

    Garner, F.A.; Odette, G.R.

    1980-01-01

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs

  8. Advanced CFD and radiotracer techniques - A complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    Tu, J.Y.

    2004-01-01

    A CFD and RTD Education Package was developed, in which lecture notes, tutorials and computer softwares for both CFD and RTD are included. A user-friendly web-based interface has been prepared to allow lecturers more effectively conducting their training courses or workshops, and to provide students or users more easily learning the CFD and RTD knowledge and practising computer softwares. This report gives an overview of the advances in development and use of CFD models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and softwares are highlighted. Integration of advanced CFD modelling with radiotracer techniques as a complementary technology for future research and industrial applications is discussed. The features and examples of the developed CFD and RTD Education package are presented. (author)

  9. Applications of advanced electron microscopy techniques to the studies of radiation effects in ceramic materials

    International Nuclear Information System (INIS)

    Wang, L.M.

    1998-01-01

    This paper summarizes some recent results from the application of several advanced transmission electron microscopy (TEM) techniques to the studies of radiation effects in insulators with the main focus on radiation-induced amorphization. These techniques include in situ TEM during ion-beam irradiation at cryogenic and elevated temperatures, cross-sectional TEM, high-resolution TEM, and image simulation on partially damaged materials, as well as digital TEM with image processing and analysis. The combination of these techniques may often provide very detailed information about the microstructure evolution during energetic particle irradiation, especially at the early stages, which is unobtainable with any other analytical methods. These techniques have been successfully applied to the analysis of a large group of ion-beam-irradiated ceramics, including quartz, silicon carbides, uranium oxide, apatite, spinel and other complex mineral phases. The advantages and limitations of each technique, as well as some important technical details for the analysis of radiation damage in ceramics are presented. (orig.)

  10. Advanced Techniques in Web Intelligence-2 Web User Browsing Behaviour and Preference Analysis

    CERN Document Server

    Palade, Vasile; Jain, Lakhmi

    2013-01-01

    This research volume focuses on analyzing the web user browsing behaviour and preferences in traditional web-based environments, social  networks and web 2.0 applications,  by using advanced  techniques in data acquisition, data processing, pattern extraction and  cognitive science for modeling the human actions.  The book is directed to  graduate students, researchers/scientists and engineers  interested in updating their knowledge with the recent trends in web user analysis, for developing the next generation of web-based systems and applications.

  11. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Pastura, Giuseppe; Mattos, Paulo; Gasparetto, Emerson Leandro; Araujo, Alexandra Prufer de Queiroz Campos

    2011-01-01

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  12. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  13. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

    International Nuclear Information System (INIS)

    Hoang Duc Tam; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong; Tran Thien Thanh; Vo Hoang Nguyen; Hoang Thi Kieu Trang; Chau Van Tao

    2015-01-01

    In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness. (author)

  14. Advanced technique for computing fuel combustion properties in pulverized-fuel fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (Russian Federation))

    1992-03-01

    Reviews foreign technical reports on advanced techniques for computing fuel combustion properties in pulverized-fuel fired boilers and analyzes a technique developed by Combustion Engineering, Inc. (USA). Characteristics of 25 fuel types, including 19 grades of coal, are listed along with a diagram of an installation with a drop tube furnace. Characteristics include burn-out intensity curves obtained using thermogravimetric analysis for high-volatile bituminous, semi-bituminous and coking coal. The patented LFP-SKM mathematical model is used to model combustion of a particular fuel under given conditions. The model allows for fuel particle size, air surplus, load, flame height, and portion of air supplied as tertiary blast. Good agreement between computational and experimental data was observed. The method is employed in designing new boilers as well as converting operating boilers to alternative types of fuel. 3 refs.

  15. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  16. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    International Nuclear Information System (INIS)

    Li, Tie-Qiang; Wahlund, Lars-Olof

    2011-01-01

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  17. Detection of breast cancer using advanced techniques of data mining with neural networks

    International Nuclear Information System (INIS)

    Ortiz M, J. A.; Celaya P, J. M.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Garza V, I.; Martinez F, M.; Lopez H, Y.; Ortiz R, J. M.

    2016-10-01

    The breast cancer is one of the biggest health problems worldwide, is the most diagnosed cancer in women and prevention seems impossible since its cause is unknown, due to this; the early detection has a key role in the patient prognosis. In developing countries such as Mexico, where access to specialized health services is minimal, the regular clinical review is infrequent and there are not enough radiologists; the most common form of detection of breast cancer is through self-exploration, but this is only detected in later stages, when is already palpable. For these reasons, the objective of the present work is the creation of a system of computer assisted diagnosis (CAD x) using information analysis techniques such as data mining and advanced techniques of artificial intelligence, seeking to offer a previous medical diagnosis or a second opinion, as if it was a second radiologist in order to reduce the rate of mortality from breast cancer. In this paper, advances in the design of computational algorithms using computer vision techniques for the extraction of features derived from mammograms are presented. Using data mining techniques of data mining is possible to identify patients with a high risk of breast cancer. With the information obtained from the mammography analysis, the objective in the next stage will be to establish a methodology for the generation of imaging bio-markers to establish a breast cancer risk index for Mexican patients. In this first stage we present results of the classification of patients with high and low risk of suffering from breast cancer using neural networks. (Author)

  18. The role of alternative (advanced) conscious sedation techniques in dentistry for adult patients: a series of cases.

    Science.gov (United States)

    Robb, N

    2014-03-01

    The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.

  19. Advanced condition monitoring techniques and plant life extension studies at EBR-2

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Perry, W.H.; King, R.W.

    1991-01-01

    Numerous advanced techniques have been evaluated and tested at EBR-2 as part of a plant-life extension program for detection of degradation and other abnormalities in plant systems. Two techniques have been determined to be of considerable assistance in planning for the extended-life operation of EBR-2. The first, a computer-based pattern-recognition system (System State Analyzer or SSA) is used for surveillance of the primary system instrumentation, primary sodium pumps and plant heat balances. This surveillance has indicated that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals and can be used to provide derived signal values to replace signals from failed sensors. The second technique, also a computer-based pattern-recognition system (Sequential Probability Ratio Test or SPRT) is used to validate signals and to detect incipient failures in sensors and components or systems. It is being used on the failed fuel detection system and is experimentally used on the primary coolant pumps. Both techniques are described and experience with their operation presented

  20. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  1. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  2. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Brennan S. Dirk

    2016-10-01

    Full Text Available Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1 is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED and photoactivation and localization microscopy (PALM have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET and bimolecular fluorescence complementation (BiFC have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle.

  3. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Georg, D.; Georg, P.; Hillbrand, M.; Poetter, R.; Mock, U. [Dept. of Radiotherapy, Medical Univ. AKH, Vienna (Austria)

    2008-11-15

    Purpose: to evaluate the potential benefit of proton therapy and photon based intensity-modulated radiotherapy in comparison to 3-D conformal photon radiotherapy (3D-CRT) in locally advanced cervix cancer. Patients and methods: in five patients with advanced cervix cancer 3D-CRT (four-field box) was compared with intensity modulated photon (IMXT) and proton therapy (IMPT) as well as proton beam therapy (PT) based on passive scattering. Planning target volumes (PTVs) included primary tumor and pelvic and para-aortic lymph nodes. Dose-volume histograms (DVHs) were analyzed for the PTV and various organs at risk (OARs) (rectal wall, bladder, small bowel, colon, femoral heads, and kidneys). In addition dose conformity, dose inhomogeneity and overall volumes of 50% isodoses were assessed. Results: all plans were comparable concerning PTV parameters. Large differences between photon and proton techniques were seen in volumes of the 50% isodoses and conformity indices. DVH for colon and small bowel were significantly improved with PT and IMPT compared to IMXT, with D{sub mean} reductions of 50-80%. Doses to kidneys and femoral heads could also be substantially reduced with PT and IMPT. Sparing of rectum and bladder was superior with protons as well but less pronounced. Conclusion: proton beam RT has significant potential to improve treatment related side effects in the bowel compared to photon beam RT in patients with advanced cervix carcinoma. (orig.)

  4. Assessment of improved organ at risk sparing for advanced cervix carcinoma utilizing precision radiotherapy techniques

    International Nuclear Information System (INIS)

    Georg, D.; Georg, P.; Hillbrand, M.; Poetter, R.; Mock, U.

    2008-01-01

    Purpose: to evaluate the potential benefit of proton therapy and photon based intensity-modulated radiotherapy in comparison to 3-D conformal photon radiotherapy (3D-CRT) in locally advanced cervix cancer. Patients and methods: in five patients with advanced cervix cancer 3D-CRT (four-field box) was compared with intensity modulated photon (IMXT) and proton therapy (IMPT) as well as proton beam therapy (PT) based on passive scattering. Planning target volumes (PTVs) included primary tumor and pelvic and para-aortic lymph nodes. Dose-volume histograms (DVHs) were analyzed for the PTV and various organs at risk (OARs) (rectal wall, bladder, small bowel, colon, femoral heads, and kidneys). In addition dose conformity, dose inhomogeneity and overall volumes of 50% isodoses were assessed. Results: all plans were comparable concerning PTV parameters. Large differences between photon and proton techniques were seen in volumes of the 50% isodoses and conformity indices. DVH for colon and small bowel were significantly improved with PT and IMPT compared to IMXT, with D mean reductions of 50-80%. Doses to kidneys and femoral heads could also be substantially reduced with PT and IMPT. Sparing of rectum and bladder was superior with protons as well but less pronounced. Conclusion: proton beam RT has significant potential to improve treatment related side effects in the bowel compared to photon beam RT in patients with advanced cervix carcinoma. (orig.)

  5. Ehrlich and sarcoma 180 tumour characterisation and early detection by 1H NMR-based metabonomics of mice serum

    International Nuclear Information System (INIS)

    Grandizoli, Caroline W.P. da S.; Simonelli, Fabio; Nagata, Noemi; Barison, Andersson; Carrenho, Luise Z.B.; Francisco, Thais M.G. de; Campos, Francinete R.; Santana Filho, Arquimedes P. de; Sassaki, Guilherme L.; Kreuger, Maria R.O.

    2014-01-01

    The success of cancer treatment is directly related to early detection before symptoms emerge, although nowadays few cancers can be detected early. In this sense, 1 H nuclear magnetic resonance ( 1 H NMR)-based metabonomics was used to identify metabolic changes in biofluid as a consequence of tumours growing in mice. Through partial least squares discriminant analysis (PLS-DA) analysis of 1 H NMR spectra from serum samples it was possible to diagnose Ehrlich ascites and Sarcoma 180 tumours five and ten days after cell inoculation, respectively. Lipids, lipoproteins and lactate were the main biomarkers at onset as well as in the progress of carcinogenic process. Thus, NMR-based metabonomics can be a valuable tool to study the effects of tumour establishment on the chemical composition of biofluids. (author)

  6. Ehrlich and sarcoma 180 tumour characterisation and early detection by {sup 1}H NMR-based metabonomics of mice serum

    Energy Technology Data Exchange (ETDEWEB)

    Grandizoli, Caroline W.P. da S.; Simonelli, Fabio; Nagata, Noemi; Barison, Andersson [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Carrenho, Luise Z.B.; Francisco, Thais M.G. de; Campos, Francinete R. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Santana Filho, Arquimedes P. de; Sassaki, Guilherme L. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Bioquimica; Kreuger, Maria R.O. [Universidade do Vale do Itajai (UNIVALI), (Brazil). Centro de Ciencias da Saude

    2014-05-15

    The success of cancer treatment is directly related to early detection before symptoms emerge, although nowadays few cancers can be detected early. In this sense, {sup 1}H nuclear magnetic resonance ({sup 1}H NMR)-based metabonomics was used to identify metabolic changes in biofluid as a consequence of tumours growing in mice. Through partial least squares discriminant analysis (PLS-DA) analysis of {sup 1}H NMR spectra from serum samples it was possible to diagnose Ehrlich ascites and Sarcoma 180 tumours five and ten days after cell inoculation, respectively. Lipids, lipoproteins and lactate were the main biomarkers at onset as well as in the progress of carcinogenic process. Thus, NMR-based metabonomics can be a valuable tool to study the effects of tumour establishment on the chemical composition of biofluids. (author)

  7. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    Science.gov (United States)

    Kremer, Stephane; Renard, Felix; Achard, Sophie; Lana-Peixoto, Marco A.; Palace, Jacqueline; Asgari, Nasrin; Klawiter, Eric C.; Tenembaum, Silvia N.; Banwell, Brenda; Greenberg, Benjamin M.; Bennett, Jeffrey L.; Levy, Michael; Villoslada, Pablo; Saiz, Albert; Fujihara, Kazuo; Chan, Koon Ho; Schippling, Sven; Paul, Friedemann; Kim, Ho Jin; de Seze, Jerome; Wuerfel, Jens T.

    2016-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MRI techniques may further our understanding of the pathogenic processes in NMO spectrum disorders and may help us identify the distinct radiographic features corresponding to specific phenotypic manifestations of this disease. PMID:26010909

  8. Application of the guided lock technique to Advanced Virgo's high-finesse cavities using reduced actuation

    Science.gov (United States)

    Bersanetti, Diego

    2018-02-01

    The recent upgrades of the Advanced Virgo experiment required an update of the locking strategy for the long, high-finesse arm cavities of the detector. In this work we will present a full description of the requirements and the constraints of such system in relation to the lock acquisition of the cavities; the focus of this work is the strategy used to accomplish this goal, which is the adaptation and use of the guided lock technique, which dynamically slows down a suspended optical cavity in order to make the lock possible. This work describes the first application of such locking technique to 3km long optical cavities, which are affected by stringent constraints as the low force available on the actuators, the high finesse and the maximum sustainable speed of the cavities, which is quite low due to a number of technical reasons that will be explained. A full set of optical time domain simulations has been developed in order to study the feasibility and the performance of this algorithm and will be throughout discussed, while finally the application on the real Advanced Virgo's arm cavities will be reported.

  9. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    Science.gov (United States)

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Moslehi, M.M.; Davis, C.

    1989-01-01

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/Ge x Si 1 - x /Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  11. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    Science.gov (United States)

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  12. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    Science.gov (United States)

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  13. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    Science.gov (United States)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  14. 1H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure

    International Nuclear Information System (INIS)

    Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J.; Simpson, Myrna J.

    2011-01-01

    1 H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm 2 of phenanthrene (1/64th of the LC 50 ) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by 1 H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: → NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. → The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. → Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by 1 H NMR. → Longer phenanthrene exposure times resulted in heightened earthworm responses. → An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - 1 H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.

  15. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors

    OpenAIRE

    Vázquez Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez Martínez, Miguel Ángel; Vinaixa Crevillent, Maria; Chiva Blanch, Gemma; Estruch Riba, Ramon; Correig Blanchar, Xavier; Andrés Lacueva, Ma. Cristina

    2012-01-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100m...

  16. 1H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    International Nuclear Information System (INIS)

    Zhang, Ying; Lin, Lianjie; Xu, Yanbin; Lin, Yan; Jin, Yu; Zheng, Changqing

    2013-01-01

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ( 1 H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC

  17. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    Science.gov (United States)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  18. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  19. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    International Nuclear Information System (INIS)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author)

  20. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    Science.gov (United States)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  1. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    Science.gov (United States)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  2. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    Science.gov (United States)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  3. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    International Nuclear Information System (INIS)

    Qin Ling; Leung, Kwok Sui; Griffith, J.F.

    2007-01-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  4. Advanced kinetics for calorimetric techniques and thermal stability screening of sulfide minerals

    International Nuclear Information System (INIS)

    Iliyas, Abduljelil; Hawboldt, Kelly; Khan, Faisal

    2010-01-01

    Thermal methods of analysis such as differential scanning calorimetry (DSC) provide a powerful methodology for the study of solid reactions. This paper proposes an improved thermal analysis methodology for thermal stability investigation of complex solid-state reactions. The proposed methodology is based on differential iso-conversional approach and involves peak separation, individual peak analysis and combination of isothermal/non-isothermal DSC measurements for kinetic analysis and prediction. The proposed thermal analysis, which coupled with Mineral Libration Analyzer (MLA) technique was employed to investigate thermal behavior of sulfide mineral oxidation. The importance of various experimental variables such as particle size, heating rate and atmosphere were investigated and discussed. The information gained from such an advanced thermal analysis method is useful for scale-up processes with potential of significant savings in plant operations, as well as in mitigating adverse environmental and safety issues arising from handling and storage of sulfide minerals.

  5. Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder

    DEFF Research Database (Denmark)

    Kremer, S.; Renard, F.; Achard, S.

    2015-01-01

    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder but the specific morphological and temporal patterns distinguishing them uneqtaivcally from lesions caused by other disorders have...... not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR voltametry, and ultrahigh...... diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than gray matter degradation. These findings could be confirmed by ultrahigh-field MRI. The use of nonconventional MR I techniques may further our understanding of the pathogenic processes hi NMO spectrum disorders and may...

  6. Vibrio parahaemolyticus: A Review on the Pathogenesis, Prevalence and Advance Molecular Identification Techniques

    Directory of Open Access Journals (Sweden)

    Vengadesh eLetchumanan

    2014-12-01

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. Vibrio parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked or mishandled marine products. In rare cases, Vibrio parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. Vibrio parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh, which plays a similar role as thermostable direct hemolysin (tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2 to ensure its survival in the environment. This review aims at discussing the Vibrio parahemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  7. Innovations in the Endovascular Management of Critical Limb Ischemia: Retrograde Tibiopedal Access and Advanced Percutaneous Techniques.

    Science.gov (United States)

    Mustapha, Jihad A; Diaz-Sandoval, Larry J; Saab, Fadi

    2017-08-01

    Retrograde tibiopedal access and interventions have contributed to advance of endovascular techniques to treat critical limb ischemia (CLI) patients. This review encompasses the spectrum from advanced diagnostic imaging and technical therapeutic approaches for infrapopliteal occlusions, to a discussion of current standards and future directions. Contemporary studies of infrapopliteal angioplasty show suboptimal short-term and 1-year clinical outcomes. Comparative data is needed to shift the focus from PTA to disruptive treatment modalities that can further improve outcomes. Retrograde pedal access has emerged as an important tool to facilitate successfully percutaneous revascularization and limb salvage in patients with CLI. To efficiently approach the complexity of CLI, new thought processes are needed to change the reigning paradigms. Retrograde tibial-pedal access has shown improvement in the rate of successful revascularizations and is an important tool in the amputation-prevention armamentarium. Additional technologies may further improve success rates. Drug-eluting stents have shown better outcomes than PTA in patients with focal infrapopliteal lesions. Registry data have demonstrated the advantage of several atherectomy devices in the tibial arteries. More recently, bioresorbable vascular scaffolds have been used successfully, and further studies with drug-coated balloons are underway. Interventional operators are now even working in the inframalleolar space to reconstitute the plantar arch. Well-conducted studies are needed to generate high-quality evidence in the field of critical limb ischemia management.

  8. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  9. Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?

    Science.gov (United States)

    Pita, Inês; Magro, Fernando

    2018-01-01

    Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.

  10. The Offer of Advanced Imaging Techniques Leads to Higher Acceptance Rates for Screening Colonoscopy - a Prospective Study.

    Science.gov (United States)

    Albrecht, Heinz; Gallitz, Julia; Hable, Robert; Vieth, Michael; Tontini, Gian Eugenio; Neurath, Markus Friedrich; Riemann, Jurgen Ferdinand; Neumann, Helmut

    2016-01-01

    Colonoscopy plays a fundamental role in early diagnosis and management of colorectal cancer and requires public and professional acceptance to ensure the ongoing success of screening programs. The aim of the study was to prospectively assess whether patient acceptance rates to undergo screening colonoscopy could be improved by the offer of advanced imaging techniques. Overall, 372 randomly selected patients were prospectively included. A standardized questionnaire was developed that inquired of the patients their knowledge regarding advanced imaging techniques. Second, several media campaigns and information events were organized reporting about advanced imaging techniques, followed by repeated evaluation. After one year the evaluation ended. At baseline, 64% of the patients declared that they had no knowledge about new endoscopic methods. After twelve months the overall grade of information increased significantly from 14% at baseline to 34%. The percentage of patients who decided to undergo colonoscopy because of the offer of new imaging methods also increased significantly from 12% at baseline to 42% after 12 months. Patients were highly interested in the offer of advanced imaging techniques. Knowledge about these techniques could relatively easy be provided using local media campaigns. The offer of advanced imaging techniques leads to higher acceptance rates for screening colonoscopies.

  11. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira

    2001-01-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  12. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    2001-02-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  13. 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016)

    International Nuclear Information System (INIS)

    2016-01-01

    Preface The 2016 version of the International Workshop on Advanced Computing and Analysis Techniques in Physics Research took place on January 18-22, 2016, at the Universidad Técnica Federico Santa Maria -UTFSM- in Valparaiso, Chile. The present volume of IOP Conference Series is devoted to the selected scientific contributions presented at the workshop. In order to guarantee the scientific quality of the Proceedings all papers were thoroughly peer-reviewed by an ad-hoc Editorial Committee with the help of many careful reviewers. The ACAT Workshop series has a long tradition starting in 1990 (Lyon, France), and takes place in intervals of a year and a half. Formerly these workshops were known under the name AIHENP (Artificial Intelligence for High Energy and Nuclear Physics). Each edition brings together experimental and theoretical physicists and computer scientists/experts, from particle and nuclear physics, astronomy and astrophysics in order to exchange knowledge and experience in computing and data analysis in physics. Three tracks cover the main topics: Computing technology: languages and system architectures. Data analysis: algorithms and tools. Theoretical Physics: techniques and methods. Although most contributions and discussions are related to particle physics and computing, other fields like condensed matter physics, earth physics, biophysics are often addressed in the hope to share our approaches and visions. It created a forum for exchanging ideas among fields, exploring and promoting cutting-edge computing technologies and debating hot topics. (paper)

  14. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D. D.; Lvov, S. N.

    2000-01-01

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system

  15. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    Science.gov (United States)

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Application of Advanced Technique of Fan Frame Unit on High Bypass Ratio Aero Engine

    Directory of Open Access Journals (Sweden)

    Hou Peng

    2017-01-01

    Full Text Available High bypass ratio aero-engine was widely used on military and civil aviation domain, as the power of larger aircraft. Fan frame unit was the main bearing frame of high bypass ratio aero-engine, which composed of strut, HUB MID BOX and external bypass parts. Resin/composite was used on external bypass parts(acoustic liner, containment ring, fan outlet guide vane and fan case skin fillets, which not only reduced the weight and manufacturing cost, but also improved the noise absorption, containment and anti-fatigue ability of engine. The design of composite was becoming a key technique for high bypass ratio aero-engine. In special test of the core engine, nitrogen cooling system was designed to cool the cavity of spool. The nitrogen pipeline passed through the inner cavity of fan frame, then inserted into NO. 3 bearing seal, so nitrogen gas was sent into the cavity of core engine spool. On high bypass ratio aero-engine, the external bypass and fan frame inner cavity were the design platform for advanced technique, such as composite and pipeline system, and also provided guarantee for reliable operation of engine.

  17. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  18. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-01-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  19. Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1992-11-01

    An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

  20. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  1. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  2. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  3. An Advanced Control Technique for Floating Offshore Wind Turbines Based on More Compact Barge Platforms

    Directory of Open Access Journals (Sweden)

    Joannes Olondriz

    2018-05-01

    Full Text Available Hydrodynamic Floating Offshore Wind Turbine (FOWT platform specifications are typically dominated by seaworthiness and maximum operating platform-pitch angle-related requirements. However, such specifications directly impact the challenge posed by an FOWT in terms of control design. The conventional FOWT systems are typically based on large, heavy floating platforms, which are less likely to suffer from the negative damping effect caused by the excessive coupling between blade-pitch control and platform-pitch motion. An advanced control technique is presented here to increase system stability for barge type platforms. Such a technique mitigates platform-pitch motions and improves the generator speed regulation, while maintaining blade-pitch activity and reducing blade and tower loads. The NREL’s 5MW + ITI Energy barge reference model is taken as a basis for this work. Furthermore, the capabilities of the proposed controller for performing with a more compact and less hydrodynamically stable barge platform is analysed, with encouraging results.

  4. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  5. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    Science.gov (United States)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  6. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    Science.gov (United States)

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  7. Laparoscopic Pelvic Exenteration for Locally Advanced Rectal Cancer, Technique and Short-Term Outcomes.

    Science.gov (United States)

    Pokharkar, Ashish; Kammar, Praveen; D'souza, Ashwin; Bhamre, Rahul; Sugoor, Pavan; Saklani, Avanish

    2018-05-09

    Since last two decades minimally invasive techniques have revolutionized surgical field. In 2003 Pomel first described laparoscopic pelvic exenteration, since then very few reports have described minimally invasive approaches for total pelvic exenteration. We report the 10 cases of locally advanced rectal adenocarcinoma which were operated between the periods from March 1, 2017 to November 11, 2017 at the Tata Memorial Hospital, Mumbai. All male patients had lower rectal cancer with prostate involvement on magnetic resonance imaging (MRI). One female patient had uterine and fornix involvement. All perioperative and intraoperative parameters were collected retrospectively from prospectively maintained electronic data. Nine male patients with diagnosis of nonmetastatic locally advanced lower rectal adenocarcinoma were selected. All patients were operated with minimally invasive approach. All patients underwent abdominoperineal resection with permanent sigmoid stoma. Ileal conduit was constructed with Bricker's procedure through small infraumbilical incision (4-5 cm). Lateral pelvic lymph node dissection was done only when postchemoradiotherapy MRI showed enlarged pelvic nodes. All 10 patients received neoadjuvant chemo radiotherapy, whereas 8 patients received additional neoadjuvant chemotherapy. Mean body mass index was 21.73 (range 19.5-26.3). Mean blood loss was 1000 mL (range 300-2000 mL). Mean duration of surgery was 9.13 hours (range 7-13 hours). One patient developed paralytic ileus, which was managed conservatively. One patient developed intestinal obstruction due to herniation of small intestine behind the left ureter and ileal conduit. The same patient developed acute pylonephritis, which was managed with antibiotics. Mean postoperative stay was 14.6 days (range 9-25 days). On postoperative histopathology, all margins were free of tumor in all cases. Minimally invasive approaches can be used safely for total pelvic exenteration in locally advanced

  8. Selection of the optimal radiotherapy technique for locally advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Lee, Ik-Jae; Seong, Jinsil; Koom, Woong-Sub; Kim, Yong-Bae; Jeon, Byeong-Chul; Kim, Joo-Ho; Han, Kwang-Hyub

    2011-01-01

    Various techniques are available for radiotherapy of hepatocellular carcinoma, including three-dimensional conformal radiotherapy, linac-based intensity-modulated radiotherapy and helical tomotherapy. The purpose of this study was to determine the optimal radiotherapy technique for hepatocellular carcinoma. Between 2006 and 2007, 12 patients underwent helical tomotherapy for locally advanced hepatocellular carcinoma. Helical tomotherapy computerized radiotherapy planning was compared with the best computerized radiotherapy planning for three-dimensional conformal radiotherapy and linac-based intensity-modulated radiotherapy for the delivery of 60 Gy in 30 fractions. Tumor coverage was assessed by conformity index, radical dose homogeneity index and moderated dose homogeneity index. Computerized radiotherapy planning was also compared according to the tumor location. Tumor coverage was shown to be significantly superior with helical tomotherapy as assessed by conformity index and moderated dose homogeneity index (P=0.002 and 0.03, respectively). Helical tomotherapy showed significantly lower irradiated liver volume at 40, 50 and 60 Gy (V40, V50 and V60, P=0.04, 0.03 and 0.01, respectively). On the contrary, the dose-volume of three-dimensional conformal radiotherapy at V20 was significantly smaller than those of linac-based intensity-modulated radiotherapy and helical tomotherapy in the remaining liver (P=0.03). Linac-based intensity-modulated radiotherapy showed better sparing of the stomach compared with helical tomotherapy in the case of separated lesions in both lobes (12.3 vs. 24.6 Gy). Helical tomotherapy showed the high dose-volume exposure to the left kidney due to helical delivery in the right lobe lesion. Helical tomotherapy achieved the best tumor coverage of the remaining normal liver. However, helical tomotherapy showed much exposure to the remaining liver at the lower dose region and left kidney. (author)

  9. Advances in the Surgical Management of Articular Cartilage Defects: Autologous Chondrocyte Implantation Techniques in the Pipeline.

    Science.gov (United States)

    Stein, Spencer; Strauss, Eric; Bosco, Joseph

    2013-01-01

    The purpose of this review is to gain insight into the latest methods of articular cartilage implantation (ACI) and to detail where they are in the Food and Drug Administration approval and regulatory process. A PubMed search was performed using the phrase "Autologous Chondrocyte Implantation" alone and with the words second generation and third generation. Additionally, clinicaltrials.gov was searched for the names of the seven specific procedures and the parent company websites were referenced. Two-Stage Techniques: BioCart II uses a FGF2v1 culture and a fibrinogen, thrombin matrix, whereas Hyalograft-C uses a Hyaff 11 matrix. MACI uses a collagen I/III matrix. Cartipatch consists of an agarose-alginate hydrogel. Neocart uses a high-pressure bioreactor for culturing with a type I collagen matrix. ChondroCelect makes use of a gene expression analysis to predict chondrocyte proliferation and has demonstrated significant clinical improvement, but failed to show superiority to microfracture in a phase III trial. One Step Technique: CAIS is an ACI procedure where harvested cartilage is minced and implanted into a matrix for defect filling. As full thickness defects in articular cartilage continue to pose a challenge to treat, new methods of repair are being researched. Later generation ACI has been developed to address the prevalence of fibrocartilage with microfracture and the complications associated with the periosteal flap of first generation ACI such as periosteal hypertrophy. The procedures and products reviewed here represent advances in tissue engineering, scaffolds and autologous chondrocyte culturing that may hold promise in our quest to alter the natural history of symptomatic chondral disease.

  10. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    Science.gov (United States)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  11. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities.

  12. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2013-01-01

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities

  13. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    Science.gov (United States)

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Tsukasa, E-mail: t-hirayama@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Aizawa, Yuka; Yamamoto, Kazuo; Sato, Takeshi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Murata, Hidekazu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502 (Japan); Yoshida, Ryuji; Fisher, Craig A.J. [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kato, Takehisa; Iriyama, Yasutoshi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan)

    2017-05-15

    Advanced techniques for overcoming problems encountered during in situ electron holography experiments in which a voltage is applied to an ionic conductor are reported. The three major problems encountered were 1) electric-field leakage from the specimen and its effect on phase images, 2) high electron conductivity of damage layers formed by the focused ion beam method, and 3) chemical reaction of the specimen with air. The first problem was overcome by comparing experimental phase distributions with simulated images in which three-dimensional leakage fields were taken into account, the second by removing the damage layers using a low-energy narrow Ar ion beam, and the third by developing an air-tight biasing specimen holder. - Highlights: • Phase distributions derived by comparing experimental and simulated measurements. • Simulations take into account leakage electric fields. • Electric potential distributions inside Li-ion conductors are obtained. • FIB damage layers are removed using a low-energy narrow Ar ion beam. • An air-tight biasing TEM holder for protecting air-sensitive specimens is reported.

  15. Coolant void reactivity adjustments in advanced CANDU lattices using adjoint sensitivity technique

    International Nuclear Information System (INIS)

    Assawaroongruengchot, M.; Marleau, G.

    2008-01-01

    Coolant void reactivity (CVR) is an important factor in reactor accident analysis. Here we study the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice using the optimization and adjoint sensitivity techniques. The sensitivity coefficients are evaluated using the perturbation theory based on the integral neutron transport equations. The neutron and flux importance transport solutions are obtained by the method of cyclic characteristics (MOCC). Three sets of parameters for CVR-BOC and k eff -EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR-BOC (CBCVR-BOC). To approximate the EOC sensitivity coefficient, we perform constant-power burnup/depletion calculations using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Our aim is to achieve a desired negative CVR-BOC of -2 mk and k eff -EOC of 0.900 for the first two cases, and a CBCVR-BOC of -2 mk and k eff -EOC of 0.900 for the last case. Sensitivity analyses of CVR and eigenvalue are also included in our study

  16. Coolant void reactivity adjustments in advanced CANDU lattices using adjoint sensitivity technique

    Energy Technology Data Exchange (ETDEWEB)

    Assawaroongruengchot, M. [Institut de Genie Nucleaire, Ecole Polytechnique de Montreal, P.O. Box 6079, stn. Centre-ville, Montreal, H3C3A7 (Canada)], E-mail: monchaia@gmail.com; Marleau, G. [Institut de Genie Nucleaire, Ecole Polytechnique de Montreal, P.O. Box 6079, stn. Centre-ville, Montreal, H3C3A7 (Canada)], E-mail: guy.marleau@polymtl.ca

    2008-03-15

    Coolant void reactivity (CVR) is an important factor in reactor accident analysis. Here we study the adjustments of CVR at beginning of burnup cycle (BOC) and k{sub eff} at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice using the optimization and adjoint sensitivity techniques. The sensitivity coefficients are evaluated using the perturbation theory based on the integral neutron transport equations. The neutron and flux importance transport solutions are obtained by the method of cyclic characteristics (MOCC). Three sets of parameters for CVR-BOC and k{sub eff}-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR-BOC (CBCVR-BOC). To approximate the EOC sensitivity coefficient, we perform constant-power burnup/depletion calculations using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Our aim is to achieve a desired negative CVR-BOC of -2 mk and k{sub eff}-EOC of 0.900 for the first two cases, and a CBCVR-BOC of -2 mk and k{sub eff}-EOC of 0.900 for the last case. Sensitivity analyses of CVR and eigenvalue are also included in our study.

  17. Preparation, Characterization and application of Alumina Powder Produced by advanced Preparation Techniques

    International Nuclear Information System (INIS)

    Khalil, T.; Abou El Nour, F.; Bossert, J.; Ashor, A.H.

    2000-01-01

    Aluminum oxide powders were prepared by advanced chemical techniques. The morphology of the produced powders were examined using scanning electron microscopy (SEM). Surface characteristics of the powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K, through the use of nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer-Emett-Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of the plots relating the amount of nitrogen gas adsorbed V 1 and the thickness of the adsorbed layer t(V 1 -t plots). The thermal behaviour of the powders were studied with the help of differential thermal analysis (DTA) and thermogravimetry (TG). Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact powders after isostatic pressing was evaluated using dilatometry. The sintering temperature of the studied samples were also determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the compacts was investigated

  18. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Lumpkin, A.H.

    1993-01-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 x 10 -9 m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of ∼2 π mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces

  19. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Science.gov (United States)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  20. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Somasundaran, P.; Vasudevan, T.V.

    1993-01-01

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  1. Study of the standard direct costs of various techniques of advanced endoscopy. Comparison with surgical alternatives.

    Science.gov (United States)

    Loras, Carme; Mayor, Vicenç; Fernández-Bañares, Fernando; Esteve, Maria

    2018-03-12

    The complexity of endoscopy has carried out an increase in cost that has a direct effect on the healthcare systems. However, few studies have analyzed the cost of advanced endoscopic procedures (AEP). To carry out a calculation of the standard direct costs of AEP, and to make a financial comparison with their surgical alternatives. Calculation of the standard direct cost in carrying out each procedure. An endoscopist detailed the time, personnel, materials, consumables, recovery room time, stents, pathology and medication used. The cost of surgical procedures was the average cost recorded in the hospital. Thirty-eight AEP were analyzed. The technique showing lowest cost was gastroscopy + APC (€116.57), while that with greatest cost was ERCP with cholangioscopy + stent placement (€5083.65). Some 34.2% of the procedures registered average costs of €1000-2000. In 57% of cases, the endoscopic alternative was 2-5 times more cost-efficient than surgery, in 31% of cases indistinguishable or up to 1.4 times more costly. Standard direct cost of the majority of AEP is reported using a methodology that enables easy application in other centers. For the most part, endoscopic procedures are more cost-efficient than the corresponding surgical procedure. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Dainan Zhang

    2017-02-01

    Full Text Available Abstract Natural organic matter (NOM plays important roles in biological, chemical, and physical processes within the terrestrial and aquatic ecosystem. Despite its importance, a clear and exhaustive knowledge on NOM chemistry still lacks. Aiming to prove that advanced solid-state 13C nuclear magnetic resonance (NMR techniques may contribute to fill such a gap, in this paper we reported relevant examples of its applicability to NOM components, such as biomass, deposition material, sediments, and kerogen samples. It is found that nonhydrolyzable organic carbons (NHC, chars, and polymethylene carbons are important in the investigated samples. The structure of each of the NHC fractions is similar to that of kerogens, highlighting the importance of selective preservation of NOM to the kerogen origin in the investigated aquatic ecosystems. Moreover, during the artificial maturation experiments of kerogen, the chemical and structural characteristics such as protonated aromatic, nonprotonated carbons, and aromatic cluster size play important roles in the origin and variation of nanoporosity during kerogen maturation. Graphical abstract NMR parameters of thermally stimulated kerogens

  3. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  4. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jianning Wu

    2015-01-01

    Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  5. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.

    Science.gov (United States)

    Wu, Jianning; Wu, Bin

    2015-01-01

    The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  6. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2016-01-08

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  7. A Preliminary Investigation of NSCL/P Plasma and Urine in Guizhou Province in China Using NMR-Based Metabonomics.

    Science.gov (United States)

    Lei, Huang Guang; Hong, Luo; Kun, Song Ju; Hai, Yin Xin; Dong, Wang Ya; Ke, Zhao; Ping, Xu; Hao, Chen

    2013-09-01

    Objective : To assess the feasibility of metabonomics in clinical studies. This is a pilot study introducing nuclear magnetic resonance (NMR)-based metabonomics to elucidate and compare the metabolism of patients with nonsyndromic cleft lip and/or palate (NSCL/P) and children without orofacial clefts. Methods : High-resolution (1)H NMR spectroscopy was performed on plasma and urine samples obtained from NSCL/P and healthy children. The (1)H NMR spectra were further analyzed with principal component analysis. Results : Compared to the control group, the level of low-molecular-weight metabolites in plasma such as asparagine was higher in NSCL/P patients, while arginine, lysine, acetate, lactate, proline, glutamine, pyruvate, creatinine, choline, and β-glucose were lower. The carnitine, citrate, and formate excretion in urine appeared to be higher in the healthy children, while the NSCL/P group excreted higher concentrations of aspartic acid and phenylalanine in urine. Conclusion : The present study clearly demonstrated the great potential of NMR-based metabonomics in elucidating NSCL/P plasma metabolism and the possible application of this technology in clinical diagnosis and screening.

  8. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    Science.gov (United States)

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

  9. Recommendations and Standardization of Biomarker Quantification Using NMR-based Metabolomics with Particular Focus on Urinary Analysis

    KAUST Repository

    Emwas, Abdul-Hamid M.; Roy, Raja; McKay, Ryan T.; Ryan, Danielle; Brennan, Lorraine; Tenori, Leonardo; Luchinat, Claudio; Gao, Xin; Zeri, Ana Carolina; Gowda, G. A. Nagana; Raftery, Daniel; Steinbeck, Christoph; Salek, Reza M; Wishart, David S.

    2016-01-01

    NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to non-destructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Indeed, precise metabolite quantification is a necessary prerequisite to move any chemical biomarker or biomarker panel from the lab into the clinic. Among the many biofluids (urine, serum, plasma, cerebrospinal fluid and saliva) commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, easily obtained, needs little sample preparation and does not require any invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, thereby providing a rich source of potentially useful disease biomarkers. However, the incredible variation in urine chemical concentrations due to effects such as gender, age, diet, life style, health conditions, and physical activity make the analysis of urine and the identification of useful urinary biomarkers by NMR quite challenging. In this review, we discuss a number of the most significant issues regarding NMR-based urinary metabolomics with a specific emphasis on metabolite quantification for disease biomarker applications. We also propose a number of data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, as well as recommendations regarding sample preparation and biomarker assessment.

  10. The development of optical microscopy techniques for the advancement of single-particle studies

    Science.gov (United States)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  11. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  12. Advances in the hydrometallurgical separation techniques of high purity rare earth elements

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Kain, V.

    2017-01-01

    Rare Earths are a series of 15 chemically similar elements that occur together in monazite mineral found in the beach sands of Kerala, Tamil Nadu and Orissa. The rare earth elements (REE) are becoming increasingly strategically important considering their essential role in permanent magnets such as, SmCo_5, Sm_2Co_1_7 and Nd_2Fe_1_4B, phosphors for LED screens and lamps, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REE. The European Commission considers the REE as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REE are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 405 of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Orissa. Indian Rare Earths Limited at Aluva near Kochi produces mainly mixed rare earths chloride and till recent past exporting to USA, UK, France, Japan, etc. They have revived their rare earth separation plant to meet the in-house demands of the strategic, defense and nuclear industry. This paper discusses the recent advances made in hydrometallurgical separation techniques based on solvent extraction technique, ion-exchange resins, hollow fibre membrane extractor, solvent encapsulated polymeric beads, etc for the production of high purity rare earth elements from both primary (Monazite, xenotime) and secondary sources

  13. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    International Nuclear Information System (INIS)

    Schalkoff, Robert J.

    1999-01-01

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  14. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  15. Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens

    Science.gov (United States)

    Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

  16. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    International Nuclear Information System (INIS)

    Engl, G.; Kronig, M.

    1988-01-01

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC)

  17. Field experience with advanced inservice inspection NDE-techniques for detection and sizing

    Energy Technology Data Exchange (ETDEWEB)

    Engl, G; Kronig, M

    1988-12-31

    This document deals with Non-Destructive Examination (NDE) techniques used for the detection and sizing of cracks. Several techniques, such as L-SAFT, ALOK and Phased Array with UT-Tomography are discussed and compared. (TEC).

  18. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  19. NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Bross, Peter

    2010-01-01

    NMR-based metabonomics was applied to elucidate the time-dependent stress responses in mouse myotubes after heat exposure of either 42 or 45 degrees C for 1 h. Principal component analysis (PCA) revealed that the gradual time-dependent changes in metabolites contributing to the clustering...... and separation of the control samples from the different time points after heat stress primarily are in the metabolites glucose, leucine, lysine, phenylalanine, creatine, glutamine, and acetate. In addition, PC scores revealed a maximum change in metabolite composition 4 h after the stress exposure; thereafter......, samples returned toward control samples, however, without reaching the control samples even 10 h after stress. The results also indicate that the myotubes efficiently regulate the pH level by release of lactate to the culture medium at a heat stress level of 42 degrees C, which is a temperature level...

  20. New Computational Approaches for NMR-based Drug Design: A Protocol for Ligand Docking to Flexible Target Sites

    International Nuclear Information System (INIS)

    Gracia, Luis; Speidel, Joshua A.; Weinstein, Harel

    2006-01-01

    NMR-based drug design has met with some success in the last decade, as illustrated in numerous instances by Fesik's ''ligand screening by NMR'' approach. Ongoing efforts to generalize this success have led us to the development of a new paradigm in which quantitative computational approaches are being integrated with NMR derived data and biological assays. The key component of this work is the inclusion of the intrinsic dynamic quality of NMR structures in theoretical models and its use in docking. A new computational protocol is introduced here, designed to dock small molecule ligands to flexible proteins derived from NMR structures. The algorithm makes use of a combination of simulated annealing monte carlo simulations (SA/MC) and a mean field potential informed by the NMR data. The new protocol is illustrated in the context of an ongoing project aimed at developing new selective inhibitors for the PCAF bromodomains that interact with HIV Tat

  1. Coverage of localized gingival recession using coronally advanced flap: A comparison between microsurgical and macrosurgical techniques

    Directory of Open Access Journals (Sweden)

    Sweta Kumari Singh

    2017-01-01

    Full Text Available Background: The aim of the present study was to compare the root coverage of localized gingival recession (GR using modified coronally advanced flap (CAF (Sanctis and Zucchelli's technique and root conditioning 24% ethylenediaminetetraacetic acid (EDTA when done under magnification and without magnification. Materials and Methods: A total of 20 sites were taken with Miller's Class I GR (10 in test and 10 in control. All clinical parameters were recorded at baseline, 1 month, and 3 months. CAF and root conditioning were done with 24% EDTA. Surgical procedure at test site was carried under magnification ×3.5 and at control site was done without magnification. Results: Plaque index, gingival index, clinical attachment level, probing depth, width of keratinized tissue (WKT, recession depth (RD, and recession width (RW at baseline and 3 months were compared using Student's t- test. Mean WKT at baseline in control and test group was 4.22 ± 2.05 and 3.22 ± 1.09 which increased to 4.56 ± 1.59 and 4.50 ± 0.94, respectively, at 3 months. RD at baseline in control and test groups was 2.56 ± 0.53 and 2.67 ± 0.87 which reduced to 1.83 ± 0.71 and 1.22 ± 1.20, respectively. RW at baseline in control and test group was 3.56 ± 1.13 and 3.67 ± 0.50 which decreased to 3.06 ± 1.01 and 1.72 ± 1.39, respectively. All the clinical parameters were statistically not significant between control and test groups. Mean visual analog scale (VAS at 7 days postoperatively in control and test groups was 1.78 ± 0.97 and 0.22 ± 0.44, respectively. The VAS scores were found to be significantly lower in the test group at both 3rd and 7th day postoperatively showing less pain in test group. Conclusion: Microsurgery offers less pain and enhanced outcomes when compared to traditional macrosurgery.

  2. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus)

    International Nuclear Information System (INIS)

    Li, Minghui; Wang, Junsong; Lu, Zhaoguang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-01-01

    Highlights: •A goldfish model was established to investigate the toxicity of lambda-cyhalothrin (LCT) exposure on multiple organs. •NMR based metabolomics approach were firstly used to provide a global view of the toxicity of LCT. •LCT induced neurotransmitters and osmoregulatory imbalances, oxidative stress, energy and amino acid metabolic disorders. •Glutamate–glutamine–GABA axis as a potential target for LCT toxicity was first found. -- Abstract: In this study, a 1 H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate–glutamine–gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment

  3. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  4. Diagnosis of coinfection by schistosomiasis and viral hepatitis B or C using 1H NMR-based metabonomics.

    Science.gov (United States)

    Gouveia, Liana Ribeiro; Santos, Joelma Carvalho; Silva, Ronaldo Dionísio; Batista, Andrea Dória; Domingues, Ana Lúcia Coutinho; Lopes, Edmundo Pessoa de Almeida; Silva, Ricardo Oliveira

    2017-01-01

    Diagnosis of liver involvement due to schistosomiasis in asymptomatic patients from endemic areas previously diagnosed with chronic hepatitis B (HBV) or C (HCV) and periportal fibrosis is challenging. H-1 Nuclear Magnetic Resonance (NMR)-based metabonomics strategy is a powerful tool for providing a profile of endogenous metabolites of low molecular weight in biofluids in a non-invasive way. The aim of this study was to diagnose periportal fibrosis due to schistosomiasis mansoni in patients with chronic HBV or HCV infection through NMR-based metabonomics models. The study included 40 patients divided into two groups: (i) 18 coinfected patients with schistosomiasis mansoni and HBV or HCV; and (ii) 22 HBV or HCV monoinfected patients. The serum samples were analyzed through H-1 NMR spectroscopy and the models were based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA). Ultrasonography examination was used to ascertain the diagnosis of periportal fibrosis. Exploratory analysis showed a clear separation between coinfected and monoinfected samples. The supervised model built from PLS-DA showed accuracy, R2 and Q2 values equal to 100%, 98.1% and 97.5%, respectively. According to the variable importance in the projection plot, lactate serum levels were higher in the coinfected group, while the signals attributed to HDL serum cholesterol were more intense in the monoinfected group. The metabonomics models constructed in this study are promising as an alternative tool for diagnosis of periportal fibrosis by schistosomiasis in patients with chronic HBV or HCV infection from endemic areas for Schistosoma mansoni.

  5. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minghui [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Wang, Junsong, E-mail: wang.junsong@gmail.com [Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094 (China); Lu, Zhaoguang; Wei, Dandan; Yang, Minghua [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China); Kong, Lingyi, E-mail: cpu_lykong@126.com [State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009 (China)

    2014-01-15

    Highlights: •A goldfish model was established to investigate the toxicity of lambda-cyhalothrin (LCT) exposure on multiple organs. •NMR based metabolomics approach were firstly used to provide a global view of the toxicity of LCT. •LCT induced neurotransmitters and osmoregulatory imbalances, oxidative stress, energy and amino acid metabolic disorders. •Glutamate–glutamine–GABA axis as a potential target for LCT toxicity was first found. -- Abstract: In this study, a {sup 1}H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate–glutamine–gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment.

  6. Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha).

    Science.gov (United States)

    Watanabe, Miki; Meyer, Kathryn A; Jackson, Tyler M; Schock, Tracey B; Johnson, W Edward; Bearden, Daniel W

    Zebra mussel, Dreissena polymorpha , in the Great Lakes is being monitored as a bio-indicator organism for environmental health effects by the National Oceanic and Atmospheric Administration's Mussel Watch program. In order to monitor the environmental effects of industrial pollution on the ecosystem, invasive zebra mussels were collected from four stations-three inner harbor sites (LMMB4, LMMB1, and LMMB) in Milwaukee Estuary, and one reference site (LMMB5) in Lake Michigan, Wisconsin. Nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate the metabolic profiles of the mussels from these four sites. The objective was to observe whether there were differences in metabolite profiles between impacted sites and the reference site; and if there were metabolic profile differences among the impacted sites. Principal component analyses indicated there was no significant difference between two impacted sites: north Milwaukee harbor (LMMB and LMMB4) and the LMMB5 reference site. However, significant metabolic differences were observed between the impacted site on the south Milwaukee harbor (LMMB1) and the LMMB5 reference site, a finding that correlates with preliminary sediment toxicity results. A total of 26 altered metabolites (including two unidentified peaks) were successfully identified in a comparison of zebra mussels from the LMMB1 site and LMMB5 reference site. The application of both uni- and multivariate analysis not only confirmed the variability of altered metabolites but also ensured that these metabolites were identified via unbiased analysis. This study has demonstrated the feasibility of the NMR-based metabolomics approach to assess whole-body metabolomics of zebra mussels to study the physiological impact of toxicant exposure at field sites.

  7. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    Science.gov (United States)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  8. Refinement of a thrombectomy technique to treat acute ischemic stroke: Technical note on microcatheter advance during retrieving self expandable stent

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Sung Won; Kim, Ho Kyun [Catholic Univ. of Daegu School of Medicine, Daegu (Korea, Republic of)

    2012-07-15

    Temporary stenting and thrombectomy by use of the Solitaire stent (ev3, Irvine, CA, USA) has shown prompt and successful recanalization of the acutely occluded major cerebral artery. However, even if rarely reported, inadvertent stent detachment may occur as an innate drawback and full deployment of the stent was considered to increase the risk. In our patients, the Solitaire stent did not fully unfold to prevent inadvertent detachment. Before retrieval of the stent, the tip of the microcatheter was advanced forward carefully under fluoroscopic observation until it met the presumed thrombus segment and a subtle sense of resistance was felt in the fingers guiding the stent. After retrieval, complete recanalization was achieved, and the thrombus was trapped between the tip of the microcatheter and the stent strut. We present 2 cases of successful thrombi captures by advancing a microcatheter during Solitaire stent retrieval, and we suggest that advancing the microcatheter can be a useful refinement to the thrombectomy technique for acute ischemic stroke.

  9. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Anand [State University of New York, Stony Brook, NY 11794 (United States); Goland, Allen [State University of New York, Stony Brook, NY 11794 (United States); Herman, Herbert [State University of New York, Stony Brook, NY 11794 (United States)]. E-mail: hherman@ms.cc.sunysb.edu; Allen, Andrew J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Dobbins, Tabbetha [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); DeCarlo, Francesco [Argonne National Laboratory, Argonne, IL 60439 (United States); Ilavsky, Jan [Argonne National Laboratory, Argonne, IL 60439 (United States); Long, Gabrielle G. [Argonne National Laboratory, Argonne, IL 60439 (United States); Fang, Stacy [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States); Lawton, Paul [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States)

    2006-06-25

    The ongoing quest to increase gas turbine efficiency and performance (increased thrust) provides a driving force for materials development. While improved engine design and usage of novel materials provide solutions for increased engine operating temperatures, and hence fuel efficiency, reliability issues remain. Thermal barrier coatings (TBCs), deposited onto turbine components using the electron-beam physical vapor deposition (EB-PVD) process, exhibit unique pore architectures capable of bridging the technological gap between insulation/life extension and prime reliance. This article explores the potential of advanced X-ray and neutron techniques for comprehension of an EB-PVD TBC coating microstructure. While conventional microscopy reveals a hierarchy of voids, complementary advanced techniques allow quantification of these voids in terms of component porosities, anisotropy, size and gradient through the coating thickness. In addition, the derived microstructural parameters obtained both further knowledge of the nature and architecture of the porosity, and help establish its influence on the resultant thermal and mechanical properties.

  10. Increasing rigor in NMR-based metabolomics through validated and open source tools.

    Science.gov (United States)

    Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L

    2017-02-01

    The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. Copyright © 2016. Published by Elsevier Ltd.

  11. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    International Nuclear Information System (INIS)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OARs, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OARs DVHs as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. (author)

  12. Conventional and conformal technique of external beam radiotherapy in locally advanced cervical cancer: Dose distribution, tumor response, and side effects

    Science.gov (United States)

    Mutrikah, N.; Winarno, H.; Amalia, T.; Djakaria, M.

    2017-08-01

    The objective of this study was to compare conventional and conformal techniques of external beam radiotherapy (EBRT) in terms of the dose distribution, tumor response, and side effects in the treatment of locally advanced cervical cancer patients. A retrospective cohort study was conducted on cervical cancer patients who underwent EBRT before brachytherapy in the Radiotherapy Department of Cipto Mangunkusumo Hospital. The prescribed dose distribution, tumor response, and acute side effects of EBRT using conventional and conformal techniques were investigated. In total, 51 patients who underwent EBRT using conventional techniques (25 cases using Cobalt-60 and 26 cases using a linear accelerator (LINAC)) and 29 patients who underwent EBRT using conformal techniques were included in the study. The distribution of the prescribed dose in the target had an impact on the patient’s final response to EBRT. The complete response rate of patients to conformal techniques was significantly greater (58%) than that of patients to conventional techniques (42%). No severe acute local side effects were seen in any of the patients (Radiation Therapy Oncology Group (RTOG) grades 3-4). The distribution of the dose and volume to the gastrointestinal tract affected the proportion of mild acute side effects (RTOG grades 1-2). The urinary bladder was significantly greater using conventional techniques (Cobalt-60/LINAC) than using conformal techniques at 72% and 78% compared to 28% and 22%, respectively. The use of conformal techniques in pelvic radiation therapy is suggested in radiotherapy centers with CT simulators and 3D Radiotherapy Treatment Planning Systems (RTPSs) to decrease some uncertainties in radiotherapy planning. The use of AP/PA pelvic radiation techniques with Cobalt-60 should be limited in body thicknesses equal to or less than 18 cm. When using conformal techniques, delineation should be applied in the small bowel, as it is considered a critical organ according to RTOG

  13. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes.

    Science.gov (United States)

    Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi

    2018-04-04

    In the present perspective, different approaches to the carotenoids analysis will be discussed providing a brief overview of the most advanced both monodimensional and bidimensional liquid chromatographic methodologies applied to the carotenoids analysis, followed by a discussion on the recents advanced supercritical fluid chromatography × liquid chromatography bidimensional approach with photodiode-array and mass spectrometry detection. Moreover a discussion on the online supercritical fluid extraction-supercritical fluid chromatography with tandem mass spectrometry detection applied to the determination of carotenoids and apocarotenoids will also be provided.

  14. Tenon advancement and duplication technique to prevent postoperative Ahmed valve tube exposure in patients with refractory glaucoma.

    Science.gov (United States)

    Tamcelik, Nevbahar; Ozkok, Ahmet; Sarıcı, Ahmet Murat; Atalay, Eray; Yetik, Huseyin; Gungor, Kivanc

    2013-07-01

    To present and compare the long-term results of Dr. Tamcelik's previously described technique of Tenon advancement and duplication with the conventional Ahmed glaucoma valve (AGV) implantation technique in patients with refractory glaucoma. This study was a multicenter, retrospective case series that included 303 eyes of 276 patients with refractory glaucoma who underwent glaucoma valve implantation surgery. The patients were divided into three groups according to the surgical technique applied and the outcomes compared. In group 1, 96 eyes of 86 patients underwent AGV implant surgery without patch graft; in group 2, 78 eyes of 72 patients underwent AGV implant surgery with donor scleral patch; in group 3, 129 eyes of 118 patients underwent Ahmed valve implant surgery with "combined short scleral tunnel with Tenon advancement and duplication technique". The endpoint assessed was tube exposure through the conjunctiva. In group 1, conjunctival tube exposure was seen in 11 eyes (12.9 %) after a mean 9.2 ± 3.7 years of follow-up. In group 2, conjunctival tube exposure was seen in six eyes (2.2 %) after a mean 8.9 ± 3.3 years of follow-up. In group 3, there was no conjunctival exposure after a mean 7.8 ± 2.8 years of follow-up. The difference between the groups was statistically significant. (P = 0.0001, Chi-square test). This novel surgical technique combining a short scleral tunnel with Tenon advancement and duplication was found to be effective and safe to prevent conjunctival tube exposure after AGV implantation surgery in patients with refractory glaucoma.

  15. Possibilities for Advanced Encoding Techniques at Signal Transmission in the Optical Transmission Medium

    Directory of Open Access Journals (Sweden)

    Filip Čertík

    2016-01-01

    Full Text Available This paper presents a possible simulation of negative effects in the optical transmission medium and an analysis for the utilization of different signal processing techniques at the optical signal transmission. An attention is focused on the high data rate signal transmission in the optical fiber influenced by linear and nonlinear environmental effects presented by the prepared simulation model. The analysis includes possible utilization of OOK, BPSK, DBPSK, BFSK, QPSK, DQPSK, 8PSK, and 16QAM modulation techniques together with RS, BCH, and LDPC encoding techniques for the signal transmission in the optical fiber. Moreover, the prepared simulation model is compared with real optical transmission systems. In the final part, a comparison of the selected modulation techniques with different encoding techniques and their implementation in real transmission systems is shown.

  16. Recent advances in electronic nose techniques for monitoring of fermentation process.

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  17. Specificity and sensitivity of NMR based urinary metabolic biomarker for radiation injury

    International Nuclear Information System (INIS)

    Tyagi, Ritu; Watve, Apurva; Khushu, Subash; Rana, Poonam

    2016-01-01

    Increasing burden of natural background radiation and terrestrial radionuclides is a big threat of radiation exposure to the population at large. It is necessary to develop biomarker of ionizing radiation exposure that can be used for mass screening in the event of a radiological mass casualty incident. Metabolomics has already been proven as an excellent developing prospect for capturing diseases specific metabolic signatures as possible biomarkers. The aim of the present study is to evaluate the sensitivity and specificity of the urinary metabolites after whole body radiation exposure which can further be used as early predictive marker. The PLS-DA based ROC curve depicted taurine as a biomarker of early radiation injury. This study along with other 'omics' technique will be useful to help design strategies for non-invasive radiation biodosimetry through metabolomics in human populations

  18. Comparative 1H NMR-based metabonomic analysis of HIV-1 sera

    International Nuclear Information System (INIS)

    Philippeos, C.; Steffens, F. E.; Meyer, D.

    2009-01-01

    1 H NMR spectroscopy of sera from HIV-1 infected and uninfected individuals was performed on 300 and 600 MHz instruments. The resultant spectra were automatically data reduced to 90 and 180 integral segments of equal length. Analysis of variance identified significant differences between the sample groups, especially for the samples analyzed on 600 MHz and reduced to fewer segments. Linear discriminant analysis correctly classified 100% of the samples analyzed on the 300 MHz NMR (reduced to 180 segments); an increase in instrument sensitivity resulted in lower percentages of correctly classified samples. Multinomial logistic regression (MLR) resulted in 100% correct classification of all samples from both instruments. Thus 1 H-NMR metabonomics on either instrument distinguishes HIV-positive individuals using or not using anti retroviral therapy, but the sensitivity of the instrument impacts on data reduction. Furthermore, MLR is a novel multivariate statistical technique for improved classification of biological data analyzed in NMR

  19. Comparative {sup 1}H NMR-based metabonomic analysis of HIV-1 sera

    Energy Technology Data Exchange (ETDEWEB)

    Philippeos, C. [University of Johannesburg, Department of Biochemistry (South Africa); Steffens, F. E. [University of Pretoria, Department of Statistics (South Africa); Meyer, D. [University of Pretoria, Department of Biochemistry (South Africa)], E-mail: debra.meyer@up.ac.za

    2009-07-15

    {sup 1}H NMR spectroscopy of sera from HIV-1 infected and uninfected individuals was performed on 300 and 600 MHz instruments. The resultant spectra were automatically data reduced to 90 and 180 integral segments of equal length. Analysis of variance identified significant differences between the sample groups, especially for the samples analyzed on 600 MHz and reduced to fewer segments. Linear discriminant analysis correctly classified 100% of the samples analyzed on the 300 MHz NMR (reduced to 180 segments); an increase in instrument sensitivity resulted in lower percentages of correctly classified samples. Multinomial logistic regression (MLR) resulted in 100% correct classification of all samples from both instruments. Thus {sup 1}H-NMR metabonomics on either instrument distinguishes HIV-positive individuals using or not using anti retroviral therapy, but the sensitivity of the instrument impacts on data reduction. Furthermore, MLR is a novel multivariate statistical technique for improved classification of biological data analyzed in NMR.

  20. Exploring Airway Diseases by NMR-Based Metabonomics: A Review of Application to Exhaled Breath Condensate

    Directory of Open Access Journals (Sweden)

    Matteo Sofia

    2011-01-01

    Full Text Available There is increasing evidence that biomarkers of exhaled gases or exhaled breath condensate (EBC may help in detecting abnormalities in respiratory diseases mirroring increased, oxidative stress, airways inflammation and endothelial dysfunction. Beside the traditional techniques to investigate biomarker profiles, “omics” sciences have raised interest in the clinical field as potentially improving disease phenotyping. In particular, metabonomics appears to be an important tool to gain qualitative and quantitative information on low-molecular weight metabolites present in cells, tissues, and fluids. Here, we review the potential use of EBC as a suitable matrix for metabonomic studies using nuclear magnetic resonance (NMR spectroscopy. By using this approach in airway diseases, it is now possible to separate specific EBC profiles, with implication in disease phenotyping and personalized therapy.

  1. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study

    Directory of Open Access Journals (Sweden)

    Sengupta Arjun

    2011-12-01

    Full Text Available Abstract Background Plasmodium vivax is responsible for the majority of malarial infection in the Indian subcontinent. This species of the parasite is generally believed to cause a relatively benign form of the disease. However, recent reports from different parts of the world indicate that vivax malaria can also have severe manifestation. Host response to the parasite invasion is thought to be an important factor in determining the severity of manifestation. In this paper, attempt was made to determine the host metabolic response associated with P. vivax infection by means of NMR spectroscopy-based metabonomic techniques in an attempt to better understand the disease pathology. Methods NMR spectroscopy of urine samples from P. vivax-infected patients, healthy individuals and non-malarial fever patients were carried out followed by multivariate statistical analysis. Two data analysis techniques were employed, namely, Principal Component Analysis [PCA] and Orthogonal Projection to Latent Structure Discriminant Analysis [OPLS-DA]. Several NMR signals from the urinary metabolites were further selected for univariate comparison among the classes. Results The urine metabolic profiles of P. vivax-infected patients were distinct from those of healthy individuals as well as of non-malarial fever patients. A highly predictive model was constructed from urine profile of malarial and non-malarial fever patients. Several metabolites were found to be varying significantly across these cohorts. Urinary ornithine seems to have the potential to be used as biomarkers of vivax malaria. An increasing trend in pipecolic acid was also observed. The results suggest impairment in the functioning of liver as well as impairment in urea cycle. Conclusions The results open up a possibility of non-invasive analysis and diagnosis of P. vivax using urine metabolic profile. Distinct variations in certain metabolites were recorded, and amongst these, ornithine may have the

  2. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    Science.gov (United States)

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Advanced Numerical Integration Techniques for HighFidelity SDE Spacecraft Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Classic numerical integration techniques, such as the ones at the heart of several NASA GSFC analysis tools, are known to work well for deterministic differential...

  4. Advances in insect population control by the sterile-male technique

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-01

    The sterile male technique has been successfully used in the control or eradication of at least eight species of insects in experimental or field trials. In view of the importance of the method the IAEA convened a Panel of experts in July 1964 to review the progress made in research on the application of the technique and to suggest future actions. The findings of the Panel are published in this Technical Report. 52 refs, 10 figs, 10 tabs.

  5. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    Teaching of magnetic resonance (MR) imaging techniques typically involves considerable handwaving, literally, to explain concepts such as resonance, rotating frames, dephasing, refocusing, sequences, and imaging. A proper understanding of MR contrast and imaging techniques is crucial for radiolog...... be visualized in an intuitive way. The cross-platform software is primarily designed for use in lectures, but is also useful for self studies and student assignments. Movies available at http://radiographics.rsnajnls.org/cgi/content/full/e27/DC1 ....

  6. Advances in insect population control by the sterile-male technique

    International Nuclear Information System (INIS)

    1965-01-01

    The sterile male technique has been successfully used in the control or eradication of at least eight species of insects in experimental or field trials. In view of the importance of the method the IAEA convened a Panel of experts in July 1964 to review the progress made in research on the application of the technique and to suggest future actions. The findings of the Panel are published in this Technical Report. 52 refs, 10 figs, 10 tabs

  7. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  8. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  9. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H 2 O 2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  10. NMR-based metabonomics study on the effect of Gancao in the attenuation of toxicity in rats induced by Fuzi.

    Science.gov (United States)

    Sun, Bo; Wang, Xubin; Cao, Ruili; Zhang, Qi; Liu, Qiao; Xu, Meifeng; Zhang, Ming; Du, Xiangbo; Dong, Fangting; Yan, Xianzhong

    2016-12-04

    Fuzi, the processed lateral root of Aconitum carmichaelii Debeaux, is a traditional Chinese medicine used for its analgesic, antipyretic, anti-rheumatoid arthritis and anti-inflammation effects; however, it is also well known for its toxicity. Gancao, the root of Glycyrrhiza uralensis Fisch., is often used concurrently with Fuzi to alleviate its toxicity. However, the mechanism of detoxication is still not well clear. In this study, the effect of Gancao on the metabolic changes induced by Fuzi was investigated by NMR-based metabonomic approaches. Fifty male Wistar rats were randomly divided into five groups (group A: control, group B: Fuzi decoction alone, group C: Gancao decoction alone, group D: Fuzi decoction and Gancao decoction simultaneously, group E: Fuzi decoction 5h after Gancao decoction) and urine samples were collected for NMR-based metabolic profiling analysis. Statistical analyses such as unsupervised PCA, t-test, hierarchical cluster, and pathway analysis were used to detect the effects of Gancao on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics showed that Fuzi exhibited toxic effects on treated rats (group B) and statistical analyses showed that their metabolic profiles were in contrast to those in groups A and C. However, when Fuzi was administered with Gancao, the metabolic profiles became similar to controls, whereby Gancao reduced the levels of trimethylamine N-oxide, betaine, dimethylglycine, valine, acetoacetate, citrate, fumarate, 2-ketoglutarate and hippurate, and regulated the concentrations of taurine and 3-hydroxybutyrate, resulting in a decrease in toxicity. Furthermore, important pathways that are known to be involved in the effect of Gancao on Fuzi, including phenylalanine, tyrosine and tryptophan biosynthesis, the synthesis and degradation of ketone bodies, and the TCA cycle, were altered in co-treated rats. Gancao treatment mitigated the metabolic changes altered by Fuzi administration in rats

  11. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale.

    Science.gov (United States)

    Wachtmeister, Jochen; Rother, Dörte

    2016-12-01

    Recent advances in biocatalysis have strongly boosted its recognition as a valuable addition to traditional chemical synthesis routes. As for any catalytic process, catalyst's costs and stabilities are of highest relevance for the economic application in chemical manufacturing. Employing biocatalysts as whole cells circumvents the need of cell lysis and enzyme purification and hence strongly cuts on cost. At the same time, residual cell wall components can shield the entrapped enzyme from potentially harmful surroundings and aid to enable applications far from natural enzymatic environments. Further advantages are the close proximity of reactants and catalysts as well as the inherent presence of expensive cofactors. Here, we review and comment on benefits and recent advances in whole cell biocatalysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  13. Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine.

    Science.gov (United States)

    Cassiède, Marc; Nair, Sindhu; Dueck, Meghan; Mino, James; McKay, Ryan; Mercier, Pascal; Quémerais, Bernadette; Lacy, Paige

    2017-01-01

    Proton nuclear magnetic resonance ( 1 H NMR, or NMR) spectroscopy and inductively coupled plasma-mass spectrometry (ICP-MS) are commonly used for metabolomics and metal analysis in urine samples. However, creatinine quantification by NMR for the purpose of normalization of urinary metals has not been validated. We assessed the validity of using NMR analysis for creatinine quantification in human urine samples in order to allow normalization of urinary metal concentrations. NMR and ICP-MS techniques were used to measure metabolite and metal concentrations in urine samples from 10 healthy subjects. For metabolite analysis, two magnetic field strengths (600 and 700MHz) were utilized. In addition, creatinine concentrations were determined by using the Jaffe method. Creatinine levels were strongly correlated (R 2 =0.99) between NMR and Jaffe methods. The NMR spectra were deconvoluted with a target database containing 151 metabolites that are present in urine. A total of 50 metabolites showed good correlation (R 2 =0.7-1.0) at 600 and 700MHz. Metal concentrations determined after NMR-measured creatinine normalization were comparable to previous reports. NMR analysis provided robust urinary creatinine quantification, and was sufficient for normalization of urinary metal concentrations. We found that NMR-measured creatinine-normalized urinary metal concentrations in our control subjects were similar to general population levels in Canada and the United Kingdom. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Study of Spectral Integration and Normalization in NMR-based Metabonomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Lowry, David F.; Jarman, Kristin H.; Harbo, Sam J.; Meng, Quanxin; Fuciarelli, Alfred F.; Pounds, Joel G.; Lee, Monica T.

    2005-09-15

    Metabonomics involves the quantitation of the dynamic multivariate metabolic response of an organism to a pathological event or genetic modification (Nicholson, Lindon and Holmes, 1999). The analysis of these data involves the use of appropriate multivariate statistical methods. Exploratory Data Analysis (EDA) linear projection methods, primarily Principal Component Analysis (PCA), have been documented as a valuable pattern recognition technique for 1H NMR spectral data (Brindle et al., 2002, Potts et al., 2001, Robertson et al., 2000, Robosky et al., 2002). Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenous peak removal, (3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spectral integration regions and normalization has not been well studied. We assess the variability structure and classification accuracy on two distinctly different datasets via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of spectral integration regions. This study indicates that independent of the normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size of the spectral integration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) has higher variability within classification accuracy over spectral integration window widths than data scaled to the total intensity of the spectrum.

  15. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Science.gov (United States)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  16. Automated welding of appendages on empty clad tubes: an advanced technique

    International Nuclear Information System (INIS)

    Desai, P.B.

    1997-01-01

    Several developments have been carried out at Atomic Fuels Division related to fabrication of PHWR fuel assemblies. This paper describes the salient features of an automated welding equipment and its design. Special attention was given to ensure integration of equipment in the existing assembly lines with ease. Detailed drawings are made using Autocad-12 and isometric view of the assembly was prepared. The equipment design is a significant step in the advancement of PHWR fuel assembly fabrication

  17. Advances in Techniques and Technologies for Air Vehicle Navigation and Guidance

    Science.gov (United States)

    1989-12-01

    enfin tenir compte des strategies du pilote. El ie relevera donc au moins en partie du domaine de [’ intelligence artificielle temps reel. et...34 intelligence required for their functional performance. - This symposium was intended to deal with advances in technigues and technologies to design...41* RECONNAISSANCE D’AMERS INTELLIGENTE DANS UNE IMAGE SATELLITE ( Intelligent Landmarks Recognition in Satellites Images) par O.Reichert, D.Berton 42

  18. Management of advanced hilar biliary malignancy with X-shaped stenting technique

    International Nuclear Information System (INIS)

    Hwang, Gyu Hyuk; You, Jin Jong; Ahn, In Oak; Na, Jae Boem; Chung, Sugn Hoon

    2000-01-01

    To report X-shaped stent insertion and its result in the patients with advanced hilar malignancy. X-shaped stents were inserted in six patients with advanced hilar malignancy involving segmental branches of both intrahepatic bile ducts (IHD). The causes were cholangiocarcinomas in five patients and recurrent GB cancer in one. The procedure includes three steps: 1) the insertion of two wires through three IHDs in an X configuration, using a stone basket; 2) balloon dilatation of lesions, and 3) the insertion of two stents in an as X configuration. Stents were inserted after balloon dilatation in five patients, and without balloon dilatation in one. Changes in serum bilirubin levels and procedure-related problems were reviewed. In all patients, serum bilirubin levels gradually decreased, but in two, they increased again. One of these two died of sepsis after 1 month. There was bile leakage through the puncture and bile was extracted from malignant ascites. In the other patient, occlusion of the left stent tip occurred, and additional left PTBD was performed 3 months later. Hemobilia developed in all five patients with balloon dilatation, these all experienced pain during dilatation, but afterwards this disappeared. One stent without pre-balloon dilation showed incomplete self-expansion at the crossing part and supplementary balloon dilatations were performed. In patients with advanced hilar malignancy,X-shaped stent insertion is a new palliation. Problems such as hemobilia, pain, and intraperitoneal bile leakage may, however, occur. (author)

  19. Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities

    Science.gov (United States)

    Juengert, Anne; Dugan, Sandra; Homann, Tobias; Mitzscherling, Steffen; Prager, Jens; Pudovikov, Sergey; Schwender, Thomas

    2018-04-01

    Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains that lead, on the one hand, to high sound scattering and, on the other hand, to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts do not propagate linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due to the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the

  20. Application of advanced nuclear and instrumental analytical techniques for characterisation of environmental materials

    International Nuclear Information System (INIS)

    Sudersanan, M.; Pawaskar, P.B.; Kayasth, S.R.; Kumar, S.C.

    2002-01-01

    Full text: Increasing realisation about the toxic effects of metal ions in environmental materials has given an impetus to research on analytical techniques for their characterization. The large number of analytes present at very low levels has necessitated the use of sensitive, selective and element specific techniques for their characterization. The concern about precision and accuracy on such analysis, which have socio-economic bearing, has emphasized the use of Certified Reference Materials and the use of multi-technique approach for the unambiguous characterization of analytes. The recent work carried out at Analytical Chemistry Division, BARC on these aspects is presented in this paper. Increasing use of fossil fuels has led to the generation of large quantities of fly ash which pose problems of safe disposal. The utilization of these materials for land filling is an attractive option but the presence of trace amounts of toxic metals like mercury, arsenic, lead etc may cause environmental problems. In view of the inhomogeneous nature of the material, efficient sample processing is an important factor, in addition to the validation of the results by the use of proper standards. Analysis was carried out on flyash samples received as reference materials and also as samples from commercial sources using a combination of both nuclear techniques like INAA and RNAA as well as other techniques like AAS, ICPAES, cold vapour AAS for mercury and hydride generation technique for arsenic. Similar analysis using nuclear techniques was employed for the characterization of air particulates. Biological materials often serve as sensitive indicator materials for pollution measurements. They are also employed for studies on the uptake of toxic metals like U, Th, Cd, Pb, Hg etc. The presence of large amounts of organic materials in them necessitate an appropriate sample dissolution procedure. In view of the possibility of loss of certain analytes like Cd, Hg, As, by high

  1. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  2. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  3. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack

    2010-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H 2 O 2 in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  4. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  5. Advanced particle-in-cell simulation techniques for modeling the Lockheed Martin Compact Fusion Reactor

    Science.gov (United States)

    Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David

    2017-10-01

    We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.

  6. Advanced analysis technique for the evaluation of linear alternators and linear motors

    Science.gov (United States)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  7. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Science.gov (United States)

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  8. SU-F-T-87: Comparison of Advanced Radiotherapy Techniques for Post- Mastectomy Breast Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Heins, D; Zhang, R [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K; Sanders, M [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States)

    2016-06-15

    Purpose: To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). Methods: Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans were evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). Results: All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. Conclusion: This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients

  9. Proceedings of the national seminar on advanced construction techniques and geotechnical engineering

    International Nuclear Information System (INIS)

    Partheeban, P.; Poornima, C.A.; Guru, V.

    2015-02-01

    The objective of this seminar is to emphasize the need for developing modern construction materials in the era of technology. It also provides a forum for National Research Scholars, Construction Specialists and Professionals, Planners, Faculty, PG and UG Students to discuss and evolve solutions for various difficulties faced during construction. Theme of seminar includes Geotechnical site Investigation, Ground improvement Techniques, Soil Dynamics, Geotechnical Earthquake Engineering, Geo- Environmental Engineering, Self Compacting Concrete, Geopolymer Concrete and Concrete Technology, Cost Effective Construction Techniques, Limit state performance state approach Elastic and Elasto-plastic behavior and Reduction of Corrosion in concrete using Chemical admixtures. Paper relevant to INIS are indexed separately

  10. U P1, an example for advanced techniques applied to high level activity dismantling

    International Nuclear Information System (INIS)

    Michel-Noel, M.; Calixte, O.; Blanchard, S.; Bani, J.; Girones, P.; Moitrier, C.; Terry, G.; Bourdy, R.

    2014-01-01

    The U P1 plant on the CEA Marcoule site was dedicated to the processing of spend fuels from the G1, G2 and G3 plutonium-producing reactors. This plant represents 20.000 m 2 of workshops housing about 1000 hot cells. In 1998, a huge program for the dismantling and cleaning-up of the UP1 plant was launched. CEA has developed new techniques to face the complexity of the dismantling operations. These techniques include immersive virtual reality, laser cutting, a specific manipulator arm called MAESTRO and remote handling. (A.C.)

  11. Proximity gettering technology for advanced CMOS image sensors using carbon cluster ion-implantation technique. A review

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Kazunari; Kadono, Takeshi; Okuyama, Ryousuke; Shigemastu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Koga, Yoshihiro; Okuda, Hidehiko [SUMCO Corporation, Saga (Japan)

    2017-07-15

    A new technique is described for manufacturing advanced silicon wafers with the highest capability yet reported for gettering transition metallic, oxygen, and hydrogen impurities in CMOS image sensor fabrication processes. Carbon and hydrogen elements are localized in the projection range of the silicon wafer by implantation of ion clusters from a hydrocarbon molecular gas source. Furthermore, these wafers can getter oxygen impurities out-diffused to device active regions from a Czochralski grown silicon wafer substrate to the carbon cluster ion projection range during heat treatment. Therefore, they can reduce the formation of transition metals and oxygen-related defects in the device active regions and improve electrical performance characteristics, such as the dark current, white spot defects, pn-junction leakage current, and image lag characteristics. The new technique enables the formation of high-gettering-capability sinks for transition metals, oxygen, and hydrogen impurities under device active regions of CMOS image sensors. The wafers formed by this technique have the potential to significantly improve electrical devices performance characteristics in advanced CMOS image sensors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    Science.gov (United States)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  13. DOCUMENTING FOR POSTERITY: ADVOCATING THE USE OF ADVANCED RECORDING TECHNIQUES FOR DOCUMENTATION IN THE FIELD OF BUILDING ARCHAEOLOGY

    Directory of Open Access Journals (Sweden)

    P. J. De Vos

    2017-08-01

    Full Text Available Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  14. Documenting for Posterity: Advocating the Use of Advanced Recording Techniques for Documentation in the Field of Building Archaeology

    Science.gov (United States)

    De Vos, P. J.

    2017-08-01

    Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  15. Evaluation of Advanced Signal Processing Techniques to Improve Detection and Identification of Embedded Defects

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baba, Justin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    By the end of 1996, 109 Nuclear Power Plants were operating in the United States, producing 22% of the Nation’s electricity [1]. At present, more than two thirds of these power plants are more than 40 years old. The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [2]. The most important safety structures in an NPP are constructed of concrete. The structures generally do not allow for destructive evaluation and access is limited to one side of the concrete element. Therefore, there is a need for techniques and technologies that can assess the internal health of complex, reinforced concrete structures nondestructively. Previously, we documented the challenges associated with Non-Destructive Evaluation (NDE) of thick, reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures [3]. Consequently, a 7 feet tall, by 7 feet wide, by 3 feet and 4-inch-thick concrete specimen was constructed with 2.257-inch-and 1-inch-diameter rebar every 6 to 12 inches. In addition, defects were embedded the specimen to assess the performance of existing and future NDE techniques. The defects were designed to give a mix of realistic and controlled defects for assessment of the necessary measures needed to overcome the challenges with more heavily reinforced concrete structures. Information on the embedded defects is documented in [4]. We also documented the superiority of Frequency Banded Decomposition (FBD) Synthetic Aperture Focusing Technique (SAFT) over conventional SAFT when probing defects under deep concrete cover. Improvements include seeing an intensity corresponding to a defect that is either not visible at all in regular, full frequency content SAFT

  16. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis

    International Nuclear Information System (INIS)

    Wu Huifeng; Wang Wenxiong

    2010-01-01

    Traditional toxicology studies have focused on selected biomarkers to characterize the biological stress induced by metals in marine organisms. In this study, a system biology tool, metabolomics, was applied to the marine mussel Perna viridis to investigate changes in the metabolic profiles of soft tissue as a response to copper (Cu) and cadmium (Cd), both as single metal and as a mixture. The major metabolite changes corresponding to metal exposure are related to amino acids, osmolytes, and energy metabolites. Following metal exposure for 1 week, there was a significant increase in the levels of branched chain amino acids, histidine, glutamate, glutamine, hypotaurine, dimethylglycine, arginine and ATP/ADP. For the Cu + Cd co-exposed mussels, the levels of lactate, branched chain amino acid, succinate, and NAD increased, whereas the levels of glucose, glycogen, and ATP/ADP decreased, indicating a different metabolic profile for the single metal exposure groups. After 2 weeks of exposure, the mussels showed acclimatization to Cd exposure based on the recovery of some metabolites. However, the metabolic profile induced by the metal mixture was very similar to that from Cu exposure, suggesting that Cu dominantly induced the metabolic disturbances. Both Cu and Cd may lead to neurotoxicity, disturbances in energy metabolism, and osmoregulation changes. These results demonstrate the high applicability and reliability of NMR-based metabolomics in interpreting the toxicological mechanisms of metals using global metabolic biomarkers.

  17. 1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    International Nuclear Information System (INIS)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D.

    2011-01-01

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in 1 H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  18. (1)H-NMR-based metabolomic analysis of the effect of moderate wine consumption on subjects with cardiovascular risk factors.

    Science.gov (United States)

    Vázquez-Fresno, Rosa; Llorach, Rafael; Alcaro, Francesca; Rodríguez, Miguel Ángel; Vinaixa, Maria; Chiva-Blanch, Gemma; Estruch, Ramon; Correig, Xavier; Andrés-Lacueva, Cristina

    2012-08-01

    Moderate wine consumption is associated with health-promoting activities. An H-NMR-based metabolomic approach was used to identify urinary metabolomic differences of moderate wine intake in the setting of a prospective, randomized, crossover, and controlled trial. Sixty-one male volunteers with high cardiovascular risk factors followed three dietary interventions (28 days): dealcoholized red wine (RWD) (272mL/day, polyphenol control), alcoholized red wine (RWA) (272mL/day) and gin (GIN) (100mL/day, alcohol control). After each period, 24-h urine samples were collected and analyzed by (1) H-NMR. According to the results of a one-way ANOVA, significant markers were grouped in four categories: alcohol-related markers (ethanol); gin-related markers; wine-related markers; and gut microbiota markers (hippurate and 4-hydroxphenylacetic acid). Wine metabolites were classified into two groups; first, metabolites of food metabolome: tartrate (RWA and RWD), ethanol, and mannitol (RWA); and second, biomarkers that relates to endogenous modifications after wine consumption, comprising branched-chain amino acid (BCAA) metabolite (3-methyl-oxovalerate). Additionally, a possible interaction between alcohol and gut-related biomarkers has been identified. To our knowledge, this is the first time that this approach has been applied in a nutritional intervention with red wine. The results show the capacity of this approach to obtain a comprehensive metabolome picture including food metabolome and endogenous biomarkers of moderate wine intake. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice.

    Directory of Open Access Journals (Sweden)

    Satoru Tomita

    Full Text Available In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB, which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i the difference between homo- and hetero-lactic fermentative species and ii strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol. Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.

  20. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    Science.gov (United States)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  1. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  2. Metabolic Effect of Dietary Taurine Supplementation on Nile Tilapia (Oreochromis nilotictus) Evaluated by NMR-Based Metabolomics.

    Science.gov (United States)

    Shen, Guiping; Huang, Ying; Dong, Jiyang; Wang, Xuexi; Cheng, Kian-Kai; Feng, Jianghua; Xu, Jingjing; Ye, Jidan

    2018-01-10

    Taurine is indispensable in aquatic diets that are based solely on plant protein, and it promotes growth of many fish species. However, the physiological and metabolome effects of taurine on fish have not been well described. In this study, 1 H NMR-based metabolomics approaches were applied to investigate the metabolite variations in Nile tilapia (Oreochromis nilotictus) muscle in order to visualize the metabolic trajectory and reveal the possible mechanisms of metabolic effects of dietary taurine supplementation on tilapia growth. After extraction using aqueous and organic solvents, 19 taurine-induced metabolic changes were evaluated in our study. The metabolic changes were characterized by differences in carbohydrate, amino acid, lipid, and nucleotide contents. The results indicate that taurine supplementation could significantly regulate the physiological state of fish and promote growth and development. These results provide a basis for understanding the mechanism of dietary taurine supplementation in fish feeding. 1 H NMR spectroscopy, coupled with multivariate pattern recognition technologies, is an efficient and useful tool to map the fish metabolome and identify metabolic responses to different dietary nutrients in aquaculture.

  3. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  4. Toxicological effects induced by cadmium in gills of Manila clam ruditapes philippinarum using NMR-based metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbao; Liu, Xiaoli; You, Liping; Zhou, Di [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); The Graduate School of Chinese Academy of Sciences, Beijing (China); Yu, Junbao; Zhao, Jianmin; Wu, Huifeng [Key Laboratory of Coastal Zone Environment Processes, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai (China); Feng, Jianghua [Department of Electronic Science, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen (China)

    2011-11-15

    Cadmium (Cd) has become an important heavy metal contaminant in the sediment and seawater along the Bohai Sea and been of great ecological risk due to its toxic effects to marine organisms. In this work, the toxicological effects caused by environmentally relevant concentrations (10 and 40 {mu}g L{sup -1}) of Cd were studied in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48, and 96 h. Both low (10 {mu}g L{sup -1}) and high (40 {mu}g L{sup -1}) doses of Cd caused the disturbances in energy metabolism and osmotic regulation and neurotoxicity based on the metabolic biomarkers such as succinate, alanine, branched chain amino acids, betaine, hypotaurine, and glutamate in clam gills after 24 h of exposure. However, the recovery of toxicological effects of Cd after exposure for 96 h was obviously observed in clam to Cd exposures. Overall, these results indicated that NMR-based metabolomics was applicable to elucidate the toxicological effects of heavy metal contaminants in the marine bioindicator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    International Nuclear Information System (INIS)

    Feng Jianghua; Zhao Jing; Hao Fuhua; Chen Chang; Bhakoo, Kishore; Tang, Huiru

    2011-01-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  6. Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers

    Science.gov (United States)

    Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

    1974-01-01

    The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

  7. Advanced signal processing techniques for acoustic detection of sodium/water reaction

    International Nuclear Information System (INIS)

    Yughay, V.S.; Gribok, A.V.; Volov, A.N.

    1997-01-01

    In this paper results of development of a neural network technique for processing of acoustic background noise and injection noise of various media (argon, water steam, hydrogen) at test rigs and industrial steam generator are presented. (author). 3 refs, 9 figs, 3 tabs

  8. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes

    NARCIS (Netherlands)

    Justé, A.; Thomma, B.P.H.J.; Lievens, B.

    2008-01-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids.

  9. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  10. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem...

  11. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    Science.gov (United States)

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  12. Potentials for advanced nuclear technique (reactor) demonstration in eastern part of Indonesia

    International Nuclear Information System (INIS)

    Lasman, A.N.; Kusnanto; Masduki, B.; Dasuki, A.S.

    1997-01-01

    Because the differentiation of the ground water, the mining resources, the climate, the people density and the distance between one and another island so the national industry development becomes unique and complex. The main requirement for the national industry development is the supply of adequate energy, especially for developing of eastern part of Indonesia. The advanced nuclear reactor should be an energy source which can be universally used for the electric power and non electric application. It means, that using of this technology could lead to the development of eastern part of Indonesia. (author). 5 refs, 1 fig., 1 tab

  13. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  14. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    Science.gov (United States)

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

  15. Advances in measuring techniques for turbine cooling test rigs - Status report

    Science.gov (United States)

    Pollack, F. G.

    1974-01-01

    Instrumentation development pertaining to turbine cooling research has resulted in the design and testing of several new systems. Pressure measurements on rotating components are being made with a rotating system incorporating ten miniature transducers and a slip-ring assembly. The system has been tested successfully up to speeds of 9000 rpm. An advanced system development combining pressure transducer and thermocouple signals is also underway. Thermocouple measurements on rotating components are transferred off the shaft by a 72-channel rotating data system. Thermocouple data channels are electronically processed on board and then removed from the shaft in the form of a digital serial train by one winding of a rotary transformer.

  16. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  17. Principles and techniques in the design of ADMS+. [advanced data-base management system

    Science.gov (United States)

    Roussopoulos, Nick; Kang, Hyunchul

    1986-01-01

    'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

  18. Carbon dioxide capture and separation techniques for advanced power generation point sources

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  19. Technical feasibility of advanced separation; Faisabilite technique de la separation poussee

    Energy Technology Data Exchange (ETDEWEB)

    Rostaing, Ch

    2004-07-01

    Advanced separation aims at reducing the amount and toxicity of high-level and long lived radioactive wastes. The Purex process has been retained as a reference way for the recovery of the most radio-toxic elements: neptunium, technetium and iodine. Complementary solvent extraction processes have to be developed for the separation of americium, curium and cesium from the high activity effluent of the spent fuel reprocessing treatment. Researches have been carried out with the aim of demonstrating the scientifical and technical feasibility of advanced separation of minor actinides and long lived fission products from spent fuels. The scientifical feasibility was demonstrated at the end of 2001. The technical feasibility works started in the beginning of 2002. Many results have been obtained which are presented and summarized in this document: approach followed, processes retained for the technical feasibility (An/Ln and Am/Cm separation), processes retained for further validation at the new shielded Purex installation, technical feasibility of Purex adaptation to Np separation, technical feasibility of Diamex (first step: (An+Ln)/other fission products) separation), technical feasibility of Sanex process (second step: An(III)/Ln(III) separation), technical feasibility of Am(III)/Cm(III) separation, cesium separation, iodine separation, technical-economical evaluation, conclusions and perspectives, facilities and apparatuses used for the experiments. (J.S.)

  20. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    Science.gov (United States)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  1. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  2. Recent advances in sample preparation techniques and methods of sulfonamides detection - A review.

    Science.gov (United States)

    Dmitrienko, Stanislava G; Kochuk, Elena V; Apyari, Vladimir V; Tolmacheva, Veronika V; Zolotov, Yury A

    2014-11-19

    Sulfonamides (SAs) have been the most widely used antimicrobial drugs for more than 70 years, and their residues in foodstuffs and environmental samples pose serious health hazards. For this reason, sensitive and specific methods for the quantification of these compounds in numerous matrices have been developed. This review intends to provide an updated overview of the recent trends over the past five years in sample preparation techniques and methods for detecting SAs. Examples of the sample preparation techniques, including liquid-liquid and solid-phase extraction, dispersive liquid-liquid microextraction and QuEChERS, are given. Different methods of detecting the SAs present in food and feed and in environmental, pharmaceutical and biological samples are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Turbine blade wear and damage. An overview of advanced characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schlobohm, Jochen; Li, Yinan; Kaestner, Markus; Poesch, Andreas; Reithmeier, Eduard [Hannover Univ. (Germany). Inst. fuer Mess- und Regelungstechnik; Bruchwald, Oliver; Frackowiak, Wojciech; Reimche, Wilfried; Maier, Hans Juergen [Hannover Univ. (Germany). Inst. fuer Werkstoffkunde

    2016-07-01

    This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

  4. UTILIZATION OF FORMALIN EMBALMED SPECIMENS UNDER ECO-FRIENDLY CONDITIONS BY ADVANCED PLASTINATION TECHNIQUE

    OpenAIRE

    R. Menaka; S. Chaurasia

    2015-01-01

    Preparation of anatomical models and teaching aids is a challenging task in the medical, veterinary and paramedical sciences as like as life form. The successful preservation of conventional methods by embalmed cadavers/ corpse’s are routinely practiced for educational/research purposes. The existing form of preservation technique is not promising to meet the current challenges in the teaching and learning of human/veterinary anatomy. The embalming fluid causes potential health hazards with c...

  5. Advanced Techniques in Crash Impact Protection and Emergency Egress from Air Transport Aircraft

    Science.gov (United States)

    1976-06-01

    Lift Technology program for generating commercial transport innovation . However, the YC-15 military version with a high wing and Mach 0.75 cruise...survival technology is constantly changing as new materials, techniques, innovations , and requirements are developed. Nevertheless, the most valid data for...la Propriete Industrielle , No. 331 926, May 11, 1903. 784. Robbins, D.H., V.L Roberts, A.W. Henke, B.F. Raney, R.O. Bennett, and J.H. McElhaney

  6. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.

    1992-01-01

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235 U, 23 Pu, and 241 Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252 Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  7. Cuban advances in the application of nuclear techniques in petroleum prospection

    International Nuclear Information System (INIS)

    Rodriguez Martinez, Norma; Montero Cabrera, Maria Elena

    1997-01-01

    Accumulated experience demonstrates how effective is the utilization of nuclear techniques in oil prospection. Until a little while ago the national geophysical service had a wide complex of nuclear and radioactive methods that were including: Methods Neutron compensated Gamma Density Cabotage Gamma and Natural Gamma for evaluating the properties of capacity and filtration of the hydrocarbons reservoirs. Neutronic Impulses Generating Method for determining and specifying the water-oil contact zone within the hydrocarbon deposits, radioactive tracers for: 1- detecting breakdowns in the coating pipeline of the wells, 2- for determining zones of losses of circulation of the fluid in the wells; Furthermore in laboratory conditions are used other nuclear analytical techniques: Neutron Activation Analysis, X-Ray Fluorescence, gamma spectrometry to determine multielemental composition of rocks including the traces elements. The determination, have permitted us to characterize each one of the sequences and they are used as a criterion for their stratigraphic differentiation at the same time, they are techniques-considering their affectation to neutronic methods

  8. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    Science.gov (United States)

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  9. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    Science.gov (United States)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  10. Synchrotron light techniques for the investigation of advanced nuclear reactor structural materials

    International Nuclear Information System (INIS)

    Pouchon, M.A.; Froideval, A.; Degueldre, C.; Gavillet, D.; Hoffelner, W.

    2008-01-01

    In the frame of the Generation IV initiative, different structural material candidates are investigated at the Paul Scherrer Institute. These are oxide dispersion strengthened (ODS) steels, intermetallic materials and ceramic composite materials. The response of the material to different potential loads (irradiation, temperature...) is addressed in a multi-scale approach, both, modelling wise and also experimentally. The investigation of each scale delivers at least a qualitative understanding of possibly evolving damage in the material and also delivers a validation of the corresponding scale on the modelling side. From the experimental side, the lower end of the scale, the atomistic and structural level, can be investigated by conventional techniques, as for example transmission electron microscopy (TEM) and X-ray diffraction (XRD). However, the use of synchrotron radiation techniques offers an ideal, complementary way to investigate the material structure and other properties. This paper presents applications in the field of the ODS research, where the structural behaviour of the nano-scopic dispersoids can selectively be investigated, although only being present with roughly 5 wt % in the matrix. A study showing the structural behaviour of these oxide particles as a function of irradiation illustrates the potential of the extended X-ray absorption fine structure (EXAFS) technique. Using X-ray magnetic circular dichroism (XMCD), which is a difference-signal of two X-ray absorption spectra recorded for positive and negative helicities of the beam, the magnetic structure and some magnetic parameters, can be resolved. An example shows, how this can be applied to understand (Fe,Cr) systems, which is the base alloy of the investigated ODS steel. The results deliver an important cross-check for modelling. Beside the presentation of these techniques, this paper shows how beamline techniques can serve nuclear research, with possibly activated materials. At the Paul

  11. Multi-band effective mass approximations advanced mathematical models and numerical techniques

    CERN Document Server

    Koprucki, Thomas

    2014-01-01

    This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...

  12. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  13. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.

    1997-01-01

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  14. Advanced data visualization and sensor fusion: Conversion of techniques from medical imaging to Earth science

    Science.gov (United States)

    Savage, Richard C.; Chen, Chin-Tu; Pelizzari, Charles; Ramanathan, Veerabhadran

    1993-01-01

    Hughes Aircraft Company and the University of Chicago propose to transfer existing medical imaging registration algorithms to the area of multi-sensor data fusion. The University of Chicago's algorithms have been successfully demonstrated to provide pixel by pixel comparison capability for medical sensors with different characteristics. The research will attempt to fuse GOES (Geostationary Operational Environmental Satellite), AVHRR (Advanced Very High Resolution Radiometer), and SSM/I (Special Sensor Microwave Imager) sensor data which will benefit a wide range of researchers. The algorithms will utilize data visualization and algorithm development tools created by Hughes in its EOSDIS (Earth Observation SystemData/Information System) prototyping. This will maximize the work on the fusion algorithms since support software (e.g. input/output routines) will already exist. The research will produce a portable software library with documentation for use by other researchers.

  15. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    International Nuclear Information System (INIS)

    Dawson, D.M.; Geist, R.M.; Schalkoff, R.J.

    1998-01-01

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  16. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  17. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application

    Directory of Open Access Journals (Sweden)

    Vibha Pandey

    2017-08-01

    Full Text Available Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc. or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.

  18. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  19. An advanced technique of the search for the stimulated gamma-ray emission

    International Nuclear Information System (INIS)

    Strilchuk, N.V.; Kirischuk, V.I.

    1999-01-01

    An experiment which is not based on the assumption that the stimulating and stimulated photons are time-coincident, is proposed. The idea is to compare, for the source in the form of a long filament, the number of simple pulses, corresponding to the isomeric transition energy, counted in the axial direction with the number seen off-axis by the same detector. It is interesting that if the stimulating and stimulated photons are time-coincident, such techniques has essential advantages as well. (authors)

  20. Advances in direct radiographic magnification technique: First studies with a 1μ focal spot tube

    International Nuclear Information System (INIS)

    Huettenbrink, K.B.; Schadel, A.

    1986-01-01

    A direct radiographic enlargement technique mainly depends on the size of the focal spot. Up to now, its reduction was limited for physical reasons; therefore only minor degrees of magnification were applicable. With the new 1 μ focal spot tube, structures of microscopic dimensions can be visualized for the first time in a direct radiographic magnification of up to 100 diameters. First studies in isolated middle ear ossicles and a phantom soft-tissue-skull are demonstrated. Clinical usefullness seems to be limited, whereas its application for experimental research looks promising. (orig.) [de

  1. Advanced network programming principles and techniques : network application programming with Java

    CERN Document Server

    Ciubotaru, Bogdan

    2013-01-01

    Answering the need for an accessible overview of the field, this text/reference presents a manageable introduction to both the theoretical and practical aspects of computer networks and network programming. Clearly structured and easy to follow, the book describes cutting-edge developments in network architectures, communication protocols, and programming techniques and models, supported by code examples for hands-on practice with creating network-based applications. Features: presents detailed coverage of network architectures; gently introduces the reader to the basic ideas underpinning comp

  2. Advances in fatigue lifetime predictive techniques; Proceedings of the Symposium, San Francisco, CA, Apr. 24, 1990

    International Nuclear Information System (INIS)

    Mitchell, M.R.; Landgraf, R.W.

    1992-01-01

    Recent progress in the development of methods to predict fatigue performance of materials and structures is reviewed. Attention is given to general approaches to fatigue mechanics, elevated temperature phenomena, spectrum loading, the multiaxial behavior, and applications. Particular attention is given to a fracture-mechanics-based model for cumulative damage assessment, thermo-mechanical fatigue life prediction methods, a probabilistic fracture mechanics approach for structural reliability assessment of space flight systems, a multiaxial fatigue life estimation technique, plasticity and fatigue damage modeling of severely loaded tubing, damage evaluation in composite materials using thermographic stress analysis, and fatigue lifetime monitoring in power plants

  3. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    International Nuclear Information System (INIS)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho; Woo, Hyun Soo; Jo, Jae Min; Lee, Min Hee

    2015-01-01

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques

  4. Two-Person Technique of Peroral Endoscopic Myotomy for Achalasia with an Advanced Endoscopist and a Thoracic Surgeon: Initial Experience

    Directory of Open Access Journals (Sweden)

    Madhusudhan R. Sanaka

    2016-01-01

    Full Text Available Background and Aims. We initiated peroral endoscopic myotomy (POEM utilizing a two-person technique with combination of an advanced endoscopist and a thoracic surgeon with complementary skills. Our aim was to determine the feasibility and outcomes in initial 20 patients. Methods. In this observational study, main outcomes measured were therapeutic success in relieving symptoms (Eckardt score < 3, decrease in lower esophageal sphincter (LES pressures, improvement in emptying on timed barium esophagogram (TBE, and complications. Results. POEM was successful in all 20 patients with a mean operative time of 140.1+32.9 minutes. Eckardt symptom scores decreased significantly at two-month follow-up (6.4+2.9 versus 0.25+0.45, p<0.001. Both basal and residual LES pressures decreased significantly (28.2+14.1 mmHg versus 12.8+6.3 and 22.4+11.3 versus 6.3+3.4 mmHg, p=0.025 and <0.001, resp.. Barium column height at 5 minutes on TBE reduced from 6.8+4.9 cm to 2.3+2.9 cm (p=0.05. Two patients (10% had mucosal perforations and one had delayed bleeding (5%. Conclusions. Two-person technique of POEM with combination of an advanced endoscopist and a thoracic surgeon is highly successful with low risk of complications.

  5. Development of an online radiology case review system featuring interactive navigation of volumetric image datasets using advanced visualization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyung; Kim, Boh Kyoung; Jung, Ju Hyun; Kang, Heung Sik; Lee, Kyoung Ho [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Woo, Hyun Soo [Dept. of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Jo, Jae Min [Dept. of Computer Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Lee, Min Hee [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-11-15

    To develop an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques. Our Institutional Review Board approved the use of the patient data and waived the need for informed consent. We determined the following system requirements: volumetric navigation, accessibility, scalability, undemanding case management, trainee encouragement, and simulation of a busy practice. The system comprised a case registry server, client case review program, and commercially available cloud-based image viewing system. In the pilot test, we used 30 cases of low-dose abdomen computed tomography for the diagnosis of acute appendicitis. In each case, a trainee was required to navigate through the images and submit answers to the case questions. The trainee was then given the correct answers and key images, as well as the image dataset with annotations on the appendix. After evaluation of all cases, the system displayed the diagnostic accuracy and average review time, and the trainee was asked to reassess the failed cases. The pilot system was deployed successfully in a hands-on workshop course. We developed an online radiology case review system that allows interactive navigation of volumetric image datasets using advanced visualization techniques.

  6. Advanced dust control techniques in cement industry electrostatic precipitator - a case study

    International Nuclear Information System (INIS)

    Khattak, Z.; Ahmad, J.

    2011-01-01

    The case study deal with the current day problem of pollution by industrial zones in Pakistan with emphasis on the cement Industry which has been proved to be the second revenue generating hub after textile sector of the Pakistan. A pilot study into the identification and available removal Techniques of particulates from the exhaust of a cement plant clinker cooler was carried out. The objective of this work was to study the performance of the each technique in detail in the removal of a particulate with a wide range of sizes, under different operational conditions and to compare the results for collection efficiency with predictions by available theoretical models. A brief and comprehensive discussion regarding design, construction and bottlenecks of each tool has been discussed to fully ascertain it's scope and usability. First part of the study identifies the various pollutants being emitted from the chimney of a specific cement plant in Pakistan and while last portion deals with the ways to curtail these pollutants. (author)

  7. Advanced techniques for energy-efficient industrial-scale continuous chromatography

    Energy Technology Data Exchange (ETDEWEB)

    DeCarli, J.P. II (Dow Chemical Co., Midland, MI (USA)); Carta, G. (Virginia Univ., Charlottesville, VA (USA). Dept. of Chemical Engineering); Byers, C.H. (Oak Ridge National Lab., TN (USA))

    1989-11-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. the technology appears, thus, to be very promising for industrial applications. 43 figs., 9 tabs.

  8. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.

    Science.gov (United States)

    Cui, Miao; Lin, Che-Yi; Su, Yi-Hsien

    2017-09-01

    Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Decomposition of clofibric acid in aqueous media by advance oxidation techniques: kinetics study and degradation pathway

    International Nuclear Information System (INIS)

    Syed, M.; Khan, A.M.; Khan, R.A.

    2016-01-01

    This study investigates the decomposition of clofibric acid (CLF) by different advanced oxidation processes (AOPs), such as UV (254 nm), VUV (185 nm), UV / TiO/sub 2/ and VUV / TiO/sub 2/. The removal efficiencies of applied AOPs were compared in the presence and absence of dissolved oxygen. The removal efficiency of the studied AOPs towards degradation of CLF were found in the order of VUV / TiO/sub 2/ + O/sub 2/ > VUV/TiO/sub 2/ + N/sub 2/ > VUV alone > UV / TiO/sub 2/ + O/sub 2/ > UV / TiO/sub 2/ +N/sub 2/ > UV alone. The decomposition kinetics of CLF was found to follow pseudo-first order rate law. VUV / TiO2 process was found to be most cheap and effective one for decomposition of CLF as compared to other applied AOPs in terms of electrical energy per order. Degradation products resulting from the degradation processes were also investigated using UPLC-MS /MS, accordingly degradation pathway was proposed. (author)

  10. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  11. Advanced passivation techniques for Si solar cells with high-κ dielectric materials

    International Nuclear Information System (INIS)

    Geng, Huijuan; Lin, Tingjui; Letha, Ayra Jagadhamma; Hwang, Huey-Liang; Kyznetsov, Fedor A.; Smirnova, Tamara P.; Saraev, Andrey A.; Kaichev, Vasily V.

    2014-01-01

    Electronic recombination losses at the wafer surface significantly reduce the efficiency of Si solar cells. Surface passivation using a suitable thin dielectric layer can minimize the recombination losses. Herein, advanced passivation using simple materials (Al 2 O 3 , HfO 2 ) and their compounds H (Hf) A (Al) O deposited by atomic layer deposition (ALD) was investigated. The chemical composition of Hf and Al oxide films were determined by X-ray photoelectron spectroscopy (XPS). The XPS depth profiles exhibit continuous uniform dense layers. The ALD-Al 2 O 3 film has been found to provide negative fixed charge (−6.4 × 10 11  cm −2 ), whereas HfO 2 film provides positive fixed charge (3.2 × 10 12  cm −2 ). The effective lifetimes can be improved after oxygen gas annealing for 1 min. I-V characteristics of Si solar cells with high-κ dielectric materials as passivation layers indicate that the performance is significantly improved, and ALD-HfO 2 film would provide better passivation properties than that of the ALD-Al 2 O 3 film in this research work.

  12. Advanced MRI techniques of the fetal brain; Zukunftsweisende MRT-Techniken des fetalen Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria)

    2013-02-15

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [German] Evaluierung des gesunden bzw. pathologischen fetalen Gehirns. Die Magnetresonanztomographie. Zukunftsweisende Techniken in der MRT-Bildgebung des fetalen Gehirns. Die Diffusionstensorbildgebung (DTI) befindet sich bereits in der klinischen Anwendung, alle anderen Methoden sind bisher noch als experimentell zu werten. Auf dem Weg zur Etablierung als Standardverfahren. Eine kombinierte Verarbeitung funktioneller und struktureller Daten, modelliert fuer jede Schwangerschaftswoche, wird es zukuenftig ermoeglichen, anhand dieser fusionierten Informationen einen praezisen Einblick in den Entwicklungsprozess des Gehirns zu erlangen. Diese Erkenntnisse und Ergebnisse werden entscheidend zur Klaerung des zeitlichen Verlaufs und des komplexen Aufbaus frueher morphologischer Auffaelligkeiten beitragen sowie deren Einfluss auf kognitive und sensorische Faehigkeiten aufzeigen. (orig.)

  13. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    Science.gov (United States)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  14. NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiongjie [Pacific Northwest National Laboratory, Richland, Washington 99352; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99352; Zhang, Xu [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China; Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99352

    2017-07-01

    The health effects of exposing to ionizing radiation are attracting great interest in the space exploration community and patients considering radiotherapy. However, the impact to metabolism after exposure to high dose radiation has not yet been clearly defined in livers. In the present study, 1H nuclear magnetic resonance (NMR) based metabolomics combined with multivariate data analysis are applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole body exposure to either gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) radiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification of potential biomarkers associated with gamma and proton irradiation. The results show that the radiation exposed groups can be well separated from the control group. At the same radiation dosage, the group exposed to proton radiation is well separated from the group exposed to gamma radiation, indicating different radiation sources induce different alterations based on metabolic profiling. Common to both gamma and proton radiation at the high radiation doses studied in this work, compared with the control groups the concentrations of choline, O-phosphocholine and trimethylamine N-oxide are decreased statistically, while those of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate are statistically and significantly elevated after exposure to radiation. Since these altered metabolites are associated with multiple biological pathways, the changes suggest that the exposure to radiation induce abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be good candidates of pre-diagnose biomarkers for ionizing radiation in liver.

  15. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    Science.gov (United States)

    Bu, Qian; Yan, Guangyan; Deng, Pengchi; Peng, Feng; Lin, Hongjun; Xu, Youzhi; Cao, Zhixing; Zhou, Tian; Xue, Aiqin; Wang, Yanli; Cen, Xiaobo; Zhao, Ying-Lan

    2010-03-01

    As titanium dioxide nanoparticles (TiO2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO2 NPs (dosed at 0.16, 0.4 and 1 g kg - 1, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  16. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    International Nuclear Information System (INIS)

    Bu Qian; Lin Hongjun; Xu Youzhi; Cao Zhixing; Zhou Tian; Zhao Yinglan; Yan Guangyan; Cen Xiaobo; Deng Pengchi; Peng Feng; Xue Aiqin; Wang Yanli

    2010-01-01

    As titanium dioxide nanoparticles (TiO 2 NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO 2 NPs (dosed at 0.16, 0.4 and 1 g kg -1 , respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by 1 H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO 2 NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, α-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO 2 NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO 2 NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO 2 NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  17. An NMR-based metabolomic approach to investigate the effects of supplementation with glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Hu, Jiayu; Duan, Jielin; Liu, Gang; Tan, Bie; Xiong, Xia; Oso, Abimbola Oladele; Adeola, Olayiwola; Yao, Kang; Yin, Yulong; Li, Tiejun

    2014-01-01

    Deoxynivalenol (DON) has various toxicological effects in humans and pigs that result from the ingestion of contaminated cereal products. This study was conducted to investigate the protective effects of dietary supplementation with glutamic acid on piglets challenged with DON. A total of 20 piglets weaned at 28 d of age were randomly assigned to receive 1 of 4 treatments (5 piglets/treatment): 1) basal diet, negative control (NC); 2) basal diet +4 mg/kg DON (DON); 3) basal diet +2% (g/g) glutamic acid (GLU); 4) basal diet +4 mg/kg DON +2% glutamic acid (DG). A 7-d adaptation period was followed by 30 days of treatment. A metabolite analysis using nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomic technology and the determination of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities for plasma, as well as the activity of Caspase-3 and the proliferation of epithelial cells were conducted. The results showed that contents of low-density lipoprotein, alanine, arginine, acetate, glycoprotein, trimethylamine-N-oxide (TMAO), glycine, lactate, and urea, as well as the glutamate/creatinine ratio were higher but high-density lipoprotein, proline, citrate, choline, unsaturated lipids and fumarate were lower in piglets of DON treatment than that of NC treatment (Pglutamic acid increased the plasma concentrations of proline, citrate, creatinine, unsaturated lipids, and fumarate, and decreased the concentrations of alanine, glycoprotein, TMAO, glycine, and lactate, as well as the glutamate/creatinine ratio (Pglutamic acid to DON treatment increased the plasma activities of SOD and GSH-Px and the proliferating cell nuclear antigen (PCNA) labeling indexes for the jejunum and ileum (Pglutamic acid has the potential to repair the injuries associated with oxidative stress as well as the disturbances of energy and amino acid metabolism induced by DON.

  18. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration

    Energy Technology Data Exchange (ETDEWEB)

    Bu Qian; Lin Hongjun; Xu Youzhi; Cao Zhixing; Zhou Tian; Zhao Yinglan [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Yan Guangyan; Cen Xiaobo [National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Deng Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Peng Feng [Department of Thoracic Oncology of Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Xue Aiqin [Institute of Bioengineering, Zhejiang Sci-Tech University Road 2, Xiasha, Hangzhou 310018 (China); Wang Yanli, E-mail: alancenxb@sina.com [Tianjin Children' s Hospital, Tianjin 300074 (China)

    2010-03-26

    As titanium dioxide nanoparticles (TiO{sub 2} NPs) are widely used commercially, their potential toxicity on human health has attracted particular attention. In the present study, the oral toxicological effects of TiO{sub 2} NPs (dosed at 0.16, 0.4 and 1 g kg{sup -1}, respectively) were investigated using conventional approaches and metabonomic analysis in Wistar rats. Serum chemistry, hematology and histopathology examinations were performed. The urine and serum were investigated by {sup 1}H nuclear magnetic resonance (NMR) using principal components and partial least squares discriminant analysis. The metabolic signature of urinalysis in TiO{sub 2} NP-treated rats showed increases in the levels of taurine, citrate, hippurate, histidine, trimethylamine-N-oxide (TMAO), citrulline, {alpha}-ketoglutarate, phenylacetylglycine (PAG) and acetate; moreover, decreases in the levels of lactate, betaine, methionine, threonine, pyruvate, 3-D-hydroxybutyrate (3-D-HB), choline and leucine were observed. The metabonomics analysis of serum showed increases in TMAO, choline, creatine, phosphocholine and 3-D-HB as well as decreases in glutamine, pyruvate, glutamate, acetoacetate, glutathione and methionine after TiO{sub 2} NP treatment. Aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated and mitochondrial swelling in heart tissue was observed in TiO{sub 2} NP-treated rats. These findings indicate that disturbances in energy and amino acid metabolism and the gut microflora environment may be attributable to the slight injury to the liver and heart caused by TiO{sub 2} NPs. Moreover, the NMR-based metabolomic approach is a reliable and sensitive method to study the biochemical effects of nanomaterials.

  19. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation.

    Science.gov (United States)

    Heyman, Heino Martin; Senejoux, François; Seibert, Isabell; Klimkait, Thomas; Maharaj, Vinesh Jaichand; Meyer, Jacobus Johannes Marion

    2015-06-01

    South Africa being home to more than 35% of the world's Helichrysum species (c.a. 244) of which many are used in traditional medicine, is seen potentially as a significant resource in the search of new anti-HIV chemical entities. It was established that five of the 30 Helichrysum species selected for this study had significant anti-HIV activity ranging between 12 and 21 μg/mL (IC50) by using an in-house developed DeCIPhR method on a full virus model. Subsequent toxicity tests also revealed little or no toxicity for these active extracts. With the use of NMR-based metabolomics, the search for common chemical characteristics within the plant extract was conducted, which resulted in specific chemical shift areas identified that could be linked to the anti-HIV activity of the extracts. The NMR chemical shifts associated with the activity were identified to be 2.56-3.08 ppm, 5.24-6.28 ppm, 6.44-7.04 ppm and 7.24-8.04 ppm. This activity profile was then used to guide the fractionation process by narrowing down and focusing the fractionation and purification processes to speed up the putative identification of five compounds with anti-HIV activity in the most active species, Helichrysum populifolium. The anti-HIV compounds identified for the first time from H. populifolium were three dicaffeoylquinic acid derivatives, i.e. 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid as well as two tricaffeoylquinic acid derivatives i.e. 1,3,5-tricaffeoylquinic acid and either 5-malonyl-1,3,4-tricaffeoylquinic or 3-malonyl-1,4,5-tricaffeoylquinic acid, with the latter being identified for the first time in the genus. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Detection of rebars in concrete using advanced ultrasonic pulse compression techniques.

    Science.gov (United States)

    Laureti, S; Ricci, M; Mohamed, M N I B; Senni, L; Davis, L A J; Hutchins, D A

    2018-04-01

    A pulse compression technique has been developed for the non-destructive testing of concrete samples. Scattering of signals from aggregate has historically been a problem in such measurements. Here, it is shown that a combination of piezocomposite transducers, pulse compression and post processing can lead to good images of a reinforcement bar at a cover depth of 55 mm. This has been achieved using a combination of wide bandwidth operation over the 150-450 kHz range, and processing based on measuring the cumulative energy scattered back to the receiver. Results are presented in the form of images of a 20 mm rebar embedded within a sample containing 10 mm aggregate. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    International Nuclear Information System (INIS)

    Macdonald, D.D.

    2000-01-01

    Super Critical Water Oxidation (SCWO) is a promising technology for destroying highly toxic organic waste (including physiological agents) and for reducing the volume of DOE's low-level nuclear waste. The major problem inhibiting the wide implementation of SCWO is the lack of fundamental knowledge about various physico-chemical and corrosion processes that occur in SCW environments. In particular, the lack of experimental techniques for accurately monitoring important parameters, such as pH, corrosion potential and corrosion rate, has severely hampered the development of a quantitative understanding of the degradation of materials in this extraordinarily aggressive environment. Accordingly, the principal objective of the present program has been to develop new, innovative methods for accurately measuring parameters that characterize corrosion processes under super critical conditions

  2. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    Science.gov (United States)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  3. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  4. Beam profile measurements on the advanced test accelerator using optical techniques

    International Nuclear Information System (INIS)

    Chong, Y.P.; Kalibjian, R.; Cornish, J.P.; Kallman, J.S.; Donnelly, D.

    1986-01-01

    Beam current density profiles of ATA have been measured both spatially and temporally using a number of diagnostics. An extremely important technique involves measuring optical emissions from either a target foil inserted into the beam path or gas atoms and molecules excited by beam electrons. This paper describes the detection of the optical emission. A 2-D gated television camera with a single or dual micro-channel-plate (MCP) detector for high gain provides excellent spatial and temporal resolution. Measurements are routinely made with resolutions of 1 mm and 5 ns respectively. The optical line of sight allows splitting part of the signal to a streak camera or photometer for even higher time resolution

  5. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  6. Development of a corrosion detection experiment to evaluate conventional and advanced NDI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roach, D.

    1995-12-31

    The Aging Aircraft NDI Validation Center (AANC) was established by the Federal Aviation Administration Technical Center (FAATC) at Sandia National Laboratories in August of 1991. The goal of the AANC is to provide independent validation of technologies intended to enhance the structural inspection of aging commuter and transport aircraft. The deliverables from the AANC`s validation activities are assessments of the reliability of existing and emerging inspection technologies as well as analyses of the cost benefits to be derived from their implementation. This paper describes the methodology developed by the AANC to assess the performance of NDI techniques. In particular, an experiment being developed to evaluate corrosion detection devices will be presented. The experiment uses engineered test specimens, as well as complete aircraft test beds to provide metrics for NDI validation.

  7. Recent advances in knowledge-based paradigms and applications enhanced applications using hybrid artificial intelligence techniques

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This book presents carefully selected contributions devoted to the modern perspective of AI research and innovation. This collection covers several areas of applications and motivates new research directions. The theme across all chapters combines several domains of AI research , Computational Intelligence and Machine Intelligence including an introduction to  the recent research and models. Each of the subsequent chapters reveals leading edge research and innovative solution that employ AI techniques with an applied perspective. The problems include classification of spatial images, early smoke detection in outdoor space from video images, emergent segmentation from image analysis, intensity modification in images, multi-agent modeling and analysis of stress. They all are novel pieces of work and demonstrate how AI research contributes to solutions for difficult real world problems that benefit the research community, industry and society.

  8. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  9. Advances in modern sample preparation techniques using microwaves assisted chemistry for metal species determination (W1)

    International Nuclear Information System (INIS)

    Ponard, O.F.X.

    2002-01-01

    Full text: Sample preparation has long been the bottleneck of environmental analysis for both total and species specific analysis. Digestion, extraction and preparation of the analytes are relying on a series of chemical reactions. The introduction of microwave assisted sample preparation has first been viewed as a mean to accelerate the kinetics of digestion of the matrix for total elements and fast samples preparation procedures. However, the extensive development and success of microwave digestion procedures in total elemental analysis has now allowed to have a larger insight of the perspectives offered by this technique. Microwave technologies now offer to have a precise control of the temperature and indirectly control the reaction kinetics taking place during the sample preparation procedures. Microwave assisted chemistry permits to perform simultaneously the fundamental steps required for metal species extraction and derivatization. The number of sample preparation steps used for organotin or organomercury species have been reduced to one and the total time of sample preparation brought down for a few hours to some minutes. Further, the developments of GC/ICP/MS techniques allow to routinely use speciated isotopic dilution methods has internal probe of the chemical reactions. These new approaches allow us to use the addition of the labeled species for isotopic dilution as a mean to evaluate and follow the chemical processes taking place during the extraction procedure. These procedures will help us to understand and check for the stability of the analytes during the chemistry of the sample preparation procedure and bring some insights of the chemistry taking place during the extraction. Understanding the different mechanisms involved in the sample preparation steps will allow us in return to further improve all theses procedures and bring us to the horizon of 'on-line sample preparation and detection'. (author)

  10. {sup 1}H NMR-based metabolomics of time-dependent responses of Eisenia fetida to sub-lethal phenanthrene exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lankadurai, Brian P.; Wolfe, David M.; Simpson, Andre J. [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4 Canada (Canada)

    2011-10-15

    {sup 1}H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida after exposure to sub-lethal concentrations of phenanthrene over time. Earthworms were exposed to 0.025 mg/cm{sup 2} of phenanthrene (1/64th of the LC{sub 50}) via contact tests over four days. Earthworm tissues were extracted using a mixture of chloroform, methanol and water, resulting in polar and non-polar fractions that were analyzed by {sup 1}H NMR after one, two, three and four days. NMR-based metabolomic analyses revealed heightened E. fetida responses with longer phenanthrene exposure times. Amino acids alanine and glutamate, the sugar maltose, the lipids cholesterol and phosphatidylcholine emerged as potential indicators of phenanthrene exposure. The conversion of succinate to fumarate in the Krebs cycle was also interrupted by phenanthrene. Therefore, this study shows that NMR-based metabolomics is a powerful tool for elucidating time-dependent relationships in addition to the mode of toxicity of phenanthrene in earthworm exposure studies. - Highlights: > NMR-based earthworm metabolomic analysis of the mode of action of phenanthrene is presented. > The earthworm species E. fetida were exposed to sub-lethal phenanthrene concentrations. > Both polar and non-polar metabolites of E. fetida tissue extracts were analyzed by {sup 1}H NMR. > Longer phenanthrene exposure times resulted in heightened earthworm responses. > An interruption of the Krebs cycle was also observed due to phenanthrene exposure. - {sup 1}H NMR metabolomics is used to determine the relationship between phenanthrene exposure and the metabolic response of the earthworm E. fetida over time and also to elucidate the phenanthrene mode of toxicity.

  11. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and

  12. Overview of advanced techniques for fabrication and testing of ITER multilayer plasma facing walls

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l`Energie Atomique, Saclay, Gif-sur-Yvette (France)

    1998-09-01

    The design of the ITER primary first wall incorporates a multi-layered structure consisting of a layer of beryllium bonded to a layer of copper alloy with embedded stainless steel tubes which in turn is bonded to a stainless steel structure. In this configuration, the stainless steel provides structural support, the copper alloy improved resistance to high heat loads, and the beryllium layer a low Z metal interface with plasma. Fabrication, testing and control of this multi-layered structure, and indeed the entire blanket shield module, calls for advanced methods. Several associations in the four home teams and their industrial partners have been involved in various fabrication and joining tasks now grouped under L4 blanket project. In this paper, an overview of the work done so far for joining stainless steel to stainless steel, stainless steel to copper alloy, copper alloy to copper alloy, and copper alloy to beryllium is presented. Specialised papers dealing with most of the topics treated here are scheduled in this symposium. The fabrication and joining methods presented here, other than the conventional welding and brazing, follow four main routes. Two of them make extensive use of hot-isostatic pressing (HIP); (a) solid to solid; (b) solid or powder to powder, with or without a prior cold or hot isostatic pressing of one of the products. The third combines advantages of casting and HIPping for fabricating large and complex parts. The fourth investigates the possibility of using explosive welding for joining copper alloys to stainless steel. Other methods, including friction welding, are investigated for specific parts. (orig.) 34 refs.

  13. The effects of low-volume resistance training with and without advanced techniques in trained subjects.

    Science.gov (United States)

    Gieβsing, Jùrgen; Fisher, James; Steele, James; Rothe, Frank; Raubold, Kristin; Eichmann, Björn

    2016-03-01

    This study examined low-volume resistance training (RT) in trained participants with and without advanced training methods. Trained participants (RT experience 4±3 years) were randomised to groups performing single-set RT: ssRM (N.=21) performing repetitions to self-determined repetition maximum (RM), ssMMF (N.=30) performing repetitions to momentary muscular failure (MMF), and ssRP (N.=28) performing repetitions to self-determined RM using a rest pause (RP) method. Each performed supervised RT twice/week for 10 weeks. Outcomes included maximal isometric strength and body composition using bioelectrical impedance analysis. The ssRM group did not significantly improve in any outcome. The ssMMF and ssRP groups both significantly improved strength (p < 0.05). Magnitude of changes using effect size (ES) was examined between groups. Strength ES's were considered large for ssMMF (0.91 to 1.57) and ranging small to large for ssRP (0.42 to 1.06). Body composition data revealed significant improvements (P<0.05) in muscle and fat mass and percentages for whole body, upper limbs and trunk for ssMMF, but only upper limbs for ssRP. Body composition ES's ranged moderate to large for ssMMF (0.56 to 1.27) and ranged small to moderate for ssRP (0.28 to 0.52). ssMMF also significantly improved (P<0.05) total abdominal fat and increased intracellular water with moderate ES's (-0.62 and 0.56, respectively). Training to self-determined RM is not efficacious for trained participants. Training to MMF produces greatest improvements in strength and body composition, however, RP style training does offer some benefit.

  14. 1H NMR-Based Metabolomic Analysis of Sub-Lethal Perfluorooctane Sulfonate Exposure to the Earthworm, Eisenia fetida, in Soil

    Directory of Open Access Journals (Sweden)

    Myrna J. Simpson

    2013-08-01

    Full Text Available 1H NMR-based metabolomics was used to measure the response of Eisenia fetida earthworms after exposure to sub-lethal concentrations of perfluorooctane sulfonate (PFOS in soil. Earthworms were exposed to a range of PFOS concentrations (five, 10, 25, 50, 100 or 150 mg/kg for two, seven and fourteen days. Earthworm tissues were extracted and analyzed by 1H NMR. Multivariate statistical analysis of the metabolic response of E. fetida to PFOS exposure identified time-dependent responses that were comprised of two separate modes of action: a non-polar narcosis type mechanism after two days of exposure and increased fatty acid oxidation after seven and fourteen days of exposure. Univariate statistical analysis revealed that 2-hexyl-5-ethyl-3-furansulfonate (HEFS, betaine, leucine, arginine, glutamate, maltose and ATP are potential indicators of PFOS exposure, as the concentrations of these metabolites fluctuated significantly. Overall, NMR-based metabolomic analysis suggests elevated fatty acid oxidation, disruption in energy metabolism and biological membrane structure and a possible interruption of ATP synthesis. These conclusions obtained from analysis of the metabolic profile in response to sub-lethal PFOS exposure indicates that NMR-based metabolomics is an excellent discovery tool when the mode of action (MOA of contaminants is not clearly defined.

  15. Multicolor fluorescence technique to detect apoptotic cells in advanced coronary atherosclerotic plaques

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available Apoptosis occurring in atherosclerotic lesions has been suggested to be involved in the evolution and the structural stability of the plaques. It is still a matter of debate whether apoptosis mainly involves vascular smooth muscle cells (vSMCs in the fibrous tissue or inflammatory (namely foam cells, thus preferentially affecting the cell-poor lipid core of the atherosclerotic plaques. The aim of the present investigation was to detect the presence of apoptotic cells and to estimate their percentage in a series of atherosclerotic plaques obtained either by autopsy or during surgical atherectomy. Apoptotic cells were identified on paraffinembedded sections on the basis of cell nuclear morphology after DNA staining and/or by cytochemical reactions (TUNEL assay, immunodetection of the proteolytic poly (ADP-ribose polymerase-1 [PARP-1] fragment; biochemical procedures (identifying DNA fragmentation or PARP-1 proteolysis were also used. Indirect immunofluorescence techniques were performed to label specific antigens for either vSMCs or macrophages (i.e., the cells which are most likely prone to apoptosis in atherosclerotic lesions: the proper selection of fluorochrome labeling allowed the simultaneous detection of the cell phenotype and the apoptotic characteristics, by multicolor fluorescence techniques. Apoptotic cells proved to be less than 5% of the whole cell population, in atherosclerotic plaque sections: this is, in fact, a too low cell fraction to be detected by widely used biochemical methods, such as agarose gel electrophoresis of low-molecular-weight DNA or Western-blot analysis of PARP-1 degradation. Most apoptotic cells were of macrophage origin, and clustered in the tunica media, near or within the lipid-rich core; only a few TUNEL-positive cells were labeled for antigens specific for vSMCs. These results confirm that, among the cell populations in atherosclerotic plaques, macrophage foam-cells are preferentially involved in apoptosis

  16. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  17. Advances on experimental techniques for the characterization of THM behaviour of bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M.V. [CIEMAT - Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Lioret, A. [Universidad Politecnica de Cataluna (UPC), Barcelona (Spain)

    2005-07-01

    The design of high level radioactive waste (HLW) repositories in deep geological media in which bentonite clay is proposed as a sealing material leads to the need of further studying the behaviour of highly compacted expansive soils when subjected to mechanical, hydraulic and thermal changes. Laboratory tests may help to understand the processes that take place in the clay barrier under simple and controlled conditions and to develop the governing equations. The laboratory tests enable to isolate the different processes, making their interpretation easier, and provide with fundamental data concerning the parameters to be used in the models. The extremely low permeability of these materials, their avidity for water (high suction) and their high swelling capacity make necessary the modification of the conventional laboratory techniques and procedures to determine basic physical parameters. The main hydraulic properties of the barrier to be considered are the permeability and the water retention capacity. Among the mechanical properties of bentonites, the most outstanding is their capacity to change volume and thus, the characterisation and measurement of swelling pressure, swelling under load and mechanical compressibility are keystones to understand the behaviour of expansive materials. Besides, since the barrier will be subjected to thermal and hydraulic gradients, the variation of its mechanical and hydraulic characteristics with temperature and suction must be known. (authors)

  18. Advanced techniques in dynamic infrared imaging research and application for cancer patients

    International Nuclear Information System (INIS)

    Boggio, Esteban F.; Santa Cruz, Gustavo A.

    2009-01-01

    Infrared Imaging for biomedical applications is a non-invasive technique employed to visualize the distribution of infrared radiance coming from the subject under study, either in a static or a dynamic mode. The main difference is that while with the static method basal situations are studied, in the dynamic approach a sequence of thermograms, using thermal stimuli applied onto the patient are acquired, following the temperature evolution throughout the time. Since tumors possess abnormal metabolic activity, a structure and a vascular distribution essentially different from healthy tissue, and a lack of response to homeostatic signals, thermal stresses enhance even more their presence. For this reason, a completely non-invasive system, referred to as Enhancement and Stimulation System (ESS) was constructed, capable of imparting a cool or hot convective air flow onto the surface to examine and permitting to include in the study the time-course of the thermal stress application. In this work, the design of the Dynamic Infrared Imaging-ESS prototype, its characterization and optimization will be presented. In addition, examples of biomedical interest employing small animals will be shown as well. (author)

  19. Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques

    Science.gov (United States)

    Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.

    2017-10-01

    It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.

  20. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng; Li, Henan; Li, Lain-Jong

    2014-01-01

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  1. Atomic resolution holography using advanced reconstruction techniques for two-dimensional detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marko, M; Szakal, A; Cser, L [Neutron Spectroscopy Department, Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest (Hungary); Krexner, G [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Schefer, J, E-mail: marko@szfki.h [Laboratory for Neutron Scattering (LNS), Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2010-06-15

    Atomic resolution holography is based on two concepts. Either the emitter of the radiation used is embedded in the sample (internal source concept) or, on account of the optical reciprocity law, the detector forms part of the sample (internal detector concept). In many cases, holographic objects (atoms and nuclei) simultaneously adopt the roles of both source and detector. Thus, the recorded image contains a mixture of both inside source and inside detector holograms. When reconstructing one type of hologram, the presence of the other hologram causes serious distortions. In the present work, we propose a new method, the so-called double reconstruction (DR), which not only suppresses the mutual distortions but also exploits the information content of the measured hologram more effectively. This novel approach also decreases the level of distortion arising from diffraction and statistical noise. The efficiency of the DR technique is significantly enhanced by employing two-dimensional (2D) area detectors. The power of the method is illustrated here by applying it to a real measurement on a palladium-hydrogen sample.

  2. Some advances in the instrumental retrospective dosimetry techniques with tooth enamel and quartz

    International Nuclear Information System (INIS)

    Sholom, S.V.; Chumak, V.V.; Pasalskaja, L.F.; Pavlenko, J.V.

    1996-01-01

    Some aspects of retrospective dosimetry with tooth enamel and quartz have been considered. Firstly, the experimental and theoretical investigation had been carried out concerning influence of secondary electron equilibrium on the absorbed dose in enamel under the laboratory irradiation. The irradiation had been made with photons of energy 1,25 MeV, 662 and 100 keV. It is demonstrated that the influence of secondary electron equilibrium on the absorbed dose in enamel does not exceed few percent. Secondly, some of paramagnetic centers of enamel different from CO 2 - ones have been researched by using of the thermo activation technique. The enamel for this experiment had been carefully purified from organic components and then irradiated following annealed to consecutively increasing temperature. It was established that at least four of EPR centers of enamel possess radiation sensitivity and could be used for dosimetry purposes. Thirsty, it was performed a thorough investigation of the influence of different stages in quartz separation and purification with respect to obtaining of samples for TL-dosimetry. The optimal procedure has been developed

  3. Advanced Digitization Techniques in Retrieval of Mechanism and Machine Science Resources

    Science.gov (United States)

    Lovasz, E.-Ch.; Gruescu, C. M.; Ciupe, V.; Carabas, I.; Margineanu, D.; Maniu, I.; Dehelean, N.

    The European project thinkMOTION works on the purpose of retrieving all-times content regarding mechanisms and machine science by means of creating a digital library, accessible to a broad public through the portal Europeana. DMG-Lib is intended to display the development in the field, from its very beginning up to now days. There is a large range of significant objects available, physically very heterogeneous and needing all to be digitized. The paper presents the workflow, the equipments and specific techniques used in digitization of documents featuring very different characteristics (size, texture, color, degree of preservation, resolution and so on). Once the workflow established on very detailed steps, the development of the workstation is treated. Special equipments designed and assembled at Universitatea "Politehnica" Timisoara are presented. A large series of software applications, including original programs, work for digitization itself, processing of images, management of files, automatic optoelectronic control of capture, storage of information in different stages of processing. An illustrating example is explained, showing the steps followed in order to obtain a clear, high-resolution image from an old original document (very valuable as a historical proof but very poor in quality regarding clarity, contrast and resolution).

  4. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  5. WE-H-202-04: Advanced Medical Image Registration Techniques

    International Nuclear Information System (INIS)

    Christensen, G.

    2016-01-01

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  6. WE-H-202-04: Advanced Medical Image Registration Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, G. [University of Iowa (United States)

    2016-06-15

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  7. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    International Nuclear Information System (INIS)

    Furuta, H.; Tadokoro, H.; Imura, A.; Furuta, Y.; Suekane, F.

    2010-01-01

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  8. Advanced Techniques for Assessment of Postural and Locomotor Ataxia, Spatial Orientation, and Gaze Stability

    Science.gov (United States)

    Wall, Conrad., III

    1999-01-01

    and quantified. We are improving this situation by applying methodologies such as nonlinear orbital stability to quantify responses and by using multivariate statistical approaches to link together the responses across separate tests. In this way we can exploit the information available and increase the ability to discriminate between normal and pathological responses. Measures of stability and orientation are compared to measures such as dynamic visual acuity and with balance function tests. The responses of normal human subjects and of patients having well documented pathophysiologies are being characterized. When these studies are completed, we should have a clearer idea about normal and abnormal patterns of eye, head, and body movements during locomotion and their stability in a wide range of environments. We plan eventually to use this information to validate the efficacy of candidate neurovestibular and neuromuscular rehabilitative techniques. Some representative studies made during this year are summarized.

  9. Determination of long-lived radionuclides at ultratrace level using advanced mass spectrometric techniques

    International Nuclear Information System (INIS)

    Zoriy, M.

    2005-11-01

    Determination of long-lived radionuclides at sub-fg concentration level is a challenging task in analytical chemistry. Inductively coupled plasma mass spectrometry (ICP-MS) with its ability to provide the sensitive and fast multielemental analysis is one of the most suitable method for the measurements of long lived radionuclides in the trace and ultra trace concentration range. In present the Ph.D. study a variety of procedures have been developed permitting the sub fg ml-1 determination of long-lived radionuclides (e.g. U, Th, Pu) as well as 226 Ra (T 1/2 = 1600 y) and 90 Sr (T 1/2 = 28.1 y) in different samples. In order to avoid isobaric interferences, to increase the sensitivity, precision and accuracy of the methods the application of different techniques: pre-concentration of the sample, off-line separation on the crown resin, measurements under cold plasma conditions, using microconcentric nebulizers (e.g DIHEN, DS-5) or the application of LA-ICP-MS for sample introduction have been studied. The limits of detection for different radionuclides was significantly improved in comparison to the ones reported in the literature, and, depending on the method applied, was varied from 10 -15 to 10 -18 g ml -1 concentration range. In addition to the analysis of long lived radionuclides, some other elements, that can present potential interest to the analyzed sample, were measured within the framework of the present study. Laser ablation inductively coupled plasma mass spectrometry (LAICP- MS) was used to produce images of element distribution in 20μm m thin sections of human brain tissue. The sample surface was scanned (raster area ∝80 mm 2 ) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50μm, and laser power density 3x10 9 W cm -2 ) in a cooled laser ablation chamber developed for these measurements. Cross sections of human brain samples - hippocampus as well as brain tissues infected and non-infected with Glioblastoma Multiforme (tumor

  10. Advanced characterization techniques of nonuniform indium distribution within InGaN/GaN heterostructures grown by MOCVD

    International Nuclear Information System (INIS)

    Lu, D.; Florescu, D.I.; Lee, D.S.; Ramer, J.C.; Parekh, A.; Merai, V.; Li, S.; Begarney, M.J.; Armour, E.A.; Gardner, J.J.

    2005-01-01

    Nonuniform indium distribution within InGaN/GaN single quantum well (SQW) structures with nanoscale islands grown by metalorganic chemical vapor deposition (MOCVD) have been characterized by advanced characterization techniques. Robinson backscattered electron (BSE) measurements show cluster-like BSE contrast of high brightness regions, which are not centered at small dark pits in a SQW structure of spiral growth mode. By comparing with the secondary electron (SE) images, the bright cluster areas from the BSE images were found to have higher indium content compared to the surrounding dark areas. Temperature dependant photoluminescence (PL) measurement shows typical ''S-shape'' curve, which shows good correlation with nonuniform indium distribution from BSE measurement. Optical evaluation of the samples show increased PL slope efficiency of the spiral mode SQW, which can be attributed to the presence of Indium inhomogeneities. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Pathogenesis-based treatments in primary Sjogren's syndrome using artificial intelligence and advanced machine learning techniques: a systematic literature review.

    Science.gov (United States)

    Foulquier, Nathan; Redou, Pascal; Le Gal, Christophe; Rouvière, Bénédicte; Pers, Jacques-Olivier; Saraux, Alain

    2018-05-17

    Big data analysis has become a common way to extract information from complex and large datasets among most scientific domains. This approach is now used to study large cohorts of patients in medicine. This work is a review of publications that have used artificial intelligence and advanced machine learning techniques to study physio pathogenesis-based treatments in pSS. A systematic literature review retrieved all articles reporting on the use of advanced statistical analysis applied to the study of systemic autoimmune diseases (SADs) over the last decade. An automatic bibliography screening method has been developed to perform this task. The program called BIBOT was designed to fetch and analyze articles from the pubmed database using a list of keywords and Natural Language Processing approaches. The evolution of trends in statistical approaches, sizes of cohorts and number of publications over this period were also computed in the process. In all, 44077 abstracts were screened and 1017 publications were analyzed. The mean number of selected articles was 101.0 (S.D. 19.16) by year, but increased significantly over the time (from 74 articles in 2008 to 138 in 2017). Among them only 12 focused on pSS but none of them emphasized on the aspect of pathogenesis-based treatments. To conclude, medicine progressively enters the era of big data analysis and artificial intelligence, but these approaches are not yet used to describe pSS-specific pathogenesis-based treatment. Nevertheless, large multicentre studies are investigating this aspect with advanced algorithmic tools on large cohorts of SADs patients.

  12. Novel use of bioelectric impedence technique to detect alterations in body composition in advanced small cell lung cancer.

    Science.gov (United States)

    Mohan, A; Poulose, R; Ansari, A; Madan, K; Hadda, V; Khilnani, G C; Guleria, R

    2017-01-01

    Malnutrition is frequent in lung cancer and is measured using various tools, including the novel bioelectric impedance technique for measuring body composition. However, the validation of this technique for assessing body composition in advanced small cell lung cancer (SCLC) is untested. Forty-one treatment naïve patients (all males) and an equal number of age- and sex-matched controls were evaluated by anthropometric measurements of skinfold thicknesses and body composition parameters such as body fat%, fat mass, fat-free mass (FFM), and total body water (TBW). The mean (SD) age of the patient group was 55.7 (7.5) years, median pack-years was 20 (range, 0-80), and mean (SD) duration of symptoms was 152.6 (153.7) days. Median Karnofsky Performance Scale was 70 (range, 50-90). Majority of our patients (68.3%) were Stage IV followed by Stage III (31.7%). The percentage of patients with low, normal, and high body mass index (BMI) was 31.7%, 61%, and 7.3%, respectively. All components of body composition, i.e., body fat%, FFM, and TBW were significantly lower in patients compared to controls. However, the body composition in patients and controls with normal BMI was similar. The phenomenon of sarcopenia as a cause of cancer cachexia may explain these findings, whereas the combination of loss of body fat and lean body mass may lead to weight loss and reduced BMI. Our results indicate that body composition is markedly altered in Indian patients with advanced SCLC. The impact of these parameters on clinically relevant outcomes needs further evaluation.

  13. Surgical Techniques for Diaphragmatic Resection During Cytoreduction in Advanced or Recurrent Ovarian Carcinoma: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Chiappa, Valentina; Donfrancesco, Cristina; Di Donato, Violante; Indini, Alice; Aletti, Giovanni; Raspagliesi, Francesco

    2016-02-01

    Optimal cytoreduction is one the main factors improving survival outcomes in patients affected by ovarian cancer (OC). It is estimated that approximately 40% of OC patients have gross disease located on the diaphragm. However, no mature data evaluating outcomes of surgical techniques for the management of diaphragmatic carcinosis exist. In the present study, we aimed to estimate surgery-related morbidity of different surgical techniques for diaphragmatic cytoreduction in advanced or recurrent OC. PubMed (MEDLINE), Web of Science, and Clincaltrials.gov databases were searched for records estimating outcomes of diaphragmatic peritoneal stripping (DPS) or diaphragmatic full-thickness resection (DFTR) for OC. The meta-analysis was performed using the Cochrane Review software. For the final analysis, 5 articles were available, including 272 patients. Diaphragmatic peritoneal stripping and DFTR were performed in 197 patients (72%) and 75 patients (28%), respectively. Pooled analysis suggested that the estimated pleural effusion rate was 43% and 51% after DPS and DFTR, respectively. The need for pleural punctures or chest tube placement was 4% and 9% after DPS and DFTR, respectively. The rate of postoperative pneumothorax (4% vs 9%; odds ratio, 0.31; 95% confidence interval, 0.05-2.08) and subdiaphragmatic abscess (3% vs 3%; odds ratio, 0.45; 95% confidence interval, 0.09-2.31) were similar after the execution of DPS and DFTR. Diaphragmatic surgery is a crucial step during cytoreduction for advanced or recurrent OC. Obviously, the choice to perform DPS or DFTR depends on the infiltration of the diaphragmatic muscle or not. Both the procedures are associated with a low pulmonary complication and chest tube placement rates.

  14. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Brameshuber, M.

    2009-01-01

    lipid-lipid or protein-lipid interactions, protein-protein interactions play of mayor role for the regulation of cell metabolism and function. In this thesis I further characterized the interaction between human CD4, the major co-receptor in T cell activation, and human Lck, the protein tyrosine kinase essential for early T cell signaling using an ultra-sensitive fluorescence-based method. Interaction dynamics were studied in detail by performing photobleaching experiments and single molecule brightness analysis. This enabled a combined mobility and stoichiometry analysis of Lck-molecules interacting with the captured CD4 protein. In the last part of my thesis I present a single molecule fluorescence study using a variant of an oxidized phospholipid - which is known to induce apoptosis - to probe the structure of the cellular plasmamembrane. The cells were illuminated using a recently introduced technique which utilizes a highly inclined and laminated optical sheet (HILO) to reduce background signal arising from intracellular fluorophores or from cellular autofluorescence. Our data demonstrate the relevance of plasma membrane properties for uptake of oxidized phospholipids, and indicate a novel indirect mechanism for the control of endocytosis. (author) [de

  15. Whole Body Computed Tomography with Advanced Imaging Techniques: A Research Tool for Measuring Body Composition in Dogs

    Directory of Open Access Journals (Sweden)

    Dharma Purushothaman

    2013-01-01

    Full Text Available The use of computed tomography (CT to evaluate obesity in canines is limited. Traditional CT image analysis is cumbersome and uses prediction equations that require manual calculations. In order to overcome this, our study investigated the use of advanced image analysis software programs to determine body composition in dogs with an application to canine obesity research. Beagles and greyhounds were chosen for their differences in morphology and propensity to obesity. Whole body CT scans with regular intervals were performed on six beagles and six greyhounds that were subjected to a 28-day weight-gain protocol. The CT images obtained at days 0 and 28 were analyzed using software programs OsiriX, ImageJ, and AutoCAT. The CT scanning technique was able to differentiate bone, lean, and fat tissue in dogs and proved sensitive enough to detect increases in both lean and fat during weight gain over a short period. A significant difference in lean : fat ratio was observed between the two breeds on both days 0 and 28 (P<0.01. Therefore, CT and advanced image analysis proved useful in the current study for the estimation of body composition in dogs and has the potential to be used in canine obesity research.

  16. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface

  17. A comparative study on EDTA and coronaliy advanced flap technique in the treatment of human gingival recessions

    Directory of Open Access Journals (Sweden)

    Khoshkhoo Nejad AA

    2003-08-01

    Full Text Available Statement of Problem: Treatment of gingival recession defect and covering denuded root surfaces is one of the goals in periodontal therapy and several surgical techniques have been suggested in this field."nPurpose: The aim of this study was to perform a comparison on coronaliy repositioned flap procedure with and without the use of ethylenediaminoteraacetic acid (EDTA. 24%, pH=7 in the treatment of"nrecession defects."nMaterial and Methods: In this randomized clinical trial study, 16 patients, aged 17-60 years, with a total of 27 miller class 1 isolated buccal gingival recession type defects of at least 2mm depth, and based"non special criteria were investigated. After initial therapy, surgical recession coverage was performed as coronaliy advanced flap technique and EDTA gel conditioning (test or coronaliy advanced flap alone"n(control. Clinical examination including assessments of oral hygiene, recession depth (RD, recession width (RW, width of keratinized tissue (KT, probing depth (PD and probing attachment level (PAL"nwere performed before and 1, 2, 3 months after surgical treatment."nResults: The mean of initial RD, RW, KT, PT and PAL in the test group was 2.73, 3.17, 3.13, 1.1 and 3.83mm respectively and in the control group was 2.56, 3.03, 3.67, 1.25, 3.92mm respectively. The mean of these parameters 3 months after treatment in the test group were changed to 0.46, 1.97, 2.65, 0.67, 1.1 mm, corresponding figures for control teeth were 0.85, 2.98, 2.75, 1, 1.94, respectively. At 3 months after treatment the mean root coverage amounted to 83% (test and 67% (control which was a statistically significant difference (P=0.0067. Although a significant clinical difference was observed regarinding root coverage level, all other clinical variables were not statistically different, with the exception of probing attachment level (P=0.005."nConclusion: It was suggested that EDTA gel (24%, PLT=7 for 3 minutes as root conditioner and the coronaliy

  18. Conceptual design study and evaluation of an advanced treatment process applying a submerged combustion technique for spent solvents

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fijine, Sachio; Chida, Mitsuhisa; Kirishima, Kenji.

    1993-10-01

    An advanced treatment process based on a submerged combustion technique was proposed for spent solvents and the distillation residues containing transuranium (TRU) nuclides. A conceptual design study and the preliminary cost estimation of the treatment facility applying the process were conducted. Based on the results of the study, the process evaluation on the technical features, such as safety, volume reduction of TRU waste and economics was carried out. The key requirements for practical use were also summarized. It was shown that the process had the features as follows: the simplified treatment and solidification steps will not generate secondary aqueous wastes, the volume of TRU solid waste will be reduced less than one tenth of that of a reference technique (pyrolysis process), and the facility construction cost is less than 1 % of the total construction cost of a future large scale reprocessing plant. As for the low level wastes of calcium phosphate, it was shown that the further removal of β · γ nuclides with TRU nuclides from the wastes would be required for the safety in interim storage and transportation and for the load of shielding. (author)

  19. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  20. Development of the advanced phased array UT technique for accurate sizing of cracks in the nozzle welding

    International Nuclear Information System (INIS)

    Nishida, Jun-ichiro; Kawanami, Seiichi; Ideo, Mitsushi; Matsuura, Takayuki; Chigusa, Naoki; Hirano, Shinro; Sera, Takehiko

    2010-01-01

    Recently, preventive maintenance tasks for welding of safe-end nozzles of reactor vessels and steam generators of PWRs in Japan had been carried out sequentially. Before the maintenance tasks, inspection services were carried out and several crack indications were found by eddy current testing (ECT). These indications were found in the welding which made by 600 series nickel base alloy and evaluated as stress corrosion cracks which were oriented to the axial direction of the nozzle. Then investigations to evaluate the depth of cracks were carried out by ultrasonic testing (UT) from inner surface of the nozzles. However they were difficult to evaluate the depth of cracks due to the high attenuation of the ultrasonic propagation caused by large grain structure of welding. And also it was required high resolution near surface region for accurate sizing. Therefore development of advanced phased array UT techniques specialized for the sizing at this portion was carried out. This paper reports the development status and verification test results. Firstly simulations of the ultrasonic propagation in the welding were carried out to optimize beam profiles of phased array probes. Next prototype probes were manufactured and verification tests were conducted to evaluate the accuracy of depth sizing. It is shown that the developed techniques have high sizing accuracy for artificial stress corrosion cracks in the welding. (author)

  1. Devices, materials, and processes for nano-electronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources

    International Nuclear Information System (INIS)

    Zschech, E.; Wyon, C.; Murray, C.E.; Schneider, G.

    2011-01-01

    Future nano-electronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nano-structures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nano-electronics industry is reviewed. The focus of this paper is on the study of nano-scale device and on-chip interconnect materials, and materials for 3D IC integration as well. (authors)

  2. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki

  3. Advanced UT Techniques

    OpenAIRE

    Grga, Ivan; Jarnjak, Fran

    2013-01-01

    Ultrasonic phased array testing is a powerful NDT technology and one whose use is growing rapidly. The paper gives an overview on how an UT beam is formed using phased array compared to sound beams in conventional UT, presenting benefits introduced as well as disadvantages of ultrasonic phased array technology.

  4. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  5. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation

    OpenAIRE

    Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang

    2016-01-01

    The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glu...

  6. NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high fibre rye bread

    DEFF Research Database (Denmark)

    Bertram, Hanne C.; Bach Knudsen, Knud E.; Serena, Anja

    2006-01-01

    This study presents an NMR-based metabonomic approach to elucidate the overall endogenous biochemical effects of a wholegrain diet. Two diets with similar levels of dietary fibre and macronutrients, but with contrasting levels of wholegrain ingredients, were prepared from wholegrain rye (wholegrain...... diet (WGD)) and non-wholegrain wheat (non-wholegrain diet (NWD)) and fed to four pigs in a crossover design. Plasma samples were collected after 7 d on each diet, and 1H NMR spectra were acquired on these. Partial least squares regression discriminant analysis (PLS-DA) on spectra obtained for plasma...

  7. Energy projects in Iceland – Advancing the case for the use of economic valuation techniques to evaluate environmental impacts

    International Nuclear Information System (INIS)

    Cook, David; Davíðsdóttir, Brynhildur; Kristófersson, Daði Már

    2016-01-01

    Decision-making in Iceland has occurred without reference to economic valuations of the environmental impacts of energy projects. Environmental Impact Assessments, a legal requirement for nearly all energy projects in Iceland since 1994, have played an important role in identifying the environmental impacts of energy projects, and proposing mitigation measures. However, a purely qualitative description of environmental impacts is insufficient to ensure that they are accounted for equivalently with all of the other costs and benefits of a proposed project. Instead, as monetary information concerning the welfare gains or losses of proposed projects is not currently required to be provided to the licensing body, Orkustofnun, there is the potential for sub-optimal decision-making to occur. As this paper sets out, a broad variety of non-market valuation techniques already exist and could be applied to estimate the value of environmental benefits sacrificed to accommodate such developments. These methods and their outcomes could be incorporated within mandatory cost-benefit assessments for proposed Icelandic energy projects, communicating an estimate of the full welfare implications of approvals to decision-makers and the public alike, and fulfilling an OECD demand for the country to commence such processes. - Highlights: •Current risk of sub-optimal decision-making by licensing body, Orkustofnun. •OECD call for monetary valuations of environmental impacts linked to Icelandic energy projects. •Lessons to be learned from US regulatory approach to advance cost-benefit assessment practice in Iceland. •Practice of conducting non-market valuation techniques limited in Iceland, but now growing.

  8. Advancements in artificial heart valve disks using nano-sized thin films deposited by CVD and sol-gel techniques

    International Nuclear Information System (INIS)

    Kousar, Y.; Ali, N.; Neto, V.F.; Mei, S.; Gracio, J.

    2003-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although, PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti- coagulation drugs on a regular basis in order to minimise the formation of thrombosis. However, the anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, namely, strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and the coefficient of friction values were obtained from the pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also, in this paper we report the preparation of free standing nanocrystalline diamond films (FSND) using the time-modulated chemical vapor deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO/sub 2/) coatings. The as-grown nc-TiO/sub 2/ coatings were characterized for microstructure using SEM and XRD analysis. (author)

  9. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  10. Vapor Measurement System of Essential Oil Based on MOS Gas Sensors Driven with Advanced Temperature Modulation Technique

    Science.gov (United States)

    Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.

    2018-05-01

    The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.

  11. Examination of the ion-implantation route to fabrication of the Kane quantum computer using advanced imaging techniques

    International Nuclear Information System (INIS)

    Pakes, C.; Millar, V.; Peng, J.; Cimmino, A.; Prawer, S.; Jamieson, D.; Yang, C.; McKinnon, R.; Stanley, F.; Clark, R.; University of New South Wales, NSW; Dzurak, A.

    2002-01-01

    Full text: The Kane solid-state quantum computer employs as qubits an array of 31 P atoms embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. We present an overview of a program of research aiming to develop advanced imaging techniques to address key issues relating to the fabrication of the Kane device by ion implantation, focusing particularly on the development of surface-resist technology to allow the registration of single implanted ions and an examination of the extent of damage imposed on the silicon matrix. Our surface resists take the form of a polymethylmethacrylate (PMMA) thin-films, which have been exposed both to MeV and keV ions. Registration of ion implantation is based on the development of localised chemical modification arising from latent damage caused within the PMMA layer by the passage of an implanted ion. On development of the resist, atomic force microscopy imaging demonstrates the formation of clearly defined etched holes, of typical diameter 30 nm, which are ascribed to single-ion impacts. The use of novel scanning probes, such as carbon nanotubes, for imaging complex PMMA resist structures will be illustrated. Potential applications to the fabrication of self-aligned gate structures will be discussed

  12. Interval colon cancer in a Lynch syndrome patient under annual colonoscopic surveillance: a case for advanced imaging techniques?

    Directory of Open Access Journals (Sweden)

    Oxentenko Amy S

    2012-05-01

    Full Text Available Abstract Background Lynch syndrome confers increased risk for various malignancies, including colorectal cancer. Colonoscopic surveillance programs have led to reduced incidence of colorectal cancer and reduced mortality from colorectal cancer. Colonoscopy every 1–2 years beginning at age 20–25, or 10 years earlier than the first diagnosis of colorectal cancer in a family, with annual colonoscopy after age 40, is the recommended management for mutation carriers. Screening programs have reduced colon cancer mortality, but interval cancers may occur. Case presentation We describe a 48-year-old woman with Lynch syndrome who was found to have an adenoma with invasive colorectal cancer within one year after a normal colonoscopy. Conclusion Our patient illustrates two current concepts about Lynch syndrome: 1 adenomas are the cancer precursor and 2 such adenomas may be “aggressive,” in the sense that the adenoma progresses more readily and more rapidly to carcinoma in this setting compared to usual colorectal adenomas. Our patient’s resected tumor invaded only into submucosa and all lymph nodes were negative; in that sense, she represents a success for annual colonoscopic surveillance. Still, this case does raise the question of whether advanced imaging techniques are advisable for surveillance colonoscopy in these high-risk patients.

  13. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    Science.gov (United States)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  14. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  15. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

    International Nuclear Information System (INIS)

    Mattes, Malcolm D.; Zhou, Ying; Berry, Sean L.; Barker, Christopher A.

    2016-01-01

    Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung V 20 (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum D max (13.6 vs. 38.9 Gy), bowel D 200cc (7.3 vs. 23.1 Gy), femur D 50 (34.6 vs. 57.2 Gy), and genitalia D max (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus D mean (16.9 vs. 22.4 Gy), brachial plexus D 5 (57.4 vs. 61.3 Gy), bladder D 5 (26.8 vs. 36.5 Gy), and femur D 50 (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients

  16. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Zhou, Ying; Berry, Sean L.; Barker, Christopher A. [Memorial Sloan Kettering Cancer Center, New York (United States)

    2016-06-15

    Radiation therapy targeting axilla and groin lymph nodes improves regional disease control in locally advanced and high-risk skin cancers. However, trials generally used conventional two-dimensional radiotherapy (2D-RT), contributing towards relatively high rates of side effects from treatment. The goal of this study is to determine if three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or volumetric-modulated arc therapy (VMAT) may improve radiation delivery to the target while avoiding organs at risk in the clinical context of skin cancer regional nodal irradiation. Twenty patients with locally advanced/high-risk skin cancers underwent computed tomography simulation. The relevant axilla or groin planning target volumes and organs at risk were delineated using standard definitions. Paired t-tests were used to compare the mean values of several dose-volumetric parameters for each of the 4 techniques. In the axilla, the largest improvement for 3D-CRT compared to 2D-RT was for homogeneity index (13.9 vs. 54.3), at the expense of higher lung V{sub 20} (28.0% vs. 12.6%). In the groin, the largest improvements for 3D-CRT compared to 2D-RT were for anorectum D{sub max} (13.6 vs. 38.9 Gy), bowel D{sub 200cc} (7.3 vs. 23.1 Gy), femur D{sub 50} (34.6 vs. 57.2 Gy), and genitalia D{sub max} (37.6 vs. 51.1 Gy). IMRT had further improvements compared to 3D-CRT for humerus D{sub mean} (16.9 vs. 22.4 Gy), brachial plexus D{sub 5} (57.4 vs. 61.3 Gy), bladder D{sub 5} (26.8 vs. 36.5 Gy), and femur D{sub 50} (18.7 vs. 34.6 Gy). Fewer differences were observed between IMRT and VMAT. Compared to 2D-RT and 3D-CRT, IMRT and VMAT had dosimetric advantages in the treatment of nodal regions of skin cancer patients.

  17. A 1H-NMR-Based Metabonomic Study on the Anti-Depressive Effect of the Total Alkaloid of Corydalis Rhizoma

    Directory of Open Access Journals (Sweden)

    Hongwei Wu

    2015-05-01

    Full Text Available Corydalis Rhizoma, named YuanHu in China, is the dried tuber of Corydalis yanhusuo W.T. Wang which is used in Traditional Chinese Medicine for pain relief and blood activation. Previous pharmacological studies showed that apart from analgesics, the alkaloids from YuanHu may be useful in the therapy of depression by acting on the GABA, dopamine and benzodiazepine receptors. In this study, the antidepressive effect of the total alkaloid of YuanHu (YHTA was investigated in a chronic unpredictable mild stress (CUMS rat model using 1H-NMR-based metabonomics. Plasma metabolic profiles were analyzed and multivariate data analysis was applied to discover the metabolic biomarkers in CUMS rats. Thirteen biomarkers of CUMS-introduced depression were identified, which are myo-inositol, glycerol, glycine, creatine, glutamine, glutamate, β-glucose, α-glucose, acetoacetate, 3-hydroxybutyrate, leucine and unsaturated lipids (L7, L9. Moreover, a metabolic network of the potential biomarkers in plasma perturbed by CUMS was detected. After YHTA treatment, clear separation between the model group and YHTA-treated group was achieved. The levels of all the abnormal metabolites mentioned above showed a tendency of restoration to normal levels. The results demonstrated the therapeutic efficacy of YHTA against depression and suggested that NMR-based metabolomics can provide a simple and easy tool for the evaluation of herbal therapeutics.

  18. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics.

    Science.gov (United States)

    Song, Qinqin; Zhou, Hailong; Han, Qian; Diao, Xiaoping

    2017-11-01

    Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Discriminative Analysis of Different Grades of Gaharu (Aquilaria malaccensis Lamk. via 1H-NMR-Based Metabolomics Using PLS-DA and Random Forests Classification Models

    Directory of Open Access Journals (Sweden)

    Siti Nazirah Ismail

    2017-09-01

    Full Text Available Gaharu (agarwood, Aquilaria malaccensis Lamk. is a valuable tropical rainforest product traded internationally for its distinctive fragrance. It is not only popular as incense and in perfumery, but also favored in traditional medicine due to its sedative, carminative, cardioprotective and analgesic effects. The current study addresses the chemical differences and similarities between gaharu samples of different grades, obtained commercially, using 1H-NMR-based metabolomics. Two classification models: partial least squares-discriminant analysis (PLS-DA and Random Forests were developed to classify the gaharu samples on the basis of their chemical constituents. The gaharu samples could be reclassified into a ‘high grade’ group (samples A, B and D, characterized by high contents of kusunol, jinkohol, and 10-epi-γ-eudesmol; an ‘intermediate grade’ group (samples C, F and G, dominated by fatty acid and vanillic acid; and a ‘low grade’ group (sample E and H, which had higher contents of aquilarone derivatives and phenylethyl chromones. The results showed that 1H- NMR-based metabolomics can be a potential method to grade the quality of gaharu samples on the basis of their chemical constituents.

  20. Root coverage with connective tissue graft associated with coronally advanced flap or tunnel technique: a randomized, double-blind, mono-centre clinical trial

    NARCIS (Netherlands)

    Azaripour, Adriano;