WorldWideScience

Sample records for advanced neutron source

  1. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  2. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  3. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  4. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  5. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  6. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  7. A status report on the advanced neutron source project

    International Nuclear Information System (INIS)

    Design work on the Advanced Neutron Source facilities has progressed significantly, with cost saving changes to the buildings and other systems. The cold source design has advanced considerably, and in addition design work has been initiated on the hot neutron source and on a positron source. (J.P.N.)

  8. Advanced spallation neutron sources for condensed matter research

    International Nuclear Information System (INIS)

    Advanced spallation neutron sources afford significant advantages over existing high flux reactors. The effective flux is much greater than that currently available with reactor sources. A ten-fold increase in neutron flux will be a major benefit to a wide range of condensed matter studies, and it will realise important experiments that are marginal at reactor sources. Moreover, the high intensity of epithermal neutrons open new vistas in studies of electronic states and molecular vibrations. (author)

  9. Advanced Neutron Source radiological design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  10. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  11. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  12. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    International Nuclear Information System (INIS)

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I ampersand C Research and Development; Design; and Safety

  13. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  14. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  15. Review of the Advanced Neutron Source (ANS) materials irradiation facilities

    International Nuclear Information System (INIS)

    The purpose of the workshop was to document as accurately as possible the present and future needs for neutron irradiation capacity and facilities as related to the design of the Advanced Neutron Source (ANS) which will be the next generation steady-state research reactor. The report provides the findings and recommendations of the working group. After introductory and background information is presented, the discussion includes the status of the ANS design, in particular in-core materials irradiation facilities design and important experimental parameters. The summary of workshop discussions describes a survey of irradiation-effects research community and opportunities for ex-core irradiation facilities. 20 refs., 2 figs., 4 tabs

  16. The advanced neutron source research and development plan

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 {center_dot} 10{sup 19} {center_dot} m{sup -2} {center_dot} s{sup -1}. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R&D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R&D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R&D program will focus on the four objectives described.

  17. The advanced neutron source research and development plan

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 · 1019 · m-2 · s-1. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R ampersand D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R ampersand D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R ampersand D program will focus on the four objectives described

  18. The Advanced Neutron Source research and development plan

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world. The ANS will be built around a new research reactor of ∼ 330 MW fission power, producing an unprecedented peak thermal flux of > 7 x 1019 M-2 · S-1. Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science-as well as applied research-leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The R ampersand D program will focus on the four objectives: Address feasibility issues; provide analysis support; evaluate options for improvement in performance beyond minimum requirements; and provide prototype demonstrations for unique facilities. The remainder of this report presents (1) the process by which the R ampersand D activities are controlled and (2) a discussion of the individual tasks that have been identified for the R ampersand D program, including their justification, schedule and costs. The activities discussed in this report will be performed by Martin Marietta Energy Systems, Inc. (MMES) through the Oak Ridge National Laboratory (ORNL) and through subcontracts with industry, universities, and other national laboratories. It should be noted that in general a success path has been assumed for all tasks

  19. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  20. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  1. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  2. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  3. Assessment of the roles of the Advanced Neutron Source Operators

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is unique in the extent to which human factors engineering (HFE) principles are being applied at the conceptual design stage. initial HFE accomplishments include the development of an ANS HFE program plan, operating philosophy, and functional analysis. In FY 1994, HFE activities focused on the role of the ANS control room reactor operator (RO). An operator-centered control room model was used in conjunction with information gathered from existing ANS system design descriptions and other literature to define a list of RO responsibilities. From this list, a survey instrument was developed and administered to ANS design engineers, operations management personnel at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR), and HFIR ROs to detail the nature of the RO position. Initial results indicated that the RO will function as a high-level system supervisor with considerable monitoring, verification, and communication responsibilities. The relatively high level of control automation has resulted in a reshaping of the RO's traditional safety and investment protection roles

  4. Advanced neutron source final preconceptual reference core design

    International Nuclear Information System (INIS)

    The preconceptual design phase of the Advanced Neutron Source (ANS) Project ended with the selection of a reference reactor core that will be used to begin conceptual design work. The new reference core consists of two involute fuel elements, of different diameters, aligned axially with a small axial gap between them. The use of different element diameters permits a separate flow of coolant to be provided for each one, thus enhancing the heat removal capability and increasing the thermal-hydraulic margins. The improved cooling allows the elements to be relatively long and thin, so self-shielding is reduced and an acceptable core life can be achieved with a relatively small loading of highly enriched uranium silicide fuel clad in aluminium. The new reference design has a fueled volume 67.4 L, each element having a heated length of 474 mm and a radial fuel thickness of 66 mm. The end-of-cycle peak thermal flux in the large heavy-water reflector tank around the core is estimated to be in the range of 0.8 to 1.0 x 1020 m-2 · s-1. 7 refs., 23 figs., 15 tabs

  5. Advanced Neutron Source Reactor zoning, shielding, and radiological optimization guide

    International Nuclear Information System (INIS)

    In the design of major nuclear facilities, it is important to protect both humans and equipment excessive radiation dose. Past experience has shown that it is very effective to apply dose reduction principles early in the design of a nuclear facility both to specific design features and to the manner of operation of the facility, where they can aid in making the facility more efficient and cost-effective. Since the appropriate choice of radiological controls and practices varies according to the case, each area of the facility must be analyzed for its radiological impact, both by itself and in interactions with other areas. For the Advanced Neutron Source (ANS) project, a large relational database will be used to collect facility information by system and relate it to areas. The database will also hold the facility dose and shielding information as it is produced during the design process. This report details how the ANS zoning scheme was established and how the calculation of doses and shielding are to be done

  6. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m2, respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m1. In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  7. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    International Nuclear Information System (INIS)

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  8. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)] (eds.)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  9. Validation of multigroup neutron cross sections for the Advanced Neutron Source against the FOEHN critical experimental measurements

    International Nuclear Information System (INIS)

    The FOEHN critical experiments were analyzed to validate the use of multigroup cross sections in the design of the Advanced Neutron Source. Eleven critical configurations were evaluated using the KENO, DORT, and VENTURE neutronics codes. Eigenvalue and power density profiles were computed and show very good agreement with measured values

  10. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  11. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  12. Advanced Neutron Source (ANS) Project: Annual report, April 1987--March 1988

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) Project (formerly called the Center for Neutron Research) will provide the world's best facilities for the study of neutron scattering. The ANS high-power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by deuterium oxide. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 1019 neutrons/center dot/m-2/center dot/s-1 with a power level between 270 and 300 MW. This report describes the status of technical work funded through the ANS Project during the period April 1987 through March 1988. Earlier work is described in Center for Neutron Research Project Status Report and other Oak Ridge National Laboratory reports. 22 refs., 57 figs., 23 tabs

  13. Advanced Neutron Source (ANS) Project: Annual report, April 1987--March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Harrington, R.M.; Peretz, F.J.; McBee, M.R. (comp.)

    1989-02-01

    The Advanced Neutron Source (ANS) Project (formerly called the Center for Neutron Research) will provide the world's best facilities for the study of neutron scattering. The ANS high-power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by deuterium oxide. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 10/sup 19/ neutrons/center dot/m/sup -2//center dot/s/sup -1/ with a power level between 270 and 300 MW. This report describes the status of technical work funded through the ANS Project during the period April 1987 through March 1988. Earlier work is described in Center for Neutron Research Project Status Report and other Oak Ridge National Laboratory reports. 22 refs., 57 figs., 23 tabs.

  14. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%

  15. An examination of the elastic structural response of the Advanced Neutron Source fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Swinson, W.F.; Luttrell, C.R.; Yahr, G.T.

    1994-09-01

    Procedures for evaluating the elastic structural response of the Advanced Neutron Source (ANS) fuel plates to coolant flow and to temperature variations are presented in this report. Calculations are made that predict the maximum deflection and the maximum stress for a representative plate from the upper and from the lower fuel elements.

  16. Thermophysical properties of saturated light and heavy water for Advanced Neutron Source applications

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor`s nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300{degrees}C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250{degrees}C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  17. Thermophysical properties of saturated light and heavy water for advanced neutron source applications

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, A.; Siman-Tov, M.

    1993-05-01

    The Advanced Neutron Source is an experimental facility being developed by Oak Ridge National Laboratory. As a new nuclear fission research reactor of unprecedented flux, the Advanced Neutron Source Reactor will provide the most intense steady-state beams of neutrons in the world. The high heat fluxes generated in the reactor [303 MW(t) with an average power density of 4.5 MW/L] will be accommodated by a flow of heavy water through the core at high velocities. In support of this experimental and analytical effort, a reliable, highly accurate, and uniform source of thermodynamic and transport property correlations for saturated light and heavy water were developed. In order to attain high accuracy in the correlations, the range of these correlations was limited to the proposed Advanced Neutron Source Reactor's nominal operating conditions. The temperature and corresponding saturation pressure ranges used for light water were 20--300[degrees]C and 0.0025--8.5 MPa, respectively, while those for heavy water were 50--250[degrees]C and 0.012--3.9 MPa. Deviations between the correlation predictions and data from the various sources did not exceed 1.0%. Light water vapor density was the only exception, with an error of 1.76%. The physical property package consists of analytical correlations, SAS codes, and FORTRAN subroutines incorporating these correlations, as well as an interactive, easy-to-use program entitled QuikProp.

  18. ORNL contributions to the Advanced Neutron Source (ANS) Project for October 1986-March 1987

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) Facility - formerly called the Center for Neutron Research - will provide the world's best facilities for the study of neutron scattering. The ANS high power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by D2O. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 1019 neutrons per square meter with a power level between 270 MW and 300 MW. This report describes the status of technical work at ORNL on the ANS Project during the first half of FY 1987. The scope of this report includes Research and Development Tasks; Safety Tasks; Conceptual Design Tasks; and Project Support. The last two areas were only initiated as separate activities during this reporting period. Technical highlights include a better understanding of the relationship among neutron flux, core power, and core volume; preconceptual design work on a cold source for use in a very high gamma and neutron flux environment; identification of the major applicable safety rules and guidelines; and establishment of initial functional objectives for the containment structure

  19. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  20. Neutron sources and applications

    International Nuclear Information System (INIS)

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  1. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  2. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as 252Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2

  3. Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

    1992-10-01

    This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code.

  4. Follow-up fuel plate stability experiments and analyses for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Swinson, W.F.; Battiste, R.L.; Luttrell, C.R.; Yahr, G.T.

    1993-11-01

    The reactor for the planned Advanced Neutron Source uses closely spaced plates cooled by heavy water flowing through narrow channels. Two sets of tests were performed on the upper and lower fuel plates for the structural response of the fuel plates to the required high coolant flow velocities. This report contains the data from the second round of tests. Results and conclusions from all of the tests are also included in this report. The tests were done using light water on full-scale epoxy models, and through model theory, the results were related to the prototype plates, which are aluminum-clad aluminum/uranium silicide involute-shaped plates.

  5. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  6. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  7. Recent advances in neutron tomography

    International Nuclear Information System (INIS)

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  8. Practical application of passive safety features for the advanced neutron source cooling system

    International Nuclear Information System (INIS)

    The results of a conceptual design study leading to the definition of a reference design for the Advanced Neutron Source (ANS) heavy water cooling system are presented. The objective of this study was to define a cooling system that not only met the ANS goals for operating parameters, reliability, availability, and maintainability, but also used inherent, passive, and diverse features and characteristics to satisfy the ANS internal events core melt goal of -5/yr. The approach taken in this study was to define a cooling system configuration having the minimum basic components and characteristics to satisfy the requirements for normal operation, and then to add only those features necessary to meet the requirements for all emergency design-basis events

  9. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  10. Advanced Neutron Source enrichment study. Volume 2: Appendices -- Final report, Revision 12/94

    International Nuclear Information System (INIS)

    A study has been performed of the impact on performance of using low enriched uranium (20% 235U) or medium enriched uranium (35% 235U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% 235U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations. There are 26 appendices in this volume

  11. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  12. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  13. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  14. Induction heating of a spherical aluminum moderator vessel for the Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    This task was to identify and design a heating system to apply 15 kW of heat to a cold source vessel to simulate the Advanced Neutron Source reactor. This research project aims at the analysis of the induction heating of a spherical aluminum moderator vessel. Computer modeling is presented for the design and analysis of the induction heating system. The objective is to apply 15 kW of heat as uniformly as possible to the outer wall of a 410 mm diameter sphere of thickness 1.5 mm. The report also aims at the analysis of a system model which is simulated using the Eddycuff electromagnetic software. The computer model is built with the finite element analysis software Patran. The induction heating system analysis shows that the predicted performance is in close agreement with the computer simulated data. Hardware constraints such as power supplies and matching load are also analyzed in terms of performance and cost. Physical modeling is also suggested, in which the coil and the workpiece are scaled down

  15. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  16. Properties of neutron sources

    International Nuclear Information System (INIS)

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  17. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, K.C. [Univ. of Turabo, Gurabo, Puerto (Puerto Rico). College of Engineering; Yahr, G.T. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K{sub Q} due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail.

  18. Modeling heat generation and flow in the Advanced Neutron Source Corrosion Test Loop specimen

    International Nuclear Information System (INIS)

    A finite difference computer code HEATING5 was used to model heat generation and flow in a typical experiment envisioned for the Advanced Neutron Source Corrosion Test Loop. The electrical resistivity and thermal conductivity of the test specimen were allowed to vary with local temperature, and the corrosion layer thickness was assigned along the length of the specimen in the manner predicted by the Griess Correlation. The computer solved the two-dimensional transport problem for a given total power dissipated in the specimen and stipulated coolant temperatures and water-side heat-transfer coefficients. The computed specimen temperatures were compared with those calculated on the basis of approximate analytical equations involving the total power dissipation and the assignment of the physical properties based on temperatures at single axial points on the specimen. The comparisons indicate that when temperature variations are large along the axis of the specimen, the variation in local heat flux should not be overlooked when using approximate equations or models. The approximate equations are most accurate near the center of the specimen where the heat flux remains closest to the average value, and in that region the calculated quantities agree closely with the results of the computer code. 4 figs., 1 tab

  19. Report of the Advanced Neutron Source (ANS) safety workshop, Knoxville, Tennessee, October 25--26, 1988

    International Nuclear Information System (INIS)

    On October 25--26, 1988, about 60 people took part in an Advanced Neutron Source (ANS) Safety Workshop, organized in cooperation with the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) and held in Knoxville, Tennessee. After a plenary session at which ANS Project staff presented status reports on the ANS design, research and development (R and D), and safety analysis efforts, the workshop broke into three working groups, each covering a different topic: Environmental and Waste Management, Applicable Regulatory Safety Criteria and Goals, and Reactor Concepts. Each group was asked to review the Project's approach to safety-related issues and to provide guidance on future reactor safety needs or directions for the Project. With the help of able chairmen, assisted by reporters and secretarial support, the working groups were extremely successful. Draft reports from each group were prepared before the workshop closed, and the major findings of each group were presented for review and discussion by the entire workshop attendance. This report contains the final version of the group reports, incorporating the results of the overall review by all the workshop participants

  20. Advanced Monte Carlo procedure for the IFMIF d-Li neutron source term based on evaluated cross section data

    CERN Document Server

    Simakov, S P; Moellendorff, U V; Schmuck, I; Konobeev, A Y; Korovin, Y A; Pereslavtsev, P

    2002-01-01

    A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ sup 6 sup , sup 7 Li cross section data. A new code M sup c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M sup c DeLicious code was checked against available experimental data and calculation results of M sup c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M sup c DeLicious along with newly evaluated d+ sup 6 sup , sup 7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data.

  1. Neutronics methods, models, and applications at the Idaho National Engineering Laboratory for the advanced neutron source reactor three-element core design

    International Nuclear Information System (INIS)

    A summary of the methods and models used to perform neutronics analyses on the Advanced Neutron Source reactor three-element core design is presented. The applications of the neutral particle Monte Carlo code MCNP are detailed, as well as the expansion of the static role of MCNP to analysis of fuel cycle depletion calculations. Results to date of these applications are presented also. A summary of the calculations not yet performed is also given to provide a open-quotes to-doclose quotes list if the project is resurrected

  2. Global shielding analysis for the three-element core advanced neutron source reactor under normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.; Bucholz, J.A.

    1995-08-01

    Two-dimensional discrete ordinates radiation transport calculations were performed for a model of the three-element core Advanced Neutron Source reactor design under normal operating conditions. The core consists of two concentric upper elements and a lower element radially centered in the annulus between the upper elements. The initial radiation transport calculations were performed with the DORT two-dimensional discrete ordinates radiation transport code using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub 6} quadrature, and a P{sub 1} Legendre polynomial expansion of the cross sections to determine the fission neutron source distribution in the core fuel elements. These calculations were limited to neutron groups only. The final radiation transport calculations, also performed with DORT using the 39-neutron-group/44-gamma-ray-group ANSL-V cross-section library, an S{sub l0} quadrature, and a P{sub 3} Legendre polynomial expansion of the cross sections, produced neutron and gamma-ray fluxes over the full extent of the geometry model. Responses (or activities) at various locations in the model were then obtained by folding the appropriate response functions with the fluxes at those locations. Some comparisons were made with VENTURE-calculated (diffusion theory) 20-group neutron fluxes that were summed into four broad groups. Tne results were in reasonably good agreement when the effects of photoneutrons were not included, thus verifying the physics model upon which the shielding model was based. Photoneutrons increased the fast-neutron flux levels deep within the D{sub 2}0 several orders of magnitude. Results are presented as tables of activity values for selected radial and axial traverses, plots of the radial and axial traverse data, and activity contours superimposed on the calculational geometry model.

  3. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  4. RELAP5 analyses of two hypothetical flow reversal events for the advanced neutron source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper presents RELAP5 results of two hypothetical, low flow transients analyzed as part of the Advanced Neutron Source Reactor safety program. The reactor design features four independent coolant loops (three active and one in standby), each containing a main curculation pump (with battery powered pony motor), heat exchanger, an accumulator, and a check valve. The first transient assumes one of these pumps fails, and additionally, that the check valve in that loop remains stuck in the open position. This accident is considered extremely unlikely. Flow reverses in this loop, reducing the core flow because much of the coolant is diverted from the intact loops back through the failed loop. The second transient examines a 102-mm-diam instantaneous pipe break near the core inlet (the worst break location). A break is assumed to occur 90 s after a total loss-of-offsite power. Core flow reversal occurs because accumulator injection overpowers the diminishing pump flow. Safety margins are evaluated against four thermal limits: T{sub wall}=T{sub sat}, incipient boiling, onset of significant void, and critical heat flux. For the first transient, the results show that these limits are not exceeded (at a 95% non-exceedance probability level) if the pony motor battery lasts 30 minutes (the present design value). For the second transient, the results show that the closest approach of the fuel surface temperature to the local saturation temperature during core flow reversal is about 39{degrees}C. Therefore the fuel remains cool during this transient. Although this work is done specifically for the ANSR geometry and operating conditions, the general conclusions may be applicable to other highly subcooled reactor systems.

  5. Update to advanced neutron source steady-state thermal-hydraulic report

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.; Carbajo, J.J.; Morris, D.G.; Nelson, W.R.

    1996-05-01

    This report is intended to be a supplement to ORNL/TM-12398, Steady-State Thermal-Hydraulic Design Analysis of the Advanced Neutron Source Reactor. It updates the core thermal-hydrualic design to the latest three-element configuration and also provides the most recent information on the thermal-hydraulic statistical uncertainty analysis. In addition, it includes calculations of beam tube cooling and control rod lift forces, which were not addressed in the initial report. This report describes work that is a snapshot in time as it stood at the end of the project. The three-element core calculations include a description of changes made to the overall coolant system; however, most of the analysis is focused on fuel loading thermal-hydraulic calculations. This analysis uses updated uncertainty values and indicates that a two-dimensional fuel grading in the three-element core would still be necessary to meet the desired operating and safety criteria. Analysis of cooling in the reflector tank examines various cooling options for the reflector tank components. This work investigated multiple forced convection designs as well as natural convection cooling requirements. Lift forces on the inner control rods caused by the upward coolant flow were also examined. Initial control rod designs were such that a sheared control rod would tend to lift because of flow forces. Design changes were recommended that would eliminate this issue. They included geometry changes to the inner control rod cooling channels, changes to the orificing in the central hole region, and reduction of inner control rod coolant velocity.

  6. Advanced neutron source reactor thermal-hydraulic test loop facility description

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  7. Progress report on R and D results from the advanced neutron source

    International Nuclear Information System (INIS)

    This presentation consists of six parts describing the the following: Oxide Formation; U3Si2 Fuel Performance; Aluminum Irradiation Properties and Code Case; Fuel Plate Hydraulic Stability; Thermal-Hydraulic Test Loop designed to examine the CHF/flow instability limits and thermal hydraulic correlations of the ANS core; Cold Source Design Concept. HFIR results indicate good performance of U3Si2 for ANS conditions. Additional data from HFIR tests, RERTR fuel, and simulation experiments are expected to improve understanding of basic behavior. Further research plans for the cold neutron source are: Test the circulation system, Test beryllium fabricability and properties, Develop and test modified pressure-balanced cryostat, design, if possible, of safe continued operation of the reactor even if cold source refrigeration is lost

  8. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  9. Intense pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Kustom, R.L.

    1981-01-01

    Accelerator requirements for pulsed spallation neutron sources are stated. Brief descriptions of the Argonne IPNS-I, the Japanese KENS, Los Alamos Scientific Laboratory WNR/PSR, the Rutherford Laboratory SNS, and the West German SNQ facilities are presented.

  10. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  11. Californium-252 neutron sources

    International Nuclear Information System (INIS)

    Major production programs for the Savannah River reactors and the High Flux Isotopes Reactor at Oak Ridge have made 252Cf one of the most available and, at the USAEC's sales price of $10/μg, one of the least-expensive isotopic neutron sources. Reactor production has totaled approximately 2 g, and, based on expected demand, an additional 10 g will be produced in the next decade. The approximately 800 mg chemically separated to date has been used to prepare over 600 neutron sources. Most, about 500, have been medical sources containing 1 to 5 μg of 252Cf plated in needles for experimental cancer therapy studies. The remainder have generally been point sources containing 10 μg to 12 mg of oxide for activation, well logging, or radiography uses. Bulk sources have also been supplied to the commercial encapsulators. The latest development has been the production of 252Cf cermet wire which can be cut into almost contamination-free lengths of the desired 252Cf content. Casks are available for transport of sources up to 50 mg. Subcritical assemblies have been developed to multiply the source neutrons by a factor of 10 to 40, and collimators and thermalizers have also been extensively developed to shape the neutron flux and energy distributions for special applications. (U.S.)

  12. Plasma focus neutron source

    International Nuclear Information System (INIS)

    A neutron source not permanently active is obtained from an electric discharge plasma focus (PF) device. A small PF device, a Mather model device, works in the limit of low energy, 100 to 200 J at charging voltage of 20 to 30 kV with a capacitor bank of 160 nF, and a characteristic inductance of 25 to 50 nH. A theoretical model leads us to estimate the optimum values of capacitance, inductance, initial charging voltage and electrode geometry. In this work is presented the design evolution and construction of a first PF neutron source prototype, preliminary measures of current, voltage and temporal evolution of the current with the end of have an electric characterization. This parameters must be optimized with the objective of geeting an emission of 104 to 105 neutrons per pulse when Deuterium is used like filled gas (C.W)

  13. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  14. Neutron source for Neutron Capture Synovectomy

    International Nuclear Information System (INIS)

    Monte Carlo calculations were performed to obtain a thermal neutron field from a 239PuBe neutron source inside a cylindrical heterogeneous moderators for Neutron Capture Synovectomy. Studied moderators were light water and heavy water, graphite and heavy water, lucite and polyethylene and heavy water. The neutron spectrum of polyethylene and heavy water moderator was used to determine neutron spectra inside a knee model. In this model the elemental composition of synovium and synovial liquid was assumed like blood. Kerma factors for synovium and synovial liquid were calculated to compare with water Kerma factors, in this calculations the synovium was loaded with two different concentrations of Boron

  15. Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Masayoshi, E-mail: masayoshi.kawai@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Kurishita, Hiroaki [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Kokawa, Hiroyuki [Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Watanabe, Seiichi; Sakaguchi, Norihito [School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Kikuchi, Kenji [Institute of Applied Beam Science, Ibaraki University, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Saito, Shigeru [J-PARC, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yoshiie, Toshimasa [Kyoto University Research Reactor Institute, Kumatori, Sennan-gun, Osaka 590-0494 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Ito, Takahiro [Toyohashi University of Technology, Tenpaku-cho, Toyohasi-shi, Aichi 441-8580 (Japan); Hashimoto, Satoshi; Kaneko, Yoshihisa [Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Futakawa, Masatoshi [J-PARC, Japan Atomic Energy Agency (JAEA), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ishino, Shiori [University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-12-15

    This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead-bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.

  16. Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models

    Science.gov (United States)

    Kawai, Masayoshi; Kurishita, Hiroaki; Kokawa, Hiroyuki; Watanabe, Seiichi; Sakaguchi, Norihito; Kikuchi, Kenji; Saito, Shigeru; Yoshiie, Toshimasa; Iwase, Hiroshi; Ito, Takahiro; Hashimoto, Satoshi; Kaneko, Yoshihisa; Futakawa, Masatoshi; Ishino, Shiori; JSPS Grant Team

    2012-12-01

    This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead-bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.

  17. Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models

    International Nuclear Information System (INIS)

    This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead–bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GBE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.

  18. Advanced sources and optical components for the McStas neutron scattering instrument simulation package

    DEFF Research Database (Denmark)

    Farhi, E.; Monzat, C.; Arnerin, R.;

    2014-01-01

    We present new McStas components Virtual_mcnp_input and Virtual_tripoli4_input, Virtual_mcnp_output and Virtual_tripoli_output to be used as interface for the MCNP and Tripoli neutron transport codes. Similarly, the new Lens component can be used to describe any refracting material set-up, includ......We present new McStas components Virtual_mcnp_input and Virtual_tripoli4_input, Virtual_mcnp_output and Virtual_tripoli_output to be used as interface for the MCNP and Tripoli neutron transport codes. Similarly, the new Lens component can be used to describe any refracting material set...... be enclosed in a scattering material in order to model the absorption and scattering in the detector housing, prior to the actual detection. An extended model of the IN5b time-of-flight spectrometer at the Institut Laue Langevin is used to simulate vanadium and powder diffractograms, making use of the gas...

  19. Neutron scattering and spallation neutron sources

    International Nuclear Information System (INIS)

    Neutron scattering as a probe of microscopic structure and dynamics is a powerful tool for research in a wide variety of fields, and an accelerator-based spallation neutron source can supply high flux pulses for neutron scattering. The characteristics of neutron scattering, the principle and development of spallation neutron sources, and their advantages in multidisciplinary applications are summarized. In the proposed project of the Chinese Spallation Neutron Source the target station will consist of a piece-stacked tungsten target, a Be/Fe reflector and an Fe/heavy concrete bio-protected shelter. The pulsed neutron flux will be up to 2.4 x 1016 n/cm2/s under a nuclear power of 100 kW. Five neutron scattering instruments--a high flux powder diffractometer, a high resolution powder diffractometer, small angle diffractometer, multi-functional reflectometer and direct geometry inelastic spectrometer, will be constructed as the first step to cover most neutron scattering applications. (authors)

  20. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  1. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  2. Study on void fraction distribution in the moderator cell of Cold Neutron Source systems in China Advanced Research Reactor

    Science.gov (United States)

    Li, Liangxing; Li, Huixiong; Hu, Jinfeng; Bi, Qincheng; Chen, Tingkuan

    2007-04-01

    A physical model is developed for analyzing and evaluating the void fraction profiles in the moderator cell of the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR), which is now constructing in the China Institute of Atomic Energy (CIAE). The results derived from the model are compared with the related experimental data and its propriety is verified. The model is then used to explore the influence of various factors, including the diameter of boiling vapor bubbles, liquid density, liquid viscosity and the total heating power acted on the moderator cell, on the void fraction profiles in the cell. The results calculated with the present model indicate that the void fraction in the moderator cell increases linearly with heating power, and increases with the liquid viscosity, but decreases as the size of bubbles increases, and increases linearly with heating power. For the case where hydrogen is being used as a moderator, calculation results show that the void fraction in the moderator cell may be less than 30%, which is the maximum void fraction permitted from the nuclear physics point of view. The model and the calculation results will help to obtain insight of the mechanism that controls the void fraction distribution in the moderator cell, and provide theoretical supports for the moderator cell design.

  3. Neutron science opportunities at pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes

  4. Uses of advanced pulsed neutron sources. Report of a workshop held at Argonne National Laboratory October 21--24, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M.; Werner, S.A. (eds.)

    1975-01-01

    The report contains the conclusions that were drawn by nine panels of scientists in the fields of Biology; Chemical Spectroscopy; Chemical Structures of Crystalline Solids; Chemical Structures of Disordered Solids and Inhomogeneous Systems; Dynamics of Solids, Liquids, Glasses and Gases; Magnetism; Neutron Sources; and Radiation Effects. The nine panel reports describe the applications found in these scientific areas, accompanying them with conceptual instruments designed for the measurements and with calculations to establish feasibility.

  5. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  6. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  7. Pulsed neutron sources at Dubna

    International Nuclear Information System (INIS)

    In 1960 the first world repetitively pulsed reactor IBR was put into operation. It was the beginning of the story how fission based pulsed neutron sources at Dubna have survived. The engineers involved have experienced many successes and failures in the course of new sources upgrading to finally come to possess the world's brightest neutron source - IBR-2. The details are being reviewed through the paper. The fission based pulsed neutron sources did not reach their final state as yet- the conceptual views of IBR prospects are being discussed with the goal to double the thermal neutron peak flux (up to 2x1016) and to enhance the cold neutron flux by 10 times (with the present one being as high that of the ISIS cold moderator). (author)

  8. Advanced Neutron Spectrometer

    Science.gov (United States)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; Rodriquez, Miguel; Watts, John; Sabra, Mohammed; Kuznetsov, Evgeny

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  9. Opportunities for in-situ diffraction studies of advanced materials under extreme conditions at the US spallation neutron source

    Indian Academy of Sciences (India)

    J P Hodges

    2008-11-01

    The spallation neutron source (SNS) is an accelerator-based neutron source in Oak Ridge, Tennessee. Currently ramping up to 1.4 MW operating power, SNS will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. Built by a partnership of six DOE laboratories SNS is operated as a user facility, open to scientists and engineers from universities, industry, and government laboratories in the United States and abroad. Eighteen dedicated beamline instruments are currently funded; four are completed and in operation, five are to be commissioned within a year and the others are at various stages of design and construction. All instruments at SNS have been designed to best in class and will provide unprecedented opportunities to explore the structure and dynamics of all materials. Amongst the funded instruments are a high-resolution very fast powder diffractometer (POWGEN3) optimized for parametric studies of materials under a wide range of conditions (, , and flowing gases), an ultrahigh-pressure diffractometer (SNAP) for materials under extreme conditions of pressure (up to 100 GPa) and temperature, an engineering materials diffractometer (VULCAN) for mapping strain, texture and fundamental aspects of materials behaviour of high performance materials under strain forces, a high flux disordered materials diffractometer (NOMAD) for liquids, glasses and disorder in crystalline materials, and a small angle scattering diffractometer (EQSANS) for investigating precipitates, crystallization, domains and nanoparticles in composite materials. ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

  10. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  11. Materials for spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, W.F.; Daemen, L.L. [comps.

    1996-03-01

    The Workshop on Materials for Spallation Neutron Sources at the Los Alamos Neutron Science Center, February 6 to 10, 1995, gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss areas in which work is needed, successful designs and use of materials, and opportunities for further studies. During the first day of the workshop, speakers presented overviews of current spallation neutron sources. During the next 3 days, seven panels allowed speakers to present information on a variety of topics ranging from experimental and theoretical considerations on radiation damage to materials safety issues. An attempt was made to identify specific problems that require attention within the context of spallation neutron sources. This proceedings is a collection of summaries from the overview sessions and the panel presentations.

  12. Condensed matter and materials research using neutron diffraction and spectroscopy: reactor and pulsed neutron sources

    International Nuclear Information System (INIS)

    The paper provides a short, and partial view of the neutron scattering technique applied to condensed matter and materials research. Reactor and accelerator-based neutron spectrometers are discussed, together with examples of research projects that illustrate the puissance and modern applications of neutron scattering. Some examples are chosen to show the range of facilities available at the medium flux reactor operated by Casaccia ENEA, Roma and the advanced, pulsed spallation neutron source at the Rutherford Appleton Laboratory, Oxfordshire. (author)

  13. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  14. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  15. Design of a neutron source for calibration

    International Nuclear Information System (INIS)

    The neutron spectra produced by an isotopic neutron source located at the center of moderating media were calculated using Monte Carlo method in the aim to design a neutron source for calibration purposes. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices with calibrated neutron sources whose neutron spectra being similar to those met in practice. Here, a 239Pu-Be neutron source was inserted in H2O, D2O and polyethylene cylindrical moderators in order to produce neutron spectra that resembles spectra found in workplaces

  16. Detailed heat load calculations at the beginning, middle, and end of cycle for the conceptual design of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a world-class research reactor and experimental center for neutron research, presently being designed at the Oak Ridge National Laboratory (ORNL). The reactor consists of a 330-MW(f) highly enriched uranium core, which is cooled, moderated, and reflected with heavy water. When completed, it will be the preeminent ultrahigh neutron flux reactor in the world, with facilities for research programs in biology, materials science, chemistry, fundamental and nuclear physics, and analytical chemistry. Irradiation facilities are provided for a variety of isotope production capabilities, as well as materials irradiation. The ANS reactor design, at the time of this report, has completed the conceptual design phase and entered the advanced conceptual design phase. This report is part of an effort to fully document the analysis methods and results for the conceptual design. It details the methods used to perform heat load calculations on the ANS reactor design, describes the model used, and gives the resulting heat loads in all components of the reactor, in both a differential (by segment) and integral (by component) fashion. These heat load data are provided at three times within the ANS fuel cycle - at beginning (0 days), middle (8.5 days), and end (17 days) of cycle. The remainder of the report is dedicated to this description. In Chapter 2, some necessary background on the reactor design is provided. Chapters 3 and 4 give details of the depletion methods used and revisions to previous MCNP models. Chapter 5 analyzes the results of these calculations, and Chapter 6 provides a summary and conclusions

  17. Neutron sources for the medical use

    International Nuclear Information System (INIS)

    Recently encouraging results of the neutron radiation therapy have been obtained in clinical trials. In addition to the therapy, the neutrons are applied to the diagnosis besides the production of radioisotopes, that is, in-vivo activation analysis and neutron radiograph. In the medicine, high energy neutrons are effectively used. The necessary conditions, especially neutron source reactions, angular distributions, etc., and the neutron dosimetry including neutron kerma factors are discussed. Finally the requirements for neutron sources, their related problems and nuclear data are enumerated. (author)

  18. Compact ion source neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  19. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    OpenAIRE

    Sy, Amy

    2013-01-01

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrate...

  20. Inertial electro-magnetostatic plasma neutron sources

    International Nuclear Information System (INIS)

    Two types of systems are being studied experimentally as D-T plasma neutron sources. In both concepts, spherical convergence of either electrons or ions or both is used to produce a dense central focus within which D-T fusion reactions produce 14 MeV neutrons. One concept uses nonneutral plasma confinement principles in a Penning type trap. In this approach, combined electrostatic and magnetic fields provide a vacuum potential well within which electrons are confined and focused. A small (6 mm radius) spherical machine has demonstrated a focus of 30 microm radius, with a central density of up to 35 times the Brillouin density limit of a static trap. The resulting electron plasma of up to several 1013 cm-3 provides a multi-kV electrostatic well for confining thermonuclear ions as a neutron source. The second concept (Inertial Electrostatic Confinement, or IEC) uses a high-transparence grid to form a global well for acceleration and confinement of ions. Such a system has demonstrated steady neutron output of 2 x 1010 s-1. The present experiment will scale this to >1011 s-1. Advanced designs based on each concept have been developed recently. In these proposed approaches, a uniform-density electron sphere forms an electrostatic well for ions. Ions so trapped may be focused by spherical convergence to produce a dense core. An alternative approach produces large amplitude spherical oscillations of a confined ion cloud by a small, resonant modulation of the background electrons. In both the advanced Penning trap approach and the advanced IEC approach, the electrons are magnetically insulated from a large (up to 100 kV) applied electrostatic field. The physics of these devices is discussed, experimental design details are given, present observations are analyzed theoretically, and the performance of future advanced systems are predicted

  1. Outline of spallation neutron source engineering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noboru [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2001-01-01

    Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science-technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R and D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources. The present review was prepare aiming at giving a better understanding on pulsed spallation neutron sources not only to neutron source researchers but also more widely to neutron scattering researchers and accelerator scientists in this field. The contents involve, starting from what is neutron scattering and what neutrons are necessary for neutron scattering, what is the spallation reaction, how to produce neutrons required for neutron scattering more efficiently, target-moderator-reflector neutronics and its engineering, shielding, target station, material issues, etc. The author have engaged in R and D of pulsed apallation neutron sources and neutron scattering research using them over 30 years. The present review is prepared based on the author's experiences with useful information obtained through ICANS collaboration and recent data from the JSNS (Japanese Spallation Neutron Source) design team. (author)

  2. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Using as source term the spectrum of a 239Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  3. Destructive analysis of neutron sources

    International Nuclear Information System (INIS)

    Fuel-liner reactions in Pu--Be neutron sources were examined. The source is contained in an outer jacket of 304 stainless steel and an inner Ta container incorporating a TIG welded Ta plug. Small cracks were observed in some of the outer stainless steel containers as well as in some of the tantalum inner liners. Major cracking was observed as well as penetration of the reaction product through the tantalum sidewalls in two sources. High temperatures aided and accelerated the degradation and ultimate failure of the tantalum inner liner. Traces of beryllium metal as indicated from x-ray results of the fuel and large concentration gradients between tantalum and plutonium as shown in microprobe analysis were found to exist. The fuel was inhomogeneous in nature and the data suggest the possibility of tantalum-beryllium compounds, free unreacted plutonium, and potentially a ternary phase of tantalum, beryllium, plutonium as being present in the fuel

  4. The Frankfurt neutron source FRANZ

    Science.gov (United States)

    Alzubaidi, Suha; Bartz, Ulrich; Basten, Markus; Bechtold, Alexander; Chau, Long Phi; Claessens, Christine; Dinter, Hannes; Droba, Martin; Fix, Christopher; Hähnel, Hendrik; Heilmann, Manuel; Hinrichs, Ole; Huneck, Simon; Klump, Batu; Lotz, Marcel; Mäder, Dominik; Meusel, Oliver; Noll, Daniel; Nowottnick, Tobias; Obermayer, Marcus; Payir, Onur; Petry, Nils; Podlech, Holger; Ratzinger, Ulrich; Schempp, Alwin; Schmidt, Stefan; Schneider, Philipp; Seibel, Anja; Schwarz, Malte; Schweizer, Waldemar; Volk, Klaus; Wagner, Christopher; Wiesner, Christoph

    2016-05-01

    A 2MeV proton beam will produce a quasi-Maxwellian neutron spectrum of around 30 keV by the 7Li(p, n)7Be reaction. The experiments are mainly focused on the measurement of differential neutron capture cross sections relevant for the astrophysical s-process in nuclear synthesis. Moreover, proton capture cross sections for the astrophysical p-process can be measured directly with the proton beam. For an efficient time of flight measurement of the neutron energies along the 0.7 m long drift from the Li-target to the sample, 1ns short, intense proton pulses are needed at the target. Additionally, to reach 107 n/cm2/s at the sample, a pulse repetition rate of 250 kHz is intended. After completion and successful running in, FRANZ will become a user facility with internal and external users. The 120 kV injector terminal and the 200mA proton source as well as the low-energy beam transport section and the FRANZ cave have been realized successfully. The 1.9 MV RF accelerator consists of a combined 4-Rod-RFQ/IH-DTL-resonator and is in the RF tuning and power testing phase. The 2 MeV transport and rebuncher section is ready for installation. In a first step FRANZ will offer experimental areas for neutron activation experiments and for proton beam experiments, as mentioned above. From the accelerator physics point of view, FRANZ will be an excellent facility for high current beam investigations and for beam wall interaction studies.

  5. Slow neutron leakage spectra from spallation neutron sources

    International Nuclear Information System (INIS)

    An efficient technique is described for Monte Carlo simulation of neutron beam spectra from target-moderator-reflector assemblies typical of pulsed spallation neutron sources. The technique involves the scoring of the transport-theoretical probability that a neutron will emerge from the moderator surface in the direction of interest, at each collision. An angle-biasing probability is also introduced which further enhances efficiency in simple problems. These modifications were introduced into the VIM low energy neutron transport code, representing the spatial and energy distributions of the source neutrons approximately as those of evaporation neutrons generated through the spallation process by protons of various energies. The intensity of slow neutrons leaking from various reflected moderators was studied for various neutron source arrangements. These include computations relating to early measurements on a mockup-assembly, a brief survey of moderator materials and sizes, and a survey of the effects of varying source and moderator configurations with a practical, liquid metal cooled uranium source Wing and slab, i.e., tangential and radial moderator arrangements, and Be vs CH2 reflectors are compared. Results are also presented for several complicated geometries which more closely represent realistic arrangements for a practical source, and for a subcritical fission multiplier such as might be driven by an electron linac. An adaptation of the code was developed to enable time dependent calculations, and investigated the effects of the reflector, decoupling and void liner materials on the pulse shape

  6. Intense neutron sources for cancer treatment

    International Nuclear Information System (INIS)

    Significant progress has been made in the development of small, solid-target, pulsed neutron sources for nuclear weapons applications. The feasibility of using this type of neutron source for cancer treatment is discussed. Plans for fabrication and testing of such a source is briefly described

  7. Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source

    International Nuclear Information System (INIS)

    This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U3Si2 fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U3Si2, containing highly enriched uranium dispersed in aluminum at a volume fraction of ∼0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450 degrees C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U3Si2, particles of U3Si, UAl2, UAlx, and U3O8 were tested

  8. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  9. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  10. PGNAA neutron source moderation setup optimization

    CERN Document Server

    Zhang, Jinzhao

    2013-01-01

    Monte Carlo simulations were carried out to design a prompt {\\gamma}-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compared with the conventional neutron source design, the thermal neutron flux and rate were increased by 3.02 times and 3.27 times. Results indicate that the use of this design should increase the neutron flux of prompt gamma-ray neutron activation analysis significantly.

  11. Materials and neutronic research at the Low Energy Neutron Source

    Science.gov (United States)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  12. New sources and instrumentation for neutron science

    Science.gov (United States)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  13. Advanced positron sources

    Energy Technology Data Exchange (ETDEWEB)

    Variola, A., E-mail: variola@lal.in2p3.fr

    2014-03-11

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e{sup +} sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R and D experiments and the futuristic proposals for positron sources will reviewed.

  14. Scientific opportunities with advanced facilities for neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lander, G.H.; Emery, V.J. (eds.)

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  15. Neutron spin echo spectroscopy on the spallation neutron source

    International Nuclear Information System (INIS)

    An investigation has been made into the practicability of combining the neutron spin echo and time-of-flight techniques on the Rutherford Laboratory Spallation Neutron Source. Preliminary specifications are presented for a quasielastic instrument with an energy resolution down to approximately 10 neV and an inelastic spectrometer for measuring excitation widths approximately 1 μ eV. (author)

  16. Neutron Sources for Standard-Based Testing

    Energy Technology Data Exchange (ETDEWEB)

    Radev, Radoslav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLean, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 ± 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  17. Nested Focusing Optics for Compact Neutron Sources

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  18. Cyclotron-based neutron source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Ogasawara, T.; Fujita, K. [Sumitomo Heavy Industries, Ltd (Japan); Tanaka, H.; Sakurai, Y.; Maruhashi, A. [Kyoto University Research Reactor Institute (Japan)

    2013-04-19

    Kyoto University Research Reactor Institute (KURRI) and Sumitomo Heavy Industries, Ltd. (SHI) have developed a cyclotron-based neutron source for Boron Neutron Capture Therapy (BNCT). It was installed at KURRI in Osaka prefecture. The neutron source consists of a proton cyclotron named HM-30, a beam transport system and an irradiation and treatment system. In the cyclotron, H- ions are accelerated and extracted as 30 MeV proton beams of 1 mA. The proton beams is transported to the neutron production target made by a beryllium plate. Emitted neutrons are moderated by lead, iron, aluminum and calcium fluoride. The aperture diameter of neutron collimator is in the range from 100 mm to 250 mm. The peak neutron flux in the water phantom is 1.8 Multiplication-Sign 109 neutrons/cm{sup 2}/sec at 20 mm from the surface at 1 mA proton beam. The neutron source have been stably operated for 3 years with 30 kW proton beam. Various pre-clinical tests including animal tests have been done by using the cyclotron-based neutron source with {sup 10}B-p-Borono-phenylalanine. Clinical trials of malignant brain tumors will be started in this year.

  19. Neutron scattering instruments for the Spallation Neutron Source (SNS)

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Fornek, T. [Argonne National Lab., IL (United States); Herwig, K.W. [Oak Ridge National Lab., TN (United States)

    1998-07-01

    The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments.

  20. Neutron scattering instrumentation for biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, R. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  1. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  2. International workshop on cold neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; West, C.D. (comps.) (Los Alamos National Lab., NM (United States))

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  3. International workshop on cold neutron sources

    International Nuclear Information System (INIS)

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources

  4. Radionuclide 252Cf neutron source

    International Nuclear Information System (INIS)

    Characteristics of radionuclide neutron sourses of 252Cf base with the activity from 106 to 109 n/s have been investigated. Energetic distributions of neutrons and gamma-radiation have been presented. The results obtained have been compared with other data available. The hardness parameter of the neutron spectrum for the energy range from 3 to 15 MeV is 1.4 +- 0.02 MeV

  5. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    Science.gov (United States)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  6. Detection of Neutron Sources in Cargo Containers

    OpenAIRE

    Katz, J. I.

    2007-01-01

    We investigate the problem of detecting the presence of clandestine neutron sources, such as would be produced by nuclear weapons containing plutonium, within cargo containers. Small, simple and economical semiconductor photodiode detectors affixed to the outsides of containers are capable of producing statistically robust detections of unshielded sources when their output is integrated over the durations of ocean voyages. It is possible to shield such sources with thick layers of neutron-abs...

  7. The University of Texas Cold Neutron Source

    Science.gov (United States)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  8. Neutron cooling and cold-neutron sources (1962); Refroidissement des neutrons et sources de neutrons froids (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Jacrot, B. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Intense cold-neutron sources are useful in studying solids by the inelastic scattering of neutrons. The paper presents a general survey covering the following aspects: a) theoretical considerations put forward by various authors regarding thermalization processes at very low temperatures; b) the experiments that have been carried out in numerous laboratories with a view to comparing the different moderators that can be used; c) the cold neutron sources that have actually been produced in reactors up to the present time, and the results obtained with them. (author) [French] Des sources intenses de neutrons froids sont utiles pour l'etude des solides par diffusion inelastique des neutrons. On presente une revue d'ensemble: a) des considerations theoriques faites par divers auteurs sur les processus de thermalisation a tres basse temperature; b) des experiences faites dans de nombreux laboratoires pour comparer les divers moderateurs possibles; c) des sources de neutrons froids effectivement realisees dans des piles a ce jour, et des resultats obtenus avec ces sources. (auteur)

  9. Neutron source structure for nuclear reactors

    International Nuclear Information System (INIS)

    Purpose: To improve the compatibility between metal beryllium forming a neutron source and a metal cladding material at a high temperature. Constitution: An intermediate layer made of silicon or silicone-beryllium alloy is put between metal beryllium forming a neutron source and a metal cladding material containing the metal beryllium in a tightly sealed manner. By the disposition of the intermediate layer, the compatibility between the metal beryllium and the metal cladding material is improved, by which the neutron source can be operated satisfactorily over a long time use at a high temperature of 500 - 7000C. (Moriyama, K.)

  10. Pulsed neutron source and instruments at neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Aizawa, Kazuya; Suzuki, Jun-ichi; Morii, Yukio; Watanabe, Noboru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    We report the results of design studies on the optimal target shape, target - moderator coupling, optimal layout of moderators, and neutron instruments for a next generation pulsed spallation source in JAERI. The source utilizes a projected high-intensity proton accelerator (linac: 1.5 GeV, {approx}8 MW in total beam power, compressor ring: {approx}5 MW). We discuss the target neutronics, moderators and their layout. The sources is designed to have at least 30 beam lines equipped with more than 40 instruments, which are selected tentatively to the present knowledge. (author)

  11. The high intensity neutron source FRANZ

    CERN Document Server

    Lederer, Claudia

    2014-01-01

    The Frankfurt neutron source of Stern Gerlach Zentrum FRANZ is currently under construction at the University of Frankfurt. At FRANZ, a high intensity neutron beam in the keV energy region will be produced by bombarding a $^7$Li target with a proton beam of several mA. These unprecedented high neutron fluxes will allow a number of neutron induced cross section measurements for the first time. Measurements can be performed by the time-of-flight and by the activation technique.

  12. High Brightness Neutron Source for Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  13. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  14. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  15. Neutronic performance issues for the Spallation Neutron Source moderators

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, E.B.; Murphy, B.D. [Oak Ridge National Laboratory, Spallation Neutron Source, Oak Ridge, TN (United States)

    2001-03-01

    We continue to develop the neutronic models of the Spallation Neutron Source target station and moderators in order to better predict the neutronic performance of the system as a whole and in order to better optimize that performance. While we are not able to say that every model change leads to more intense neutron beams being predicted, we do feel that such changes are advantageous in either performance or in the accuracy of the prediction of performance. We have computationally and experimentally studied the neutronics of hydrogen-water composite moderators such as are proposed for the SNS Project. In performing these studies, we find that the composite moderator, at least in the configuration we have examined, does not provide performance characteristics desirable for the instruments proposed and being designed for this neutron scattering facility. The pulse width as a function of energy is significantly broader than for other moderators, limiting attainable resolution-bandwidth combinations. Furthermore, there is reason to expect that higher-energy (0.1-1 eV) applications will be significantly impacted by bimodal pulse shapes requiring enormous effort to parameterize. As a result of these studies, we have changed the SNS design, and will not use a composite moderator at this time. We have analyzed the depletion of a gadolinium poison plate in a hydrogen moderator at the Spallation Neutron Source, and found that conventional poison thicknesses will be completely unable to last the desired component lifetime of three operational years. A poison plate 300-600 {mu}m thick will survive for the required length of time, but will somewhat degrade the intensity (by as much as 15% depending on neutron energy) and the consistency of the neutron source performance. Our results should scale fairly easily to other moderators on this or any other spallation source. While depletion will be important for all highly-absorbing materials in high-flux regions, we feel it likely

  16. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  17. Targets for neutron beam spallation sources

    International Nuclear Information System (INIS)

    The meeting on Targets for Neutron Beam Spallation Sources held at the Institut fuer Festkoerperforschung at KFA Juelich on June 11 and 12, 1979 was planned as an informal get-together for scientists involved in the planning, design and future use of spallation neutron sources in Europe. These proceedings contain the papers contributed to this meeting. For further information see hints under relevant topics. (orig./FKS)

  18. ALADIN - Advanced Laue Diffraction Instruments using Neutrons

    International Nuclear Information System (INIS)

    Laue diffraction techniques have proven to be very attractive to a broad user community interested in obtaining detailed structural information on very small single-crystal samples or needing data collection speeds comparable to those available with the powder diffraction technique. However our experience has clearly demonstrated the negative effect of up-stream monochromatic instruments on the quality of Laue data. In order to obtain Laue diffraction data with a statistical accuracy similar to that achieved on a monochromatic instrument (neutron or X-rays), the project ALADIN (for Advanced Laue Diffraction Instruments using Neutrons) aims to: -) construct a Laue-dedicated thermal neutron guide, with m=2 super-mirror coating, providing access to the desirable wavelength bandwidth; -) installation of one of the ILL Laue diffractometers (VIVALDI or CYCLOPS) on this new guide. (authors)

  19. A telescope for monitoring fast neutron sources

    International Nuclear Information System (INIS)

    In the framework of nuclear waste management, highly radiotoxic long-lived fission products and minor actinides are planned to be transmuted in a sub-critical reactor coupled with an intense external neutron source. The latter source would be created by a high-energy proton beam hitting a high atomic number target. Such a new system, termed an accelerator-driven system (ADS), requires on-line and robust reactivity monitoring. The ratio between the beam current delivered by the accelerator and the reactor power level, or core neutron flux, is the basis of one method which could give access to a core reactivity change. In order to test reactivity measurement technique, some experimental programs use 14-MeV neutrons originating from the interaction of a deuteron beam with a tritium target as an external neutron source. In this case, the target tritium consumption over time precludes use of the beam current for reactivity monitoring and the external neutron source intensity must be monitored directly. A range telescope has been developed for this purpose, consisting of the assembly of a hydrogenous neutron converter and three silicon stages where the recoiling protons are detected. In this article, the performances of such a telescope are presented and compared to Monte-Carlo simulations

  20. Advanced neutron instrumentation at FRM-II

    International Nuclear Information System (INIS)

    The construction of the new German high flux neutron source FRM-II is finished and FRM-II is waiting for its licence to start nuclear operation. With the beginning of the routine operation 22 instruments will be in action, including 5 irradiation facilities and 17 beam tube instruments, most of them use neutron scattering techniques. Additional instruments are under construction. Some of these instruments are unique, others are expected to be the best of their kind, all instruments are based on innovative techniques. (author)

  1. Advances in neutron radiography at UJV

    International Nuclear Information System (INIS)

    A brief description is given of the development of neutron radiography and of planned development of neutron sources, imaging methods, evaluation methods and instrumentation. Experimental equipment and the application fields are described. The method is used in the metrology of fuel elements, for the study of the penetration of aggressive substances into building materials, for the diagnosis of bone tumors between surgeries, in archaeology, in crack detection of glued joints of honeycombed structures and in imaging the crystalline structure of castings of nickel-based superalloys. (J.P.)

  2. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    Science.gov (United States)

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  3. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: emmanuelvillagrana@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  4. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  5. Resolution in deep inelastic neutron scattering using pulsed neutron sources

    International Nuclear Information System (INIS)

    The principle components of the resolution function for deep inelastic neutron scattering experiments on pulsed neutron sources have been calculated directly in atomic momentum space. Analytical expressions for the relative contributions from the energy, angular and time resolutions are presented for both direct and indirect geometry spectrometers. The general trend in the behaviour of the resolution as a function of neutron energy and atomic mass is presented, and the results of numerical calculations for recoil scattering from hydrogen, helium and beryllium using the ISIS spectrometers HET and eVS, are given. It is shown that the resolution difference between HET and eVS is significantly reduced when compared in atomic momentum space rather than in energy space. Moreover, the contribution from the angular resolution term is only significant for atomic masses <4 au. (author)

  6. Fast neutron capture with a white neutron source

    International Nuclear Information System (INIS)

    A system has been developed at the Los Alamos National Laboratory to measure gamma-rays following fast neutron reactions. The neutron beam is produced by bombarding a thick tantalum target with the 800 MeV proton beam from the LAMPF accelerator. Incident neutron energies, from 1 to over 200 MeV, are determined by their times of flight over a 7.6-m flight path. The gamma-rays are detected in five 7.6 x 7.6-cm cylindrical bismuth germanate (BGO) detectors which span an angular range from 450 to 1450 in the reaction plane. With this system it is possible to simultaneously measure the cross section and angular distribution of gamma-rays as a function of neutron energy. The results for the cross section of the 12C(n,n'γ=4.44 MeV) reaction at 900 and 1250 show good agreement with previous measurements while the complete angular distributions show the need for a large a4 coefficient which was not previously observed. Preliminary results for the 12C(n,n'γ=15.1 MeV) reaction have also been obtained. The data obtained for the 40Ca(n,γ0) reaction in the region of the giant dipole resonance demonstrate the unique capabilities of this system. Future developments to the neutron source which will enhance the capabilities of the system are presented. 14 references

  7. PREFACE: Neutrino physics at spallation neutron sources

    Science.gov (United States)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  8. The cold neutron source in DR 3

    International Nuclear Information System (INIS)

    A description of the cold neutron source in DR 3 is given. The moderator of the cold neutron source is supercritical hydrogen at about 30degK and 15 bar abs. The necessary cooling capacity is supplied by two Philips Stirling B20 cryogenerators. The hydrogen is circulated between the cryogenerators and the in-pile moderator chamber by small fans. The safety of the facility is based on the use of triple containment preventing contact between hydrogen and air. The triple containment is achieved by enclosing the high vacuum system, surrounging the hydrogen system, in a helium blanket. The achieved spectrum of the thermal neutron flux and the gain factor are given as well as the experience from more than 5 years of operation. Finally some work on extension of the facility to operate two cold sources is reported. (author)

  9. Development of cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Park, K. N. and others

    1999-05-01

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  10. Development of cold neutron source

    International Nuclear Information System (INIS)

    The purpose of this study is to develop the CNS facility in Hanaro to extend the scope of the neutron utilization and to carry out the works impossible by thermal neutrons. According to the project schedule, the establishment of the CNS concept and the basic design are performed in the phase 1, and the elementary technologies for basic design will be developed in the phase 2. Finally in the phase 3, the design of CNS will be completed, and the fabrication, the installation will be ended and then the development plan of spectrometers will be decided to establish the foothold to carry out the basic researches. This study is aimed to produce the design data and utilize them in the future basic and detail design, which include the estimation and the measurement of the heat load, the code development for the design of the in pile assembly and the heat removal system, the measurement of the shape of the CN hole, the performance test of thermosiphon and the concept of the general layout of the whole system etc.. (author)

  11. Neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    There are several goals for the neutron source strength monitor system for the International Thermonuclear Experimental Reactor (ITER). Desired is a stable, reliable, time-dependent neutron detection system which exhibits a wide dynamic range and broad energy response to incident neutrons while being insensitive to gamma rays and having low noise characteristics in a harsh reactor environment. This system should be able to absolutely calibrated in-situ using various neutron sources. An array of proportional counters of varying sensitivities is proposed along with the most promising possible locations. One proposed location is in the pre-shields of the neutron camera collimators which would allow an integrated design of neutron systems with good detector access. As part of an ongoing conceptual design for this system, the detector-specific issues of dynamic range, performance monitoring, and sensitivity will be presented. The location options of the array will be discussed and most importantly, the calibration issues associated with a heavily shielded vessel will be presented

  12. Neutron source strength monitors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W. [Sandia National Labs., Albuquerque, NM (United States); Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1996-05-07

    There are several goals for the neutron source strength monitor system for the International Thermonuclear Experimental Reactor (ITER). Desired is a stable, reliable, time-dependent neutron detection system which exhibits a wide dynamic range and broad energy response to incident neutrons while being insensitive to gamma rays and having low noise characteristics in a harsh reactor environment. This system should be able to absolutely calibrated in-situ using various neutron sources. An array of proportional counters of varying sensitivities is proposed along with the most promising possible locations. One proposed location is in the pre-shields of the neutron camera collimators which would allow an integrated design of neutron systems with good detector access. As part of an ongoing conceptual design for this system, the detector-specific issues of dynamic range, performance monitoring, and sensitivity will be presented. The location options of the array will be discussed and most importantly, the calibration issues associated with a heavily shielded vessel will be presented.

  13. Global sourcing of advanced services

    OpenAIRE

    Ørberg Jensen, Peter D.; Petersen, Bent

    2011-01-01

    In this exploratory study we take a strategic management approach to global sourcing of advanced services. We discuss in which ways conventional sourcing differs from strategic sourcing and what impels firms to aim for the latter (or, prevent them from doing so). Potentially, strategic global sourcing of services has high returns, but is also associated with high risks and needs for organizational changes. Strategic global sourcing may therefore be outside firms’ “comfort zone”...

  14. Advancement of German Neutron Spectrometers Relocation Project in 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Neutron scattering technique is going on in Neutron Scattering Laboratory (NSL) of China Institute of Atomic Energy (CIAE) based on China Advanced Research Reactor (CARR), which will be hopefully

  15. Options for neutron scattering instruments on long pulse neutron sources

    International Nuclear Information System (INIS)

    Instrumenttion on long pulse sources can be approached either by instruments from short pulse sources and hence using mainly inverted time of flight techniques or by adopting reactor type instruments and making use of the time dependence of the source flux to enhance their performance substantially. While the first approach requires more or less single use of a beam line by one instrument, the second one allows multiple use of neutron guides, as customary on reactors and hence can make much better use of the source with gains up to 100 for time of flight spectrometers. To a certain extent, the design parameters of the source depend on which of the two approaches is chosen. (author) 8 figs., 1 tab., 16 refs

  16. Neutron gamma fraction imaging: Detection, location and identification of neutron sources

    International Nuclear Information System (INIS)

    In this paper imaging of neutron sources and identification and separation of a neutron source from another neutron source is described. The system is based upon organic liquid scintillator detector, tungsten collimator, bespoke fast digitiser and adjustable equatorial mount. Three environments have been investigated with this setup corresponding to an AmBe neutron source, a 252Cf neutron source and both sources together separated in space. In each case, events are detected, digitised, discriminated and radiation images plotted corresponding to the area investigated. The visualised neutron count distributions clearly locate the neutron source and, relative gamma to neutron (or neutron to gamma) fraction images aid in discriminating AmBe sources from 252Cf source. The measurements were performed in the low scatter facility of the National Physical Laboratory, Teddington, UK

  17. Spallation neutron source RF cavity bias system

    International Nuclear Information System (INIS)

    The Spallation Neutron Source r.f. cavity bias system is described under the topic headings: bias system, r.f. cavity, cables, d.c. bias power supply, transistor regulator and control system. Calculation of 4 core 300 mm solid aluminium cable inductance, coaxial shunt frequency response and transistor regulator computed frequency response, are discussed in appendices 1-3. (U.K.)

  18. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  19. Evaluation of the photo-neutron source and delayed neutrons in the Syrian miniature neutron source reactor

    International Nuclear Information System (INIS)

    A mathematical model has been developed to simulate the dynamic behavior of the Syrian Miniature Neutron Source Reactor (MNSR). The model is used to assess and evaluate the core average temperature as a function of the overall reactivity load in the core on one hand. On the other hand, the model is utilized to evaluate dynamically the photo and delayed neutron effects in MNSR. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant temperature and xenon, and thermalhydraulics. Natural convection and point kinetics including the prompt jump and complete mixing approximations were employed. Peak power, reactivity core load, core outlet temperature, and other variables are predicted during self-limiting power excursions. Direct photo-neutron sources strength was dynamically evaluated for the MNSR in subcritical condition. Two different static methods were applied for comparison. In addition, measurement of the photo-neutron source was made using neutron flux monitors and neutron activation analysis technique. Results for both methods were in good agreement. Dynamics effect of the photo neutron source on reactor response to reactivity insertions was demonstrated. Photo-neutron source existence due to beryllium reflector was realized. Compared to related references, close results have been obtained. Core average temperature was studied as a function of reactivity during reactor operation and transients. An overall rough estimate of core average temperature as a function of reactivity load is presented; hence, a procedure to measure such temperature is suggested. (author)

  20. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  1. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH2) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  2. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of ''burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs

  3. Sweden to host a new neutron source

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The first European neutron source, currently under development, should commence operations by the end of this decade. Its aim: to produce beams of neutrons that can penetrate into the heart of matter without damaging it and reveal its secrets.   An artist's impression of what the ESS should look like in 2019. At the southern end of Sweden, a town called Lund is preparing for the arrival of the world's most powerful neutron source: the European Spallation Source (ESS). Construction is scheduled to start at the beginning of next year, and the facility is expected to become operational by 2019, when it will produce its first neutron beams. “The ESS is the result of an idea that began 20 years ago!” underlines Mats Lindroos, in charge of the ESS Accelerator Division. “Today, 17 European countries support the project, including Sweden, Denmark and Norway, who together account for 50% of the construction funding.” The ESS, whose design is al...

  4. Sources of radiation from neutron stars

    CERN Document Server

    Schutz, B F

    1998-01-01

    I give a brief introduction to the problem of detecting gravitational radiation from neutron stars. After a review of the mechanisms by which such stars may produce radiation, I consider the different search strategies appropriate to the different kinds of sources: isolated known pulsars, neutron stars in binaries, and unseen neutron stars. The problem of an all-sky survey for unseen stars is the most taxing one that we face in analysing data from interferometers. I describe the kinds of hierarchical methods that are now being investigated to reach the maximal sensitivity, and I suggest a replacement for standard Fourier-transform search methods that requires fewer floating-point operations for Fourier-based searches over large parameter spaces, and in addition is highly parallelizable, working just as well on a loosely coupled network of workstations as on a tightly coupled parallel computer.

  5. Determination of neutron generation time in miniature neutron source reactor by measurement of neutronics transfer function

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A.; Khamis, I. [Atomic Energy Commission, Damascus (Syria). Dept. of Physics

    2000-02-01

    The prompt neutron generation time {lambda} and the total effective fraction of delayed neutrons (including the effect of photoneutrons) {beta} have been experimentally determined for the miniature neutron source reactor (MNSR) of Syria. The neutron generation time was found by taking measurements of the reactor open-loop transfer function using newly devised reactivity-step-ejection method by the reactor pneumatic rabbit system. Small reactivity perturbations i.e. step changes of reactivity starting from steady state, were introduced into the reactor during operation at low power level i.e. zero-power. Relative neutron flux and reactivity versus time were obtained. Using transfer function analysis as well as least square fitting techniques and measuring the delayed neutrons fraction, the neutron generation time was determined to be 74.6{+-}1.57 {mu}s. Using the prompt jump approximation of neutron flux, the total effective fraction of delayed neutrons was measured and found to be 0.00783{+-}0.00017. Measured values of {lambda} and {beta} were found to be very consistent with calculated ones reported in the safety analysis report. (orig.)

  6. Determination of neutron generation time in miniature neutron source reactor by measurement of neutronics transfer function

    International Nuclear Information System (INIS)

    The prompt neutron generation time Λ and the total effective fraction of delayed neutrons (including the effect of photoneutrons) β have been experimentally determined for the miniature neutron source reactor (MNSR) of Syria. The neutron generation time was found by taking measurements of the reactor open-loop transfer function using newly devised reactivity-step-ejection method by the reactor pneumatic rabbit system. Small reactivity perturbations i.e. step changes of reactivity starting from steady state, were introduced into the reactor during operation at low power level i.e. zero-power. Relative neutron flux and reactivity versus time were obtained. Using transfer function analysis as well as least square fitting techniques and measuring the delayed neutrons fraction, the neutron generation time was determined to be 74.6±1.57 μs. Using the prompt jump approximation of neutron flux, the total effective fraction of delayed neutrons was measured and found to be 0.00783±0.00017. Measured values of Λ and β were found to be very consistent with calculated ones reported in the safety analysis report. (orig.)

  7. Material selection for spallation neutron source windows

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F. [ETSII/Universidad Politecnica de Madrid, J. Gutierrez Abascal, 2-28006 Madrid (Spain); Abanades, A. [ETSII/Universidad Politecnica de Madrid, J. Gutierrez Abascal, 2-28006 Madrid (Spain)], E-mail: abanades@etsii.upm.es; Lafuente, A.; Martinez-Val, J.M. [ETSII/Universidad Politecnica de Madrid, J. Gutierrez Abascal, 2-28006 Madrid (Spain); Perlado, M. [Instituto de Fusion Nuclear (DENIM)/ETSII/Universidad Politecnica, Madrid, J. Gutierrez Abascal, 2-28006 Madrid (Spain)

    2009-11-15

    High performance neutron sources are being proposed for many scientific and industrial applications, ranging from material studies, hybrid reactors and transmutation of nuclear wastes. In the case of transmutation of nuclear wastes, accelerator driven systems (ADS) are considered as one of the main technical options for such purpose. In ADS a high performance spallation neutron source becomes an essential element for its operation and control. This spallation source must fulfil very challenging nuclear and thermo-mechanical requirements, because of the high neutron rates needed in ADS. The material selection for this key component becomes of paramount importance, particularly the source window that separates the vacuum accelerator tube from the spallation material where the accelerated protons impinge. In this paper, an integral analysis of spallation sources is done, taking as a reference the projects in this field proposal in the framework of European projects. Our analysis and calculations show that titanium and vanadium alloys are more suitable than steel as structural material for an industrial ADS beam window, mostly due to its irradiation damage resistance.

  8. Measurement of subcriticality using delayed neutron source combined with pulsed neutron accelerator

    International Nuclear Information System (INIS)

    A new experimental method for subcriticality measurement was developed by using delayed neutron source which is produced by external pulsed neutron source to increase accuracy of measured results by overcoming the space dependency problem which means difference of measured results in different detector position and often appeared in almost all other subcriticality measurement techniques. Experiments were performed at Kyoto University Critical Assembly (KUCA) combined with a DT accelerator to produce pulsed neutron in outside of the core repeatedly. In this method, neutron detection counts in the prompt neutron time region which are appeared just after injection of pulsed neutron are omitted, whereas neutron counts in the delayed neutron time region which are appeared after disappearance of exponential decay of the prompt neutron are adopted in analysis based on neutron source multiplication method or neutron noise analysis method; the variance to mean ratio method. In the delayed neutron time region, neutron sources to initiate fission chain reactions in subcritical state are delayed neutrons from delayed neutron precursors which are mainly produced by fission chain reactions in the prompt neutron time region, and delayed neutron precursors exist only in the fuel region, which makes possible to decrease the space dependency problem. The obtained results were compared with conventional pulsed neutron method, and it was found that the space dependency problem in subcriticality measurement can be fairly decreased by using the present new method compared with conventional one. (author)

  9. Detector for advanced neutron capture experiments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Reifarth, R. (Rene); Haight, Robert C.; Hunt, L. F. (Lloyd F.); O' Donnell, J. M.; Bredeweg, T. A. (Todd A); Wilhelmy, J. B. (Jerry B.); Fowler, Malcolm M.; Vieira, D. J. (David J.); Wouters, J. M. (Jan Marc); Strottman, D.; Kaeppeler, F. (Franz K.); Heil, M.; Chamberlin, E. P. (Edwin P.)

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  10. Tokamak D-T neutron source models for different plasma physics confinement modes

    Energy Technology Data Exchange (ETDEWEB)

    Fausser, Clement, E-mail: clement.fausser@cea.fr [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Puma, Antonella Li; Gabriel, Franck [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer HCLL DEMO neutronics is based on plasma physics L-mode, but may use H or A mode. Black-Right-Pointing-Pointer Based on Plasma Physics 0D code, H and A-mode D-T neutron sources formulae are proposed. Black-Right-Pointing-Pointer TRANSGEN code is built to create 2D source maps as input for Monte-Carlo codes. Black-Right-Pointing-Pointer A-mode neutronic impact is compared to L-mode at same power on a HCLL DEMO design. Black-Right-Pointing-Pointer Results show TBR and Me slight changes, contrary to NWL profile: from -22% to +11%. - Abstract: Neutronic studies of European demonstration fusion power plant (DEMO) have been so far based on plasma physics low confinement mode (L-mode). Future tokamaks, nevertheless, may likely use alternative confinement modes such as high or advanced confinement modes (H and A-mode). Based on analytical formulae used in plasma physics, H and A-modes D-T neutron sources formulae are proposed in this paper. For that purpose, a tokamak random neutron source generator, TRANSGEN, has been built generating bidimensional (radial and poloidal) neutron source maps to be used as input for neutronics Monte-Carlo codes (TRIPOLI-4 and MCNP5). The impact of such a source on the neutronic behavior of the European DEMO-2007 Helium-cooled lithium-lead reactor concept has been assessed and compared with previous results obtained using a L-mode neutron source. An A-mode neutron source map from TRANSGEN has been used with the code TRIPOLI-4. Assuming the same fusion power, results show that main reactor global neutronic parameters, e.g. tritium breeding ratio and neutron multiplication factor, evolved slightly when compared to present uncertainties margin. However, local parameters, such as the neutron wall loading (NWL), change significantly compared to L-mode shape: from -22% to +11% for NWL.

  11. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  12. Spallation neutron source and other high intensity froton sources

    Energy Technology Data Exchange (ETDEWEB)

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  13. INJECTION CHOICE FOR SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; BRODOWSKI,J.; FEDOTOV,A.; GARDNER,C.; LEE,Y.Y.; RAPARIA,D.; DANILOV,V.; HOLMES,J.; PRIOR,C.; REES,G.; MACHIDA,S.

    2001-06-18

    Injection is key in the low-loss design of high-intensity proton facilities like the Spallation Neutron Source (SNS). During the design of both the accumulator and the rapid-cycling-synchrotron version of the SNS, extensive comparison has been made to select injection scenarios that satisfy SNS's low-loss design criteria. This paper presents issues and considerations pertaining to the final choice of the SNS injection systems.

  14. Low dimensional neutron moderators for enhanced source brightness

    DEFF Research Database (Denmark)

    Mezei, Ferenc; Zanini, Luca; Takibayev, Alan;

    2014-01-01

    for cold neutrons. This model leads to the conclusions that the optimal shape for high brightness para-hydrogen neutron moderators is the quasi 1-dimensional tube and these low dimensional moderators can also deliver much enhanced cold neutron brightness in fission reactor neutron sources, compared...

  15. 先进裂变核能的关键核数据测量和CSNS白光中子源%Key Nuclear Data Measurements for Advanced Fission Energy and White Neutron Source at CSNS

    Institute of Scientific and Technical Information of China (English)

    唐靖宇; 敬罕涛; 夏海鸿; 唐洪庆; 张闯; 周祖英; 阮锡超; 张奇玮; 杨征

    2013-01-01

    在设计加速器驱动的次临界系统(ADS)、核废料嬗变装置及钍基熔盐堆时亟需一些关键核数据,当前核数据库受实验条件或中子能区的限制,存在核数据精度不高甚至少部分核素数据缺失的情况.本文综述了国内外相关的核数据研究和相应的白光中子源情况.基于中国散裂中子源(CSNS)的反角通道白光中子源实验终端的中子束流具有非常宽的能谱(0.01 eV~200 MeV)和很好的时间特性.模拟得到距靶80 m处的实验终端的中子注量率为9.3×106 cm-2·s-1,1 eV~1 MeV能量间隔内的中子数占总中子数的53%;同时,加速器运行在双束团模式或单束团模式,时间分辨率均在0.3%~0.9%之间,适合开展核数据测量.%The key nuclear data for advanced fission energy are important in designing advanced nuclear reactors and facilities for nuclear-waste transmutation.Because the present nuclear data library is limited by experimental condition and energy range,the precision of some nuclear data is low,even some nuclear data are blank.In this paper,the status of the nuclear data and white neutron sources were presented.The backstreaming neutron beam at China Spallation Neutron Source (CSNS) has very wide energy spectrum (0.01 eV-200 MeV) and excellent time structure.From the simulation results,it's obtained that the uncollimated neutron fluence rate is around 9.3 ×106 cm-2 · s-1 within the given energy range at 80 m away from the target,which accounts for about 53% of the total neutrons.The time resolution of 0.3%-0.9%,which is important for the Time-of-Flight method,can be obtained for both the parasite operation mode with two proton bunches and the dedicated operation mode with a single proton bunch.CSNS white neutron source will be a good facility for nuclear data measurement.

  16. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    Ian S Anderson

    2008-11-01

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is now well on its way to become the world-leading facility for neutron scattering. Furthermore, the SNS and the HFIR reactor facility, newly outfitted with a brilliant cold source and guide hall, were brought together within a single Neutron Sciences Directorate at ORNL providing the opportunity to develop science and instrumentation programs which take advantage of the unique characteristics of each source. SNS and HFIR will both operate as scientific user facilities. Access to these facilities is being managed under an integrated proposal system, which also includes the Center for Nanophase Materials Sciences (CNMS) and the electron microscopes in the Shared Research Equipment (SHARE) program. Presently, SNS has three instruments operating in the user program and seven more will begin operations in 2008. When complete, the facility will accommodate 25 instruments enabling researchers from the United States and abroad to study materials science that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology, and health.

  17. Neutron sources and its dosimetric characteristics

    International Nuclear Information System (INIS)

    By means of Monte Carlo methods the spectra of the produced neutrons 252 Cf, 252 Cf/D2O, 241 Am Be, 239 Pu Be, 140 La Be, 239 Pu18O2 and 226 Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H*(10), Hp,sIab (10, 00), EAP and EISO. During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of 239 Pu Be and 241 Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  18. Target technology of high energy neutron source

    International Nuclear Information System (INIS)

    As a facility of high energy neutron source for materials research and development, Fusion Materials Irradiation Test Facility (FMIT) is a strong candidate. The FMIT is designed to study the irradiation effect of fusion neutron on a fusion reactor materials. The FMIT generates a high-flux, high-energy neutron, which is produced in a stripping reaction by impinging a 3.5 MeV-0.1A beam of deuterons on a flowing lithium target. Target technology obtained in the FMIT will be useful for Energy Selective Neutron Irradiation Test Facility (ESNIT) and IFMIF of D-Li stripping reaction facility. In the first report (I), the flowing lithium target of the FMIT was reviewed, and some technical considerations in design were pointed out. In the second report (II), the target assembly and target material were proposed as the option of the HEDEL reference design of FMIT in order to improve the hazard and economy for the Li system: Firstly, the exchangeable target back wall and the measures to minimize the outside device damage in case of back wall breaking, and secondly, the option of molten fluoride salt as target material were proposed. (M.T.)

  19. Fusion Based Neutron Sources for Security Applications: Neutron Techniques

    OpenAIRE

    Albright, S.; Seviour, Rebecca

    2014-01-01

    The current reliance on X-Rays and intelligence for na- tional security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out tech- niques. The use of accelerator based fusion devices will potentially enable to wide spread applic...

  20. Miniature neutron sources: Thermal neutron sources and their uses in the academic field

    International Nuclear Information System (INIS)

    The three levels of thermal neutron sources are introduced: university laboratory sources; infrastructure sources; and world-class sources; and the needs for each kind and their inter-dependence will be emphasized. A description of the possibilities for university sources based on α-Be reactions or spontaneous fission emission is given, and current experience with them is described. A new generation of infrastructure sources is needed to continue the regional programs based on small reactors. Some possibilities for accelerator sources that could meet this need are considered

  1. System Engineering Status and Design Characteristics of Cold Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ki; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Kim, Y. J

    2004-06-15

    This report has been issued as a result of the surveys of foreign state of the arts on cold neutron source, which was a activity of the project, 'Development of Systems for Cold Neutron Source' commenced on July, 2003. Review and analysis for systems characteristics of the foreign cold neutron source will be a good reference for the basic and detail design starting on the July, 2004. Since the cold neutron source adopts liquid hydrogen or deuterium as a moderator and special field of techniques such as cryogenic cooling system, high vacuum and gas handling, etc., the project started with the survey work in order to be familiar with the concept of the cold neutron source. The survey work was proceeded on the foreign cold neutron sources. This report includes characteristics of the several foreign cold neutron sources.

  2. Neutronic Design and Measured Performance of the Low Energy Neutron Source (LENS) Target Moderator Reflector Assembly

    CERN Document Server

    Lavelle, C M; Bogdanov, A; Derenchuk, V P; Kaiser, H; Leuschner, M B; Lone, M A; Lozowski, W; Nann, H; Von Przewoski, B; Remmes, N; Rinckel, T; Shin, Y; Snow, W M; Sokol, P E

    2008-01-01

    The Low Energy Neutron Source (LENS) is an accelerator-based pulsed cold neutron facility under construction at the Indiana University Cyclotron Facility (IUCF). The idea behind LENS is to produce pulsed cold neutron beams starting with ~MeV neutrons from (p,n) reactions in Be which are moderated to meV energies and extracted from a small solid angle for use in neutron instruments which can operate efficiently with relatively broad (~1 msec) neutron pulse widths. Although the combination of the features and operating parameters of this source is unique at present, the neutronic design possesses several features similar to those envisioned for future neutron facilities such as long-pulsed spallation sources (LPSS) and very cold neutron (VCN) sources. We describe the underlying ideas and design details of the target/moderator/reflector system (TMR) and compare measurements of its brightness, energy spectrum, and emission time distribution under different moderator configurations with MCNP simulations. Brightnes...

  3. Shielding the LANSCE [Los Alamos Neutron Scattering Center] 800-MeV spallation neutron source

    International Nuclear Information System (INIS)

    Neutrons produced by medium-energy (800-MeV) proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of difficult shield problems. We describe the general shielding questions encountered at such a spallation source, and contrast spallation and reactor source shielding issues using an infinite slab-shield composed of 100 cm of iron and 15 cm of borated polyethylene. The calculations show that (for an incident spallation spectrum characteristic of neutrons leaking at 90 degrees from a tungsten target) high-energy neutrons dominate the dose at the shield surface. Secondary low-energy neutrons (produced by high-energy neutron attenuation) and attendant gamma-rays add significantly to the dose. The primary low-energy neutrons produced directly at the tungsten source contribute negligibly to the dose, and behave similarly to neutrons with a fission spectrum distribution. 8 refs., 10 figs

  4. The Chinese Spallation Neutron Source Project

    International Nuclear Information System (INIS)

    The proposal of the Chinese Spallation Neutron Source (CSNS) project was granted in the beginning of 2002 after three review meetings, organized by the Chinese Academy of Sciences (CAS) and other scientific organizations. Physicists from the Institute of Physics (IP) and the Institute of High Energy Physics (IHEP), both belonging to CAS, consequently started a conceptual design and feasibility study. The CSNS plan calls for a 70-MeV H- linac and a 1.6 GeV rapid cycling synchrotron producing a proton current of 62.5 μA (100kW) at a 25 Hz repetition rate. It should be able to be upgraded to a higher beam power in its second phase. The CSNS target station design team, has initiated to conceptual design of the targetmoderator system based on the suggestions and comments from an international advisory team, in the first moderator-target planning meeting of CSNS project (21-26, April 2002 in Beijing). In consideration of the characteristics of the spallation neutron source, the budgets and possible requests for future users in China, five multi-purpose neutron scattering spectrometers were proposed as the first step

  5. Neutron source based on the TORNADO trap

    International Nuclear Information System (INIS)

    The TORNADO magnetic trap as a source of thermonuclear neutrons with 108 neutron per a pulse in the D-D reaction is considered. The construction of magnetic traps both with stationary and quasistationary modes of their operation is shown to be possible. The results of numerical calculation of the magnetic system parameters are given, analysis of permissible mechanical loads, turns displacements of and magnetic fields in the trap is carried out. Considerable decrease of pondermotive forces affecting the turns of an internal spiral when conserving thermo-insulating properties of the magnetic trap field is shown to be possible. The loads of the trap spiral magnet coils are shown to be also acceptable to form the stationary magnetic field of the 2 Tl order in the magnetic barrier

  6. Neutron diffractometers for structural biology at spallation neutron sources

    International Nuclear Information System (INIS)

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical 3He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5 Angstrom with a flight path length of 10m and an energy resolution of 0.25 Angstrom. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux

  7. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  8. Oak Ridge Spallation Neutron Source (ORSNS) target station design integration

    Energy Technology Data Exchange (ETDEWEB)

    McManamy, T.; Booth, R.; Cleaves, J.; Gabriel, T. [and others

    1996-06-01

    The conceptual design for a 1- to 3-MW short pulse spallation source with a liquid mercury target has been started recently. The design tools and methods being developed to define requirements, integrate the work, and provide early cost guidance will be presented with a summary of the current target station design status. The initial design point was selected with performance and cost estimate projections by a systems code. This code was developed recently using cost estimates from the Brookhaven Pulsed Spallation Neutron Source study and experience from the Advanced Neutron Source Project`s conceptual design. It will be updated and improved as the design develops. Performance was characterized by a simplified figure of merit based on a ratio of neutron production to costs. A work breakdown structure was developed, with simplified systems diagrams used to define interfaces and system responsibilities. A risk assessment method was used to identify potential problems, to identify required research and development (R&D), and to aid contingency development. Preliminary 3-D models of the target station are being used to develop remote maintenance concepts and to estimate costs.

  9. New sources and instrumentation for neutrons in biology

    DEFF Research Database (Denmark)

    Teixeira, S.C.M.; Zaccai, G.; Ankner, J.;

    2008-01-01

    Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed.......Neutron radiation offers significant advantages for the study of biological molecular structure and dynamics. A broad and significant effort towards instrumental and methodological development to facilitate biology experiments at neutron sources worldwide is reviewed....

  10. Physics and technology of spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  11. Physics and technology of spallation neutron sources

    International Nuclear Information System (INIS)

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  12. Advanced light source master oscillator

    International Nuclear Information System (INIS)

    The Master Oscillator of the Advanced Light Source operates at a frequency of 499.654 MHz which is the 328th harmonic of the storage ring. The oscillator is capable of providing up to a maximum of ± 500 KHz frequency deviation for various experimental purposes. Provisions for external signal injection as well as using an external signal source have been designed into the unit. A power distribution system has also been included to provide signals for various parts of the ALS machine and user requirements. The Master Oscillator is made up with modules housed in a Euro chassis. 4 refs., 7 figs

  13. UCN Source at an External Beam of Thermal Neutrons

    OpenAIRE

    2015-01-01

    We propose a new method for production of ultracold neutrons (UCNs) in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections ...

  14. Field Ion Source Development for Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  15. Field ion source development for neutron generators

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten Johnson, B. [University of New Mexico, Albuquerque, NM 87131 (United States); Schwoebel, P.R., E-mail: schwoebel@chtm.unm.edu [University of New Mexico, Albuquerque, NM 87131 (United States); Holland, C.E. [SRI International, Menlo Park, CA 94025 (United States); Resnick, P.J. [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Hertz, K.L. [Sandia National Laboratories, Livermore, CA 94551 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States)

    2012-01-21

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  16. Development of a Compact Neutron Generator to be Used For Associated Particle Imaging Utilizing a RF-Driven Ion Source

    OpenAIRE

    Wu, Ying

    2009-01-01

    Ion source development plays an important role for improving and advancing the neutron generator technology used for active interrogation techniques employed by the Department of Homeland Security. Active neutron interrogation using compact neutron generators has been around since the late 1950's for use in oil well logging. However, since the September 11th, 2001 terrorists attack, much attention has been paid to the field of active neutron interrogation for detecting hidden explosives and...

  17. Novel neutron focusing mirrors for compact neutron sources

    OpenAIRE

    Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Robertson, L; Crow, L.; Ramsey, B. D.; Khaykovich, Boris; Liu, DaZhi; Moncton, David E.

    2012-01-01

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular c...

  18. Time collimation for elastic neutron scattering at a pulsed source

    International Nuclear Information System (INIS)

    Conditions for carrying out elastic neutron scattering experiments using the time-of-flight technique are considered. It is shown, that the employment of time dependent neutron beam collimation in the source-sample flight path increases the luminosity of the spectrometer under certain resolution restrictions. Time collimation modes are proposed for small-angle scattering and neutron reflection. (author) 8 figs., 3 refs

  19. PGNAA neutron source moderation setup optimization

    OpenAIRE

    Zhang, Jinzhao; Tuo, Xianguo

    2013-01-01

    Monte Carlo simulations were carried out to design a prompt {\\gamma}-ray neutron activation analysis (PGNAA) thermal neutron output setup using MCNP5 computer code. In these simulations the moderator materials, reflective materials and structure of the PGNAA 252Cf neutrons of thermal neutron output setup were optimized. Results of the calcuations revealed that the thin layer paraffin and the thick layer of heavy water moderated effect is best for 252Cf neutrons spectrum. The new design compar...

  20. Fission, spallation or fusion-based neutron sources

    Indian Academy of Sciences (India)

    Kurt N Clausen

    2008-10-01

    In this paper the most promising technology for high power neutron sources is briefly discussed. The conclusion is that the route to high power neutron sources in the foreseeable future is spallation – short or long pulse or even CW – all of these sources will have areas in which they excel.

  1. Spectrum of isotopic neutron sources inside concrete wall spherical cavities

    International Nuclear Information System (INIS)

    The neutron spectra of 252Cf/D2O, 140LaBe, 252Cf, 238Pu18O2, 241AmB, 241AmBe, 226RaBe and 239PuBe isotopic neutron sources due to room-return have been determined for various source-to-detector distances in concrete spherical cavities of different radius. Changes in the amount of thermal neutrons (E≤0.414eV) were analyzed to estimate, for each neutron source, the coefficient that relates the neutron source strength and room surface area with the thermal neutron fluence rates. The study was carried out using Monte Carlo methods for 200, 400, 500, 800, 1000, 1200 and 1500-cm-radius spherical cavity in vacuum; cavities are 100-cm-thick concrete. Point sources were located at the center of cavity and neutron spectra were calculated at several source-to-detector distances along the cavity radius. The thermal neutron contribution was thereby evaluated. From these calculations a weighted coefficient value that relates the thermal neutron fluence with the neutron source strength and the total inner area surface of the cavity was estimated to be 3.76±0.03

  2. Enhancing the detector for advanced neutron capture experiments

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons

  3. Neutron leakage from Pb and Bc spherical shells with 14 MeV central neutron source

    International Nuclear Information System (INIS)

    Results of measuring neutron leakage from spherical shells of different thickness, made of Pb and Be with a point neutron source in the sphere centrum are presented. The experiment results are compared to calculations according to different programs using data of various nuclear data libraies. The comparison has shown that all the calculations understate the neutron leakage from Pb assmebly. 9 refs.; 2 tabs

  4. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  5. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  6. The Spallation Neutron Source accelerator system design

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, S., E-mail: stuarth@fnal.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Abraham, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Aleksandrov, A. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, C. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Alonso, J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Arenius, D. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Arthur, T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Assadi, S. [Techsource, Inc., 1475 Central Avenue, Suite 250, Los Alamos, NM 87544-3291 (United States); Ayers, J.; Bach, P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Badea, V. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Battle, R. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Beebe-Wang, J. [Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 (United States); Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); and others

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ∼100 high-power RF power systems, a 2 K cryogenic plant, ∼400 DC and pulsed power supply systems, ∼400 beam diagnostic devices and a distributed control system handling ∼100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  7. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  8. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    International Nuclear Information System (INIS)

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as 6Li, 7Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44g coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa)

  9. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    Wright, R.Q.; Renier, J.P.; Bucholz, J.A.

    1995-08-01

    The original ANSL-V cross-section libraries (ORNL-6618) were developed over a period of several years for the physics analysis of the ANS reactor, with little thought toward including the materials commonly needed for shielding applications. Materials commonly used for shielding applications include calcium barium, sulfur, phosphorous, and bismuth. These materials, as well as {sup 6}Li, {sup 7}Li, and the naturally occurring isotopes of hafnium, have been added to the ANSL-V libraries. The gamma-ray production and gamma-ray interaction cross sections were completely regenerated for the ANSL-V 99n/44g library which did not exist previously. The MALOCS module was used to collapse the 99n/44g coupled library to the 39n/44g broad- group library. COMET was used to renormalize the two-dimensional (2- D) neutron matrix sums to agree with the one-dimensional (1-D) averaged values. The FRESH module was used to adjust the thermal scattering matrices on the 99n/44g and 39n/44g ANSL-V libraries. PERFUME was used to correct the original XLACS Legendre polynomial fits to produce acceptable distributions. The final ANSL-V 99n/44g and 39n/44g cross-section libraries were both checked by running RADE. The AIM module was used to convert the master cross-section libraries from binary coded decimal to binary format (or vice versa).

  10. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  11. LENS: A New Pulsed Neutron Source for Research and Education

    OpenAIRE

    Leuschner, M.; Baxter, D. V.; Cameron, J. M.; Derenchuk, V.; Lavelle, C.; Lone, A; Nann, H.; Rinckel, T.; Snow, W. M.

    2005-01-01

    A new pulsed neutron source is under construction at the Indiana University Cyclotron Facility (IUCF). Neutrons are produced via (p,n) reactions by a low-energy proton beam incident on a thin beryllium target. The source is tightly coupled to a cold methane moderator held at a temperature of 20 K or below. The resulting time-averaged cold neutron flux is expected to be comparable to that of the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory. The initial experimen...

  12. Advanced digital detectors for neutron imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  13. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    Science.gov (United States)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  14. DIANE: Advanced system for mobile neutron radiology

    Science.gov (United States)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  15. International seminar on structural investigations on pulsed neutron sources. Proceedings

    International Nuclear Information System (INIS)

    The proceedings of the International seminar on structural investigations using pulsed neutron sources are presented. The seminar is dedicated to the memory of Dr. Yu.M. Ostanevich, a world acknowledged physicist. The problems of structural analysis using pulsed neutron source at the IBR-2 reactor are discussed

  16. Production, distribution and applications of californium-252 neutron sources

    International Nuclear Information System (INIS)

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 1011 neutrons s-1. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations

  17. Production, distribution and applications of californium-252 neutron sources.

    Science.gov (United States)

    Martin, R C; Knauer, J B; Balo, P A

    2000-01-01

    The radioisotope 252Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-yr half-life. A source the size of a person's little finger can emit up to 10(11) neutrons s(-1). Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement and minerals, as well as for detection and identification of explosives, land mines and unexploded military ordinance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 yr of experience and by US Bureau of Mines tests of source survivability during explosions. The production and distribution center for the US Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells 252Cf to commercial reencapsulators domestically and internationally. Sealed 252Cf sources are also available for loan to agencies and subcontractors of the US government and to universities for educational, research and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of 252Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments and irradiation of rice to induce genetic mutations. PMID:11003521

  18. Neutronic study of spherical cold-neutron sources composed of liquid hydrogen and liquid deuterium

    CERN Document Server

    Matsuo, Y; Nagaya, Y

    2003-01-01

    Using the cross-section model for neutron scattering in liquid H sub 2 and D sub 2 , a neutron transport analysis is performed for spherical cold-neutron sources composed of either para H sub 2 , normal H sub 2 or normal D sub 2. A special effort is made to generate a set of energy-averaged cross-sections (80 group constants between 0.1 mu eV and 10 eV) for liquid H sub 2 and D sub 2 at melting and boiling points. A number of conclusions on the spherical cold-neutron source configurations are drawn. It is especially shown that the highest cold-neutron flux is obtainable from the normal D sub 2 source with a radius of about 50 cm, while the normal- and para-H sub 2 sources with radii around 3-4 cm produce maximum cold-neutron fluxes at the center.

  19. rf improvements for Spallation Neutron Source H-ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoon W [ORNL; Fuja, Raymond E [ORNL; Goulding, Richard Howell [ORNL; Hardek, Thomas W [ORNL; Lee, Sung-Woo [ORNL; McCarthy, Mike [ORNL; Piller, Chip [ORNL; Shin, Ki [ORNL; Stockli, Martin P [ORNL; Welton, Robert F [ORNL

    2010-01-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering 38 mA H beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride AlN plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. 2010 American Institute of Physics.

  20. A bright neutron source driven by relativistic transparency of solids

    Science.gov (United States)

    Roth, M.; Jung, D.; Falk, K.; Guler, N.; Deppert, O.; Devlin, M.; Favalli, A.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Kleinschmidt, A.; Merrill, F.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.

    2016-03-01

    Neutrons are a unique tool to alter and diagnose material properties and excite nuclear reactions with a large field of applications. It has been stated over the last years, that there is a growing need for intense, pulsed neutron sources, either fast or moderated neutrons for the scientific community. Accelerator based spallation sources provide unprecedented neutron fluxes, but could be complemented by novel sources with higher peak brightness that are more compact. Lasers offer the prospect of generating a very compact neutron source of high peak brightness that could be linked to other facilities more easily. We present experimental results on the first short pulse laser driven neutron source powerful enough for applications in radiography. For the first time an acceleration mechanism (BOA) based on the concept of relativistic transparency has been used to generate neutrons. This mechanism not only provides much higher particle energies, but also accelerated the entire target volume, thereby circumventing the need for complicated target treatment and no longer limited to protons as an intense ion source. As a consequence we have demonstrated a new record in laser-neutron production, not only in numbers, but also in energy and directionality based on an intense deuteron beam. The beam contained, for the first time, neutrons with energies in excess of 100 MeV and showed pronounced directionality, which makes then extremely useful for a variety of applications. The results also address a larger community as it paves the way to use short pulse lasers as a neutron source. They can open up neutron research to a broad academic community including material science, biology, medicine and high energy density physics as laser systems become more easily available to universities and therefore can complement large scale facilities like reactors or particle accelerators. We believe that this has the potential to increase the user community for neutron research largely.

  1. Nondiffractive applications of neutrons at the spallation source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    The paper delivers an overview about experiments with neutrons from the spallation source SINQ which are not especially devoted to neutron scattering. A total of six experimental facilities are under construction using thermal as well as cold neutrons. Starting with some general considerations about the interaction of neutrons with matter, the principles, boundary conditions and the experimental set up of these experiments are described briefly. Some more details are given for the neutron radiography facility NEUTRA as the author`s special interest and research field. (author) 7 figs., 2 tabs., 9 refs.

  2. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    OpenAIRE

    Brenner, C.M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C; Alejo, A.; Wilson, L A; Clarke, R; Ahmed, H.; Butler, N. M H; Haddock, D; Higginson, A; McClymont, A.; Murphy, C; Notley, M.; Oliver, P

    2015-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal oper...

  3. The European scene regarding spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Institut, Villigen (Austria)

    1996-06-01

    In Europe, a short pulse spallation neutron source, ISIS, has been operating for over 10 years, working its way up to a beam power level of 200 kW. A continuous source, SINQ, designed for a beam power of up to 1 MW, is scheduled to start operating at the end of 1996, and a detailed feasibility study has been completed for a 410 kW short pulse source, AUSTRON. Each of these sources seems to have settled for a target concept which is at or near the limits of its feasibility: The ISIS depleted uranium plate targets, heavy water cooled and Zircaloy clad, have so far not shown satisfactory service time and operation is likely to continue with a Ta-plate target, which, in the past has been used successfully for the equivalent of one full-beam-year before it was taken out of service due to degrading thermal properties. SINQ will initially use a rod target, made of Zircaloy only, but plans exist to move on to clad lead rods as quickly as possible. Apart from the not yet explored effect of hydrogen and helium production, there are also concerns about the generation of 7-Be in the cooling water from the spallation of oxygen, which might result in undesirably high radioactivity in the cooling plant room. A Liquid metal target, also under investigation for SINQ, would not only reduce this problem to a level of about 10 %, but would also minimize the risk of radiolytic corrosion in the beam interaction zone. Base on similar arguments, AUSTRON has been designed for edge cooled targets, but thermal and stress analyses show, that this concept is not feasible at higher power levels.

  4. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  5. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  6. Neutron energy spectrum adjustment using deposited metal films on Teflon in the miniature neutron source reactor.

    Science.gov (United States)

    Nassan, L; Abdallah, B; Omar, H; Sarheel, A; Alsomel, N; Ghazi, N

    2016-01-01

    The focus of this article was on the experimental estimation of the neutron energy spectrum in the inner irradiation site of the miniature neutron source reactor (MNSR), using, for the first time, a selected set of deposited metal films on Teflon (DMFTs) neutron detectors. Gold, copper, zinc, titanium, aluminum, nickel, silver, and chromium were selected because of the dependence of their neutron cross-sections on neutron energy. Emphasis was placed on the usability of this new type of neutron detectors in the total neutron energy spectrum adjustment. The measured saturation activities per target nucleus values of the DMFTs, and the calculated neutron spectrum in the inner irradiation site using the MCNP-4C code were used as an input for the STAY'SL computer code during the adjustment procedure. The agreement between the numerically calculated and experimentally adjusted spectra results was discussed. PMID:26562448

  7. Optimization of He-II UCN source with spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, K.; Choi, E.; Yoshimura, M. [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Ooi, M.; Kiyanagi, Y. [Hokkaido Univ., Sapporo (Japan); Masuda, Y.; Muto, S. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Tanaka, M. [Kobe Tokiwa Collage, Kobe, Hyogo (Japan)

    2001-03-01

    A spallation neutron source was designed for super thermal UCN production in He-II. The configuration of neutron production target, moderator and He-II bottle was optimized in order to obtain high neutron flux with low {gamma} heating in He-II. In the optimization the advantage of the spallation neutron source is used: The spallation neutron source has high n/{gamma} ratio and freedom in target moderator configuration in comparison with the reactor. As a result, a great improvement in UCN density is expected compared with the present most intense UCN source at the Grenoble reactor. (authors)

  8. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    International Nuclear Information System (INIS)

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the 10 μm range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of 1 μm or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  9. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  10. Production, Distribution, and Applications of Californium-252 Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial

  11. The neutron texture diffractometer at the China Advanced Research Reactor

    Science.gov (United States)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  12. Monte-Carlo simulations of elastically backscattered neutrons from hidden explosives using three different neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    ElAgib, I. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia)], E-mail: elagib@ksu.edu.sa; Elsheikh, N. [College of Applied and Industrial Science, University of Juba, Khartoum, P.O. Box 321 (Sudan); AlSewaidan, H. [College of Science, King Saud University, P.O. Box 2455 (Saudi Arabia); Habbani, F. [Faculty of Science, Physics Department, University of Khartoum, Khartoum, P.O. Box 321 (Sudan)

    2009-01-15

    Calculations of elastically backscattered (EBS) neutrons from hidden explosives buried in soil were performed using Monte-Carlo N-particle transport code MCNP5. Three different neutron sources were used in the study. The study re-examines the performance of the neutron backscattering methods in providing identification of hidden explosives through their chemical composition. The EBS neutron energy spectra of fast and slow neutrons of the major constituent elements in soil and an explosive material in form of TNT have shown definite structures that can be used for the identification of a buried landmine.

  13. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  14. Recent advances in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  15. Characterization of the DD-neutron source for the 80 degrees beam line of the fusion neutronics source (FNS)

    International Nuclear Information System (INIS)

    The specification of the d-D neutron source with a titanium deuteride target of the FNS facility was investigated in order to utilize the d-D neutron source for fusion neutronics researches. The characteristics of neutron produced by the d-D reaction were described based on the reaction kinematics, and the target assembly of the accelerator was modeled for the MCNP calculation in detail. In order to validate this calculation, the angular distribution of the neutron was measured with the activation foil method. The measured reaction rates were well predicted by the MCNP calculation, and the validity of the present calculation was confirmed. A MCNP source term for analyses calculations of experiments with DD neutrons was prepared from the results of the above calculation. (author)

  16. Enhancing the Detector for Advanced Neutron Capture Experiments

    OpenAIRE

    Couture A.; Mosby S.; Baramsai B.; Bredeweg T. A.; Jandel M.; Macon K.; O’Donnell J.M.; Rusev G.; Taddeucci T. N; Ullmann J.L.; Walker C.L.

    2015-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detec...

  17. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    Science.gov (United States)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  18. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    International Nuclear Information System (INIS)

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research

  19. Characterization of short-pulse laser driven neutron source

    Science.gov (United States)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  20. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  1. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    Science.gov (United States)

    Kirichek, O.; Brown, J.; Adroja, D. T.; Manuel, P.; Kouzmenko, G.; Bewley, R. I.; Wotherspoon, R.

    2012-12-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  2. Assessment of the neutron cross section database for mercury for the ORNL spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Leal, L.C.; Spencer, R.R.; Ingersoll, D.T.; Gabriel, T.A. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    Neutron source generation based on a high energy particle accelerator has been considered as an alternative to the canceled Advanced Neutron Source project at Oak Ridge National Laboratory. The proposed technique consists of a spallation neutron source in which neutrons are produced via the interaction of high-energy charged particles in a heavy metal target. Preliminary studies indicate that liquid mercury bombarded with GeV protons provides an excellent neutron source. Accordingly, a survey has been made of the available neutron cross-section data. Since it is expected that spectral modifiers, specifically moderators, will also be incorporated into the source design, the survey included thermal energy, resonance region, and high energy data. It was found that data of individual isotopes were almost non-existent and that the only evaluation found for the natural element had regions of missing data or discrepant data. Therefore, it appears that to achieve the desired degree of accuracy in the spallation source design it is necessary to re-evaluate the mercury database including making new measurements. During the presentation the currently available data will be presented and experiments proposed which can lead to design quality cross sections.

  3. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Martinez O, S. A., E-mail: fermineutron@yahoo.com [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, Av. Central del Norte 39-115, 150003 Tunja, Boyaca (Colombia)

    2015-10-15

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of {sup 24}NaBe, {sup 24}NaD{sub 2}O, {sup 116}InBe, {sup 140}LaBe, {sup 238}PuLi, {sup 239}PuBe, {sup 241}AmB, {sup 241}AmBe, {sup 241}AmF, {sup 241}AmLi, {sup 242}CmBe, {sup 210}PoBe, {sup 226}RaBe, {sup 252}Cf and {sup 252}Cf/D{sub 2}O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  4. Neutron spectra and dosimetric features of isotopic neutron sources: a review

    International Nuclear Information System (INIS)

    A convenient way to produce neutrons is the isotopic neutron source, where the production is through (α, n), (γ, n), and spontaneous fission reactions. Isotopic neutron sources are small, easy to handle, and have a relative low cost. On the other hand the neutron yield is small and mostly of them produces neutrons with a wide energy distribution. In this work, a review is carried out about the the main features of 24NaBe, 24NaD2O, 116InBe, 140LaBe, 238PuLi, 239PuBe, 241AmB, 241AmBe, 241AmF, 241AmLi, 242CmBe, 210PoBe, 226RaBe, 252Cf and 252Cf/D2O isotopic neutron source. Also, using Monte Carlo methods, the neutron spectra in 31 energy groups, the neutron mean energy; the Ambient dose equivalent, the Personal dose equivalent and the Effective dose were calculated for these isotopic neutron sources. (Author)

  5. Advanced Light Source elliptical wiggler

    International Nuclear Information System (INIS)

    A 3.5m long elliptical wiggler, optimized to produce elliptically polarized light in the 50 eV to 10 keV range, is currently under design and construction at the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory. Calculations of spectral performance show that the flux of circularly polarized photons exceeds 1013 photons/sec over the 50 eV to 10 keV operating range for current of 0.4 amps and 1.5 GeV electron energy. This device features vertical and horizontal magnetic structures of 14 and 14 1/2 periods respectively. The period length is 20.0 cm. The vertical structure is a hybrid permanent magnet design with tapered pole tips that produce a peak field of 2.0 T. The horizontal structure is an iron core electromagnetic design, shifted longitudinally 1/4 period, that is tucked between the upper and lower vertical magnetic structure sections. A maximum peak oscillating field of 0.095 T at a frequency up to 1 Hz will be achieved by excitation of the horizontal poles with a trapezoidal current waveform. The vacuum chamber is an unconventional design that is removable from the magnetic structure, after magnetic measurements, for UHV processing. The chamber is fabricated from non-magnetic stainless steel to minimize the effects of eddy currents. Device design is presented

  6. Characterization of the radiation background at the Spallation Neutron Source

    Science.gov (United States)

    DiJulio, Douglas D.; Cherkashyna, Nataliia; Scherzinger, Julius; Khaplanov, Anton; Pfeiffer, Dorothea; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Kanaki, Kalliopi; Kirstein, Oliver; Ehlers, Georg; Gallmeier, Franz X.; Hornbach, Donald E.; Iverson, Erik B.; Newby, Robert J.; Hall-Wilton, Richard J.; Bentley, Phillip M.

    2016-09-01

    We present a survey of the radiation background at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, TN, USA during routine daily operation. A broad range of detectors was used to characterize primarily the neutron and photon fields throughout the facility. These include a WENDI-2 extended range dosimeter, a thermoscientific NRD, an Arktis 4He detector, and a standard NaI photon detector. The information gathered from the detectors was used to map out the neutron dose rates throughout the facility and also the neutron dose rate and flux profiles of several different beamlines. The survey provides detailed information useful for developing future shielding concepts at spallation neutron sources, such as the European Spallation Source (ESS), currently under construction in Lund, Sweden.

  7. Tagging fast neutrons from an (241)Am/(9)Be source.

    Science.gov (United States)

    Scherzinger, J; Annand, J R M; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Rosborge, A; Svensson, H

    2015-04-01

    Shielding, coincidence, and time-of-flight measurement techniques are employed to tag fast neutrons emitted from an (241)Am/(9)Be source resulting in a continuous polychromatic energy-tagged beam of neutrons with energies up to 7MeV. The measured energy structure of the beam agrees qualitatively with both previous measurements and theoretical calculations. PMID:25644080

  8. Fundamental neutron physics beamline at the spallation neutron source at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, N., E-mail: nfomin@utk.edu [University of Tennessee, Knoxville, TN (United States); Greene, G.L. [University of Tennessee, Knoxville, TN (United States); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, R.R.; Cianciolo, V. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Crawford, C. [University of Kentucky, Lexington, KY (United States); Tito, T.M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Huffman, P.R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); North Carolina State University, Raleigh, NC (United States); Iverson, E.B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mahurin, R. [Middle Tennessee State University, Murfreesboro, TN (United States); University of Manitoba, Winnipeg, Manitoba (Canada); Snow, W.M. [Indiana University and Center for the Exploration of Energy and Matter, Bloomington, IN (United States)

    2015-02-11

    We describe the Fundamental Neutron Physics Beamline (FnPB) facility located at the Spallation Neutron Source at Oak Ridge National Laboratory. The FnPB was designed for the conduct of experiments that investigate scientific issues in nuclear physics, particle physics, astrophysics and cosmology using a pulsed slow neutron beam. We present a detailed description of the design philosophy, beamline components, and measured fluxes of the polychromatic and monochromatic beams.

  9. Advanced neutron diagnostics for the Nova laser facility

    International Nuclear Information System (INIS)

    The authors report on recent work addressing advanced neutron diagnostics to be implemented on the Nova laser facility. The goals of these instruments are to measure the following properties of laser fusion targets: compressed fuel areal-density (Rho-R), time-duration, and spatial extent of the neutron emission. The authors will discuss the use of a noval time-of-flight system, radiochemical techniques, and the use of plastic track detectors to measure the compressed Rho-R. The authors will present the design of two proposed instruments to measure the burn time; one uses a sandwich of thin layers of plastic scintillator and uranium coupled to a streak camera while the other design makes use of a neutron sensitive transmission line. Finally, the authors will discuss methods capable of obtaining neutron images of the compressed pellet core

  10. A clean, bright, and versatile source of neutron decay products

    Science.gov (United States)

    Dubbers, D.; Abele, H.; Baeßler, S.; Märkisch, B.; Schumann, M.; Soldner, T.; Zimmer, O.

    2008-11-01

    We present a case study on a new type of beam station for the measurement of angular correlations in the β-decay of free neutrons. This beam station, called proton and electron radiation channel (PERC), is a cold-neutron guide that delivers at its open end, instead of neutrons, a beam of electrons and protons from neutron decays that take place far inside the guide. These charged neutron-decay products are magnetically guided to the end of the neutron guide, where they are separated from the cold-neutron beam. In this way, a general-purpose source of neutron decay products is obtained which can be operated as a user facility for a variety of different experiments in neutron decay correlation spectroscopy that may be installed at this beam station. The angular distribution of the emitted charged particles depends on the magnetic field configuration and can be chosen freely, according to the need of the experiment being carried out. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Detailed calculations show that the spectra and angular distributions of the emerging electrons and protons will be distortion- and background-free on the level of 10 -4, more than 10 times better than that achieved today.

  11. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    CERN Document Server

    Brown, Duncan A; Lundgren, Andrew; Nitz, Alexander H

    2012-01-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotr...

  12. Crystal structure determination by powder neutron diffraction at the spallation neutron source, ISIS

    International Nuclear Information System (INIS)

    The paper concerns the determination of crystal structure by powder neutron diffraction at the spallation neutron source, ISIS. The practicability of the technique is illustrated by a study of the crystal structure of ferric arsenate, FeAsO4. (U.K.)

  13. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  14. SuperSUN - Superfluid Source of Ultra-cold Neutrons

    International Nuclear Information System (INIS)

    A new source of ultra-cold neutrons (UCN) and its implementation in a white cold neutron beam is proposed. The method involves down-scattering of cold neutrons in superfluid Helium-4 by single- and multi-phonon processes. The source shall provide a UCN density of 104/cm3 within a converter with volume up to 50 litres. A UCN source with these parameters will keep ILL competitive. Fully polarised UCN can be offered to the user by activating a small 5 T coil at one end of the converter. The strategy is currently being developed in a feasibility study within the ESFRI project ILL20/20. The present best choice for the location of such a source at the ILL seems the primary cold neutron beam H172. (authors)

  15. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  16. The Cold Neutron Chopper Spectrometer at the Spallation Neutron Source - A Review of the first 8 Years of Operation

    CERN Document Server

    Ehlers, Georg; Kolesnikov, Alexander I

    2016-01-01

    The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T~0.05K, p>=2GPa and B=8T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail.

  17. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  18. Optimized sub thermal neutron source to Linac of CAB

    International Nuclear Information System (INIS)

    We present the results of calculations performed with the code M C N P relative to the neutron field behavior within the moderator for the Bariloche-Linac cold neutron source, using polyethylene as pre moderator and solid mesitylene as moderating material at 90 K.The optimum dimensions for a moderator were obtained, with and without a pre moderator, from the point of view of neutron production and time-width of the neutron pulse.Finally, we adopted for our cold neutron source, a slab pre moderator of P L E at room temperature, and a cylindrical moderator of mesitylene at 90 K with a cooler system of stainless steel with windows of Zircaloy-4

  19. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Science.gov (United States)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  20. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  1. Laser Driven Neutron Sources: Characteristics, Applications and Prospects

    OpenAIRE

    Alvarez Ruiz, Jesus; Fernández-Tobias, J.; Mima, K.; Nakai, S; S. Kar; Kato, Y.; Perlado Martin, Jose Manuel

    2012-01-01

    The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (< 100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spe...

  2. An intense 14 MeV neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Su Tongling; Sun Biehe; Yang Baotai; Piao Yubo; Shui Yongqing; Chen Kefan; Wang Xuezhi; Yang Cheng; Niu Zhanqi; Liu Yanton; Pan Minshen; Hong Zhongti; Chen Qin (Lanzhou Univ., GS (China). Inst. of Nuclear Research)

    1990-02-15

    A 3x10{sup 12} n/s source of 14 MeV neutrons is described in this paper. The neutrons are produced by the T(d,n){sup 4}He reaction under a 30 mA, 300 keV deuteron beam bombarding a water-cooled, rotating titanium-tritide target. The size of the beam spot on the target is 1.8 cm, and at the distance of closest approach to the source a neutron flux of 5x10{sup 11} n/cm{sup 2} s is obtained. (orig.).

  3. Design and demonstration of a quasi-monoenergetic neutron source

    CERN Document Server

    Joshi, T H; Mozin, V; Norman, E B; Sorensen, P; Foxe, M; Bench, G; Bernstein, A

    2014-01-01

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the $^{7}$Li(p,n)$^{7}$Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative filters such as vanadium and manganese are also explored and the possibility of studying the response of different materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  4. Status of the Ultracold neutron source upgrade at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Pattie, Robert Wayne Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-31

    Several slides show the source and flux of ultracold neutrons produced. In summary, an upgraded UCN source has been designed, and parts are currently being fabricated. Nickel phosphorus-coated guides will improve transport to the experiment hall. The source will be installed in the spring of 2016 and commissioned in the fall of 2016.

  5. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  6. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  7. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  8. Accelerator based neutron source for the neutron capture therapy at hospital

    International Nuclear Information System (INIS)

    Accelerator source of epithermal neutrons for the hospital-based boron neutron capture therapy is proposed and discussed. Kinematically collimated neutrons are produced via near-threshold 7Li(p, n)7Be reaction at proton energies of 1.883 - 1.9 MeV. Steady-state accelerator current of 40 mA allows to provide therapeutically useful beams with treatment times of tens of minutes. The basic components of the facility are a hydrogen negative ion source, an electrostatic tandem accelerator with vacuum insulation, a sectioned rectifier, and a thin lithium neutron generating target on the surface of tungsten disk cooled by liquid metal heat carrier. Design features of facility components are discussed. The possibility of stabilization of proton energy is considered. At proton energy of 2.5 MeV the neutron beam production for NCT usage after moderation is also considered. (author)

  9. Nuclear and dosimetric features of an isotopic neutron source

    Science.gov (United States)

    Vega-Carrillo, H. R.; Hernández-Dávila, V. M.; Rivera, T.; Sánchez, A.

    2014-02-01

    A multisphere neutron spectrometer was used to determine the features of a 239PuBe neutron source that is used to operate the ESFM-IPN Subcritical Reactor. To determine the source main features it was located a 100 cm from the spectrometer which was a 6LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter polyethylene spheres. Count rates obtained with the spectrometer were unfolded using the NSDUAZ code and neutron spectrum, total fluence, and ambient dose equivalent were determined. A Monte Carlo calculation was carried out to estimate the spectrum and integral features being less than values obtained experimentally due to the presence of 241Pu in the Pu used to fabricate the source. Actual neutron yield and the mass fraction of 241Pu was estimated.

  10. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  11. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  12. Neutronic challenges of advanced boiling water reactor designs

    International Nuclear Information System (INIS)

    The advancement of Boiling Water Reactor technology has been under investigation at the Center for Advance Nuclear Energy Systems at MIT. The advanced concepts under study provide economic incentives through enabling further power uprates (i.e. increasing vessel power density) or better fuel cycle uranium utilization. The challenges in modeling of three advanced concepts with focus on neutronics are presented. First, the Helical Cruciform Fuel rod has been used in some Russian reactors, and studied at MIT for uprating the power in LWRs through increased heat transfer area per unit core volume. The HCF design requires high fidelity 3D tools to assess its reactor physics behavior as well as thermal and fuel performance. Second, an advanced core design, the BWR-HD, was found to promise 65% higher power density over existing BWRs, while using current licensing tools and existing technology. Its larger assembly size requires stronger coupling between neutronics and thermal hydraulics compared to the current practice. Third is the reduced moderation BWRs, which had been proposed in Japan to enable breeding and burning of fuel as an alternative to sodium fast reactors. Such technology suffers from stronger sensitivity of its neutronics to the void fraction than the traditional BWRs, thus requiring exact modeling of the core conditions such as bypass voiding, to correctly characterize its performance. (author)

  13. Development of hydrogen gauges with small neutron source

    International Nuclear Information System (INIS)

    A new method has been developed for measuring the thickness of a thin layer of 30-200 μm thick plastic sandwiched with two sheets of steel plates of 0.6-4.2mm in total thickness. To obtain a sufficient sensitivity in the measurement, efficient generations of slowed-down neutrons from the plastic layer of a sample were utilized. For the sake of carrying out this method, two iron blocks as fast neutron reflectors are placed with a small gap on the upper and lower sides of a combination of the 252-Cf neutron source and 3-He proportional counter. Furthermore a thin polyethylene sheet is placed as a neutron source and 3-He proportional counter. Furthermore a thin polyethylene sheet is placed as a neutron moderator in the gap. This sheet plays an important role in generating thermal neutrons efficiently from the plastic to be measured owing to multiple reflection of neutrons, through the sheet and sample in the gap with the aid of iron reflectors. A precision of about 10μm was attained in a 1 minute measurement with a 252-Cf source of 40 MBq. We are developing a few gauges using similar concept in some applications

  14. Rietveld refinement with time-of-flight powder diffraction data from pulsed neutron sources

    International Nuclear Information System (INIS)

    The recent development of accelerator-based pulsed neutron sources has led to the widespread use of the time-of-flight technique for neutron powder diffraction. The properties of the pulsed source make possible unusually high resolution over a wide range of d spacings, high count rates, and the ability to collect complete data at fixed scattering angles. The peak shape and other instrument characteristics can be accurately modelled, which make Rietveld refinement possible for complex structures. In this paper we briefly review the development of the Rietveld method for time-of-flight diffraction data from pulsed neutron sources and discuss the latest developments in high resolution instrumentation and advanced Rietveld analysis methods. 50 refs., 12 figs., 14 tabs

  15. Simplified neutron detector for angular distribution measurement of p-Li neutron source

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is one of the most promising cancer therapies using 10B(n, α)7Li nuclear reaction. Because nuclear reactor is currently used for BNCT, the therapy is much restricted. Many kinds of accelerator based neutron sources for BNCT are being investigated worldwide and p-Li reaction is one of the most promising candidates because the emitted neutron energy is comparatively low and no gamma-ray is produced. To use p-Li neutron source for BNCT, measurement of the angular distribution is important. However, the energy of neutrons changes depending on the angle with respect to the proton beam, e.g., the energy of forward emitted neutrons are about 700 keV and it is 100 keV for backward direction. So a neutron detector, the efficiency of which is not dependent on energy, is needed. Though so-called “Long Counter” is known to be available, its structure is complicated and moreover it is expensive. Thus we have designed and developed a simplified neutron detector using Monte Carlo simulation. We verified the developed detector experimentally and measured the angular distribution in detail for p-Li reaction by using it. The obtained results were compared with analytical calculations. (author)

  16. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  17. Expectation for energy selective neutron source based on the current neutron irradiation study of materials

    International Nuclear Information System (INIS)

    For an effective utilization of superior characteristics of the energy selective high energy neutron source, a consideration was made. Electron irradiation with high voltage electron microscopes (HVEM), D-T fusion neutron irradiation with rotating target neutron source (RTNS-II), and fission neutron irradiation with fission reactors were referred. The expected Energy Selective Neutron Source (ESNS) were compared with different types of irradiation facilities in regard to energy spectrum, flux stability, temperature control, and possibility of in-situ experiments. The excellent performance of HVEM electron irradiation, and of RTNS-II D-T fusion neutron irradiation was exemplified. The possibility of extending these excellent performances to the future ESNS experiment was discussed. Difficulties in the neutron irradiation experiment with fission reactors were exemplified. Shrinkage and growth of these difficulties in the ESNS experiment was discussed. Expected advantage and limitation of the ESNS was evaluated. Finally the positioning of ESNS was made, and the importance of its complementality with other facilities was pointed out. (M.T.)

  18. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  19. High-Power Linac for the Spallation Neutron Source

    Science.gov (United States)

    Rej, D. J.

    2002-04-01

    The Spallation Neutron Source (SNS) will be the world’s most intense source of neutrons for fundamental science and industrial applications. Design and construction of this facility, located at Oak Ridge, is a joint venture between six DOE laboratories. Construction began in 1999 and is currently ahead of the scheduled 2006 completion date. Injecting a high-power, pulsed proton beam into a mercury target produces neutrons. In this talk, we review the physics requirements, design, and status of the construction of the 1-GeV, 1.4-MW average power RF linac for SNS. The accelerator consists of a drift tube linac (DTL), a coupled-cavity linac (CCL), and a superconducting rf (SRF) linac. The phase and quadrupole settings are set to avoid structure and parametric resonances, with coherent resonances posing minimal risk for emittance growth. The DTL is 37 m long and accelerates the ions to 87 MeV. The CCL is 55 m long and accelerates the ions to 186 MeV. The rf structure design and stability for both the DTL and CCL have been validated with scale models. The SRF linac has a modular design to accelerate ions to 1000 MeV, with a straightforward upgrade to 1.3 GeV at a later date. 3D particle-in-cell simulations of beam dynamics are performed to validate performance. The accelerator utilizes 93 MW of pulsed power operating continuously at 60-Hz with an 8factor. Approximately one hundred 402.5 or 805-MHz klystrons, with outputs between 0.55 and 5 MW, are used. The klystrons are powered by a novel converter-modulator that takes advantage of recent advances in IGBT switch plate assemblies and low-loss material cores for boost transformer. Beam diagnostics include position, phase, profile, and current monitors. They are designed to enable accurate beam steering and matching, and to minimize beam loss that would lead to activation and prevent hands-on maintenance.

  20. Use of cold source and large reflector mirror guide for neutron-antineutron oscillation search (proposal)

    International Nuclear Information System (INIS)

    An ORNL-UTK-UW-Harvard group is exploring the possibility of performing a new experiment to search for neutron-antineutron oscillations either at the ORNL HFIR reactor or at the proposed neutron spallation source. The advanced layout, based on a large mirror focusing reflector, proposed for this experiment should allow improving the discovery potential of an n→n transition search by 3-4 orders of magnitude, as compared to the most recent similar experiment at ILL-Grenoble, and to reach the limit of the characteristic transition time of τnn>1010 seconds. Use of a cold neutron moderator operating at temperatures lower than conventional moderators can further enhance the discovery potential of an n→n search provided that neutrons can be thermalized at these lower temperatures. The latter assumption is an open question. (author) 2 figs., 2 tabs., 15 refs

  1. Measuring neutron star tidal deformability with Advanced LIGO: a Bayesian analysis of neutron star - black hole binary observations

    CERN Document Server

    Kumar, Prayush; Pfeiffer, Harald P

    2016-01-01

    The discovery of gravitational waves (GW) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for LIGO, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability $\\Lambda_\\mathrm{NS}\\propto (R/M)^{5}$ using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if non-tidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of non-tidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than $30$. For similarly loud signals, we also f...

  2. Design considerations for neutron activation and neutron source strength monitors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W. [Los Alamos National Lab., NM (United States); Jassby, D.L.; LeMunyan, G.; Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Walker, C. [ITER Joint Central Team, Garching (Germany)

    1997-12-31

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with {approximately}1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system.

  3. New spallation neutron sources, their performance and applications

    International Nuclear Information System (INIS)

    Pulsed spallation sources now operating in the world are at the KEK Laboratory in Japan (the KENS source), at Los Alamos National Laboratory (WNR) and at Argonne National Laboratory (IPNS), both the latter being in the US. The Intense Pulsed Neutron Source (IPNS) is currently the world's most intense source with a peak neutron flux of 4 x 1014 n cm-2s-1 at a repetition rate of 30 Hz, and globally producing approx. 1.5 x 1015 n/sec. Present pulsed sources are still relatively weak compared to their potential. In 1985 the Rutherford Spallation Neutron Source will come on line, and eventually be approx. 30 more intense than the present IPNS. Later, in 1986 the WNR/PSR option at Los Alamos will make that facility of comparable intensity, while a subcritical fission booster at IPNS will keep IPNS competitive. These new sources will expand the applications of pulsed neutrons but are still based on accelerators built for other scientific purposes, usually nuclear or high-energy physics. Accelerator physicists are now designing machines expressly for spallation neutron research, and the proton currents attainable appear in the milliamps. (IPNS now runs at 0.5 GeV and 14 μA). Such design teams are at the KFA Laboratory Julich, Argonne National Laboratory and KEK. Characteristics, particularly the different time structure of the pulses, of these new sources will be discussed. Such machines will be expensive and require national, if not international, collaboration across a wide spectrum of scientific disciplines. The new opportunities for neutron research will, of course, be dramatic with these new sources

  4. Status report on the Low Energy Neutron Source for 2015

    Science.gov (United States)

    Baxter, D. V.; Rinckel, T.

    2016-11-01

    The Low Energy Neutron Source at Indiana University first produced cold neutrons in April of 2005. Ten years after first reaching this milestone, the facility has three instruments in operation on its cold target station, and a second target station is devoted to thermal and fast neutron physics offers capabilities in radiation effects research (single-event effects in electronics) and radiography. Key elements in our success over these last ten years have been the diversity of activities we have been able maintain (which often involves using each of our instruments for multiple different activities), the close relationship we have developed with a number of major sources, and the focus we have had on innovation in neutron instrumentation. In this presentation, we will introduce some of the highlights from our most recent activities, provide an update on some of our technical challenges, and describe some of our ideas for the future.

  5. Research for the concept of Hanaro cold neutron source

    International Nuclear Information System (INIS)

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs

  6. Characterization of nuclear sources via two-neutron intensity interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.; Colonna, N.; Helgesson, J.; De Filippo, E.; Tagliente, G.; Anzalone, A.; Bellini, V.; Carlen, L.; Cavallaro, S.; Celano, L.; D' Erasmo, G.; Di Santo, D.; Fiore, E.M.; Fokin, A.; Geraci, M.; Jakobsson, B.; Kuznetsov, A.; Lanzano, G.; Mahboub, D.; Murin, Yu.; Maartensson, J.; Pagano, A.; Palazzolo, F.; Palomba, M.; Pantaleo, A.; Paticchio, V.; Potenza, R.; Riera, G.; Siwek, A.; Sperduto, M.L.; Sutera, C.; Urrata, M.; Westerberg, L

    1999-11-15

    The neutron energy spectrum and the two-neutron correlation function have been measured for the E/A=45 MeV Ni + Al reaction in order to assess the space-time characteristics of the neutron emitting source. When comparing the data to a statistical model, the kinetic energy spectra, the integrated correlation function as well as the longitudinal correlation function are reproduced by one single source. However, only the inclusion of a short-lived pre-equilibrium component can account for the stronger correlation exhibited by neutron pairs emitted with high total momentum. The correlation function from events defined as peripheral by constraints on the highest charge of the projectile-like fragment does show a significantly weaker correlation than the minimum bias sample.

  7. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  8. Multiplying target for a high-intensity spallation neutron source

    International Nuclear Information System (INIS)

    The possible design of an intensive pulsed neutron source for time-of-flight experiments is considered. Its major characteristics are expected to be: peak and average slow neutron flux density on the moderator surface up to 1017 and 1014 N/cm2s respectively, neutron pulse duration about 30 μs and pulse repetition rate 25 pps. This level of performance is achieved due to using a multiplying target driven with the proton beam of the Moscow meson factory. (author) 1 fig., 3 tabs., 9 refs

  9. Comparison of ultracold neutron sources for fundamental physics measurements

    CERN Document Server

    Bison, G; Kirch, K; Lauss, B; Ries, D; Schmidt-Wellenburg, P; Zsigmond, G; Brenner, T; Geltenbort, P; Jenke, T; Zimmer, O; Beck, M; Heil, W; Kahlenberg, J; Karch, J; Ross, K; Eberhardt, K; Geppert, C; Karpuk, S; Reich, T; Siemensen, C; Sobolev, Y; Trautmann, N

    2016-01-01

    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.

  10. The Spallation Neutron Source A Powerful Tool for Materials Research

    CERN Document Server

    Mason, Thomas E; Crawford, R K; Herwig, K W; Klose, F; Ankner, J F

    2005-01-01

    The wavelengths and energies of thermal and cold neutrons are ideally matched to the length and energy scales in the materials that underpin technologies of the present and future: ranging from semiconductors to magnetic devices, composites to biomaterials and polymers. The Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of neutrons in the world when it is complete at the end of 2005. The project is being built by a collaboration of six U.S. Department of Energy laboratories. It will serve a diverse community of users drawn from academia, industry, and government labs with interests in condensed matter physics, chemistry, engineering materials, biology, and beyond.

  11. High Intensity Accelerator and Neutron Source in China

    Science.gov (United States)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  12. Commissioning of the Opal reactor cold neutron source

    International Nuclear Information System (INIS)

    Full text: At OPAL, Australia's first cold neutron facility will form an essential part of the reactor's research programs. Fast neutrons, born in the core of a reactor, interact with a cryogenic material, in this case liquid deuterium, to give them very low energies (10meV). A cold neutron flux of 1.4 10E14n/cm2/s is expected, with a peak in the energy spectrum at 4.2meV. The cold neutron source reached cryogenic conditions for the first time in late 2005. The cold neutron source operates with a sub-cooled liquid Deuterium moderator at 24K. The moderator chamber, which contains the deuterium, has been constructed from AlMg5. The thermosiphon and moderator chamber are cooled by helium gas, in a natural convection thermosiphon loop. The helium refrigeration system utilises the Brayton cycle, and is fully insulated within a high vacuum environment. Despite the proximity of the cold neutron source to the reactor core, it has been considered as effectively separate to the reactor system, due to the design of its special vacuum containment vessel. As OPAL is a multipurpose research reactor, used for beam research as well as radiopharmaceutical production and industrial irradiations, the cold neutron source has been designed with a stand-by mode, to maximise production. The stand-by mode is a warm operating mode using only gaseous deuterium at ambient temperatures (∼ 300K), allowing for continued reactor operations whilst parts of the cold source are unavailable or in maintenance. This is the first time such a stand-by feature has been incorporated into a cold source facility

  13. Neutronics studies of solid targets for spallation neutron source using Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    殷雯; 梁九卿

    2003-01-01

    Neutronics studies for a solid target have been done with Monte Carlo high-energy particle transport code NMTC/JAM,when the proton beam with high kinetic energy bombards the target.The effect of the main parameters of the target on the neutron flux is discussed to optimize the target,which will be used for the concept design of the target of spallation neutron source.A target with its aspect ratio 1.5:1 or 2:1 gives the highest neutron flux.Tungsten is the most acceptable material from the technical and economical points of view.Beryllium as a moderating reflector can increase the neutron flux effectively.

  14. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  15. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  16. Spent-fuel photon and neutron source spectra

    International Nuclear Information System (INIS)

    Computational activities at Oak Ridge National Laboratory have been performed to develop appropriate data and techniques for computing the photon and neutron source spectra of spent fuel. The methods reviewed here include both the determination of spent-fuel composition and the radiation source spectra associated with these isotopic inventories

  17. Method to determine the strength of a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.; Mercado, G.A. [UAZ, A.P. 336, 98000 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Depto. Ingenieria Nuclear, Universidad Politecnica de Madrid, (Spain)

    2006-07-01

    The use of a gamma-ray spectrometer with a 3 {phi} x 3 NaI(Tl) detector, with a moderator sphere has been studied in the aim to measure the neutron fluence rate and to determine the source strength. Moderators with a large amount of hydrogen are able to slowdown and thermalize neutrons; once thermalized there is a probability that thermal neutron to be captured by hydrogen producing 2.22 MeV prompt gamma-ray. The pulse-height spectrum collected in a multicharmel analyzer shows a photopeak around 2.22 MeV whose net area is proportional to total neutron fluence rate and to the neutron source strength. The characteristics of this system were determined by a Monte Carlo study using the MCNP 4C code, where a detailed model of the Nal(Tl) was utilized. As moderators 3, 5, and 10 inches-diameter spheres where utilized and the response was calculated for monoenergetic and isotopic neutrons sources. (Author)

  18. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics

  19. Evaluation of thermal neutron irradiation field using a cyclotron-based neutron source for alpha autoradiography

    International Nuclear Information System (INIS)

    It is important to measure the microdistribution of 10B in a cell to predict the cell-killing effect of new boron compounds in the field of boron neutron capture therapy. Alpha autoradiography has generally been used to detect the microdistribution of 10B in a cell. Although it has been performed using a reactor-based neutron source, the realization of an accelerator-based thermal neutron irradiation field is anticipated because of its easy installation at any location and stable operation. Therefore, we propose a method using a cyclotron-based epithermal neutron source in combination with a water phantom to produce a thermal neutron irradiation field for alpha autoradiography. This system can supply a uniform thermal neutron field with an intensity of 1.7×109 (cm−2 s−1) and an area of 40 mm in diameter. In this paper, we give an overview of our proposed system and describe a demonstration test using a mouse liver sample injected with 500 mg/kg of boronophenyl-alanine. - Highlights: • We developed a thermal neutron irradiation field using cyclotron based epithermal neutron source combination with a water phantom for alpha autoradiography. • The uniform thermal neutron irradiation field with an intensity of 1.7×109 (cm−2 s−1) with a size of 40 mm in diameter was obtained. • Demonstration test of alpha autoradiography using a liver sample with the injection of BPA was performed. • Boron image discriminated with the background event of protons was clearly shown by means of the particle identification

  20. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  1. Advanced Light Source Activity Report 2002

    International Nuclear Information System (INIS)

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information

  2. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  3. Advanced Light Source Activity Report 2002

    OpenAIRE

    Duque editor, Theresa; Greiner editor, Annette; Moxon editor, Elizabeth; Robinson editor, Arthur; Tamura editor, Lori

    2003-01-01

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  4. Advanced Light Source Activity Report 2000

    OpenAIRE

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  5. Advanced Light Source Activity Report 2000

    International Nuclear Information System (INIS)

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself

  6. STUDY ON MODERATIORS OF SMALL—SIZE NEUTRON RADIOGRAPHY INSTALLATIONS WITH NEUTRON TUBE AS SOURCE

    Institute of Scientific and Technical Information of China (English)

    马维超; 吴执中; 等

    1995-01-01

    Calculation of moderator analogues for 14 MeV neutrons as source were made at a IBM/PC AT computer using TAMAKER-ANISN program and 46 groups(25 neutron groups,21 photon groups) UW cross section data.The intensifying effect of lead and natural uranium for moderating 14 MeV neutrons is confirmed.Adopting proper structure of the moderator,the intensifying factor M( times) may be larger than 3.Using lead and naural uranium in sub-critical assemblies (or cell boosters),with 14 Me neutrons as source,with the same dimension as that of abouve,the intensifying effect is also confirmed.With a proper structure of sub-critical assembly,the intensifying factor M may be close to or even larger than(1-k)-1 where k is the effective multiplication factor.

  7. Neutron shielding of the GDT (Novosibirsk) neutron source project: A feasibility study

    International Nuclear Information System (INIS)

    The paper presents results of extensive neutronic studies of the neutron source test facility based on the Novosibirsk gas dynamic trap. The facility is to provide 1018 DT-neutrons/s for material-test studies. The paper examines the protective-shields capacity to ensure survival of GDT vital parts and suggests design modifications when survival is in jeopardy. The numerical studies used the 3D-AMC-VINIA Monte Carlo code with a precise computer representation of the sensitive parts of the facility. Shielding feasibility has been ascertained, and the lifetime of consumable components ensured beyond the recommended values

  8. Water-extended polyester neutron shield for a 252Cf neutron source

    International Nuclear Information System (INIS)

    A Monte Carlo study to determine the shielding features to neutrons of water-extended polyester was carried out. During calculations, 252Cf and shielding were modelled and the neutron spectra as well as the H*(10) were calculated in four sites. The calculation was extended to include a water shielding, the source in vacuum and in air. Besides neutron shielding characteristics, the Kerma in air due to gammas emitted by 252Cf and due to capture γ rays in the shielding were included. (authors)

  9. Plasma focus sources: Supplement to the neutron resonance radiography workshop proceedings

    International Nuclear Information System (INIS)

    Since their discovery, plasma focus discharges have been recognized as very intense pulsed sources of deuterium-deuterium (D-D) or deuterium-tritium (D-T) fusion-reaction neutrons, with outstanding capabilities. Specifically, the total neutron emission/shot, YN, and the rate of neutron emission, Y/sub n/, of an optimized plasma focus (PF) are higher than the corresponding quantities observed in any other type of pinched discharge at the same level of powering energy W0. Recent developments have led to the concept and experimental demonstration of an Advanced Plasma Focus System (APF) that consists of a Mather-geometry plasma focus in which field distortion elements (FDEs) are inserted in the inter-electrode gap for increasing the neutron yield/shot, Y/sub n/. The FDE-induced redistribution of the plasma current increases Y/sub n/ by a factor ≅5-10 above the value obtained without FDEs under otherwise identical conditions of operation of the plasma focus. For example, an APF that is fed by a fast capacitor bank with an energy, W0 = 6kJ, and voltage, V0 = 16.5 kV provides Y/sub n/ /congruent/ 4 /times/ 109 D-D neutrons/shot (pure D2 filling) and Y/sub n/ = 4 /times/ 1011 D-T neutrons/shot (filling is 50% deuterium and 50% tritium). The FDE-induced increase of Y/sub n/ for fixed values of (W0, V0), the observed scaling law Y/sub n/ /proportional to/ W02 for optimized plasma focus systems, and our experience with neutron scattering in bulk objects lead us to the conclusion that we can use an APF as a source of high-intensity neutron pulses (1014 n/pulse) in the field off neutron radiography (surface and bulk) with a nanosecond or millisecond time resolution

  10. Proposed pulsed neutron source for radiotherapy and radiography

    International Nuclear Information System (INIS)

    neutron source is proposed for radiography and radiotherapy. In this case, various electron-gamma-neutron targets are simulated by Monte Carlo based computer code and obtained the neutron spectra through (γ,n) reaction. Integrated neutron flux is also measured experimentally and subsequently compared with the theoretical one

  11. Enriched vs non-enriched vs non-fissile targets for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Numerous options exist among alternatives for target material and design of the neutron producing target in pulsed spallation neutron sources. This report surveys the advantages, disadvantages and limitations of some of the alternatives, including discussions of neutron yields, delayed neutron backgrounds, source pulse widths, source-to-moderator coupling, materials performance, fabrication problems, safeguards and security and hazards questions. (author)

  12. Nuclear and dosimetric features of an isotopic neutron source

    International Nuclear Information System (INIS)

    A multisphere neutron spectrometer was used to determine the features of a 239PuBe neutron source that is used to operate the ESFM-IPN Subcritical Reactor. To determine the source main features it was located a 100 cm from the spectrometer which was a 6LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter polyethylene spheres. Count rates obtained with the spectrometer were unfolded using the NSDUAZ code and neutron spectrum, total fluence, and ambient dose equivalent were determined. A Monte Carlo calculation was carried out to estimate the spectrum and integral features being less than values obtained experimentally due to the presence of 241Pu in the Pu used to fabricate the source. Actual neutron yield and the mass fraction of 241Pu was estimated. - Highlights: • The neutron spectrum of a 239PuBe was measured. • With the spectrum integral features were determined. • It was estimated 0.23 w/o of 241Pu in the Pu used to make the source

  13. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  14. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    CERN Document Server

    Fernández, Rodrigo

    2015-01-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables which provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture ($r$-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  15. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    Science.gov (United States)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  16. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    International Nuclear Information System (INIS)

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements

  17. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  18. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  19. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    OpenAIRE

    Fantidis, J. G.; Nicolaou, G. E.; C. Potolias; N. Vordos; Bandekas, D. V.

    2011-01-01

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were...

  20. High energy neutron source for materials research and development

    International Nuclear Information System (INIS)

    Requirements for neutron source for nuclear materials research are reviewed and ESNIT, Energy Selective Neutron Irradiation Test facility proposed by JAERI is discussed. Its principal aims of a wide neutron energy tunability and spectra peaking at each energy to enable characterization of material damage process are demanding but attractive goals which deserve detailed study. It is also to be noted that the requirements make a difference in facility design from those of FMIT, IFMIF and other high energy intense neutron sources built or planned to date. Areas of technologies to be addressed to realize the ESNIT facility are defined and discussed. In order to get neutron source having desired spectral characteristics keeping moderate intensity, projectile and target combinations must be examined including experimentation if necessary. It is also desired to minimize change of flux density and energy spectrum according to location inside irradiation chamber. Extended target or multiple targets configuration might be a solution as well as specimen rotation and choice of combination of projectile and target which has minimum velocity of the center of mass. Though relevant accelerator technology exists, it is to be stressed that considerable efforts must be paid, especially in the area of target and irradiation devices to get ESNIT goal. Design considerations to allow hands-on maintenance and future upgrading possibility are important either, in order to exploit the facility fully for nuclear materials research and development. (author)

  1. Conceptual design of target station and neutron scattering spectrometers for the Chinese spallation neutron source

    International Nuclear Information System (INIS)

    The authors report the recent progress on the conceptual design of the target station and neutron scattering spectrometers for the Chinese Spallation Neutron Source (CSNS). The CSNS target station will be constructed with three parts: tungsten targets cooled by heavy water, Be/Fe reflectors and Fe/high-density-iron-aggregate-concrete shields. there will be 3 WING moderators: water (300 K), liquid methane (100 K) and liquid hydrogen (20 K), and 18 horizontal neutron channels for neutron scattering spectrometers. The Monte Carlo simulation shows that the optimized ratio of height to width of the target cross-section is ∼1:2.5. With a nuclear power of 100 kW, the pulsed neutron flux is 2.4 x 1016 cm-2·s-1 for a 40 mm x 100 mm x 10 mm x 40 target stack. The emitted heat is about 47 kJ/s, the target temperature is somewhat higher than 90 degree C with a normal cooling efficiency, and the strain should be lower than 0.2 mm. Initially 5 typical spectrometers are chosen to be constructed, including a high intensity powder diffractometer, a high resolution powder diffractometer, a small angle scattering spectrometer, a reflectometer and a direct geometry inelastic neutron scattering spectrometer. These spectrometers can cover more than 80% of the neutron scattering applications. (authors)

  2. Optimizing moderator dimensions for neutron scattering at the spallation neutron source.

    Science.gov (United States)

    Zhao, J K; Robertson, J L; Herwig, Kenneth W; Gallmeier, Franz X; Riemer, Bernard W

    2013-12-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter).

  3. Inelastic neutron scattering spectrometer for the IN-06 neutron source at the Moscow meson factory

    International Nuclear Information System (INIS)

    In the spectrometers in which the so-called inverse geometry of scattering is used, the scattering neutron energy, E2, is fixed and the initial neutron energy, E1, is determined by source to sample time of flight. The inverse geometry method is a unique reliable means for determination of the absolute intensity of spectral lines. It is possible because this method allows experiments in a wide range transferred energies to be carried out without changing the experiment geometry. Such spectrometers possess a good definite dependence of the transfer energy on momentum transfer. This allows one to extract complementary to optical methods information from the experimental data. The KDSOG-M spectrometer was created at the IBR-2 pulsed reactor of JINR for investigation of the lattice dynamics of solids and simultaneous analysis of the phase structure of samples. For analysis of the scattering neutron energy polycrystal filters and single crystals are used. Creation of the IN-06 neutron source based on the proton accelerator of the Moscow meson factory leads to the necessary formation of a scientific research program for condensed matter physics. Re-equipment of the KDSOG-M spectrometer for use at the IN-06 neutron source includes preparation of an instrumental basis for carrying out experiments in solid state physics and other fields (biophysics, applied science and so on). This work is a project for transfer and updating the inverse geometry inelastic neutron scattering spectrometer KDSOG-M for use at the IN-06 neutron source of Moscow meson factory. (author) 10 figs., 4 refs

  4. The neutron distribution system of the new ultra-cold neutron source at the FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Wlokka, Stephan; Frei, Andreas [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Techische Universitaet Muenchen, Lichtenbergstrasse 1, D-85747 Garching (Germany); Fierlinger, Peter; Paul, Stephan [Physik Department, Technische Universitaet Muenchen, James-Franck-Strasse 1, D-85748 Garching (Germany); Geltenbort, Peter [Institut Laue-Langevin, BP 156, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2013-07-01

    Ultra-cold neutrons (UCN) are neutrons which are totally reflected from a given material surface. Typical energies of UCN are below 300 neV and velocities below 8 m/s. Thus they can be stored in material or magnetic bottles for several hundreds of seconds. As such, UCN are excellent laboratories to study fundamental parameters, e.g. the free neutron lifetime or the electric dipole moment of the neutron. The new UCN source foreseen at the FRM II will deliver high UCN densities to four experimental areas. Hence a mechanism to distribute as many UCN as possible to these areas is needed. We have developed a high efficiency UCN switch for this purpose. This talk reports about a series of measurements conducted with this switch. There have been three types of measurements, testing the transmission, storage and surface properties of the switch.

  5. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  6. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  7. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  8. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  9. Concept of DT fuel cycle for a fusion neutron source

    International Nuclear Information System (INIS)

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 1018 neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  10. Cross section model and scattering law of liquid water for design of a cold neutron source

    International Nuclear Information System (INIS)

    A cross section model for cold neutron scattering in light water is developed, which describes various molecular motions inherent to hydrogen-bonded water molecules especially in terms of jump- and rotational-diffusion processes. Inter- and intra-molecular vibrations are also included. A systematic analysis is performed of a velocity autocorrelation function, a generalized frequency distribution and double-differential and total cross sections. Good agreement with the results of computer molecular dynamics and neutron scattering experiments is found. A wide range of cross section evaluation for neutron energies from 0.1 μeV to 10 eV and liquid temperatures between the melting and boiling points is performed. This permits us to generate such low-energy neutron cross section libraries as group constants set and scattering law for ultra-cold, very-cold, cold and thermal neutrons. Together with the libraries for liquid 4He, H2, D2 and solid and liquid CH4, a powerful tool for design of an advanced low-energy neutron source is now ready for use. (author)

  11. Automatic pneumatic source-control system for positioning gamma and neutron calibration sources

    International Nuclear Information System (INIS)

    A microcomputer-based source-control system was developed to move gamma and neutron calibration sources into position for sample irradiation. In addition to monitoring interlocks and system status, the computer calculates for gamma sources the time required for a requested exposure at a specified distance. All system use data is stored, and monthly reports are generated

  12. Neutron pinhole camera investigations on temporal and spatial structures of plasma focus neutron source

    International Nuclear Information System (INIS)

    The neutron emission of the Frascati 1-MJ-plasma focus has been investigated over an energy range of 250 to 500kJ by means of a neutron pinhole camera, using a six-channel detector array. Single-shot neutron streak images, space- and time-resolved, are obtained with an axial resolution of 2 cm and a time resolution of about 5ns. - Results show that over 70% of the neutrons (i.e. more than 1011 neutrons per shot at 490kJ) are emitted from a co-axial cylindrical volume about 4cm long and less than 4cm in diameter at the anode tip. Neither axial nor radial motion of this main source is observed throughout the emission lasting 200ns FWHM typically. Simultaneous independent measurements show, for this zone, an isotropic neutron fluence (A=PHI (axial)/PHI (equat.)=0.97+-0.04), while the energy spectra still are anisotropic as reported previously. (author)

  13. Survey of Pulsed Neutron Source Methods for Multiplying Media

    International Nuclear Information System (INIS)

    In recent years there have existed two schools of thought on the most effective manner of obtaining measurements of the shutdown reactivity using pulsed neutron generators; these are (i) the conventional pulsed neutron source measurements with a repetitively pulsed source and (ii) methods based on a pseudo-random impulse response technique using cross-correlation between input and output. In both techniques the pertinent information obtained is identical, i.e. ideally both methods serve to determine the response function. The development of pulsed neutron source techniques on thermal systems for the purpose of reactivity measurements is traced from the early efforts of Sjöstrand to the recent (kβℓ) method. In the usual pulsed neutron source method, the Green's function of the subcritical assembly, the reactor response to a delta function source of neutrons, is the sought-after property. The exponential decay, exp(-αt), of the Green's function yields a spatially independent prompt neutron decay constant. The methods by which the reactivity is derived from the ct-measurement, e.g. the a-delayed critical measurement and the recent (kβℓ) method, are discussed. The fundamental modal treatments are examined in the light of the theory of the pulsed neutronsource techniques as developed for the (kβℓ) model. The implications of the pulsed neutron source theory to obtain precise decay constants and suitable data for the analysis of pulsed systems are considered. Experimental work is reviewed that shows the advantages as well as the limitations of the (kβℓ) technique. The use of pseudo-random impulse response methods with cross-correlation between the input and output for the determination of the Green's function of a multiplying assembly is also discussed. It is shown that the information obtained by the pseudo-random method is identical to that obtained from the repetitively pulsed method. Thus, this makes it possible to apply the methods developed for the

  14. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    Science.gov (United States)

    Archambault, Brian C.; Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R.; Taleyakhan, Rusi P.

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu-Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of which

  15. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    International Nuclear Information System (INIS)

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources (239Pu–Be and 252Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient 3He sensor replacement was performed utilizing MCNP-PoliMi simulations, the results of

  16. Measurement of ultracold neutrons produced by using Doppler-shifted Bragg reflection at a pulsed-neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Brun, T.O.; Carpenter, J.M.; Krohn, V.E.; Ringo, G.R.; Cronin, J.W.; Dombeck, T.W.; Lynn, J.W.; Werner, S.A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm/sup 3/.

  17. Cold moderators for pulsed neutron sources

    International Nuclear Information System (INIS)

    This paper reviews cold moderators in pulsed sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping in irradiated cold solid methane

  18. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  19. A high power accelerator driver system for spallation neutron sources

    International Nuclear Information System (INIS)

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision

  20. Multiplication of Fast Neutrons Source Flux by Using Deuterium-Helium-3 Plasma

    OpenAIRE

    Mohammad Mahdavi; Maryam Shahbahrami

    2013-01-01

    The production of fast neutrons source is examined by using a thermal neutron flux inside plasma. In order to reach a favorable yield of fast neutrons flux, the parameters such as energy loss rate, reaction probability, and neutron absorption length are calculated. The nuclear conversion efficiency, , of thermal neutron to fast neutrons is obtained to be by calculating the physical parameters for the plasma designed.

  1. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States); Zhong, Zhaopeng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has keff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine the reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.

  2. The comparison of four neutron sources for Prompt Gamma Neutron Activation Analysis (PGNAA) in vivo detections of boron

    International Nuclear Information System (INIS)

    A Prompt Gamma Ray Neutron Activation Analysis (PGNAA) system, incorporating an isotopic neutron source has been simulated using the MCNPX Monte Carlo code. In order to improve the signal to noise ratio different collimators and a filter were placed between the neutron source and the object. The effect of the positioning of the neutron beam and the detector relative to the object has been studied. In this work the optimisation procedure is demonstrated for boron. Monte Carlo calculations were carried out to compare the performance of the proposed PGNAA system using four different neutron sources (241Am/Be, 252Cf, 241Am/B, and DT neutron generator). Among the different systems the 252Cf neutron based PGNAA system has the best performance. (author)

  3. Neutronics studies for the ESS Source

    International Nuclear Information System (INIS)

    This paper presents the results of calculations on two alternative target designs for the ESS pulsed spallation source. A conventional target based on the current ISIS design is compared with a split target incorporating both wing and flux trap moderators. The results presented here focus on three issues, all of which are of general interest in the field of target-moderator systems. Firstly, the moderator performance is compared for the conventional and split target. For the purpose of the ESS study, the split target was found to offer no major advantage over a conventional target. Secondly, the variation of moderator performance with target diameter was examined. The results demonstrate that a flux trap moderator is significantly less sensitive to target diameter than wing moderators; thus a split target would be advantageous if a very large target diameter was found to be necessary. Thirdly, the performance of liquid para-hydrogen as a substitute for liquid methane (which would probably suffer unacceptable radiation damage on the ESS source) is evaluated. The results indicate that a suitable poisoned liquid H2 moderator could be an acceptable substitute for a similar poisoned liquid CH4 moderator. (author) 11 figs., 6 tabs., 6 refs

  4. Computation methods for neutron, heat and radiation damage properties of pulsed neutron sources

    International Nuclear Information System (INIS)

    The results of calculations of neutron yield, heat and nuclei-products distributions for heavy extended targets (natural W, Pb, and depleted U cylindrical targets; D=20 cm, L=60 cm) irradiated with proton beam of energy up to 100 GeV are presented as well as the radiation damage cross sections for thin layers of structure materials. The calculations were made with Monte Carlo method on the base of exclusive high energy hadron transport code SHIELD. The comparison with available experimental data is given. An expediency of elaboration of spallation neutron source based on high-energy accelerator is briefly discussed. (author) 5 figs., 17 refs

  5. Characterization of nuclear sources from neutron-neutron, proton-proton and neutron-proton correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R. E-mail: roberta.ghetti@kosufy.lu.se; Martensson, J.; Colonna, N.; Helgesson, J.; Jakobsson, B.; De Filippo, E.; Tagliente, G.; Lanzano, G.; Pantaleo, A.; Bellini, V.; Anzalone, A.; Carlen, L.; Cavallaro, S.; Celano, L.; D' Erasmo, G.; Di Santo, D.; Fiore, E.M.; Fokin, A.; Geraci, M.; Giustolisi, F.; Kuznetsov, A.; Mahboub, D.; Palazzolo, F.; Palomba, M.; Paticchio, V.; Riera, G.; Sperduto, M.L.; Sutera, C.; Urrata, M

    2000-07-03

    Two-neutron, two-proton and neutron-proton correlation functions have been measured simultaneously for the E/A=45 MeV {sup 58} Ni + {sup 27} Al reaction. Calculations from a statistical model have been compared to singles energy spectra as well as to total and gated correlation functions. This imposes very strong constraints on the model parameters. The use of directionally gated correlation functions helps to disentangle space and time information. Values of Gaussian radii, emission lifetimes, initial temperatures, source velocities and flow velocities are extracted. Correlation functions gated on total momentum of the nucleon pairs suggest that more energetic particles are emitted on a fast time scale ( < 100 fm / c ) and that the fraction of pre-equilibrium to equilibrium emission is larger for protons than for neutrons.

  6. Characterization of nuclear sources from neutron-neutron, proton-proton and neutron-proton correlation functions

    CERN Document Server

    Ghetti, R; Colonna, N; Helgesson, J; Jakobsson, B; De Filippo, E; Tagliente, G; Lanzanò, G; Pantaleo, A; Bellini, V; Anzalone, A; Carlén, L; Cavallaro, S; Celano, L; D'Erasmo, G; Di Santo, D; Fiore, E M; Fokin, A; Geraci, M; Giustolisi, F; Kuznetsov, A; Mahboub, D; Palazzolo, F; Palomba, M; Paticchio, V; Riera, G; Sperduto, M L; Sutera, C; Urrata, M

    2000-01-01

    Two-neutron, two-proton and neutron-proton correlation functions have been measured simultaneously for the E/A=45 MeV sup 5 sup 8 Ni + sup 2 sup 7 Al reaction. Calculations from a statistical model have been compared to singles energy spectra as well as to total and gated correlation functions. This imposes very strong constraints on the model parameters. The use of directionally gated correlation functions helps to disentangle space and time information. Values of Gaussian radii, emission lifetimes, initial temperatures, source velocities and flow velocities are extracted. Correlation functions gated on total momentum of the nucleon pairs suggest that more energetic particles are emitted on a fast time scale ( < 100 fm / c ) and that the fraction of pre-equilibrium to equilibrium emission is larger for protons than for neutrons.

  7. Intense Pulsed Neutron Source progress report for 1991

    International Nuclear Information System (INIS)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ''in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications

  8. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  9. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  10. Application of a triga research reactor as the neutron source for a production neutron radiography facility

    International Nuclear Information System (INIS)

    GA Technologies Inc. (GA) has developed a Stationary Neutron Radiography System (SNRS) using a 250-1000 KW TRIGA reactor as the neutron source. The partially below ground reactor will be equipped with four vertical beam tubes originating in the reactor graphite reflector and installed tangential to the core to provide a strong current of thermal neutrons with minimum gamma-ray contamination. The vertical beam tubes interface with rugged component positioning systems designed to handle intact F-111 aircraft wings, partial A-10 aircraft wings, pyrotechnics, and other honeycomb aircraft structures. The SNRS will be equipped with real-time, near-real-time, and film-radiographic imaging systems to provide a broad spectrum of capability for detection or corrosion of entrained moisture in large aircraft panels. (author)

  11. Neutron activation analysis of essential elements in Multani mitti clay using miniature neutron source reactor

    International Nuclear Information System (INIS)

    Multani mitti clay was studied for 19 essential and other elements. Four different radio-assay schemes were adopted for instrumental neutron activation analysis (INAA) using miniature neutron source reactor. The estimated weekly intakes of Cr and Fe are high for men, women, pregnant and lactating women and children while intake of Co is higher in adult categories and Mn by pregnant women. Comparison of MM clay with other type of clays shows that it is a good source of essential elements. - Highlights: ► Multani mitti clay has been studied for 19 essential elements for human adequacy and safety using INAA and AAS. ► Weekly intakes for different consumer categories have been calculated and compared with DRIs. ► Comparison of MM with other type of clays depict that MM clay is a good source of essential elements.

  12. 76 FR 76327 - Installation of Radiation Alarms for Rooms Housing Neutron Sources

    Science.gov (United States)

    2011-12-07

    ... COMMISSION 10 CFR Part 73 Installation of Radiation Alarms for Rooms Housing Neutron Sources AGENCY: Nuclear... radiation alarms in rooms housing neutron sources. DATES: Submit comments by February 21, 2012. Comments..., Radiation Safety for Research. Mr. Hamawy is concerned about the security of neutron sources. III....

  13. Optical diagnostics for Frankfurt Neutron Source

    OpenAIRE

    Reichau, Hermine; Meusel, Oliver; Ratzinger, Ulrich; Wagner, Christopher

    2011-01-01

    A non-in­ter­cep­tive op­ti­cal di­ag­nos­tic sys­tem on the basis of beam to­mog­ra­phy, was de­vel­oped for the planned Frank­furt Neu­tron Source (FRANZ). The pro­ton dri­ver linac of FRANZ will pro­vide en­er­gies up to 2.0 MeV. The mea­sure­ment de­vice will non-in­ter­cep­tively de­rive re­quired beam pa­ra­me­ters at the end of the LEBT at beam en­er­gies of 120 keV and a cur­rent of 200 mA. On a nar­row space of 351.2 mm length a ro­tat­able to­mog­ra­phy tank will per­form a multi-tu...

  14. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    CERN Document Server

    Lantz, M; Jokinen, A; Kolhinen, V S; Mattera, A; Penttilä, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S; Solders, A

    2013-01-01

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some co...

  15. Neutron source investigations in support of the cross section program at the Argonne Fast-Neutron Generator

    International Nuclear Information System (INIS)

    Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables

  16. Advances in passive neutron instruments for safeguards use

    International Nuclear Information System (INIS)

    Passive neutron and other nondestructive assay techniques have been used extensively by the International Atomic Energy Agency to verify plutonium metal, powder, mixed oxide, pellets, rods, assemblies, scrap, and liquids. Normally, the coincidence counting rate is used to measure the 240Pu-effective mass and gamma-ray spectrometry or mass spectrometry is used to verify the plutonium isotopic ratios. During the past few years, the passive neutron detectors have been installed in plants and operated in the unattended/continuous mode. These radiation data with time continuity have made it possible to use the totals counting rate to monitor the movement of nuclear material. Monte Carlo computer codes have been used to optimize the detector designs for specific applications. The inventory sample counter (INVS-III) has been designed to have a higher efficiency (43%) and a larger uniform counting volume than the original INVS. Data analyses techniques have been developed, including the ''known alpha'' and ''known multiplication'' methods that depend on the sample. For scrap and other impure or poorly characterized samples, we have developed multiplicity counting, initially implemented in the plutonium scrap multiplicity counter. For large waste containers such as 200-L drums, we have developed the add-a-source technique to give accurate corrections for the waste-matrix materials. This paper summarizes recent developments in the design and application of passive neutron assay systems

  17. Advances in passive neutron instruments for safeguards use

    Energy Technology Data Exchange (ETDEWEB)

    Menlove, H.O.; Krick, M.S.; Langner, D.G.; Miller, M.C.; Stewart, J.E.

    1994-02-01

    Passive neutron and other nondestructive assay techniques have been used extensively by the International Atomic Energy Agency to verify plutonium metal, powder, mixed oxide, pellets, rods, assemblies, scrap, and liquids. Normally, the coincidence counting rate is used to measure the {sup 240}Pu-effective mass and gamma-ray spectrometry or mass spectrometry is used to verify the plutonium isotopic ratios. During the past few years, the passive neutron detectors have been installed in plants and operated in the unattended/continuous mode. These radiation data with time continuity have made it possible to use the totals counting rate to monitor the movement of nuclear material. Monte Carlo computer codes have been used to optimize the detector designs for specific applications. The inventory sample counter (INVS-III) has been designed to have a higher efficiency (43%) and a larger uniform counting volume than the original INVS. Data analyses techniques have been developed, including the ``known alpha`` and ``known multiplication`` methods that depend on the sample. For scrap and other impure or poorly characterized samples, we have developed multiplicity counting, initially implemented in the plutonium scrap multiplicity counter. For large waste containers such as 200-L drums, we have developed the add-a-source technique to give accurate corrections for the waste-matrix materials. This paper summarizes recent developments in the design and application of passive neutron assay systems.

  18. The concept of a European spallation neutron source (ESS)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    The next generation neutron source in Europe, which was studied by a collaboration between twelve laboratories, has been conceived as a 5 MW short pulse spallation source because of the superior overall scientific potential attributed to such a facility relative to all other options considered. While the accelerator side can use essentially established technology with some extensions in performance, a novel target concept based on the use of Mercury as a flowing liquid metal target was developed, which is not only expected to lead the way further into the future, but which was also found to give the best neutronic performance of all known choices. Close permanent interaction with a large user community yielded important input for the concept in general and for the upcoming R and D and design phases in particular. (author)

  19. Backscattering at a pulsed neutron source, the MUSICAL instrument

    International Nuclear Information System (INIS)

    In the first part the principles of the neutron backscattering method are described and some simple considerations about the energy resolution and the intensity are presented. A prototype of a backscattering instrument, the first Juelich instrument, is explained in some detail and a representative measurement is shown which was performed on the backscattering instrument IN10 at the ILL in Grenoble. In the second part a backscattering instrument designed for a pulsed neutron source is proposed. It is shown that a rather simple modification, which consists in the replacement of the Doppler drive of the conventional backscattering instrument by a multi silicon monochromator crystal (MUSICAL) leads to a very effective instrument, benefitting from the peak flux of the pulsed source. ((orig.))

  20. Simulation and optimization for a 30-MeV electron accelerator driven neutron source

    International Nuclear Information System (INIS)

    A neutron source driven by electron accelerator is proposed in Shanghai Institute of Applied Physics (SINAP). The facility is planned for the study of nuclear data in Thorium-Uranium cycling system, and for material research. A detailed simulation of the neutron source is performed for the program to get the neutron generation maximum economically. Several parameters of the facility, which affect the neutron yield and the neutron escape from outer surface of the target, are analyzed respectively. Besides, the yielding neutron spectrum and the escaping neutron angular distribution are calculated and discussed. (authors)

  1. Conceptual design of Hefei advanced light source

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Min; WANG Lin; FENG Guang-Yao; ZHANG Shan-Cai; WU Cong-Feng; LIU Zu-Ping

    2009-01-01

    The conceptual of Hefei Advanced Light Source,which is an advanced VUV and Soft X-ray source,was developed at NSRL of USTC.According to the synchrotron radiation user requirements and the trends of SR source development.some accelerator-based schemes were considered and compared;furthermore storage ring With ultra low emittance Was adopted as the baseline scheme of HALS.To achieve ultra low emittance.some focusing structures were studied and optimized in the lattice design.Compromising of emittance,onmomentum and off-momentum dynamic aperture and ring scale,five bend acromat(FBA)Was employed.In the preliminary design of HALS,the emittance Was reduced to sub nm-rad,thus the radiation up to water window has full lateral coherence.The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders.The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  2. LIGHT SOURCE: Conceptual design of Hefei advanced light source

    Science.gov (United States)

    Li, Wei-Min; Wang, Lin; Feng, Guang-Yao; Zhang, Shan-Cai; Wu, Cong-Feng; Xu, Hong-Liang; Liu, Zu-Ping

    2009-06-01

    The conceptual of Hefei Advanced Light Source, which is an advanced VUV and Soft X-ray source, was developed at NSRL of USTC. According to the synchrotron radiation user requirements and the trends of SR source development, some accelerator-based schemes were considered and compared; furthermore storage ring with ultra low emittance was adopted as the baseline scheme of HALS. To achieve ultra low emittance, some focusing structures were studied and optimized in the lattice design. Compromising of emittance, on-momentum and off-momentum dynamic aperture and ring scale, five bend acromat (FBA) was employed. In the preliminary design of HALS, the emittance was reduced to sub nm · rad, thus the radiation up to water window has full lateral coherence. The brilliance of undulator radiation covering several eVs to keVs range is higher than that of HLS by several orders. The HALS should be one of the most advanced synchrotron radiation light sources in the world.

  3. Approaches to instrument design at pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.

    1997-04-14

    A number of tools are used in the design of scattering instruments for pulsed neutron sources. Initial design is based largely on simple analytical calculations. More complicated analytical calculations and Monte Carlo simulations come into play as the design is optimized to maximize the data rate and to improve the data quality. Examples are used to illustrate the relative roles of these different computational tools. Areas are also identified where appropriate computational tools are currently lacking.

  4. Detection of supernova neutrinos at spallation neutron sources

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2015-01-01

    After considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numeric...

  5. Calculation of neutron flux in the presence of a source

    International Nuclear Information System (INIS)

    Neutron sources are introduced into the reactors to initiate the chain reaction. For safety reasons, we have to know the distribution and evolution of the flux throughout the startup phase. The flux is calculated iteratively but convergence of the process can slow down arbitrarily as we approach criticality. A calculation method is presented, with a convergence speed which does not depend on the negative reactivity when it is small. (author). 7 refs

  6. Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    CERN Document Server

    Berry, C P L; Farr, W M; Haster, C-J; Mandel, I; Middleton, H; Singer, L P; Urban, A L; Vecchio, A; Vitale, S; Cannon, K; Graff, P B; Hanna, C; Mohapatra, S; Pankow, C; Price, L R; Sidery, T; Veitch, J

    2016-01-01

    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).

  7. Analysis of fuel management in the KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zhaopeng, E-mail: zzhong@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-05-15

    Research highlights: > Fuel management of KIPT ADS was analyzed. > Core arrangement was shuffled in stage wise. > New fuel assemblies was added into core periodically. > Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is {approx}360 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  8. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  9. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    Science.gov (United States)

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources. PMID:27502571

  10. Colliding Neutron Stars as the Source of Heavy Elements

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  11. Methods for lipid nanostructure investigation at neutron and synchrotron sources

    Science.gov (United States)

    Kiselev, M. A.

    2011-03-01

    A lipid membrane is a main component of biological membranes. Contemporary bionanotechnologies use phospholipids and ceramides as basic components of drugs and cosmetic preparations. Phospholipids-based nanoparticles are used as drug carriers. Effective development of bionanotechnologies in Russia calls for creation of physical methods to diagnose the particle nanostructure which would be promising for application in pharmacology. Radiation with wavelengths of 1-10 Å is an adequate instrument for detecting the nanostructure of lipid bi- and monolayers. The review deals with methods that apply neutron scattering and synchrotron radiation for studying nanostructures of lipid membranes, phospholipid nanoparticles, and phospholipid monolayers on a water surface by techniques of diffraction, small-angle scattering, and reflectometry. The importance of the mutually complementary application of neutron and synchrotron radiation for solving urgent problems of membrane biophysics, microbiology, dermapharmacology, and bionanotechnologies is demonstrated by particular examples of studies of phospholipid membranes and ceramide-based membranes. The efficiency of development and application of new methods for solving urgent problems of biophysics is shown. The review is written on the basis of results obtained over the period of 1999-2010 at the Joint Institute for Nuclear Research (JINR) Laboratory of Neutron Physics in collaboration with the Pharmaceutical Departments of universities of France (Paris-Sud, Chatenay Malabry) and Germany (Martin Luther University, Halle). The experiments were performed at various European and Russian neutron and synchrotron sources.

  12. Miniature neutron source reactor burnup calculations using IRBURN code system

    International Nuclear Information System (INIS)

    Highlights: ► Fuel consumption of Iranian MNSR during 15 years of operation has been investigated. ► Calculations have been performed by the IRBURN code. Precision and accuracy of the implemented model has been validated. ► Our study shows the consumption rate of MNSR is about 1%. - Abstract: Fuel consumption of Iranian miniature neutron source reactor (MNSR) during 15 years of operation has been investigated. Reactor core neutronic parameters such as flux and power distributions, control rod worth and effective multiplication factor at BOL and after 15 years of irradiation has been calculated. The Monte Carlo-based depletion code system IRBURN has been used for studying the reactor core neutronic parameters as well as the isotopic inventory of the fuel during burnup. The precision and accuracy of the implemented model has been verified via validation the results for neutronic parameters in the MNSR final safety analysis report. The results show that keff decreases from 1.0034 to 0.9897 and the total U-235 consumption in the core is about 13.669 g after 15 years of operational time. Finally, our studying shows the consumption rate of MNSR is about 1%.

  13. China Experimental Fast Reactor(CEFR)——Criterion of Criticality for Reactor With External Neutron Source

    Institute of Scientific and Technical Information of China (English)

    ZHAOYu-sen

    2003-01-01

    There is a neutron source with 109 s-1 neutrons in core of CEFR during start up test and operation of CEFR. For judging the criticality of reactor with external neutron source and near criticality, it is important that the neutron level changes in core with time must be understood after introducing positive reactivity to core with external neutron source.

  14. Measurement of the shape of the cold neutron source vertical hole by ultrasonic wave sensor

    International Nuclear Information System (INIS)

    The HANARO (High-flux Advanced Neutron Application Reactor) has operated since 1995. The Cold Neutron(CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure the exact size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersion ultrasonic technique is considered as the best method to measure the thickness and the diameter. The 4 axis manipulator of the 2 channel of a sensor module was fabricated. The transducer of 10 MHz results in 0.03 mm of resolution. The inside diameter and thickness for 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results showed that the thickness is in the range of 3.3-6.7 mm and inside diameter is in the range of φ 156-165. These data will be a good reference in the design of a cold neutron source facility

  15. Monitoring performance of the Advanced Light Source

    OpenAIRE

    Byrne, Warren E.; Lampo, Edward J.; Samuelson, Bruce C.

    2001-01-01

    Providing high quality light to users in a consistent and reliable manner is one of the main goals of the accelerator physics group at the Advanced Light source (ALS). To meet this goal considerable time is spent monitoring the performance of the machine. At the Group's weekly meeting the performance of the accelerator over the previous week's run is reviewed. This paper describes the parameters that are monitored to optimize the performance of the ALS.

  16. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  17. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20o with length of system 15 cm

  18. Neutron sources and its dosimetric characteristics; Fuentes de neutrones y sus caracteristicas dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Mercado S, G.A. [Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2005-07-01

    By means of Monte Carlo methods the spectra of the produced neutrons {sup 252} Cf, {sup 252} Cf/D{sub 2}O, {sup 241} Am Be, {sup 239} Pu Be, {sup 140} La Be, {sup 239} Pu{sup 18}O{sub 2} and {sup 226} Ra Be have been calculated. With the information of the spectrum it was calculated the average energy of the neutrons of each source. By means of the fluence coefficients to dose it was determined, for each one of the studied sources, the fluence factors to dose. The calculated doses were H, H{sup *}(10), H{sub p,sIab} (10, 0{sup 0}), E{sub AP} and E{sub ISO}. During the phase of the calculations the sources were modeled as punctual and their characteristics were determined to 100 cm in the hole. Also, for the case of the sources of {sup 239} Pu Be and {sup 241} Am Be, were carried out calculations modeling the sources with their respective characteristics and the dosimetric properties were determined in a space full with air. The results of this last phase of the calculations were compared with the experimental results obtained for both sources. (Author)

  19. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  20. Design Optimization and the path towards a 2 MW Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    M. Blaskiewicz; N. Catalan-Lasheras; D. Davino; A. Fedotov; Y. Lee; N. Malitsky; Y. Papaphilippou; D. Raparia; A. Shishlo; N. Tsoupas; J. Wei; W. Weng; S. Zhang; J. Billen; S. Kurennoy; S. Nath; J. Stovall; H. Takeda; L. Young; R. Keller; J. Staples; A. Aleksandrov; Y. Cho; P. Chu; S. Cousineau; V. Danilov; M. Doleans; J. Galambos; J. Holmes; N. Holtkamp; D. Jeon; S. Kim; R. Kustom; E. Tanke; W. Wan; R. Sundelin

    2001-08-01

    The Spallation Neutron Source (SNS) is designed to ultimately reach an average proton beam power of 2 MW for pulsed neutron production. The SNS physics groups analyze the machine performance within the hardware constraints, optimize the accelerator design, and establish the best path towards a 2 MW and higher spallation neutron source.

  1. Modelling of an imaging beamline at the ISIS pulsed neutron source

    OpenAIRE

    Burca, G.; Kockelmann, W.; James, J A; Fitzpatrick, M. E.

    2013-01-01

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and charac...

  2. Activity report of the fusion neutronics source from April 1, 2001 to March 31, 2004

    International Nuclear Information System (INIS)

    The Fusion Neutronics Source (FNS) is an accelerator based 14 MeV neutron generator established in 1981. FNS is a powerful tool for neutronics research aiming the fusion reactor development such as neutron cross section measurements, integral experiments and blanket neutronics experiments. This report reviews the FNS activities in the period from April 1, 2001 to March 31, 2004, including collaboration with universities and other research institutes. The 35 papers are indexed individually. (J.P.N.)

  3. Installation and performance tests of KUR cold neutron source, 2

    International Nuclear Information System (INIS)

    Our cold neutron source is operated by a closed-indirect cooling loop. The hydrogen cryogenic system of the KUR-CNS has been shown a self-regulating characteristic to the thermal disturbances smaller than 30 % of the maximum heat load, which is measured 300 W at 25 K. This power is used to release a nuclear heating. This self-regulating characteristic was confirmed from the amplitude vs frequency curve, so called Bode's diagram, which showed the first order time lag. Due to this property, the liquid level in the moderator cell has been kept almost constant under 5 MW power of the reactor. The measurements of neutron counting rates across the central level of the moderator cell showed that the demanded liquid content was stored in the cell. (author)

  4. Modeling of water radiolysis at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, L.L.; Kanner, G.S.; Lillard, R.S.; Butt, D.P.; Brun, T.O.; Sommer, W.F.

    1998-12-01

    In spallation neutron sources neutrons are produced when a beam of high-energy particles (e.g., 1 GeV protons) collides with a (water-cooled) heavy metal target such as tungsten. The resulting spallation reactions produce a complex radiation environment (which differs from typical conditions at fission and fusion reactors) leading to the radiolysis of water molecules. Most water radiolysis products are short-lived but extremely reactive. When formed in the vicinity of the target surface they can react with metal atoms, thereby contributing to target corrosion. The authors will describe the results of calculations and experiments performed at Los Alamos to determine the impact on target corrosion of water radiolysis in the spallation radiation environment. The computational methodology relies on the use of the Los Alamos radiation transport code, LAHET, to determine the radiation environment, and the AEA code, FACSIMILE, to model reaction-diffusion processes.

  5. A SEARCH FOR POINT SOURCES OF EeV NEUTRONS

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; Andringa, S. [LIP and Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahlers, M. [University of Wisconsin, Madison, WI (United States); Ahn, E. J. [Fermilab, Batavia, IL (United States); Albuquerque, I. F. M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Allison, P. [Ohio State University, Columbus, OH (United States); Almela, A. [Facultad Regional Buenos Aires, Universidad Tecnologica Nacional, Buenos Aires (Argentina); Alvarez Castillo, J. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Alves Batista, R. [IFGW, Universidade Estadual de Campinas, Campinas, SP (Brazil); Ambrosio, M.; Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Aminaei, A. [IMAPP, Radboud University Nijmegen (Netherlands); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Antici' c, T. [Rudjer Boskovi' c Institute, 10000 Zagreb (Croatia); Arganda, E. [IFLP, Universidad Nacional de La Plata and CONICET, La Plata (Argentina); Collaboration: Pierre Auger Collaboration; and others

    2012-12-01

    A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from -90 Degree-Sign to +15 Degree-Sign in declination using four different energy ranges above 1 EeV (10{sup 18} eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.

  6. On scaling and optimization of high-intensity, low-beam-loss RF linacs for neutron source drivers

    International Nuclear Information System (INIS)

    RF linacs providing cw proton beams of 30--250 mA at 800--1600 MeV, and cw deuteron beams of 100--250 mA at 35--40 MeV, are needed as drivers for factory neutron sources applied to radioactive waste transmutation, advanced energy production, materials testing facilities, and spallation neutron sources. The maintenance goals require very low beam loss along the linac. Optimization of such systems is complex; status of beam dynamics aspects presently being investigated is outlined

  7. Status of the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Galayda, J.

    1996-12-31

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m{sup 2} experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed.

  8. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    International Nuclear Information System (INIS)

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  9. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aymond, F. [Univ. of Texas at Austin, TX (United States); Bridgewater, Jon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deppert, O. [Technische Universitat Darmstadt (Germany); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Falk, Katerina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Manuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, Nevzat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamilton, Christopher Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hegelich, Bjorn Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jung, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kleinschmidt, Annika [Technische Universitat Darmstadt (Germany); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pomerantz, Ishay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory; Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCary, E. [Univ. of Texas at Austin, TX (United States)

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  10. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  11. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2013-01-01

    Neutron total cross sections of $^{197}$Au and $^\\text{nat}$Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent time structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and background conditions than found at other neutron sources.

  12. Neutron beam preparation with Am-Be source for analysis of biological samples with PGNAA method

    International Nuclear Information System (INIS)

    Material analysis with prompt gamma neutron activation analysis (PGNAA) requires a proper geometrical arrangement for equipments in laboratory. Application of PGNAA in analysis of biological samples, due to small size of sample, needs attention to the dimension of neutron beam. In our work, neutron source has been made of 241Am-Be type. Activity of 241Am was 20 Ci which lead to neutron source strength of 4.4 x 107 neutrons per second. Water has been considered as the basic shielding material for the neutron source. The effect of various concentration of boric acid in the reduction of intensity of fast and thermal components of the neutron beam and gamma ray has been investigated. Gamma ray is produced by (α, n) reaction in Am-Be source (4.483 MeV), neutron capture by hydrogen (2.224 MeV), and neutron capture by boron (0.483 MeV). Various types of neutron and gamma ray dosimeters have been employed including BF3 and NE-213 detectors to detect fast and thermal neutrons. BGO scintillation detector has been used for gamma ray spectroscopy. It is shown that the gamma and neutron radiation dose due to direct beam is of the same magnitude as the dose due to radiation scattered in the laboratory ambient. It is concluded that 14 kg boric acid dissolved in 1,000 kg water is the optimum solution to surround the neutron source. The experimental results have been compared with Monte Carlo simulation. (author)

  13. Simulation of neutron generation in short pulsed X-band linac neutron source

    International Nuclear Information System (INIS)

    It is important to improve the accuracy of nuclear cross section for waste reprocessing and design of new reactors, but facilities where nuclear fuel materials can be measured are limited. So, in Tokyo University, there is a plan of development of electron linac neutron source for analyzing nuclear data. The research reactor “Yayoi” was decommissioned in Tokyo University and by introducing this linac in the core of the reactor, measurement of nuclear fuel materials can be expected. 30 MeV X-band linac is used so this system will be compact and this enables us to introduce the system into the core of “Yayoi.” Pulse width is short in order to measure high energy neutron with TOF method. In this research, generation of electrons, acceleration and interaction with several kinds of target and moderator are simulated. (author)

  14. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 1013 to 1014 neutrons/cm2-sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  15. Beam Stability at the Advanced Photon Source

    CERN Document Server

    Decker, Glenn

    2005-01-01

    The Advanced Photon Source has been in operation since 1996. Since that time, extensive incremental improvements to orbit stabilization systems have been made. This includes the addition of 80 channels of narrowband rf beam position monitors (bpm's), 40 channels of bending magnet photon bpm's, and most recently the inclusion of 36 insertion device photon bpm's into the orbit correction response matrix. In addition, considerable improvements have been made in the area of power supply regulation, both for the main multipole magnets and the steering corrector magnets. The present status of overall performance will be discussed, including long term pointing stability, reproducibility, and AC beam motion.

  16. Materials Selection for the HFIR Cold Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  17. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  18. Neutron sources for in-situ planetary science applications

    Energy Technology Data Exchange (ETDEWEB)

    Skidmore, M.S. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)], E-mail: mss16@star.le.ac.uk; Ambrosi, R.M.; O' Brien, R.C. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)

    2009-09-21

    There are a number of future European Space Agency (ESA) and NASA planetary science missions that are in the planning or initial study phases, where the scientific objectives include determining the surface composition, measuring planetary surface heat flow and constraining planetary chronology. University of Leicester is developing instrumentation for geophysical applications that include {gamma}-ray spectroscopy, {gamma}-ray densitometry and radiometric dating. This paper describes the modelling of a geophysical package, with the Monte Carlo code MCNPX, in order to determine the impact that a neutron source would have on in-situ composition measurements, radiometric dating and, in particular, trace element detection. The suitability of o 2.54x2.54 cm LaBr{sub 3}(Ce) detectors in the geophysical package for in-situ missions was examined. {sup 252}Cf, Am-Be and Pu-Be neutron sources were compared in a trade-off study to determine mission suitability, potential for thermal and electric power production, mass and shielding requirements. This study is linked to a parallel examination of the suitability of radioisotope thermal generators for in-situ planetary science applications. The aim of the modelling was to optimise the source type and detector geometry in order to measure the elemental peaks of interest with a precision of 10% or better based on the Poisson statistics of the detected counts above background.

  19. HEIMDAL: A thermal neutron powder diffractometer with high and flexible resolution combined with SANS and neutron imaging - Designed for materials science studies at the European Spallation Source

    Science.gov (United States)

    Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens

    2016-08-01

    HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.

  20. Optimization of a cold neutron source at the FRG-1

    International Nuclear Information System (INIS)

    This paper describes the optimization of a cold neutron source (CNS) for maximizing the subthermal flux in the energy range 2.27-5.12 MeV at the beam tube of FRG-1 reactor. In addition, the gain by using different reflectors (H2O, C, D2O) around the CNS is discussed. Advantage factors (resulting from the use of CNS) are calculated for various configurations by means of the transport code NEUTRA. The cross-sections for NEUTRA are prepared by the spectral code GGC-4. (orig.)

  1. Beginnings of remote handling at the RAL Spallation Neutron Source

    International Nuclear Information System (INIS)

    Expenditure of funds and resources for remote maintenance systems traditionally are delayed until late in an accelerator's development. However, simple remote-surveillance equipment can be included early in facility planning to set the stage for future remote-handling needs and to identify appropriate personnel. Some basic equipment developed in the UK at the Spallation Neutron Source (SNS) that serves this function and that has been used to monitor beam loss during commissioning is described. A photograph of this equipment, positioned over the extractor septum magnet, is shown. This method can serve as a pattern approach to the problem of initiating remote-handling activities in other facilities

  2. Flat-spectrum radio sources - Cosmic conspiracy or relativistic neutrons?

    Science.gov (United States)

    Giovanoni, Peter M.; Kazanas, Demosthenes

    1990-01-01

    The intensity spectrum of the core of radio-loud AGN varies smoothly from 10 exp 8.5 to 10 to the 16th Hz, and is flat between 10 to the 9th and 10 to the 10th Hz, implying that a single emission mechanism is responsible. It is proposed here that energy is transported from the central source by relativistic neutrons which travel freely over a large volume and decay into relativistic protons. The protons produce secondary electrons which generate the observed radiation. The photon spectra thus produced are largely model-independent and flat.

  3. A compact neutron generator using a field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waldmann, Ole [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kapadia, Rehan [Univ. of California, Berkeley, CA (United States); Takei, Kuniharu [Univ. of California, Berkeley, CA (United States); Javey, Ali [Univ. of California, Berkeley, CA (United States); Schenkel, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  4. A compact neutron generator using a field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Waldmann, Ole; Schenkel, Thomas [E.O. Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kapadia, Rehan; Takei, Kuniharu; Javey, Ali [Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720 (United States)

    2012-02-15

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10{sup 6} tips/cm{sup 2} and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  5. Effect of Fusion Neutron Source Numerical Models on Neutron Wall Loading in a D-D Tokamak Device

    Institute of Scientific and Technical Information of China (English)

    陈义学; 吴宜灿

    2003-01-01

    Effect of various spatial and energy distributions of fusion neutron source on the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated by means of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based on the accurate representation of the spatial distribution and energy spectrum of fusion neutrons to solve the complicated problem of tokamak fusion neutron source modelling. The results show that those simplified source models will introduce significant uncertainties. For accurate estimation of the key nuclear responses of the tokamak design and analyses, the use of the realistic source is recommended. In addition, the accumulation of tritium produced during D-D plasma operation should be carefully considered.

  6. Advanced Light Source: Activity report 1993

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) produces the world's brightest light in the ultraviolet and soft x-ray regions of the spectrum. The first low-energy third-generation synchrotron source in the world, the ALS provides unprecedented opportunities for research in science and technology not possible anywhere else. This year marked the beginning of operations and the start of the user research program at the ALS, which has already produced numerous high quality results. A national user facility located at Lawrence Berkeley Laboratory of the University of California, the ALS is available to researchers from academia, industry, and government laboratories. This report contains the following: (1) director's message; (2) operations overview; (3) user program; (4) users' executive committee; (5) industrial outreach; (6) accelerator operations; (7) beamline control system; (8) insertion devices; (9) experimental systems; (10) beamline engineering; (11) first results from user beamlines; (12) beamlines for 1994--1995; (13) special events; (14) publications; (15) advisory panels; and (16) ALS staff

  7. Environmental research at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Because of the importance of probing molecular-scale chemical and physical structure of environmental samples in their natural and often hydrated state, synchrotron radiation has been a powerful tool for environmental scientists for decades. Thus, the crucial role that a highly coherent and high-brightness hard X-ray source such as the Advance Photon Source (APS) can play in addressing many of the outstanding questions in molecular environmental science (MES) was recognized even before 'first light' at the facility. No single synchrotron-based technique or experimental approach can adequately address the tremendous temporal and spatial heterogeneities of the chemistry, physics, and biology of natural environmental samples. Thus, it is common at the APS that multiple X-ray techniques and experimental systems are employed to investigate environmental samples, often chosen for their ability to focus on solute species, plants, microbes, organics, interfacial species, or solids.

  8. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  9. Generalization of the analytical solution of neutron point kinetics equations with time-dependent external source

    Science.gov (United States)

    Seidi, M.; Behnia, S.; Khodabakhsh, R.

    2014-09-01

    Point reactor kinetics equations with one group of delayed neutrons in the presence of the time-dependent external neutron source are solved analytically during the start-up of a nuclear reactor. Our model incorporates the random nature of the source and linear reactivity variation. We establish a general relationship between the expectation values of source intensity and the expectation values of neutron density of the sub-critical reactor by ignoring the term of the second derivative for neutron density in neutron point kinetics equations. The results of the analytical solution are in good agreement with the results obtained with numerical solution.

  10. Performance of a reflectometer at continuous wave and pulsed neutron sources

    International Nuclear Information System (INIS)

    The Monte-Carlo simulations presented here involve simulations of reflectivity measurements of one sample using a reflectometer of traditional geometry at different neutron sources. The same reflectometer was used in all simulations. Only the characteristics of the neutron source, and the technique used to measure neutron wavelength were changed. In the case of the CW simulation, a monochromating crystal was used to select a nearly monochromatic beam (MB) from the neutron spectrum. In the simulations of the pulse sources, the time needed to traverse a fixed distance was measured, from which neutron wavelength is deduced

  11. Measurement of the neutron spectrum of a Pu-C source with a liquid scintillator

    Institute of Scientific and Technical Information of China (English)

    WANG Song-Lin; HUANG Han-Xiong; RUAN Xi-Chao; LI Xia; BAO Jie; NIE Yang-So; ZHONG Qi-Ping; ZHOU Zu-Ying; KONG Xiang-Zhong

    2009-01-01

    The neutron response function for a BC501A liquid scintillator (LS) has been measured using a series of monoenergetic neutrons produced by the p-T reaction. The proton energies were chosen such as to produce neutrons in the energy range of 1 to 20 MeV. The principles of the technique of unfolding a neutron energy spectrum by using the measured neutron response function and the measured Pulse Height (PH) spectrum is briefly described. The PH spectrum of neutrons from the Pu-C source, which will be used for the calibration of the reactor antineutrino detectors for the Daya Bay neutrino experiment, was measured and analyzed to get the neutron energy spectrum. Simultaneously the neutron energy spectrum of an Am-Be source was measured and compared with other measurements as a check of the result for the Pu-C source. Finally, an error analysis and a discussion of the results are given.

  12. Development opportunities for small and medium scale accelerator driven neutron sources. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Neutron applications in the life sciences will be a rapidly growing research area in the near future, as neutrons can provide unique information on the reaction dynamics of complex biomolecular systems, complementing other analytical techniques such as electron microscopy, X rays and nuclear magnetic resonance. Small and medium power spallation neutron sources will become more important, as many small neutron producing research reactors are being phased out. Recent developments in accelerator technology have made it possible to produce useful neutron fluxes at accelerator facilities suitable for universities and industrial laboratories. In addition to basic research these alternative neutron sources will be important for educational and training purposes. In a wider perspective this technology should make it possible to introduce neutron research and applications to industrial and national research centres in IAEA Member States that are unable to afford a high energy spallation neutron source and have no access to a research reactor

  13. A 4p BaF2 detector for (n,g) cross section measurements at a spallation neutron source

    CERN Document Server

    Heil, M; Fowler, M M; Haight, R C; Käppeler, F; Rundberg, R S; Seabury, E H; Ullmann, J L; Wilhelmy, J B; Wisshak, K

    2013-01-01

    The quest for improved neutron capture cross sections for advanced reactor concepts, transmutation of radioactive wastes as well as for astrophysical scenarios of neutron capture nucleosynthesis has motivated new experimental efforts based on modern techniques. Recent measurements in the keV region have shown that a 4p BaF2 detector represents an accurate and versatile instrument for such studies. The present work deals with the potential of such a 4p BaF2 detector in combination with spallation neutron sources, which offer large neutron fluxes over a wide energy range. Detailed Monte Carlo simulations with the GEANT package have been performed to investigate the critical backgrounds at a spallation facility, to optimize the detector design, and to discuss alternative solutions.

  14. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  15. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    Science.gov (United States)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  16. Recovery of spent high intensity neutron sources in Atalante Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bros, P.; Boyer Deslys, V.; Millet, A.; Solinhac, I.; Donnet, L.; Maillard, C.; Paillard, S.; Ranchoux, M.

    2005-01-01

    The Atalante facility is required by law to recover both neutron and gamma sources with activity levels exceeding 300 mCi. Most of the neutron sources consist of mixtures of alpha-emitters (238Pu, 239Pu, 241Am or 244Cm) and beryllium. Several processes now under consideration are based on routine chemical separation techniques (selective precipitation, extraction chromatography, ion exchange). The treatment produces an actinide oxide (which is used later for R and D studies) and solid beryllium nitrate, which is considered as a waste and transferred to a surface interim storage site if the overall activity of the package after 300 years is less than 50 MBq (ANDRA specifications). The Material Analysis and Metrology Laboratory of Atalante validate the residual alpha activity in the waste. The techniques used include alpha spectrometry and L-line X-ray fluorescence for alpha emitters, and plasma torch measurements (ICP-AES and ICP-MS) for beryllium analysis. Specific equipment for transport (B type cask), storage and treatment (hot shielded cells) are used for this activity. (Author)

  17. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  18. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, B. [ed.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  19. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  20. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  1. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  2. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  3. The Advanced Photon Source list of parameters

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system's parameters include parameters for both an undulator and a wiggler

  4. Proposal for a New Integrated Circuit and Electronics Neutron Experiment Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Phillip D [ORNL

    2009-01-01

    Government and customer specifications increasingly require assessments of the single event effects probability in electronics from atmospheric neutrons. The accelerator that best simulates this neutron spectrum is the WNR facility (Los Alamos), but it is underfunded and oversubscribed for present and future needs. A new beam-line is proposed at the Oak Ridge National Laboratory, as part of the Spallation Neutron Source (SNS).

  5. Assessment of fast and thermal neutron ambient dose equivalents around the KFUPM neutron source storage area using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fazal-ur-Rehman [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)]. E-mail: fazalr@kfupm.edu.sa; Al-Jarallah, M.I. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Abu-Jarad, F. [Radiation Protection Unit, Environmental Protection Department, Saudi Aramco, P. O. Box 13027, Dhahran 31311 (Saudi Arabia); Qureshi, M.A. [Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2005-11-15

    A set of five {sup 241}Am-Be neutron sources are utilized in research and teaching at King Fahd University of Petroleum and Minerals (KFUPM). Three of these sources have an activity of 16Ci each and the other two are of 5Ci each. A well-shielded storage area was designed for these sources. The aim of the study is to check the effectiveness of shielding of the KFUPM neutron source storage area. Poly allyl diglycol carbonate (PADC) Nuclear track detectors (NTDs) based fast and thermal neutron area passive dosimeters have been utilized side by side for 33 days to assess accumulated low ambient dose equivalents of fast and thermal neutrons at 30 different locations around the source storage area and adjacent rooms. Fast neutron measurements have been carried out using bare NTDs, which register fast neutrons through recoils of protons, in the detector material. NTDs were mounted with lithium tetra borate (Li{sub 2}B{sub 4}O{sub 7}) converters on their surfaces for thermal neutron detection via B10(n,{alpha})Li6 and Li6(n,{alpha})H3 nuclear reactions. The calibration factors of NTD both for fast and thermal neutron area passive dosimeters were determined using thermoluminescent dosimeters (TLD) with and without a polyethylene moderator. The calibration factors for fast and thermal neutron area passive dosimeters were found to be 1.33 proton tracks cm{sup -2}{mu}Sv{sup -1} and 31.5 alpha tracks cm{sup -2}{mu}Sv{sup -1}, respectively. The results show variations of accumulated dose with the locations around the storage area. The fast neutron dose equivalents rates varied from as low as 182nSvh{sup -1} up to 10.4{mu}Svh{sup -1} whereas those for thermal neutron ranged from as low as 7nSvh{sup -1} up to 9.3{mu}Svh{sup -1}. The study indicates that the area passive neutron dosimeter was able to detect dose rates as low as 7 and 182nSvh{sup -1} from accumulated dose for thermal and fast neutrons, respectively, which were not possible to detect with the available active neutron

  6. rf improvements for Spallation Neutron Source H- ion sourcea)

    Science.gov (United States)

    Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  7. Spallation Neutron Source Accident Terms for Environmental Impact Statement Input

    International Nuclear Information System (INIS)

    This report is about accidents with the potential to release radioactive materials into the environment surrounding the Spallation Neutron Source (SNS). As shown in Chap. 2, the inventories of radioactivity at the SNS are dominated by the target facility. Source terms for a wide range of target facility accidents, from anticipated events to worst-case beyond-design-basis events, are provided in Chaps. 3 and 4. The most important criterion applied to these accident source terms is that they should not underestimate potential release. Therefore, conservative methodology was employed for the release estimates. Although the source terms are very conservative, excessive conservatism has been avoided by basing the releases on physical principles. Since it is envisioned that the SNS facility may eventually (after about 10 years) be expanded and modified to support a 4-MW proton beam operational capability, the source terms estimated in this report are applicable to a 4-MW operating proton beam power unless otherwise specified. This is bounding with regard to the 1-MW facility that will be built and operated initially. See further discussion below in Sect. 1.2

  8. Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era

    CERN Document Server

    Berry, Christopher P L; Middleton, Hannah; Singer, Leo P; Urban, Alex L; Vecchio, Alberto; Vitale, Salvatore; Cannon, Kipp; Farr, Ben; Farr, Will M; Graff, Philip B; Hanna, Chad; Haster, Carl-Johan; Mohapatra, Satya; Pankow, Chris; Price, Larry R; Sidery, Trevor; Veitch, John

    2014-01-01

    Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky-localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider parameter-estimation accuracy in the presence of realistic, non-Gaussian noise. We find that the character of the noise makes negligible difference to the parameter-estimation performance. The source luminosity distance ...

  9. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  10. Electron cloud instabilities in the Proton Storage Ring and Spallation Neutron Source

    OpenAIRE

    Blaskiewicz, M.; Furman, M.A.; Pivi, M.; Macek, R.J.

    2002-01-01

    Electron cloud instabilities in the Los Alamos Proton Storage Ring (PSR) and those foreseen for the Oak Ridge Spallation Neutron Source (SNS) are examined theoretically, numerically, and experimentally.

  11. The Advanced Photon Source Metrology Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) Metrology Laboratory is now operational in its permanent location in a cleanroom environment on the Experiment Hall floor of the APS site. The Metrology Laboratory will provide characterization of the figure and finish of x-ray optical surfaces for the user community using visible light instrumentation. Three noncontact instruments are now available for measuring surface features with lateral resolution from less than a micron to lengths of 2 meters and with a vertical resolution as small as an Angstrom. This paper gives a brief description of the three instruments used to cover this spatial frequency range and other associated issues, such as the environment and cleanliness of the laboratory. copyright 1996 American Institute of Physics

  12. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop AL 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce RF impedance and to provide pumping access for the high local gas load

  13. Statistics of dose received by occupational personnel from neutron sources - 10 year study

    International Nuclear Information System (INIS)

    Personnel Monitoring Section, BARC conducts countrywide fast neutron personnel monitoring using CR-39 solid state nuclear track detector. About 1350 personnel working in a wide range of situations are being monitored presently for fast neutrons. Nearly 50% of the personnel monitored are working with isotopic neutron sources e.g. 241Am-Be (up to 740 GBq source strength) in industry and the remaining are connected with nuclear fuel cycle. This paper describes our experience with this personnel neutron monitor and presents the analysis of the neutron equivalent doses received by personnel working in industry during last 10 years and its contribution as compared to total equivalent dose. (author)

  14. Detection of Explosives by Using a Neutron Source Based on a Proton Linac

    CERN Document Server

    Dolya, S N

    2016-01-01

    The paper considers an opportunity of detecting explosives by using radiation capture of a neutron with nitrogen nucleus. Proton LINAC is offered as the neutron source with the following parameters: proton energy five Mega electron Volts , beam pulse current one and seven-tenths milliampere, duration of the current pulse two hundreds microseconds, repetition rate fifty Hertz. The reaction in which neutrons are formed is lithium (p,n) beryllium. It is shown that this neutron source will have the intensity of ten to the twelfth degree neutron per second that will allow one to detect explosives of the size of a tennis ball.

  15. Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    OpenAIRE

    Lauss, Bernhard

    2012-01-01

    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We ...

  16. Source driven breeding thermal power reactors, Pt. 2. Using lithium-free neutron sources

    International Nuclear Information System (INIS)

    The feasibility of fusion devices operating in the semi-catalyzed deuterium (SCD) mode and of high energy proton accelerators to provide the neutron sources for driving subcritical breeding light water power reactors is assessed. The assessment is done by studying the energy balance of the resulting source driven light water reactors (SDLWR) and comparing it with the energy balance of the reference light water hybrid reactors (LWHR) driven by a D-T neutron source (DT-LWHR). The conditions the non-DT neutron sources should satisfy in order to make the SDLWR viable power reactors are identified. It is found that in order for a SCD-LWHR to have the same overall efficiency as a DT-LWHR, the fusion energy gain of the SCD device should be at least one half that of the DT device. The efficiency of ADLWRs using uranium targets is comparable with that of DT-LWHRs having a fusion energy gain of unity. Advantages and disadvantages of the DT-LWHR, SCD-LWHR and ADLWR are discussed

  17. Improvements to the internal and external antenna H(-) ion sources at the Spallation Neutron Source.

    Science.gov (United States)

    Welton, R F; Dudnikov, V G; Han, B X; Murray, S N; Pennisi, T R; Pillar, C; Santana, M; Stockli, M P; Turvey, M W

    2014-02-01

    The Spallation Neutron Source (SNS), a large scale neutron production facility, routinely operates with 30-40 mA peak current in the linac. Recent measurements have shown that our RF-driven internal antenna, Cs-enhanced, multi-cusp ion sources injects ∼55 mA of H(-) beam current (∼1 ms, 60 Hz) at 65-kV into a Radio Frequency Quadrupole (RFQ) accelerator through a closely coupled electrostatic Low-Energy Beam Transport system. Over the last several years a decrease in RFQ transmission and issues with internal antennas has stimulated source development at the SNS both for the internal and external antenna ion sources. This report discusses progress in improving internal antenna reliability, H(-) yield improvements which resulted from modifications to the outlet aperture assembly (applicable to both internal and external antenna sources) and studies made of the long standing problem of beam persistence with the external antenna source. The current status of the external antenna ion source will also be presented.

  18. Physics data base for the beam plasma neutron source (BPNS)

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Molvik, A.W.

    1990-10-12

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 {times} 10{sup 18}/m{sup 2}{center dot}s) of 14-MeV neutrons is produced in a fully ionized high-density (n{sub e} {approx equal} 3 {times} 10{sup 21} m{sup {minus}3}) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system has not been demonstrated. 28 refs., 8 figs., 2 tabs.

  19. Ceramics research in a high-energy neutron source

    International Nuclear Information System (INIS)

    The studies on the irradiation effect to ceramics have added much to the basic understanding of their behavior, for example, the amorphous state of ceramics related to radiation-induced metamictization, the radiation-induced strengthening and toughening due to ultrafine defect aggregates, the in situ degradation of electrical resistivity, the role of radiation-induced defects on thermal conductivity and so on. Most of the irradiation testing on ceramics in the fields of structural and thermal properties have been carried out by using fast fission neutrons of about 1 MeV, but if this energy could be significantly changed, the size and nature of damage cascade and the quantity of transmutation gases produced would change. The significance of neutron source parameters, the special test requirement for ceramics such as the use of miniature specimens, the control of test environment, the transient reduction of electrical resistivity and so on are discussed. A special case of ceramic studies is that on new oxide superconductors. These materials can be made into amorphous state at about 1 dpa using 1 MeV electrons, and are considered to be fairly damage-sensitive. (K.I.)

  20. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  1. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    Science.gov (United States)

    Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

    2014-12-01

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

  2. Nanoscience at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, D. (OTD-PSC)

    2010-01-01

    The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS), located at Argonne National Laboratory, is a 3rd-generation synchrotron radiation source of hard X-rays. Also sited at Argonne is the Center for Nanoscale Materials (CNM), one of the five Nanoscience Research Centers that have been created by the DOE's Office of Basic Energy Sciences. The APS and CNM are closely connected, both physically and intellectually, as the CNM building is attached to the APS experiment hall, and the APS and CNM jointly operate the nanoprobe beamline at APS Sector 26 that was constructed as part of the CNM project. Both the APS and CNM are user facilities and their synergy provides the research community with a unique suite of tools for the fabrication and characterization of nanomaterials. This talk will summarize the capabilities of the nanoprobe beamline and some of the recent nanoscience results from data collected at the APS.

  3. Simulation of differential response functions of the neutron technological control system of a solvent vessel from a local source of neutrons

    International Nuclear Information System (INIS)

    In order to forecast the parameters of the neutron process monitoring system, a computer model of the dissolver with the neutron detection blocks has been developed. The results of the computer model verification based on the measurement results of differential response functions of neutron detectors using the fast-neutron source on the RPSK-type dissolver have been presented

  4. Room-temperature LINAC structures for the spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Billen, J. H. (James H.); Young, L. M. (Lloyd M.); Kurennoy, S. (Sergey); Crandall, K. R. (Kenneth R.)

    2001-04-01

    Los Alamos National Laboratory is building room-temperature rf accelerating structures for the Spallation Neutron Source (SNS). These structures, for H{sup -} ions, consist of six 402.5-MHz, 2-MW drift-tube linac (DTL) tanks from 2.5 to 87 MeV followed by four 805-MHz, 4-MW coupled-cavity linac (CCL) modules to 186 MeV. The DTL uses permanent magnet quadrupoles inside the drift tubes arranged in a 6{beta}{lambda} FFODDO lattice with every third drift tube available for diagnostics and steering. The CCL uses a 13{beta}{lambda} FODO electromagnetic quadrupole lattice. Diagnostics and magnets occupy the 2.5{beta}{lambda} spaces between 8-cavity segments. This paper discusses design of the rf cavities and low-power modeling work.

  5. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  6. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  7. Advanced neutron diagnostics for the Nova laser facility

    International Nuclear Information System (INIS)

    Implosion experiments performed on Nova are expected to produce an increased yield of thermonuclear neutrons compared with that of earlier ICF experiments. This yield will make feasible a number of neutron-based measurements heretofore not possible. Laser fusion neutron diagnostics can be divided into two categories: invasive and noninvasive. Invasive techniques require the placement of a tracer material in an interesting region of the target to be activated by the thermonuclear neutrons. Noninvasive techniques involve the energy, spatial, or temporal analysis of the neutrons emitted from the target. After examining a host of diagnostic options from both categories for Nova, the authors decided to pursue both techniques. Ideas for some diagnostic systems are described

  8. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  9. The investigation of Am-Be neutron source shield effect used on landmine detection

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei Ochbelagh, D. [Department of Physics, Faculty of Sciences, University of Mohagheg Ardebily, P.O. Box 179, Ardebil (Iran, Islamic Republic of)]. E-mail: ddrezaey@yahoo.com; Miri Hakimabad, H. [Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Najafabadi, R. Izadi [Physics Department, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2007-07-11

    In this work, experiments were carried out to investigate the possible use of neutron backscattering for the detection of sample buried in the soil. A series of Monte Carlo simulations were performed to study the complexity of the neutron backscattering process and to optimize the source shield thickness. The results of these simulations indicate that neutron source shield plays an important role for the detection of nonmetallic landmines. This paper experimentally demonstrates, by using suitable shield around Am-Be neutron source, the increase of signal-to-noise ratio up to 130%.

  10. Powerful pulsed neutron sources for research with a pulsed magnetic field

    International Nuclear Information System (INIS)

    The prospects for neutron investigations into the magnetic properties of condensed matter with the use of powerful pulsed neutron sources [Japan Spallation Neutron Source (JSNS) (Tokai, Japan), TIRAN (Zababakhin All-Russia Research Institute of Technical Physics, Russian Federal Nuclear Center, Snezhinsk, Russia), Large Hadron Collider (LHC) (CERN)] and pulsed magnetic fields are considered. It is demonstrated that the diffraction measurements of the magnetic states induced by a magnetic field of up to 700-1000 kOe can be performed at the TIRAN reactor and the neutron source that can be developed on the basis of the LHC accelerator.

  11. Coded moderator approach for fast neutron source detection and localization at standoff

    International Nuclear Information System (INIS)

    Considering the need for directional sensing at standoff for some security applications and scenarios where a neutron source may be shielded by high Z material that nearly eliminates the source gamma flux, this work focuses on investigating the feasibility of using thermal neutron sensitive boron straw detectors for fast neutron source detection and localization. We utilized MCNPX simulations to demonstrate that, through surrounding the boron straw detectors by a HDPE coded moderator, a source-detector orientation-specific response enables potential 1D source localization in a high neutron detection efficiency design. An initial test algorithm has been developed in order to confirm the viability of this detector system's localization capabilities which resulted in identification of a 1 MeV neutron source with a strength equivalent to 8 kg WGPu at 50 m standoff within ±11°

  12. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    International Nuclear Information System (INIS)

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source's first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ''in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number

  13. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    International Nuclear Information System (INIS)

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source's first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ''in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number

  14. Neutronics of a poisoned para-hydrogen moderator for a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan)]. E-mail: harada.masahide@jaea.go.jp; Watanabe, Noboru [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Teshigawara, Makoto [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Kai, Tetsuya [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Kato, Takashi [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Ikeda, Yujiro [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan)

    2007-05-11

    Neutronic performance of a poisoned hydrogen moderator was studied in details. Using a simple rectangular-shape moderator-model, its basic characteristics were studied as a function of the poison position. We, for the first time, turned up that the pulse width was rather decreasing with increasing the moderator thickness of the back part from the poison. This is due to the fact that source neutron pulses entering into a front part of the poison through the back part exhibit a fast rise shape while those from the target and the reflector through the decoupler and liner exhibit a broad shape. Next, we studied the pulse deterioration in regard to a finite beam-extraction-angle by using a more realistic moderator shape, canteen shape and a concave-shape. It turns out that the pulse deterioration is considerably large in both cases even at a small extraction angle. The concave-shape moderator indicates a finite improvement compared to the canteen-shape one. Finally, merits and demerits of two poison materials, Cadmium and Gadolinium, were discussed taking into account the burn-up issue of poison with the operation time.

  15. Modelling of an imaging beamline at the ISIS pulsed neutron source

    International Nuclear Information System (INIS)

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and characterisation of the resulting beam characteristics, including the homogeneity of the flux distribution in space and energy and the average and peak neutron fluxes. These investigations take into account some main design criteria: to maximise the neutron flux, to minimise geometrical artefacts in the open beam image at the sample position and to obtain a good energy resolution whilst retaining a large neutron bandwidth. All of these are desirable beam characteristics for the proposed imaging and diffraction analysis modes of IMAT

  16. The Need for a Neutron Source at the Rare Isotope Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L E; Rusnak, B; Roberts, K E; Roeben, M D; Hausmann, M; Reifarth, R; Vieira, D

    2005-05-13

    An intense neutron source facility with radiochemical processing capability is necessary at the Rare Isotope Accelerator to fully realize its potential benefit to stockpile stewardship and astrophysics. While many of the important physics missions of RIA can be addressed with radioactive ion beams, direct neutron cross-section measurements of interest to stockpile stewardship and astrophysics cannot because one cannot make a neutron target. Thus, one must collect a sufficient amount of the appropriate short-lived isotope, quickly chemically process the material into a target, and promptly radiate the sample with an intense ''beam'' of neutrons. The unprecedented production rates expected at RIA enables many of these direct neutron cross-section measurements, but only if the proper infrastructure is in place. This document not only describes the major piece of this required infrastructure, a neutron source facility with radiochemical processing capabilities, but also the motivation for measuring such direct neutron cross-sections.

  17. Advanced modeling of prompt fission neutrons and gamma rays

    International Nuclear Information System (INIS)

    Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yields as a function of mass and total kinetic energy are used as input data. Monte-Carlo calculations allow the exploration of physical observables beyond average quantities. A new parameter RT has been introduced: RT=Tl/Th where Tl and Th are the temperatures in the light and heavy fragments. The average neutron multiplicity computed as a function of the fragment mass agrees best with the experimental data (with En=5.5 MeV) when RT=1 which can be understood as follows: as the incident neutron energy increases, the role of shell effects diminishes and the ratio of collective energies stored in the light and heavy fragment tends toward 1

  18. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  19. Options for a next generation neutron source for neutron scattering based on the projected linac facility at JAERI

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has a project to construct a high intensity proton accelerator to promote wide basic science using neutrons and nuclear power technologies such as radioactive nuclide transmutation. One of the most important field for utilization of neutron beam is neutron scattering. The energy and the averaged current obtained by the proton accelerator are 1.5 GeV and 4-5.3 mA, respectively and these provide 6-8 MW power. The repetition frequency is 50-60 Hz. Evaluation of options for the use of accelerators for neutron production for neutron scattering research and investigation of the neutron research opportunities offered by sharing the superconducting linac planned at JAERI were discussed. There are two ways of the utilization of proton beams for neutron scattering experiment. One is for long pulse spallation source (LPSS) and the other is for short pulse spallation source (SPSS). Quantitative evaluation of instrument performance with LPSS and SPSS was examined in the intensive discussion, calculations, workshop on this topics with Prof. F. Mezei who stayed at JAERI from October 24 to November 6, 1996. A report of the collaborative workshop will be also published separately. (author)

  20. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  1. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  2. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    CERN Document Server

    Ogawa, Y; Kosugi, N; Iwasa, H; Furusaka, M; Watanabe, N

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  3. Experimental and numerical characterization of the neutron field produced in the n@BTF Frascati photo-neutron source

    OpenAIRE

    Bedogni, R.; Quintieri, L; Buonomo, B.; Esposito, A.; Mazzitelli, G.; Foggetta, L.; Gomez Ros. J.M.

    2011-01-01

    A photo-neutron irradiation facility is going to be established at the Frascati National Laboratories of INFN on the base of the successful results of the n@BTF experiment. The photoneutron source is obtained by an electron or positron pulsed beam, tunable in energy, current and in time structure, impinging on an optimized tungsten target located in a polyethylene-lead shielding assembly. The resulting neutron field, through selectable collimated apertures at different angles, is released int...

  4. Operational experience at the Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) has been operational for users since October 1993 when white light from a bend magnet was delivered to the Center for X-Ray Optic close-quote s (CXRO) x-ray microprobe end station. Since then, the ALS has installed and commissioned three undulators and their beamlines (including monochromators and post-monochromator focusing optics), and eight bend-magnet beamlines, including one dedicated to machine diagnostics. Apart from one serious outage, when scheduled beam was not available to users for 17 days, the ALS has enjoyed remarkable operating statistics, with typically 95% of scheduled beam time delivered to the users. Beam quality has also been very good. With a vertical emittance measured at 0.06 nm-rad, the electron beam is kept stable to about one-tenth of its transverse dimensions, in the face of changing error fields in the insertion devices (as their main fields are varied), temperature variations, and floor vibration. The longitudinal motion of the beam, which leads to an increase in the electron beam energy spread and thence to a degradation of the undulator spectra, has recently been brought under control by the addition of an innovative feedback system. This paper focuses on those aspects of electron beam stability that we find most affect the ALS users: beam size and position, and energy spread. copyright 1996 American Institute of Physics

  5. Operational experiences at the advanced light source

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS) has been operational for users since October 1993 when white light from a bend magnet was delivered to the Center for X-Ray Optic's (CXRO) x-ray microprobe end-station. Since then, the ALS has installed and commissioned three undulators and their beamlines (including monochrornators and post-monochromator focusing optics), and eight bend magnet beamlines, including one dedicated to machine diagnostics. Apart from one serious outage, when scheduled beam was not available to users for 17 days, the ALS has enjoyed remarkable operating statistics, with typically 95% of scheduled beam-time delivered to the users. Beam quality has also been very good. With a vertical emittance measured at 0.06 nm-rad, the electron beam is kept stable to about one-tenth of it's transverse dimensions, in the face of changing error fields in the insertion devices (as their main fields are varied), temperature variations and floor vibration. The longitudinal motion of the beam, which leads to an increase in the electron beam energy spread, and thence, to a degradation of the undulator spectra, has recently been brought under control by the addition of an innovative feedback system. This paper focuses on those aspects of electron beam stability that we find most affect the ALS users: beam size and position, and energy spread

  6. ANL Advanced Photon Source crotch absorber design

    International Nuclear Information System (INIS)

    The ANL 7-GeV Advanced Photon Source storage ring crotch absorber will be subjected to a very high photon loading power density, approximately 750 W/mm2 at normal incidence. To accommodate this high heat load, two designs were studied: one is a V-type compound angle absorber and the other is a horizontally rotated plate absorber. For both models, thermal and structural analyses have been carried out using 3-D finite element analysis. The analysis indicates that the V-type compound angle absorber controlled the peak temperatures effectively within the given geometric constraints. Test samples made of GlidCop Al 15 (alumina dispersion strengthened copper) were evaluated with an electron beam welder. The predicted and measured temperatures were in reasonable agreement. The overall absorber design includes a perforated screen in the positron beam area of the storage ring vacuum chamber to reduce rf impedance and to provide pumping access for the high local gas load. 3 refs., 4 figs., 2 tabs

  7. Quantitative time resolved neutron imaging methods at the high flux neutron source FRM-II

    OpenAIRE

    Brunner, Johannes

    2007-01-01

    In the current work various new experimental methods and computation procedures in the field of neutron imaging are presented. These methods have a significant technical importance in non-destructive material investigations. With stroboscopic neutron radiography periodic processes can be investigated on a sub-millisecond time scale. This opens great opportunities for the study and the development of combustion engines. Energy selective time of flight neutron radiography at neutron spallation ...

  8. The COHERENT Experiment at the Spallation Neutron Source

    CERN Document Server

    Akimov, D; Awe, C; Barbeau, P S; Barton, P; Becker, B; Below, V; Bolozdynya, A; Burenkov, A; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Dean, D; Detwiler, J; Efremenko, Y; Elliott, S R; Fields, N; Fox, W; Galindo-Uribarri, A; Green, M; Heath, M; Hedges, S; Herman, N; Hornback, D; Iverson, E B; Kaufman, L; Klein, S R; Khromov, A; Konovalev, A; Kumpan, A; Leadbetter, C; Li, L; Lu, W; Melikyan, A; Markoff, D; Miller, K; Middlebrook, M; Mueller, P; Naumov, P; Newby, J; Parno, D; Penttila, S; Perumpilly, G; Radford, D; Ray, H; Raybern, J; Reyna, D; Rich, G C; Rimal, D; Rudik, D; Scholberg, K; Scholz, B; Snow, W M; Sosnovchev, A; Shakirov, A; Suchyta, S; Suh, B; Tayloe, R; Thornton, R T; Tolstukhin, A; Vetter, K; Yu, C H

    2015-01-01

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT...

  9. Prompt gamma-ray neutron activation analysis (PGNAA) system by using a 740 GBq 241Am-Be neutron source

    International Nuclear Information System (INIS)

    A PGNAA system consisting of a 740 GBq 241Am-Be neutron source and a gamma spectrometer with a n-type Ge (REGe) detector was installed at Ankara Nuclear Training and Research Center to measure the prompt gamma-rays produced by the interactions of thermal neutrons in the samples for the analysis of light elements such as B, P, S and Cl, and some trace elements with large cross sections (Cd, Hg, Sm, Gd, etc.). In the irradiation system, a 55 cm diameter cylinder tank filled with the water moderator comprises the neutron source placed in a polypropylene tube that was positioned in lead rings (internal diameter - 9 cm and outer diameter - 21 cm) in order to reduce the gamma rays emitted from the source such as 0.0596 MeV (241Am) and 4.43 MeV (0.6 gamma per neutron) from the 9Be(α, n) reaction in the source. The moderator tank was shielded with paraffin in all sides against fast neutrons. The thickness of paraffin at the front side of the tank is 28 cm and 18 cm at other sides. The neutron irradiation system was also shielded by using chevron lead bricks of 18 cm thickness. The background-prominent gamma-rays which is especially the 2.223 MeV gamma ray from the 1H(n, γ) reaction formed in hydrogenous materials used for neutron moderation was reduced remarkably in view of the permissible gamma dose for overall irradiation room. The neutrons thermalized in moderator travel through the hole with 6 cm diameter for the sample irradiation. The detector was shielded with Li2CO3 powder against thermal neutrons to avoid radiation damage and surrounded by additional lead bricks to reduce gamma-background. The measurements are carried out for efficiency calibration of the detector by using the standard source. The characteristics of PGNAA system with the isotopic neutron source and its analysis capability are discussed

  10. Construction and operation of the Spallation Neutron Source: Draft environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    DOE proposes to construct and operate a state-of-the-art, short-pulsed spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulation ring and a second target. The US needs a high-flux, short-pulsed neutron source to provide the scientific and industrial research communities with a much more intense source of pulsed neutrons for neutron scattering research than is currently available, and to assure the availability of a state-of-the-art facility in the decades ahead. This next-generation neutron source would create new scientific and engineering opportunities. In addition, it would help replace the neutron science capacity that will be lost by the eventual shutdown of existing sources as they reach the end of their useful operating lives in the first half of the next century. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this EIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL (US); Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  11. Measurement of the neutron spectrum and ambient neutron dose rate equivalent from the small 252Cf source at 1 meter

    Energy Technology Data Exchange (ETDEWEB)

    Radev, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-07

    NASA Langley Research Center requested a measurement of the neutron spectral distribution and fluence from the 252Cf source (model NS-120, LLNL serial # 7001677, referred as the SMALL Cf source) and determination of the ambient neutron dose rate equivalent and kerma at 100 cm for the Radiation Budget Instrument Experiment (Rad-X). The dosimetric quantities should be based on the neutron spectrum and the current neutron-to-dose conversion coefficients.

  12. Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy

    CERN Document Server

    Angelone, M; Rollet, S

    2002-01-01

    The feasibility of a compact accelerator-driven device for the generation of neutron spectra suitable for isotope production by neutron capture, boron neutron capture therapy and fast neutron therapy, is analyzed by Monte Carlo simulations. The device is essentially an extension of the activator proposed by Rubbia left bracket CERN/LHC/97-04(EET) right bracket , in which fast neutrons are diffused and moderated within a properly sized lead block. It is shown that by suitable design of the lead block, as well as of additional elements of moderating and shielding materials, one can generate and exploit neutron fluxes with the spectral features required for the above applications. The linear dimensions of the diffusing-moderating device can be limited to about 1 m. A full-scale device for all the above applications would require a fast neutron source of about 10**1**4 s**-**1, which could be produced by a 1 mA, 30 MeV proton beam impinging on a Be target. The concept could be tested at the Frascati Neutron Gener...

  13. A new method of creating high intensity neutron source

    CERN Document Server

    Masuda, T; Yoshimura, M

    2016-01-01

    We propose a new scheme of producing intense neutron beam whose yields exceed those of existing facilities by many orders of magnitude. This scheme uses the recently proposed photon beam extracted from circulating quantum ions, which is directed to a deuteron target for photo-disintegration. The calculated neutron energy spectrum is nearly flat down to neV range, except a threshold rise and its adjacent wide structure. Hence, there exists a possibility of directly using sub-eV neutrons without a moderator. We shall have brief comments on promising particle physics applications using this large yield of neutron.

  14. Effects of neutron source selection on land-mine detection efficiency

    International Nuclear Information System (INIS)

    One proposed method of land-mine detection is based on measurements of the 10.8 MeV photons from the 14N(n, γ) reaction. In this study, simulations of the photon production efficiencies for nitrogenous explosive material (TNT), buried in soil having variable moisture content, were completed for different published neutron spectra. Monte Carlo simulations were performed with MCNP with a cylindrical geometry of TNT considered as target material and with neutron energies ranging from thermal to 20 MeV. The numbers of 14N(n, γ) reactions in TNT were tallied to obtain response functions. To find the effectiveness of different neutron sources, response functions were folded with the neutron spectra. Response curves reveal that higher water content increases response for fast neutrons, and reduces response for slow neutrons. Lower energy neutron sources, i.e. D(d, n) or 252Cf, are more suitable than higher energy neutron sources such as 241Am-Be or T(d, n). Although its advantages disappear with increasing depth, the usage of moderating spheres of CH2 increases the signal significantly when compared with a bare source, while also reducing neutron dose to workers

  15. Status of pulsed spallation neutron source target work at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    This paper outlines work carried out at BNL on the Pulsed Spallation Neutron Source (PSNS) target, since the ICANS-XII meeting. A target, reflector, and moderator assembly was designed consistent with a 1.25 GeV proton beam energy. This target consisted of two modules containing randomly packed tungsten spheres and one flux trap. In addition, a study was carried out of the variation of neutron pulse length with proton pulse length for various reflector/pre-moderator configurations. It was found that: - the amplitude of the neutron pulses increases with decreasing proton pulse length, - long proton pulses overlap the neutron pulse developing in the moderator, while shorter proton pulses are complete before the neutron pulse develops in the moderator, - reflector/pro-moderators which slow neutrons by inelastic scattering result in neutron pulses which are narrower, and have shorter tails. (author) 3 figs., 2 tabs., 3 refs

  16. Computer simulations for rf design of a Spallation Neutron Source external antenna H- ion source

    International Nuclear Information System (INIS)

    Electromagnetic modeling of the multicusp external antenna H- ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as σ. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  17. Separation of beam and electrons in the spallation neutron source H- ion source

    International Nuclear Information System (INIS)

    The Spallation Neutron Source (SNS) requires an ion source producing an H- beam with a peak current of 35 mA at a 6.2% duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H- beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H- beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson's equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail

  18. Computer simulations for rf design of a Spallation Neutron Source external antenna H ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Woo [ORNL; Goulding, Richard Howell [ORNL; Kang, Yoon W [ORNL; Shin, Ki [ORNL; Welton, Robert F [ORNL

    2010-01-01

    Electromagnetic modeling of the multicusp external antenna H ion source for the Spallation Neutron Source SNS has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as . Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion.

  19. Advanced in the neutron feedback ICF reactor concept

    International Nuclear Information System (INIS)

    Results are reviewed and updated from an earlier design study of a novel nuclear-pumped flashlamp laser (NP-FL) inertial fusion energy (IFE) power reactor based on the neutron feedback concept for IFE. This concept includes nuclear pumping of the laser flashlamp, a D-T seeded D-3He target and magnetic protection of the first wall of the reactor chamber coupled with direct conversion of deflected charged particles. Advantages include an increased overall plant efficiency due to improved energy coupling via neutron feedback, increased thermal-to-electric energy conversion efficiency, and lower neutron activation and waste. These factors are reflected in a driver energy of 5 MJ and a target gain of only 50 for a 53 % efficient 1000-MWe power plant operating at 6 Hz, novel components involved. However, they require further technological development. Consequently, the NP-FL plant appears to provide a very attractive 'second-generation' IFE reactor. (authors)

  20. The hypertext information system on pulsed neutron sources and scientific investigations based on these sources

    International Nuclear Information System (INIS)

    The work on the creation of the hypertext information system has been performed on the basis of the web-server of the Frank Laboratory of Neutron Physics, JINR. The initial project proposed the creation of HTML information resources and did not consider the usage of any database for the information management. During the project implementation it became obvious that the system should have well defined structured informational model and it might be helpful to imply the relational database as a part of the system. The ORACLE server at the Laboratory of Computing Techniques and Automation (LCTA) of the JINR has been used for this task. Now we have a set of ORACLE tables designed using CASE tools for the informational model of the system, structured information about neutron sources, neutron instruments, printed publications and URL addresses. We have also the web interface to these tables using free ware gateway ORALINK installed on our Pentium PC with Windows NT and some tools to administer database and view pictures stored in the tables. We took into account NeXuS specifications while tried to design the informational model of the system, and we continue to work on its creation

  1. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  2. Count-loss effect in subcriticality measurement by pulsed neutron source method. (2) Proposal for utilization of neutron detection system operated in current mode

    International Nuclear Information System (INIS)

    It was pointed out in the previous paper that the neutron decay constant determined by the pulsed neutron source method that employs the neutron detection system operated in the pulse mode is expected to be biased owing to the count-loss effect even when the intensity of pulsed neutron source is not high. To avoid this difficulty, by paying attention to the current mode that is inherently free from the count-loss process, the pulsed neutron source method with neutron detection system operated in the current mode was proposed. Using this method, not only the neutron decay constant but also the absolute value of subcriticality are obtained when a proper time constant of neutron detection system is selected. (author)

  3. A High Intensity Linac for the National Spallation Neutron Source

    Science.gov (United States)

    Jason, A.; Bhatia, T.; Billen, J.; Schrage, D.; Kurennoy, S.; Krawczyk, F.; Lynch, M.; Nath, S.; Shafer, R.; Takeda, H.; Tallerico, P.; Wangler, T.; Wood, R.; Young, L.; Grand, P.; McKenzie-Wilson, R.

    1997-05-01

    The National Spallation Neutron Source to be constructed at Oak Ridge National Laboratory, requires a linac capable of delivering up to 5 MW of beam power to an accumulator ring with a nominal 6.2% duty factor and an energy of 1 GeV. Los Alamos, responsible for the linac design, has developed an appropriate room-temperature linac that consists of a drift-tube section from 2.5 to 20 MeV, a coupled-cavity drift-tube section to 100 MeV, and a coupled-cavity section to 1 GeV. The initial scenario requires an average 1.1-mA beam current with a corresponding 28 mA peak current and a 1.2-Mhz chopped time structure corresponding to the ring period. Upgrade to a 4.4 mA average current requires funneling with a peak current of 112 mA in the high-energy sections. Further parameters are presented along with beam dynamics and structure choices and mechanical and rf engineering considerations.

  4. Helium burning and neutron sources in the stars

    Science.gov (United States)

    Aliotta, M.; Junker, M.; Prati, P.; Straniero, O.; Strieder, F.

    2016-04-01

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the 12C( α, γ)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C( α, n)16O and the 22Ne( α, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

  5. Helium burning and neutron sources in the stars

    Energy Technology Data Exchange (ETDEWEB)

    Aliotta, M. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Junker, M. [Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy); Prati, P. [Universita degli Studi di Genova (Italy); INFN, Genova (Italy); Straniero, O. [Osservatorio Astronomico di Collurania, Teramo (Italy); Strieder, F. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2016-04-15

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the {sup 12}C(α, γ){sup 16}O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the {sup 13}C(α, n){sup 16}O and the {sup 22}Ne(α, n){sup 25}Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories. (orig.)

  6. Beam scraping efficiency in the 5 MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.J.

    1993-12-01

    Numerical calculations have been performed to evaluate the performance of a simple beam scraping system in the lattice of a rapid cycling (30 Hz) proton accelerator designed to be a high intensity spallation neutron source. The assumption has been made that beam loss will be dominated by rf capture inefficiency at injection (600 MeV kinetic) which is simulated as described below. Comparison is made with a ``sample calculation`` intended to illustrate betatron (beam halo) scraping at full energy which was assumed to be 3 GeV. The parameters of the lattice are those of the design as of April, 1993. The results described here are restricted to a geometry wherein the primary scraper is treated as an aperture in the X (horizontal) coordinate. Evaluation of the efficacy of two dimensional scrapers, or scraping systems which employ magnetic fields remain as topics for further study. The purpose of this study was to determine to what extent beam losses can be confined to a local region of the proposed lattice. The remainder of this note describes the general methodology employed, the rf capture beam loss simulation, and the beam halo growth ``sample calculation``. Section V briefly summarizes the results of this study.

  7. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  8. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source

    International Nuclear Information System (INIS)

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) 4He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  9. Simulation Research on Neutron Guide System CNGC for China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng; ZHAO; Zhi-xiang

    2012-01-01

    <正>The out-pile section of the neutron guide CNGC at CARR (China Advanced Research Reactor) was designed by Monte Carlo simulation with VITESS. The out-pile section of CNGC will be spitted to CNGC-S and CNGC-N, the cold neutron imaging facility and small angle neutron scattering facility will be installed at the end of guides respectively. XRD patterns of Bi1-xLaxFe1-yScyO3 were shown in Fig. 1.

  10. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  11. A portable neutron/tunable X-ray source based on inertial electrostatic confinement

    International Nuclear Information System (INIS)

    Portable neutron sources are of strong interest for uses such as industrial neutron activation analysis and various medical research applications. The inertial electrostatic confinement (IEC) device under development at the University of Illinois is intended for such uses and also provides a tunable X-ray source (required reverse bias and added electron emitters). The IEC operates as an accelerator plasma-target type device, and when filled with deuterium presently provides 107∼2.5 MeV D-D fusion neutrons/s. D-T fill gas gives 14 MeV neutrons, with rates about 100 times that of D-D, but with the added complication of handling low levels of tritium. Research on higher yield versions now under development is described. Still, in the interim, the IEC, due to its compactness, portability, simplicity and flexibility offers a unique portable neutron/X-ray source

  12. Diffraction Experiments at the IBR-2 Pulsed Reactor with Methane Cold Neutron Source

    CERN Document Server

    Balagurov, A M; Mironova, G M; Pole, A V; Simkin, V G

    2000-01-01

    A new methane cold neutron source has been tested at the IBR-2 pulsed reactor at the Frank Laboratory of Neutron Physics. In a paper the results of experiments at neutron diffractometers HRFD and DN-2 which are placed at the IBR-2 from the methane moderator side are given. A comparison with the results obtained with the conventional water comb-like moderator is performed. The perspectives of the cold source for various kinds of neutron diffraction experiments, including atomic and magnetic structural analysis and real time experiments are discussed. It is shown, that for a huge number of the experiments which are performing at both HRFD and DN-2 the methane cold neutron source provides the better conditions than water comb-like moderator.

  13. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  14. Moderation of Neutrons Emitted by a Pulsed Source and Neutron Spectrometry Based on Slowing-Down Time

    International Nuclear Information System (INIS)

    Over the past ten years research has been going on at the P.N. Lebedev Physics Institute on the non-stationary moderation of neutrons in heavy media, the development of a method of neutron spectrometry based on the slowing-down time and the use of this method in studying the energy dependence of the cross-sections of nuclear reactions produced by neutrons with energy up to 30 keV. The authors review this work and discuss the results achieved. After a brief discussion of the theory of the non-stationary moderation and thermalization of neutrons the authors set forth the results of experimental studies of neutron moderation in graphite, iron and lead, and of neutron thermalization in lead. Using a pulsed neutron source and resonance detectors the distribution of slowing-down times was measured up to a series of fixed values for final neutron energy. The results are compared with theory, which takes into account the thermal motion of the moderator atoms; in the case of lead this thermal motion leads to a measurable spread in the slowing-down times at energies below 10 eV. The relationship between the mean velocity of neutrons in lead and the slowing-down time is measured in the subcadmium energy range and a comparison made with multigroup theory. The procedure for determining the energy dependence of neutron reaction cross-sections by slowing-down time is described and the potentialities of this method of spectrometry discussed. There follows a brief discussion of the results obtained in two fields of spectrometric measurement. Firstly, precise measurement of the relative excitation functions of the following reactions: He3(n, p), Li6(n, α), B10(n, α) and N14(n, p) - the most interesting results being the discovery of a constant negative component of the reaction cross-section and indications of the existence of an excited He4 level. Secondly, measurement of the energy dependence of averaged radiative capture cross-sections. Measurements carried out on a large

  15. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  16. Moderator choice for the cold neutron source of the BER II

    International Nuclear Information System (INIS)

    A Cold Neutron Source is foreseen in the modernization program of the Berlin Experimental Reactor BER II. The moderator will be hydrogen at 25 K. The phase and shape of the moderator, its neutron-physical and safety aspects are discussed in detail. (orig.)

  17. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  18. A source-based fast-neutron facility for precision irradiations

    CERN Document Server

    Scherzinger, J; Davatz, G; Fissum, K G; Gendotti, U; Hall-Wilton, R; Hansson, A; Håkansson, E; Jebali, R; Kanaki, K; Lundin, M; Nilsson, B; Svensson, H

    2014-01-01

    We report on a source-based fast-neutron facility that has been developed for precision irradiations. Well-understood shielding, coincidence, and time-of-flight measurement techniques are employed to produce a polychromatic energy-tagged neutron beam.

  19. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as keff and ksrc, and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  20. New imaging using pulsed neutron sources imaging of crystalline structural information by Bragg edge transmission spectroscopy

    International Nuclear Information System (INIS)

    Neutron imaging at a pulsed neutron source can simultaneously give position-dependent neutron transmission spectra of a material. 'Bragg edge' transmission pattern appears at low energy region of the spectrum. Since the Bragg edge transmission spectrum includes various crystalline structural information, e.g., crystal structure, crystalline phase, crystallographic texture, crystallite size and strain, the pulsed neutron imaging using a two-dimensional area detector can non-destructively visualize such the information over the wide area of a material. In this article, principles, features and experimental examples of the Bragg edge transmission imaging that is expected as a new analysis tool for materials science are presented. (author)