WorldWideScience

Sample records for advanced neutron beam

  1. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  2. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Masahiro, E-mail: hino@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan); Oda, Tatsuro [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kitaguchi, Masaaki [Center for Experimental Studies, KMI, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Tasaki, Seiji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kawabata, Yuji [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan)

    2015-10-11

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS.

  3. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  4. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Marland, S. (Tennessee Univ., Knoxville, TN (United States))

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  5. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  6. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  7. Shaping micron-sized cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Frédéric, E-mail: Frederic.Ott@cea.fr [CEA, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, Gif-sur-Yvette F-91191 (France); Kozhevnikov, Sergey [Joint Institute for Nuclear Research, ul. Joliot-Curie 6, Dubna, Moscow oblast 141980 (Russian Federation); Thiaville, André [Laboratoire de Physique des Solides, Univ. Paris—Sud, CNRS UMR 8502, 91405 Orsay (France); Torrejón, Jacob [Unité Mixte de Physique, CNRS/Thales, Campus de l’Ecole Polytechnique, 91767 Palaiseau (France); Vázquez, Manuel [Instituto de Ciencia de Materiales, CSIC, 28049 Madrid (Spain)

    2015-07-11

    In the field of neutron scattering, the need for micro-sized (1–50 µm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  8. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  9. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  10. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  11. Neutron beam testing of triblades

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Du Bois, Andrew J [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Rust, William N [Los Alamos National Laboratory; Du Bois, David H [Los Alamos National Laboratory; Modl, David G [Los Alamos National Laboratory; Quinn, Heather M [Los Alamos National Laboratory; Blanchard, Sean P [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV DEGLI STUDI DI PADOVA ITALY

    2010-12-16

    Four IBM Triblades were tested in the Irradiation of Chips and Electronics facility at the Los Alamos Neutron Science Center. Triblades include two dual-core Opteron processors and four PowerXCell 8i (Cell) processors. The Triblades were tested in their field configuration while running different applications, with the beam aimed at the Cell processor or the Opteron running the application. Testing focused on the Cell processors, which were tested while running five different applications and an idle condition. While neither application nor Triblade was statistically important in predicting the hazard rate, the hazard rate when the beam was aimed at the Opterons was significantly higher than when it was aimed at the Cell processors. In addition, four Cell blades (one in each Triblade) suffered voltage shorts, leading to their inoperability. The hardware tested is the same as that in the Roadrunner supercomputer.

  12. Intermediate energy neutron beams from the MURR.

    Science.gov (United States)

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  13. Advanced Neutron Moderators for the ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels

    . The main increases in thermal and cold intensity are achieved by upscaling the power density of reactors or proton beam power of spallation sources. Reactor development saturated in the 1960s with the construction of the continuous, compact, high-power-density reactors HFIR, Oak Ridge, and ILL, Grenoble...... on the European Spallation Source (ESS), which is currently being constructed in Lund, Sweden. The ESS will be a long-pulsed spallation source (pulse length 2.86 ms) driven by a 5-MW proton beam impinging on a rotating tungsten target. The ESS will be the world's most intense neutron source in terms of brightness......, which generates an interest in moderator development. Many facilities have proposed and applied advanced moderator concepts to better utilize the produced neutrons. The topic of this thesis is the study of these advanced moderator concepts. Chapters 1 to 6 briefly summarize the historical development...

  14. Neutron beams from protons on beryllium.

    Science.gov (United States)

    Bewley, D K; Meulders, J P; Octave-Prignot, M; Page, B C

    1980-09-01

    Measurements of dose rate and penetration in water have been made for neutron beams produced by 30--75 MeV protons on beryllium. The effects of Polythene filters added on the target side of the collimator have also been studied. A neutron beam comparable with a photon beam from a 4--8 MeV linear accelerator can be produced with p/Be neutrons plus 5 cm Polythene filtrations, with protons in the range 50--75 MeV. This is a more economical method than use of the d/Be reaction.

  15. Design of multidirectional neutron beams for boron neutron capture synovectomy

    Energy Technology Data Exchange (ETDEWEB)

    Gierga, D.P.; Yanch, J.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Shefer, R.E. [Newton Scientific, Inc., Cambridge, MA (United States)

    1997-12-01

    Boron neutron capture synovectomy (BNCS) is a potential application of the {sup 10}B(n, a) {sup 7}Li reaction for the treatment of rheumatoid arthritis. The target of therapy is the synovial membrane. Rheumatoid synovium is greatly inflamed and is the source of the discomfort and disability associated with the disease. The BNCS proposes to destroy the synovium by first injecting a boron-labeled compound into the joint space and then irradiating the joint with a neutron beam. This study discusses the design of a multidirectional neutron beam for BNCS.

  16. Advanced Neutron Spectrometer

    Science.gov (United States)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; hide

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  17. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  18. Neutron production by neutral beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.H.; Massoletti, D.J.; McCaslin, J.B.; Pyle, R.V.; Ruby, L.

    1979-11-01

    Neutron yields, from interactions of multiampere 40- to 120-keV deuterium beams with deuterium atoms implanted in copper targets, have been measured in order to provide input data for shielding of neutral-deuterium beam facilities for magnetic fusion experiments.

  19. Measurement of neutron excitation functions using wide energy neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gamboni, Thierry; Gasparro, Joel; Geerts, Wouter; Jaime, Ricardo; Lindahl, Patric; Oberstedt, Stephan [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Italy)

    2007-10-11

    A technique for measuring neutron excitation functions using wide energy neutron beams is explored. Samples are activated with a set of neutron fields, each covering a relatively wide energy interval and created using an ion accelerator and conventional nuclear reactions. Measured activities are determined using gamma-ray spectrometry and reduced to excitation curves using spectrum unfolding. The technique is demonstrated on the measurement of the excitation function curve up to 5.6 MeV for {sup 113}In(n,n'){sup 113}In{sup m} using the {sup 115}In(n,n'){sup 115}In{sup m} reaction as an internal standard.

  20. Neutron beam imaging with GEM detectors

    Science.gov (United States)

    Albani, G.; Croci, G.; Cazzaniga, C.; Cavenago, M.; Claps, G.; Muraro, A.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Rebai, M.; Tardocchi, M.; Gorini, G.

    2015-04-01

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  1. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  2. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  3. Neutron capture therapy beam design at Harwell.

    Science.gov (United States)

    Constantine, G

    1990-01-01

    At Harwell, we have progressed from designing, building, and using small-diameter beams of epithermal neutrons for radiobiology studies to designing a radiotherapy facility for the 25-MW research reactor DIDO. The program is well into the survey phase, where the main emphasis is on tailoring the neutron spectrum. The incorporation of titanium and vanadium in an aluminium spectrum shaper in the D2O reflector has been shown to yield a significant reduction in the mean energy of neutrons incident on the patient by suppression of streaming through the cross-section window in aluminium at 25 keV.

  4. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and

  5. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  6. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  7. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  8. Instrumentation to handle thermal polarized neutron beams

    NARCIS (Netherlands)

    Kraan, W.H.

    2004-01-01

    In this thesis we investigate devices needed to handle the polarization of thermal neutron beams: Ï/2-flippers (to start/stop Larmor precession) and Ï-flippers (to reverse polarization/precession direction) and illustrate how these devices are used to investigate the properties of matter and of the

  9. A polarized neutron beam at Lampf

    Science.gov (United States)

    Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.; Bonner, B. E.; Simmons, J. E.; Hollas, C. L.; Newsom, C. R.; Ransome, R. D.; Riley, P. J.

    1981-03-01

    We have measured the polarization of neutrons produced from the reaction pd→n↘ at a laboratory angle of 20° at an incident proton kinetic energy of 800 MeV. For the highest energy neutron peak at ˜665 MeV, as well as for the broad pion production peak at ˜325 MeV, the neutron polarization has been found to be ˜0.20. The measured polarization for the quasielastic process has been found to be in good agreement with the free np analyzing power measurements. Such a polarized neutron beam, having a broad spectrum of momenta from 800 to 1300 MeV/c has been used at LAMPF for free np spin correlation measurements.

  10. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  11. The first neutron beam hits EAR2

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.   The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples. Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure. Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrop...

  12. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Harling, O K

    1993-08-01

    A series of studies of "ideal" beams has been carried out using Monte Carlo simulation with the goal of providing guidance for the design of epithermal beams for boron neutron capture therapy (BNCT). An "ideal" beam is defined as a monoenergetic, photon-free source of neutrons with user-specified size, shape and angular dependence of neutron current. The dosimetric behavior of monoenergetic neutron beams in an elliptical phantom composed of brain-equivalent material has been assessed as a function of beam diameter and neutron emission angle (beam angle), and the results are reported here. The simulation study indicates that substantial differences exist in the dosimetric behavior of small and large neutron beams (with respect to the phantom) as a function of the extent of beam collimation. With a small beam, dose uniformity increases as the beam becomes more isotropic (less collimated); the opposite is seen with large beams. The penetration of thermal neutrons is enhanced as the neutron emission angle is increased with a small beam; again the opposite trend is seen with large beams. When beam size is small, the dose delivered per neutron is very dependent on the extent of beam collimation; this does not appear to be the case with a larger beam. These trends in dose behavior are presented graphically and discussed in terms of their effect on several figures of merit, the advantage depth, the advantage ratio, and the advantage depth-dose rate. Tables giving quick summaries of these results are provided.

  13. Project Report of Neutron Beam Application on China Advanced Research Reactor%中国先进研究堆中子束应用关键技术及若干科学问题立项报告

    Institute of Scientific and Technical Information of China (English)

    陈东风

    2016-01-01

    该研究的研究内容涵盖物理、化学、材料和工程等领域,拟解决以下3个方面的关键科学问题:(1)中子散射关键技术方法研究;(2)新型功能材料结构和性质关系的中子散射研究;(3)工程部件应力分布和中子成像的方法学研究。为此,项目设置6个子研究:(1)反应堆中子束优化及特殊样品环境研究;(2)单晶和多晶新材料的中子衍射研究;(3)强关联体系中原子与自旋动态的中子散射研究;(4)磁性材料的中子散射研究;(5)中子应力三维无损深度测量技术研究;(6)中子在物质中的衰减与中子成像研究。%Nowadays to study the relation between structures and properties of materials is one of the main tasks in Physics, Chemistry, material science and others research fields, and it is a usual way to get the information using particles interaction with matters, among which X ray and neutron are two basic ones. It is well know that the interaction principle of neutrons and photons with atoms is quite different, so more information will be obtained using both complementary tools. The neutron has the following properties: no charge, low energy, inherence magnetic moment, deep penetration, sensitivity on light element (such as H, C, N, O, etc), distinguishability on isotopes (such as 7Li、11B etc.) and near neighbor elements (such as Mn, Fe and so on). So neutron scattering technique can not only study the crystal structure, but also obtain the magnetic structure information; not only investigate the static microstructure of materials, but also prove the reliabilities of theoretical models. CARR is expected to be critical in 2009, 60 MW and 8×1014N/(cm2·S-1) unperturbed thermal neutron flux make it standing on an international advanced level. Using the four circle, powder, residual stress neutron diffractometers and neutron imaging instrument at CARR, in this project studies focus on three aspects: (1)the methodology study of

  14. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    Science.gov (United States)

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  15. National facility for neutron beam research

    Indian Academy of Sciences (India)

    K R Rao

    2004-07-01

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.

  16. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  17. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  18. BNL ACTIVITIES IN ADVANCED NEUTRON SOURCE DEVELOPMENT: PAST AND PRESENT

    Energy Technology Data Exchange (ETDEWEB)

    HASTINGS,J.B.; LUDEWIG,H.; MONTANEZ,P.; TODOSOW,M.; SMITH,G.C.; LARESE,J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In the sections below the authors discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  19. BNL Activities in Advanced Neutron Source Development: Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Ludewig, H.; Montanez, P.; Todosow, M.; Smith, G.C.; Larese, J.Z.

    1998-06-14

    Brookhaven National Laboratory has been involved in advanced neutron sources almost from its inception in 1947. These efforts have mainly focused on steady state reactors beginning with the construction of the first research reactor for neutron beams, the Brookhaven Graphite Research Reactor. This was followed by the High Flux Beam Reactor that has served as the design standard for all the subsequent high flux reactors constructed worldwide. In parallel with the reactor developments BNL has focused on the construction and use of high energy proton accelerators. The first machine to operate over 1 GeV in the world was the Cosmotron. The machine that followed this, the AGS, is still operating and is the highest intensity proton machine in the world and has nucleated an international collaboration investigating liquid metal targets for next generation pulsed spallation sources. Early work using the Cosmotron focused on spallation product studies for both light and heavy elements into the several GeV proton energy region. These original studies are still important today. In this report we discuss the facilities and activities at BNL focused on advanced neutron sources. BNL is involved in the proton source for the Spallation Neutron source, spectrometer development at LANSCE, target studies using the AGS and state-of-the-art neutron detector development.

  20. Using MCNP in the design of neutron sources and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hergenreder, Daniel F.; Lecot, Carlos A.; Lovotti, Osvaldo P. [INVAP S.A., San Carlos de Bariloche (Argentina). Nuclear Projects Department. Nuclear Engineering Division

    2002-07-01

    The calculation methodology used to design cold, thermal and hot neutron sources and their associated neutron beam transport systems is presented. The design goal is to evaluate the performance of the neutron sources, their beam tubes and neutron guides at specific experimental locations in the reactor hall as well as in the neutron hall. The Monte Carlo method is a unique and powerful tool to transport neutrons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of system. The proper use of MCNP as the main tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors. (author)

  1. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    OpenAIRE

    Ali Pazirandeh; Elham Shekarian

    2006-01-01

     In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as gliobelastoma multiform (GBM) requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage...

  2. Role of neutron beams in understanding the structure of alloys ferroelectrics and semi conductors

    Directory of Open Access Journals (Sweden)

    V. V. Agashe

    1960-04-01

    Full Text Available Our knowledge of materials is advanced to great extent with the help of optical, X-ray and electron beams, yet certain problems like order/disorder in alloys of metals having neighbouring atomic numbers, magnetic moment of magnetic alloys and compounds, position of atoms/ions in ferroelectrics cannot be solved with these techniques alone. Fortunately neutron beams because of their interaction with nuclei, can give us a detailed information about these problems. This paper reviews the experimental technique of neutron diffraction. Certain problems in alloy constitution, ferro-electricity and magnetic moments are discussed in light of the information obtained from neutron diffraction studies.

  3. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  4. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.

    Science.gov (United States)

    Allen, D A; Beynon, T D; Green, S

    1999-01-01

    This paper is concerned with the proposed Birmingham accelerator-based epithermal neutron beam for boron neutron capture therapy (BNCT). In particular, the option of producing a therapy beam at an orthogonal direction to the incoming protons is considered. Monte Carlo radiation transport simulations, both with and without a head phantom, have shown that an orthogonal beam geometry is not only acceptable but is indeed beneficial, in terms of a lower mean neutron energy and an enhanced therapeutic ratio for the same useful neutron fluence in the therapy beam. Typical treatment times for various beam options have been calculated, and range from 20 to 48 min with a 5 mA beam of 2.8 MeV protons, if the maximum photon-equivalent dose delivered to healthy tissue is to be 12.6 Gy Eq. The effects of proton beam diameter upon the therapy beam parameters have also been considered.

  5. Neutron beam facilities at the Australian Replacement Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett [Physics Division, ANSTO, Lucas Heights (Australia)

    2001-03-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10{sup 14} n/cm{sup 2}/sec and a liquid D{sub 2} cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  6. Neutron scattering of advanced magnetic materials

    Science.gov (United States)

    Yusuf, S. M.; Kumar, Amit

    2017-09-01

    An overview of notable contributions of neutron scattering in the advancement of magnetic materials has been presented. A brief description of static neutron scattering techniques, viz., diffraction, depolarization, small angle scattering, and reflectivity, employed in the studies of advanced magnetic materials, is given. Apart from providing the up-to-date literature, this review highlights the importance of neutron scattering techniques in achieving microscopic as well as mesoscopic understanding of static magnetic properties of the following selective classes of advanced magnetic materials: (i) magnetocaloric materials, (ii) permanent magnets, (iii) multiferroic materials, (iv) spintronic materials, and (v) molecular magnetic materials. In the area of magnetocaloric materials, neutron diffraction studies have greatly improved the understanding of magneto-structural coupling by probing (i) atomic site distribution, (ii) evolution of structural phases and lattice parameters across the TC, and (iii) microscopic details of magnetic ordering in several potential magnetocaloric materials. Such an understanding is vital to enhance the magnetocaloric effect. Structural and magnetic investigations, employing neutron diffraction and allied techniques, have helped to improve the quality of permanent magnets by tailoring (understanding) structural phases, magnetic ordering, crystallinity, microstructure (texture), and anisotropy. The neutron diffraction studies of structural distortions/instabilities and magnetic ordering in multiferroic materials have improved the microscopic understanding of magnetoelectric coupling that allows one to control magnetic order by an electric field and electric order by a magnetic field in multiferroic materials. In the field of molecular magnetic materials, neutron diffraction studies have enhanced the understanding of (i) structural and magnetic ordering, (ii) short-range structural and magnetic correlations, (iii) spin density distribution

  7. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.

    Science.gov (United States)

    Yamamoto, Tetsuya; Matsumura, Akira; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi; Nose, Tadao

    2003-07-01

    The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

  8. Beam dynamics simulation of the Spallation Neutron Source linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Billen, J.H.; Bhatia, T.S.

    1998-12-31

    The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H{sup {minus}} pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 {beta}{lambda} structure to a CCDTL operated at 805 MHz with a 12 {beta}{lambda} structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large ({+-}500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac.

  9. DIANE: Advanced system for mobile neutron radiology

    Science.gov (United States)

    Dance, W. E.; Huriet, J. R.; Cluzeau, S.; Mast, H.-U.; Albisu, F.

    1989-04-01

    Development of a new neutron radiology system, DIANE, is underway which will provide a ten-fold improvement in image-acquisition speed over presently operating mobile systems, insuring greater inspection throughput for production applications. Based on a 10 12 n/s sealed-tube (D-T) neutron generator under development by Sodern, on LTV's neutron moderator/collimator and electronic imaging systems and on robotic and safety systems being developed by IABG and Sener, the DIANE concept is that of a complete facility for on-site neutron radiography or radioscopy. The LTV components, which provide film or electronic imaging, including digital processing of 12-bit images, have been demonstrated in three basic systems now operating with Kaman A-711 neutron generators, including one operating in IABG's facilities. Sodern has fabricated a prototype neutron generator tube, the TN 46, for emission of 10 11 n/s over 1000 to 1500 hours, at 250 kV and 2 mA in the ion beam.

  10. Advanced modeling of prompt fission neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Talou, Patrick [Los Alamos National Laboratory

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  11. Silicon detectors for the n-TOF neutron beams monitoring

    CERN Document Server

    Cosentino, L; Barbagallo, M; Colonna, N; Damone, L; Pappalardo, A; Piscopo, M; Finocchiaro, P

    2015-01-01

    During 2014 the second experimental area EAR2 was completed at the n-TOF neutron beam facility at CERN. As the neutrons are produced via spallation, by means of a high-intensity 20 GeV pulsed proton beam impinging on a thick target, the resulting neutron beam covers an enormous energy range, from thermal to several GeV. In this paper we describe two beam diagnostic devices, designed and built at INFN-LNS, both exploiting silicon detectors coupled with neutron converter foils containing 6Li. The first one is based on four silicon pads and allows to monitor the neutron beam flux as a function of the neutron energy. The second one, based on position sensitive silicon detectors, is intended for the reconstruction of the beam profile, again as a function of the neutron energy. Several electronic setups have been explored in order to overcome the issues related to the gamma flash, namely a huge pulse present at the start of each neutron bunch which may blind the detectors for some time. The two devices have been ch...

  12. Neutron-beam-shaping assembly for boron neutron-capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, L. [University of Science and Technology Houari Boumediene (Algeria); Kashaeva, E. A. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation); Lezhnin, S. I. [Russian Academy of Sciences, Novosibirsk Branch, Nuclear Safety Institute (Russian Federation); Malyshkin, G. N.; Samarin, S. I. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation); Sycheva, T. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Taskaev, S. Yu., E-mail: taskaev@inp.nsk.su [Novosibirsk State University (Russian Federation); Frolov, S. A. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation)

    2017-01-15

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-quality therapeutic neutron beam.

  13. Dose monitoring for boron neutron capture therapy using a reactor-based epithermal neutron beam

    Science.gov (United States)

    Raaijmakers, C. P. J.; Nottelman, E. L.; Konijnenberg, M. W.; Mijnheer, B. J.

    1996-12-01

    The aims of this study were (i) to determine the variation with time of the relevant beam parameters of a clinical reactor-based epithermal neutron beam for boron neutron capture therapy (BNCT) and (ii) to test a monitoring system for its applicability to monitor the dose delivered to the dose specification point in a patient treated with BNCT. For this purpose two fission chambers covered with Cd and two GM counters were positioned in the beam-shaping collimator assembly of the epithermal neutron beam. The monitor count rates were compared with in-phantom reference measurements of the thermal neutron fluence rate, the gamma-ray dose rate and the fast neutron dose rate, at a constant reactor power, over a period of 2 years. Differences in beam output, defined as the thermal neutron fluence rate at 2 cm depth in a phantom, of up to 15% were observed between various reactor cycles. A decrease in beam output of about 5% was observed in each reactor cycle. An unacceptable decrease of 50% in beam output due to malfunctioning of the beam filter assembly was detected. For safe and accurate treatment of patients, on-line monitoring of the beam is essential. Using the calibrated monitor system, the standard uncertainty in the total dose at depth due to variations with time of the beam output parameters has been reduced to a clinically acceptable value of 1% (one standard deviation).

  14. Enhancing Neutron Beam Production with a Convoluted Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Erik B [ORNL; Baxter, David V [Center for the Exploration of Energy and Matter, Indiana University; Muhrer, Guenter [Los Alamos National Laboratory (LANL); Ansell, Stuart [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Gallmeier, Franz X [ORNL; Dalgliesh, Robert [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lu, Wei [ORNL; Kaiser, Helmut [Center for the Exploration of Energy and Matter, Indiana University

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  15. Advanced geometries for ballistic neutron guides

    Science.gov (United States)

    Schanzer, Christian; Böni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  16. Advanced geometries for ballistic neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Schanzer, Christian E-mail: christian.schanzer@frm2.tum.de; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-21

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  17. Structural integrity assessment based on the HFR Petten neutron beam facilities

    CERN Document Server

    Ohms, C; Idsert, P V D

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently in...

  18. A toolkit for epithermal neutron beam characterisation in BNCT.

    Science.gov (United States)

    Auterinen, Iiro; Serén, Tom; Uusi-Simola, Jouni; Kosunen, Antti; Savolainen, Sauli

    2004-01-01

    Methods for dosimetry of epithermal neutron beams used in boron neutron capture therapy (BNCT) have been developed and utilised within the Finnish BNCT project as well as within a European project for a code of practise for the dosimetry of BNCT. One outcome has been a travelling toolkit for BNCT dosimetry. It consists of activation detectors and ionisation chambers. The free-beam neutron spectrum is measured with a set of activation foils of different isotopes irradiated both in a Cd-capsule and without it. Neutron flux (thermal and epithermal) distribution in phantoms is measured using activation of Mn and Au foils, and Cu wire. Ionisation chamber (IC) measurements are performed both in-free-beam and in-phantom for determination of the neutron and gamma dose components. This toolkit has also been used at other BNCT facilities in Europe, the USA, Argentina and Japan.

  19. The requirements and development of neutron beams for neutron capture therapy of brain cancer.

    Science.gov (United States)

    Moss, R L; Aizawa, O; Beynon, D; Brugger, R; Constantine, G; Harling, O; Liu, H B; Watkins, P

    1997-05-01

    One of the two overriding conditions for successful BNCT is that there must be a sufficient number of thermal neutrons delivered to each of the boronated cells in the tumour bed (target volume). Despite the poor experience with BNCT in the USA some 40 years ago, the continued apparent success of BNCT in Japan since 1968, lead indirectly to the re-start of clinical trials on BNCT in 1994 at both Brookhaven and MIT. Similar trials will start soon at Petten in Europe. At other centres worldwide, many neutron beam designs are being proposed with either thermal or epithermal neutrons, emanating predominantly from nuclear research reactors. It is apparent that whilst the success of BNCT depends on a suitable neutron beam, there is a diversity in available designs, as well as each proposed type of neutron source, with consequently different characteristics of the emergent neutron beam. The paper presents the historical development of neutron beams used for BNCT, addresses the requirements on the types of beams, describes some of the existing designs and other proposals elsewhere and lastly, considers the broader requirements in designing NCT facilities. The focus of the paper is on treatment of brain cancer, neutron beam requirements for other types of cancer may vary.

  20. Focusing neutron beams to sub-millimeter size

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Moxana; Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Focusing neutron guides are a well-established means to significantly increase the neutron flux for the investigation of small samples or samples subject to extreme conditions such as pressure or high magnetic fields. Parabolic and elliptic guides can focus the beam in a single point beyond the guide exit with well defined beam characteristics and a gain in intensity of over 30 compared to a non-focused beam. Focusing guides find applications in elastic and inelastic neutron scattering as well as in neutron imaging to increase the spatial resolution and for magnification. The aim of the Monte Carlo simulations using McStas was to produce focal spots with a diameter of the order of 0.1 mm using supermirrors with large angles of reflection. We will discuss the results of our simulations, i.e. the gains obtained, their variation with wavelength as well as the evolution of the beam size.

  1. Neutron beam line design of a white neutron source at CSNS

    Science.gov (United States)

    Jing, Hantao; Zhang, Liying; Tang, Jingyu; Ruan, Xichao; Ning, Changjun; Yu, Yongji; Wang, Pengcheng; Li, Qiang; Ren, Jie; Tang, Hongqing; Wang, Xiangqi

    2017-09-01

    China Spallation Neutron Source (CSNS), which is under construction, is a large scientific facility dedicated mainly for multi-disciplinary research on material characterization using neutron scattering techniques. The CSNS Phase-I accelerator will deliver a proton beam with an energy of 1.6 GeV and a pulse repetition rate of 25 Hz to a tungsten target, and the beam power is 100 kW. A white neutron source using the back-streaming neutrons through the incoming proton beam channel was proposed and is under construction. The back-streaming neutrons which are very intense and have good time structure are very suitable for nuclear data measurements. The white neutron source includes an 80-m neutron beam line, two experimental halls, and also six different types of spectrometers. The physics design of the beam line is presented in this paper, which includes beam optics and beam characterization simulations, with the emphasis on obtaining extremely low background. The first-batch experiments on nuclear data measurements are expected to be conducted in late 2017.

  2. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    Appoorva G Wagh

    2008-10-01

    Bragg reflections from single crystals yield angular widths of a few arcsec for thermal neutron beams. The Bonse-Hart proposal to attain a sharp, nearly rectangular profile by Bragg reflecting neutrons multiply from a channel-cut single crystal, was realized in its totality three and a half decades later by achieving the corresponding Darwin reflection curves for 5.23 Å neutrons. This facilitated SUSANS (Super USANS) measurements in the ∼ 10-5 Å-1 range. The polarized neutron option was introduced into the SUSANS set-up by separating the up- and down-spin neutron beams by ∼ 10 arcsec with a magnetic (air) prism. The neutron angular width has recently been reduced further by an order of magnitude to ∼ 0.6 arcsec by diffracting 5.3 Å neutrons from a judiciously optimized Bragg prism. This constitutes the most parallel monochromatic neutron beam produced to date. I present the first SUSANS spectra probing the ∼ 10-6 Å-1 domain, recorded with this beam.

  3. Neutron beam monitor based on a boron-coated GEM

    Institute of Scientific and Technical Information of China (English)

    周健荣; 李仪; 孙志嘉; 刘贲; 王艳凤; 杨桂安; 周良; 许虹; 董静; 杨雷

    2011-01-01

    A new thermal neutron beam monitor with a Gas Electron Multiplier (GEM) is developed to meet the needs of the next generation of neutron facilities. A prototype chamber has been constructed with two 100 mm×100 mm GEM foils. Enriched boron-10 is coated on

  4. Neutron transport study of a beam port based dynamic neutron radiography facility

    Science.gov (United States)

    Khaial, Anas M.

    Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte

  5. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  6. The status of neutron beam utilization in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hae-Seop; Lee, Chang-Hee; Seong, Baek-Seok; Lee, Jeong-Soo [Neutron Beam Application Project, HANARO Center, Korea Atomic Energy Research Institute., Taejon (Korea)

    1999-10-01

    HANARO (30 MWth) at Korea Atomic Energy Research Institute (KAERI), which reached its first criticality on February 1995, is the multi-purpose research reactor for the application of reactor radiation in a variety of fields such as physics and materials science, irradiation technology, biomedical technology, and neutron activation analysis. For the neutron beam research, seven horizontal beam tubes of different types are available, and HANARO has performed its development plan for a basic set of neutron beam instruments since 1992. A High Resolution Powder Diffractometer (HRPD) and a Neutron Radiography Facility (NRF) has been installed and operated since 1997 and 1996 each. A Four Circle Diffractometer (FCD) and a Small Angle Neutron Spectrometer (SANS) will be operational on 1999 and in 2000 respectively, and a Polarized Neutron Spectrometer (PNS) in 2001. SANS at CN (Cold Neutron) beam tube will be operated using liquid nitrogen cooled Be filter until the cold neutron source is made available. Then, it will be moved to a guide laboratory with proper modification. Research works using the instruments in operation started by internal and external users since their full operation and have been rapidly increasing. Most in-house resources available are being used for on-going development of instruments due to rapidly increasing demands of external users nationwide. In addition to above instruments, a Triple Axis Spectrometer (TAS) and a Neutron Reflectometer which have been strongly requested by external users from universities and industries are under discussion. Then, HANARO will provide the best combination of neutron instruments to meet national research demands and international collaborations, and will be well prepared for future researches by cold neutrons. (author)

  7. Other applications of neutron beams in material sciences; Autres utilisations des faisceaux de neutrons en science des materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Novion, C.H. de

    1997-12-31

    The various applications of neutron beams are reviewed. The different mechanisms involved in neutron interaction with matter are explained. We notice that generally neutron radiation effects are unfavorable but can be turned into efficient tools to add new structures or properties to materials, silicon doping is an example. The basis principles of neutron activation analysis and neutron radiography are described. (A.C.)

  8. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Dept. of Neurosurgery National Kagawa Children' s Hospital, Zentsuji, Kagawa (Japan)

    1999-08-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  9. Design of low-energy neutron beams for boron neutron capture synovectomy

    Science.gov (United States)

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Binello, E.

    1997-02-01

    A novel application of the 10B(n, (alpha) )7Li nuclear reaction for the treatment of rheumatoid arthritis is under development. this application, called Boron Neutron Capture Synovectomy (BNCS), is briefly described here and the differences between BNCS and Boron Neutron Capture Therapy (BNCT) are discussed in detail. These differences lead to substantially altered demands on neutron beam design for each therapy application. In this paper the considerations for neutron beam design for the treatment of arthritic joints via BNCS are discussed, and comparisons with the design requirements for BNCT are made. This is followed by a description of potential moderator/reflector assemblies that are calculated to produce intense, high- quality neutron beams based on the 7Li(p,n) accelerator- based reactions. Total therapy time and therapeutic ratios are given as a function of both moderator length and boron concentration. Finally, a means of carrying out multi- directional irradiations of arthritic joints is proposed.

  10. The Spallation Neutron Source Beam Commissioning and Initial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Stuart [Argonne National Lab. (ANL), Argonne, IL (United States); Aleksandrov, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Christopher K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Assadi, Saeed [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bartoski, Dirk [University of Texas, Houston, TX (United States). Anderson Cancer Center; Blokland, Willem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Casagrande, F. [Michigan State Univ., East Lansing, MI (United States); Campisi, I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chu, C. [Michigan State Univ., East Lansing, MI (United States); Cousineau, Sarah M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crofford, Mark T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Danilov, Viatcheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deibele, Craig E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dodson, George W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feshenko, A. [Inst. for Nuclear Research (INR), Moscow (Russian Federation); Galambos, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Han, Baoxi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hardek, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holmes, Jeffrey A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holtkamp, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Howell, Matthew P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jeon, D. [Inst. for Basic Science, Daejeon (Korea); Kang, Yoon W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasemir, Kay [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Sang-Ho [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kravchuk, L. [Institute for Nuclear Research (INR), Moscow (Russian Federation); Long, Cary D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McManamy, T. [McManamy Consulting, Inc., Middlesex, MA (United States); Pelaia, II, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Piller, Chip [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Plum, Michael A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pogge, James R. [Tennessee Technological Univ., Cookeville, TN (United States); Purcell, John David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shea, T. [European Spallation Source, Lund (Sweden); Shishlo, Andrei P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sibley, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stockli, Martin P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stout, D. [Michigan State Univ., East Lansing, MI (United States); Tanke, E. [European Spallation Source, Lund (Sweden); Welton, Robert F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Y. [Michigan State Univ., East Lansing, MI (United States); Zhukov, Alexander P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The Spallation Neutron Source (SNS) accelerator delivers a one mega-Watt beam to a mercury target to produce neutrons used for neutron scattering materials research. It delivers ~ 1 GeV protons in short (< 1 us) pulses at 60 Hz. At an average power of ~ one mega-Watt, it is the highest-powered pulsed proton accelerator. The accelerator includes the first use of superconducting RF acceleration for a pulsed protons at this energy. The storage ring used to create the short time structure has record peak particle per pulse intensity. Beam commissioning took place in a staged manner during the construction phase of SNS. After the construction, neutron production operations began within a few months, and one mega-Watt operation was achieved within three years. The methods used to commission the beam and the experiences during initial operation are discussed.

  11. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  12. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons.

  13. Preliminary Research of Neutron Energy Spectrum of Thermal Neutron Beam Port for IHNI

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    IHNI with 30 kW is specially designed for Boron Neutron Capture Therapy (BNCT), it is the pool-tank reactor, UO2 with enrichment of 12.5% 235U as fuel, beryllium as reflector, light water as moderator and coolant. There are two neutron beams in the opposite side

  14. Analysis of the response of innovative neutron detectors with monoenergetic neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Romei, C.; Ciolini, R.; Mirzajani, N.; Selici, S. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa, Pisa (Italy); Di Fulvio, A.; D' Errico, F. [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa, Pisa (Italy); Yale University, New Haven, CT (United States); Souza, S. O. [Departamento de Fisica, Universidade Federal de Sergipe, Sao Cristovao (Brazil); Piotto, M. [Istituto di Ingegneria Elettronica, Computer e Telecomunicazioni, CNR, Pisa (Italy); Esposito, J.; Colautti, P. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2013-07-18

    Various neutron detectors are currently under development at the University of Pisa. The response of these devices is investigated using monoenergetic neutron beams produced at the CN accelerator of INFN Legnaro National Laboratories with thin lithium target bombarded by protons at different energies, exploiting the {sup 7}Li(p,n){sup 7}Be reaction.

  15. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  16. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  17. Neutron metrology in the HFR. Neutron and gamma metrology in the free beam of HB 11

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Paardekooper, A.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-11-01

    Results are presented of the ECN measurements at the filtered HFR beam HB11. The neutron measurements took place in the free beam at full power. Several gamma measurements were performed at full power under different conditions. The neutron spectrum was obtained by adjusting a calculated spectrum with experimental results from activation foils. The gamma data were obtained with thermoluminescent dosimeters. (author). 5 refs.; 4 figs.; 4 tabs.

  18. Advancement of German Neutron Spectrometers Relocation Project in 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Neutron scattering technique is going on in Neutron Scattering Laboratory (NSL) of China Institute of Atomic Energy (CIAE) based on China Advanced Research Reactor (CARR), which will be hopefully

  19. Development of the RRR cold neutron beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel [INVAP S.E., Bariloche, Rio Negro (Argentina)

    2002-07-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  20. BEAM INSTRUMENTATION FOR THE SPALLATION NEUTRON SOURCE RING.

    Energy Technology Data Exchange (ETDEWEB)

    WITKOVER,R.L.; CAMERON,P.R.; SHEA,T.J.; CONNOLLY,R.C.; KESSELMAN,M.

    1999-03-29

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. [1] The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10{sup -4}. A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring.

  1. Evaluation of an iron-filtered epithermal neutron beam for neutron-capture therapy.

    Science.gov (United States)

    Musolino, S V; McGinley, P H; Greenwood, R C; Kliauga, P; Fairchild, R G

    1991-01-01

    An epithermal neutron filter using iron, aluminum, and sulfur was evaluated to determine if the therapeutic performance could be improved with respect to aluminum-sulfur-based filters. An empirically optimized filter was developed that delivered a 93% pure beam of 24-keV epithermal neutrons. It was expected that a thick filter using iron with a density thickness greater than 200 g/cm2 would eliminate the excess gamma contamination found in Al-S filters. This research showed that prompt gamma production from neutron interactions in iron was the dominant dose component. Dosimetric parameters of the beam were determined from the measurement of absorbed dose in air, thermal neutron flux in a head phantom, neutron and gamma spectroscopy, and microdosimetry.

  2. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  3. Tailoring phase-space in neutron beam extraction

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaumer, S. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Brandl, G. [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Heinz Maier-Leibnitz Zentrum und Physik-Department E21, Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany); Stahn, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Panzner, T. [Material Science and Simulations, Neutrons and Muons, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Böni, P. [Physik-Department E21, Technische Universität München, James-Franck-Str. 1, D-85748 Garching (Germany)

    2015-09-01

    In view of the trend towards smaller samples and experiments under extreme conditions it is important to deliver small and homogeneous neutron beams to the sample area. For this purpose, elliptic and/or Montel mirrors are ideally suited as the phase space of the neutrons can be defined far away from the sample. Therefore, only the useful neutrons will arrive at the sample position leading to a very low background. We demonstrate the ease of designing neutron transport systems using simple numeric tools, which are verified using Monte-Carlo simulations that allow taking into account effects of gravity and finite beam size. It is shown that a significant part of the brilliance can be transferred from the moderator to the sample. Our results may have a serious impact on the design of instruments at spallation sources such as the European Spallation Source (ESS) in Lund, Sweden.

  4. Instrumentation To Handle Thermal-polarized Neutron Beams

    CERN Document Server

    Kraan, W H

    2004-01-01

    In this thesis we investigate devices needed to handle the polarization of thermal neutron beams: π/2- flippers (to start/stop Larmor precession) and π- flippers (to reverse polarization/ precession direction) and illustrate how these devices are used to investigate the properties of matter and of the neutron. The central theme is: demonstration—for the full thermal spectrum—of a special mode of Larmor precession (called “zero-field”-precession) over the neutron beam path length between two “adiabatic Radio-Frequency flippers”. This technique enables one to build neutron spin-echo spectrometers with exceedingly large precession angles, without applying magnetic fields over long distances (meters). As an extension of this demonstration, a prototype S&barbelow;pin-E&barbelow;cho instrument for S&barbelow;mall A&barbelow;ngle N&barbelow;eutron S&barbelow;cattering (SESANS) was built, based on similar flippers with s...

  5. nGEM fast neutron detectors for beam diagnostics

    Science.gov (United States)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-08-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σx=14.35 mm, σy=15.75 mm), nGEM counting efficiency (around 10-4 for 3 MeVbeam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool.

  6. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.

    Science.gov (United States)

    Wheeler, F J; Nigg, D W; Capala, J; Watkins, P R; Vroegindeweij, C; Auterinen, I; Seppälä, T; Bleuel, D

    1999-07-01

    The potential efficacy of boron neutron capture therapy (BNCT) for malignant glioma is a significant function of epithermal-neutron beam biophysical characteristics as well as boron compound biodistribution characteristics. Monte Carlo analyses were performed to evaluate the relative significance of these factors on theoretical tumor control using a standard model. The existing, well-characterized epithermal-neutron sources at the Brookhaven Medical Research Reactor (BMRR), the Petten High Flux Reactor (HFR), and the Finnish Research Reactor (FiR-1) were compared. Results for a realistic accelerator design by the E. O. Lawrence Berkeley National Laboratory (LBL) are also compared. Also the characteristics of the compound p-Boronophenylaline Fructose (BPA-F) and a hypothetical next-generation compound were used in a comparison of the BMRR and a hypothetical improved reactor. All components of dose induced by an external epithermal-neutron beam fall off quite rapidly with depth in tissue. Delivery of dose to greater depths is limited by the healthy-tissue tolerance and a reduction in the hydrogen-recoil and incident gamma dose allow for longer irradiation and greater dose at a depth. Dose at depth can also be increased with a beam that has higher neutron energy (without too high a recoil dose) and a more forward peaked angular distribution. Of the existing facilities, the FiR-1 beam has the better quality (lower hydrogen-recoil and incident gamma dose) and a penetrating neutron spectrum and was found to deliver a higher value of Tumor Control Probability (TCP) than other existing beams at shallow depth. The greater forwardness and penetration of the HFR the FiR-1 at greater depths. The hypothetical reactor and accelerator beams outperform at both shallow and greater depths. In all cases, the hypothetical compound provides a significant improvement in efficacy but it is shown that the full benefit of improved compound is not realized until the neutron beam is fully

  7. Beam choppers for neutron reflectometers at steady flux reactors

    Science.gov (United States)

    Pleshanov, N. K.

    2017-09-01

    Realizations of the TOF technique for neutron reflectometers at steady flux reactors are compared. Beam choppers for neutron reflectometers divide into choppers of type 1 (Δλ = const) and 2 (Δλ / λ = const) . It follows from Monte-Carlo simulations that choppers of type 1 do not yield to more intricate choppers of type 2, widely used at neutron reflectometers. Because of a very fast drop of neutron reflectivities with the momentum transfer q, non-optimality of measurements with a chopper of type 1 is fully compensated by better statistics at large q, and is not so much essential at small q. To vary the TOF resolution with choppers of type 1, a phasing of two discs and a turning of the system of two discs are suggested. The fluxes of neutrons with wavelengths beyond the working range and the efficiencies of their elimination by means of a bandwidth limiting prechopper are evaluated.

  8. Beam structures classical and advanced theories

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco

    2011-01-01

    Beam theories are exploited worldwide to analyze civil, mechanical, automotive, and aerospace structures. Many beam approaches have been proposed during the last centuries by eminent scientists such as Euler, Bernoulli, Navier, Timoshenko, Vlasov, etc.  Most of these models are problem dependent: they provide reliable results for a given problem, for instance a given section and cannot be applied to a different one. Beam Structures: Classical and Advanced Theories proposes a new original unified approach to beam theory that includes practically all classical and advanced models for be

  9. Water imaging in living plant by nondestructive neutron beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, M. Tomoko [Graduate School of Agricultural and Life Sciences, Univ. of Tokyo, Tokyo (Japan)

    1998-12-31

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15um. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  10. A monochromatized chopped beam of cold neutrons for low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussiere, A. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Grivot, P. (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Kossakowski, R. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Liaud, P. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Saintignon, P. de (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Schreckenbach, K. (Inst. Laue-Langevin, 38 - Grenoble (France))

    1993-07-15

    The design and performance of a monochromatized, chopped beam of cold neutrons are described. The beam is particularly suited for experiments where a low level of gamma ray and diffused neutron background is required. (orig.)

  11. Detector for advanced neutron capture experiments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Reifarth, R. (Rene); Haight, Robert C.; Hunt, L. F. (Lloyd F.); O' Donnell, J. M.; Bredeweg, T. A. (Todd A); Wilhelmy, J. B. (Jerry B.); Fowler, Malcolm M.; Vieira, D. J. (David J.); Wouters, J. M. (Jan Marc); Strottman, D.; Kaeppeler, F. (Franz K.); Heil, M.; Chamberlin, E. P. (Edwin P.)

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  12. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.

    Science.gov (United States)

    Bleuel, D L; Donahue, R J; Ludewigt, B A; Vujic, J

    1998-09-01

    The 7Li(p,n)7Be reaction has been investigated as an accelerator-driven neutron source for proton energies between 2.1 and 2.6 MeV. Epithermal neutron beams shaped by three moderator materials, Al/AlF3, 7LiF, and D2O, have been analyzed and their usefulness for boron neutron capture therapy (BNCT) treatments evaluated. Radiation transport through the moderator assembly has been simulated with the Monte Carlo N-particle code (MCNP). Fluence and dose distributions in a head phantom were calculated using BNCT treatment planning software. Depth-dose distributions and treatment times were studied as a function of proton beam energy and moderator thickness. It was found that an accelerator-based neutron source with Al/AlF3 or 7LiF as moderator material can produce depth-dose distributions superior to those calculated for a previously published neutron beam design for the Brookhaven Medical Research Reactor, achieving up to approximately 50% higher doses near the midline of the brain. For a single beam treatment, a proton beam current of 20 mA, and a 7LiF moderator, the treatment time was estimated to be about 40 min. The tumor dose deposited at a depth of 8 cm was calculated to be about 21 Gy-Eq.

  13. Neutron Beams from Deuteron Breakup at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, M.A.; Ahle, L.; Bleuel, D.L.; Bernstein, L.; Braquest, B.R.; Cerny, J.; Heilbronn, L.H.; Jewett, C.C.; Thompson, I.; Wilson, B.

    2007-07-31

    Accelerator-based neutron sources offer many advantages, in particular tunability of the neutron beam in energy and width to match the needs of the application. Using a recently constructed neutron beam line at the 88-Inch Cyclotron at LBNL, tunable high-intensity sources of quasi-monoenergetic and broad spectrum neutrons from deuteron breakup are under development for a variety of applications.

  14. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  15. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.

    Science.gov (United States)

    Allen, D A; Beynon, T D; Green, S; James, N D

    1999-01-01

    This paper is concerned with the proposed Birmingham accelerator-based epithermal neutron beam for boron neutron capture therapy (BNCT). Details of the final moderator design, such as beam delimiter, shield, and beam exit surface shape are considered. Monte Carlo radiation transport simulations with a head and body phantom have shown that a simple flat moderator beam exit surface is preferable to the previously envisioned spherical design. Dose rates to individual body organs during treatment have been calculated using a standard MIRD phantom. We have shown that a simple polyethylene shield, doped with natural lithium, is sufficient to provide adequate protection to the rest of the body during head irradiations. The effect upon the head phantom dose distributions of the use of such a shield to delimit the therapy beam has been evaluated.

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  17. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  18. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    Science.gov (United States)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  19. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  20. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  1. Performance characteristics of the MIT fission converter based epithermal neutron beam.

    Science.gov (United States)

    Riley, K J; Binns, P J; Harling, O K

    2003-04-07

    A pre-clinical characterization of the first fission converter based epithermal neutron beam (FCB) designed for boron neutron capture therapy (BNCT) has been performed. Calculated design parameters describing the physical performance of the aluminium and Teflon filtered beam were confirmed from neutron fluence and absorbed dose rate measurements performed with activation foils and paired ionization chambers. The facility currently provides an epithermal neutron flux of 4.6 x 10(9) n cm(-2) s(-1) in-air at the patient position that makes it the most intense BNCT source in the world. This epithermal neutron flux is accompanied by very low specific photon and fast neutron absorbed doses of 3.5 +/- 0.5 and 1.4 +/- 0.2 x 10(-13) Gy cm2, respectively. A therapeutic dose rate of 1.7 RBE Gy min(-1) is achievable at the advantage depth of 97 mm when boronated phenylalanine (BPA) is used as the delivery agent, giving an average therapeutic ratio of 5.7. In clinical trials of normal tissue tolerance when using the FCB, the effective prescribed dose is due principally to neutron interactions with the nonselectively absorbed BPA present in brain. If an advanced compound is considered, the dose to brain would instead be predominately from the photon kerma induced by thermal neutron capture in hydrogen and advantage parameters of 0.88 Gy min(-1), 121 mm and 10.8 would be realized for the therapeutic dose rate, advantage depth and therapeutic ratio, respectively. This study confirms the success of a new approach to producing a high intensity, high purity epithermal neutron source that attains near optimal physical performance and which is well suited to exploit the next generation of boron delivery agents.

  2. Study of an integrated electronic monitor for neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Barelaud, B.; Nexon-Mokhtari, F.; Barrau, C.; Decossac, J.L.; Vareille, J.C. [Limoges Univ., 87 (France); Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes

    1994-12-31

    Many neutron beams monitors in 10 keV - 50 keV range are perturbed by gamma radiation impact. This new monitor uses two silicon (junction) diodes operating coincidence detection, combined with an electronic threshold to eliminate gamma background noise. The results and analyses presented here only concern feasibility studies. (D.L.). 11 refs.

  3. Beam asymmetry $\\Sigma$ measurements on the $\\pi^-$ photoproduction off neutrons

    CERN Document Server

    Mandaglio, G; Manganaro, M; Bellini, V; Bocquet, J P; Casano, L; D'Angelo, A; Di Salvo, R; Fantini, A; Franco, D; Gervino, G; Ghio, F; Giardina, G; Girolami, B; Giusa, A; Ignatov, A; Lapik, A; Sandri, P Levi; Lleres, A; Moricciani, D; Mushkarenkov, A N; Nedorezov, V; Randieri, C; Rebreyend, D; Rudnev, N V; Russo, G; Schaerf, C; Sperduto, M L; Sutera, M C; Turinge, A; Vegna, V; Briscoe, W J; Strakovsky, I I

    2010-01-01

    The $\\Sigma$ beam asymmetry in the photoproduction of negative pions from quasi-free neutrons in a deuterium target was measured at Graal in the energy interval 700 - 1500 MeV and a wide angular range, using polarized and tagged photons. The results are compared with recent partial wave analyses.

  4. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Ali Pazirandeh

    2006-06-01

    Full Text Available  In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b, the treatment of deep seated tumors such as gliobelastoma multiform (GBM requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The optimal neutron energy for deep seated tumors depends on the size and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  5. Feasibility of sealed D-T neutron generator as neutron source for liver BNCT and its beam shaping assembly.

    Science.gov (United States)

    Liu, Zheng; Li, Gang; Liu, Linmao

    2014-04-01

    This paper involves the feasibility of boron neutron capture therapy (BNCT) for liver tumor with four sealed neutron generators as neutron source. Two generators are placed on each side of the liver. The high energy of these emitted neutrons should be reduced by designing a beam shaping assembly (BSA) to make them useable for BNCT. However, the neutron flux decreases as neutrons pass through different materials of BSA. Therefore, it is essential to find ways to increase the neutron flux. In this paper, the feasibility of using low enrichment uranium as a neutron multiplier is investigated to increase the number of neutrons emitted from D-T neutron generators. The neutron spectrum related to our system has a proper epithermal flux, and the fast and thermal neutron fluxes comply with the IAEA recommended values.

  6. Neutron Beam Effects on Spin Exchange Polarized He-3

    CERN Document Server

    Sharma, M; Andersen, K H; Barron-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-01-01

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal-spin-exchange polarized He-3 cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable He-3 polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at LANSCE and ILL. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as the square root of the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the recombination-limited ion concentration, but is much larger than expected from earlier work.

  7. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  8. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  9. A measurement of the absolute neutron beam polarization produced by an optically pumped sup 3 He neutron spin filter

    CERN Document Server

    Rich, D R; Crawford, B E; Delheij, P P J; Espy, M A; Haseyama, T; Jones, G; Keith, C D; Knudson, J; Leuschner, M B; Masaike, A; Masuda, Y; Matsuda, Y; Penttilae, S I; Pomeroy, V R; Smith, D A; Snow, W M; Szymanski, J J; Stephenson, S L; Thompson, A K; Yuan, V

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized sup 3 He spin filter and a relative transmission measurement technique. sup 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.

  10. Design and simulations of the neutron dump for the back-streaming white neutron beam at CSNS

    Science.gov (United States)

    Zhang, L. Y.; Jing, H. T.; Tang, J. Y.; Wang, X. Q.

    2016-10-01

    For nuclear data measurements with a white neutron source, to control the background at the detector is a key issue. The neutron dump which locates at the end of the white neutron beam line at CSNS has a very important impact to the neutron and gamma backgrounds in the endstation. A sophisticated neutron dump was designed to reduce the backgrounds to the level of about 10-8 relative to the neutron flux. In this paper, the method to suppress both neutron and gamma backgrounds near a white-spectrum neutron dump is introduced. The optimized geometry structure and materials of the dump are described, and the neutron and gamma space distributions have been calculated by using the FLUKA code for different operation settings which are defined by beam spots of Φ30 mm, Φ60 mm and 90 mm×90 mm, respectively.

  11. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    Science.gov (United States)

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  12. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  14. Vertical neutron beam focusing with bent mosaic crystals

    Science.gov (United States)

    Courtois, P.

    2016-09-01

    We report on the performance of bent mosaic crystals when used as a vertical focusing neutron monochromator. High-quality Cu(200) and Ge(335) mosaic crystals with a controlled curvature have been successfully produced at the ILL using plastic deformation at high temperature. As expected from simple geometrical considerations, they exhibit excellent properties for focusing a neutron beam vertically when examined on a high-resolution diffractometer installed on an m = 1 thermal neutron guide. Both Cu(200) and Ge(335) curved crystals allow a significant reduction of the focal image size at the sample position compared with a flat crystal with the same defect concentration. As a result, significant gain factors of 6 to 7 in intensity were obtained by replacing a flat crystal of 30 mm with a bent crystal.

  15. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  16. Beam-transport optimization for cold-neutron spectrometer

    Directory of Open Access Journals (Sweden)

    Nakajima Kenji

    2015-01-01

    Full Text Available We report the design of the beam-transport system (especially the vertical geometry for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  17. Neutronics Assessments for a RIA Fragmentation Line Beam Dump Concept

    CERN Document Server

    Boles, Jason; Reyes, Susana; Stein, Werner

    2005-01-01

    Heavy ion and radiation transport calculations are in progress for conceptual beam dump designs for the fragmentation line of the proposed Rare Isotope Accelerator (RIA). Using the computer code PHITS, a preliminary design of a motor-driven rotating wheel beam dump and adjacent downstream multipole has been modeled. Selected results of these calculations are given, including neutron and proton flux in the wheel, absorbed dose and displacements per atom in the hub materials, and heating from prompt radiation and from decay heat in the multipole.

  18. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  19. Simulation study of accelerator based quasi-mono-energetic epithermal neutron beams for BNCT.

    Science.gov (United States)

    Adib, M; Habib, N; Bashter, I I; El-Mesiry, M S; Mansy, M S

    2016-01-01

    Filtered neutron techniques were applied to produce quasi-mono-energetic neutron beams in the energy range of 1.5-7.5 keV at the accelerator port using the generated neutron spectrum from a Li (p, n) Be reaction. A simulation study was performed to characterize the filter components and transmitted beam lines. The feature of the filtered beams is detailed in terms of optimal thickness of the primary and additive components. A computer code named "QMNB-AS" was developed to carry out the required calculations. The filtered neutron beams had high purity and intensity with low contamination from the accompanying thermal, fast neutrons and γ-rays.

  20. Beams of gravitationally bound ultracold neutrons in rough waveguides

    Science.gov (United States)

    Escobar, M.; Meyerovich, A. E.

    2011-03-01

    We investigate the propagation of ultracold neutrons through a rough waveguide in conjunction with recent experiments in which the ultracold neutrons were beamed between a perfect mirror and a rough scatterer and absorber. The main goal is to find a way to resolve the lowest gravitationally quantized discrete states in the peV range. We compare the neutron count for various types of mirrors with Gaussian, power-law, and exponential correlation functions of surface inhomogeneities. The main conclusion is that all the information about inhomogeneities, including their amplitude, correlation radius, and the rate of decay of the correlation function, enter the exit neutron count via just a single constant Φ, which effectively renormalizes the amplitude of roughness. To observe well-defined quantum steps, one should have an experimental setup with Φ>40. For a wide variety of correlation functions, the constant Φ is proportional to the square of the amplitude of the surface roughness and is inversely proportional to the square root of the correlation radius. The strong dependence of Φ on roughness parameters and the shape of the correlation function opens a novel way for improving the resolution of gravitationally bound states by optimizing the roughness pattern without reverting to an undesirable strong roughness. We discuss how to optimize the scatterer and absorber by first generating numerically the desired roughness profile and then transferring it to the mirror. We also study the effect of beam preparation on the initial occupancies of gravitational states before the beam enters the waveguide. It turns out that there are simple ways to manipulate the beam in front of the waveguide that can help to resolve the gravitationally bound quantum states. Our results are in good agreement with available experimental data.

  1. Skin-sparing effects of neutron beam filtering materials.

    Science.gov (United States)

    Otte, V A; Almond, P R; Smathers, J B; Attix, F H

    1987-01-01

    The skin-sparing effects of several filtering materials for fast neutron beams were studied under various conditions. A parallel-plate ionization chamber was used for the measurements. The parameters which were studied included field size, distance from filter to ion chamber, filter material, and filter thickness. On the basis of this work, Teflon (polytetrafluoroethylene) was chosen for fabrication of flattening filters and wedges.

  2. Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD Core and Addition of New Fuel Elements

    Directory of Open Access Journals (Sweden)

    Aaron E. Craft

    2016-02-01

    Full Text Available The neutron radiography reactor (NRAD is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D = 125 is 5.96 × 106 n/cm2/s with a 2σ standard error of 2.90 × 105 n/cm2/s. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

  3. Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures

    OpenAIRE

    Kozhevnikov, S. V.; Ott, F.; Semenova, E.

    2016-01-01

    The Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.

  4. Neutron Zeeman beam-splitting for the investigation of magnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, JINR, 141980, Dubna (Russian Federation); Ott, F. [Laboratoire Léon Brillouin CEA/CNRS, IRAMIS, Université Paris-Saclay, F-91191, Gif sur Yvette (France); Semenova, E. [Condensed Matter Department, Faculty of Physics, Tver State University, 170002, Tver (Russian Federation)

    2017-03-01

    Zeeman spatial splitting of a neutron beam takes place during a neutron spin-flip in magnetically non-collinear systems at grazing incidence geometry. We apply the neutron beam-splitting method for the investigation of magnetically non-collinear clusters of submicron size in a thin film. The experimental results are compared with ones obtained by other methods.

  5. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    Science.gov (United States)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  6. Tagged fast neutron beams En > 6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Favela, F.; Huerta, A.; Santa Rita, P.; Ramos, A. T.; Lucio, O. de; Andrade, E.; Ortiz, M. E.; Araujo, V.; Chávez, E., E-mail: chavez@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000 México (Mexico); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D. F. 01000 México (Mexico); INFN-Sezione di Catania, Via Santa Sofia 64 I-95123, Catania (Italy); Murillo, G.; Policroniades, R. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Edo. Méx., 52750 (Mexico); Varela, A. [Instituto de Ciencias de la Atmósfera, UNAM (Mexico)

    2015-07-23

    Controlled flux of neutrons are produced through the {sup 14}N(d,n){sup 15}O nuclear reaction. Deuteron beams (2-4 MeV) are delivered by the CN-Van de Graaff accelerator and directed with full intensity to our Nitrogen target at SUGAR (SUpersonic GAs jet taRget). Each neutron is electronically tagged by the detection of the associated{sup 15}O. Its energy and direction are known and “beams” of fast monochromatic tagged neutrons (E{sub n}> 6 MeV) are available for basic research and applied work. MONDE is a large area (158 × 63 cm{sup 2}) plastic scintillating slab (5 cm thick), viewed by 16 PMTs from the sides. Fast neutrons (MeV) entering the detector will produce a recoiling proton that induces a light spark at the spot. Signals from the 16 detectors are processed to deduce the position of the spark. Time logic signals from both the {sup 15}O detector and MONDE are combined to deduce a time of flight (TOF) signal. Finally, the position information together with the TOF yields the full momentum vector of each detected neutron.

  7. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line

    OpenAIRE

    Elham Bavarnegin; Alireza Sadremomtaz; Hossein Khalafi; Yaser Kasesaz

    2016-01-01

    Aim: Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. Materials and Methods: The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Results: Different dose components have been measured in a head phantom which has been designed an...

  8. Intercomparison of Neutron Beam Guides for Cold Neutron Activation Station at HANARO using McStas/VITESS/RESTRAX Codes

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The HANARO (KAERI) research reactor has been developed a neutron guide system for cold neutron (CN) research facilities since July, 2003. The neutron guide system plays an important role in transporting cold neutrons from the CN source to the neutron facilities as CN-NDP, CN-PGAA, SANS, etc. The CN activation station is being installed in the HANARO cold-neutron research project. The CN-NDP and CN-PGAA were selected as two facilities using at this station. At the end position of CG1 and CG2B beam guides, the CN-NDP and CN-PGAA will be installed in the CN guide hall. In order to predict the neutron flux and intensity values at the CG1 and CG2B beam guides, the simulation results of neutron flux at the CG1 and CG2B beam guides are presented by using several Monte Carlo (MC) neutron ray-tracing simulation codes. The intercomparison of neutron flux values between McStas, VITESS and RESTRAX are performed for getting fairly correct results at two neutron beam guides

  9. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications)

    CERN Document Server

    Varela-G, A

    2003-01-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the sup 2 H(d, n) sup 3 He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  10. Accelerator-based epithermal neutron beam design for neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Zhou, X L; Shefer, R E; Klinkowstein, R E

    1992-01-01

    Recent interest in the production of epithermal neutrons for use in boron neutron capture therapy (BNCT) has promoted an investigation into the feasibility of generating such neutrons with a high current proton accelerator. Energetic protons (2.5 MeV) on a 7Li target produce a spectrum of neutrons with maximum energy of roughly 800 keV. A number of combinations of D2O moderator, lead reflector, 6Li thermal neutron filtration, and D2O/6Li shielding will result in a useful epithermal flux of 1.6 x 10(8) n/s at the patient position. The neutron beam is capable of delivering 3000 RBE-cGy to a tumor at a depth of 7.5 cm in a total treatment time of 60-93 min (depending on RBE values used and based on a 24-cm diameter x 19-cm length D2O moderator). Treatment of deeper tumors with therapeutic advantage would also be possible. Maximum advantage depths (RBE weighted) of 8.2-9.2 (again depending on RBE values and precise moderator configuration) are obtained in a right-circular cylindrical phantom composed of brain-equivalent material with an advantage ratio of 4.7-6.3. A tandem cascade accelerator (TCA), designed and constructed at Science Research Laboratory (SRL) in Somerville MA, can provide the required proton beam parameters for BNCT of deep-seated tumors. An optimized configuration of materials required to shift the accelerator neutron spectrum down to therapeutically useful energies has been designed using Monte Carlo simulation in the Whitaker College Biomedical Imaging and Computation Laboratory at MIT. Actual construction of the moderator/reflector assembly is currently underway.

  11. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  12. Advanced LIGO: non-Gaussian beams

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Erika [California Institute of Technology, Pasadena, CA (United States); O' Shaugnessy, Richard [California Institute of Technology, Pasadena, CA (United States); Thorne, Kip [California Institute of Technology, Pasadena, CA (United States); Willems, Phil [California Institute of Technology, Pasadena, CA (United States); Strigin, Sergey [Moscow State University, Moscow (Russian Federation); Vyatchanin, Sergey [Moscow State University, Moscow (Russian Federation)

    2004-03-07

    By using non-Gaussian, flat-topped beams in the advanced gravitational wave interferometers currently being designed, one can reduce the impact on the interferometer sensitivity of a variety of fundamental disturbances (thermoelastic noise, noise in mirror coatings, thermal lensing, etc). This may make beating the standard quantum limit an achievable goal.

  13. Advanced LIGO: non-Gaussian beams

    OpenAIRE

    D’Ambrosio, Erika; O’Shaugnessy, Richard; Thorne, Kip; Willems, Phil; Strigin, Sergey; Vyatchanin, Sergey

    2004-01-01

    By using non-Gaussian, flat-topped beams in the advanced gravitational wave interferometers currently being designed, one can reduce the impact on the interferometer sensitivity of a variety of fundamental disturbances (thermoelastic noise, noise in mirror coatings, thermal lensing, etc). This may make beating the standard quantum limit an achievable goal.

  14. Neutron beam studies for a medical therapy reactor.

    Science.gov (United States)

    Neuman, W A

    1990-01-01

    A conceptual design of a Medical Therapy Reactor (MTR) for neutron capture therapy (NCT) has been performed at the Idaho National Engineering Laboratory (INEL). The initial emphasis of the conceptual design was toward the treatment of glioblastoma multiforme and other presently incurable cancers. The design goal of the facility is to provide routine patient treatments both in brief time intervals (approximately 10 minutes) and inexpensively. The conceptual study has shown this goal to be achievable by locating an MTR at a major medical facility. This paper addresses the next step in the conceptual design process: a guide to the optimization of the epithermal-neutron filter and collimator assembly for the treatment of brain tumors. The current scope includes the sensitivity of the treatment beam to variations in filter length, gamma shield length, and collimator lengths as well as exit beam aperture size. The study shows the areas which can provide the greatest latitude in improving beam intensity and quality. Suggestions are given for future areas of optimization of beam filtering and collimation.

  15. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  16. ISOL Beams of Neutron-Rich Oxygen Isotopes

    CERN Document Server

    Köster, U; Bergmann, U; Catherall, R; Cederkäll, J; Dillmann, I; Dubois, M; Durantel, F; Fraile-Prieto, L M; Franchoo, S; Gaubert, G; Gaudefroy, L; Hallmann, O; Huet-Equilbec, C; Jacquot, B; Jardin, P; Kratz, K L; Lecesne, N; Leroy, R; López, A; Maunoury, L; Pacquet, J Y; Pfeiffer, B; Saint-Laurent, M G; Stodel, C; Villari, A C C; Weissman, L

    2005-01-01

    ISOL beams of $19-22^$O were produced at ISOLDE and GANIL. At ISOLDE the neutron-rich oxygen isotopes are produced by 1.4GeV proton-induced reactionsin a UC_X/graphite target. The target is connected via a water-cooled transfer line (to retain all non-volatile isobars) to an ISOLDE type FEBIAD ion source wherethe released CO is dominantly ionized as CO^+, $^19-22$O beams were also produced at SPIRAL (GANIL). A 77.5 MeV/nucleon $^36$S beam was fragmented in a thick graphite target, coupled by a cold tranfer tube to an ECR ion source which ionizes the released CO dominantly as O^+ and CO+.

  17. Non-classical neutron beams for fundamental and solid state research

    Indian Academy of Sciences (India)

    H Rauch

    2008-10-01

    The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed.

  18. Advanced Neutron Source radiological design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  19. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  20. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Croci, G.; Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Rebai, M.; Cippo, E. Perelli; Gorini, G. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano, Italy and INFN, Sez. di Milano-Bicocca, Milano (Italy); Cazzaniga, C. [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca, Milano (Italy); Palma, M. Dalla; Pasqualotto, R.; Tollin, M. [Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova (Italy); Grosso, G.; Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Murtas, F.; Claps, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Roma) (Italy); Cavenago, M. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy)

    2014-08-21

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  1. GEANT4 used for neutron beam design of a neutron imaging facility at TRIGA reactor in Morocco

    Science.gov (United States)

    Ouardi, A.; Machmach, A.; Alami, R.; Bensitel, A.; Hommada, A.

    2011-09-01

    Neutron imaging has a broad scope of applications and has played a pivotal role in visualizing and quantifying hydrogenous masses in metallic matrices. The field continues to expand into new applications with the installation of new neutron imaging facilities. In this scope, a neutron imaging facility for computed tomography and real-time neutron radiography is currently being developed around 2.0MW TRIGA MARK-II reactor at Maamora Nuclear Research Center in Morocco (Reuscher et al., 1990 [1]; de Menezes et al., 2003 [2]; Deinert et al., 2005 [3]). The neutron imaging facility consists of neutron collimator, real-time neutron imaging system and imaging process systems. In order to reduce the gamma-ray content in the neutron beam, the tangential channel was selected. For power of 250 kW, the corresponding thermal neutron flux measured at the inlet of the tangential channel is around 3×10 11 ncm 2/s. This facility will be based on a conical neutron collimator with two circular diaphragms with diameters of 4 and 2 cm corresponding to L/D-ratio of 165 and 325, respectively. These diaphragms' sizes allow reaching a compromise between good flux and efficient L/D-ratio. Convergent-divergent collimator geometry has been adopted. The beam line consists of a gamma filter, fast neutrons filter, neutron moderator, neutron and gamma shutters, biological shielding around the collimator and several stages of neutron collimator. Monte Carlo calculations by a fully 3D numerical code GEANT4 were used to design the neutron beam line ( http://www.info.cern.ch/asd/geant4/geant4.html[4]). To enhance the neutron thermal beam in terms of quality, several materials, mainly bismuth (Bi) and sapphire (Al 2O 3) were examined as gamma and neutron filters respectively. The GEANT4 simulations showed that the gamma and epithermal and fast neutron could be filtered using the bismuth (Bi) and sapphire (Al 2O 3) filters, respectively. To get a good cadmium ratio, GEANT 4 simulations were used to

  2. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab

    2001-06-01

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to {gamma}-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x10{sup 8} n/cm{sup -2}/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for {sup 10}B(n, {alpha}) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  3. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.

    Science.gov (United States)

    Gierga, D P; Yanch, J C; Shefer, R E

    2000-01-01

    A potential application of the 10B(n, alpha)7Li nuclear reaction for the treatment of rheumatoid arthritis, termed Boron Neutron Capture Synovectomy (BNCS), is under investigation. In an arthritic joint, the synovial lining becomes inflamed and is a source of great pain and discomfort for the afflicted patient. The goal of BNCS is to ablate the synovium, thereby eliminating the symptoms of the arthritis. A BNCS treatment would consist of an intra-articular injection of boron followed by neutron irradiation of the joint. Monte Carlo radiation transport calculations have been used to develop an accelerator-based epithermal neutron beam line for BNCS treatments. The model includes a moderator/reflector assembly, neutron producing target, target cooling system, and arthritic joint phantom. Single and parallel opposed beam irradiations have been modeled for the human knee, human finger, and rabbit knee joints. Additional reflectors, placed to the side and back of the joint, have been added to the model and have been shown to improve treatment times and skin doses by about a factor of 2. Several neutron-producing charged particle reactions have been examined for BNCS, including the 9Be(p,n) reaction at proton energies of 4 and 3.7 MeV, the 9Be(d,n) reaction at deuteron energies of 1.5 and 2.6 MeV, and the 7Li(p,n) reaction at a proton energy of 2.5 MeV. For an accelerator beam current of 1 mA and synovial boron uptake of 1000 ppm, the time to deliver a therapy dose of 10,000 RBEcGy ranges from 3 to 48 min, depending on the treated joint and the neutron producing charged particle reaction. The whole-body effective dose that a human would incur during a knee treatment has been estimated to be 3.6 rem or 0.75 rem, for 1000 ppm or 19,000 ppm synovial boron uptake, respectively, although the shielding configuration has not yet been optimized. The Monte Carlo design process culminated in the construction, installation, and testing of a dedicated BNCS beam line on the high

  4. Design of a californium-based epithermal neutron beam for neutron capture therapy.

    Science.gov (United States)

    Yanch, J C; Kim, J K; Wilson, M J

    1993-08-01

    The potential of the spontaneously fissioning isotope, 252Cf, to provide epithermal neutrons for use in boron neutron capture therapy (BNCT) has been investigated using Monte Carlo simulation. The Monte Carlo code MCNP was used to design an assembly composed of a 26 cm long, 11 cm radius cylindrical D2O moderator followed by a 64 cm long Al filter. Lithium filters are placed between the moderator and the filter and between the Al and the patient. A reflector surrounding the moderator/filter assembly is required in order to maintain adequate therapy flux at the patient position. An ellipsoidal phantom composed of skull- and brain-equivalent material was used to determine the dosimetric effect of this beam. It was found that both advantage depths and advantage ratios compare very favourably with reactor and accelerator epithermal neutron sources. The dose rate obtainable, on the other hand, is 4.1 RBE cGy min-1, based on a very large (1.0 g) source of 252Cf. This dose rate is two to five times lower than those provided by existing reactor beams and can be viewed as a drawback of using 252Cf as a neutron source. Radioisotope sources, however, do offer the advantage of in-hospital installation.

  5. Advanced digital detectors for neutron imaging.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  6. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities.

    Science.gov (United States)

    Mansy, M S; Bashter, I I; El-Mesiry, M S; Habib, N; Adib, M

    2015-03-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5-133keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named "QMNB" was developed in the "MATLAB" programming language to perform the required calculations.

  7. The neutron texture diffractometer at the China Advanced Research Reactor

    Science.gov (United States)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  8. Advancement of neutron radiography technique in JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Masahito [Center for Neutron Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-08-01

    The JRR-3M thermal neutron radiography facility (JRR-3M TNRF) was completed in the JRR-3M of the Japan Atomic Energy Research Institute in 1991 and has been utilized as research tools for various kinds of research fields such as thermal hydraulic researches, agricultural researches, medical researches, archaeological researches and so on. High performance of the JRR-3M TNRF such as high neutron flux, high collimator ratio and wide radiographing field has enabled advanced researches and stimulated developments of advanced neutron radiography (NR) systems for higher spatial resolution and for higher temporal resolution. Static NR systems using neutron imaging plates or cooled CCD camera with high spatial resolution, a real-time NR system using a silicon intensifier target tube camera and a high-frame-rate NR system using a combination of an image intensifier and a high speed digital video camera with high temporal resolution have been developed to fill the requirements from researchers. (author)

  9. Designing an epithermal neutron beam for boron neutron capture therapy for a DIDO type reactor using MCNP

    Science.gov (United States)

    Ross, D.; Constantine, G.; Weaver, D. R.; Beynon, T. D.

    1993-10-01

    This paper describes work undertaken to design an epithermal neutron beam for a DIDO type reactor for use in boron neutron capture therapy, a form of cancer treatment. It involved extensive use of MCNP, a Monte Carlo computer code. Initially, calculations were made with MCNP to simulate earlier experiments with an epithermal beam on the DIDO reactor. This comparison made it possible both to validate the Monte Carlo modelling of the reactor and to gain an insight into the important features of the simulation. Following this, MCNP was used to design a filtered epithermal neutron beam facility for DIDO's largest beam tube, a 13.7 cm radius horizontal tube which extends radially away from the core. First a selection was made of the optimum filter components for the beam. Then the research concentrated on combining these filter elements to construct a practical epithermal beam design. The results suggest that the optimum method of generating the epithermal neutron source is to employ a filter combination consisting principally of liquid argon with the addition of cadmium, aluminium, titanium and possibly tin. The calculations also show that the resultant neutron beam would have a flux greater than 1.0 × 10 9 n cm -2 s -1 and have sufficiently low fast-neutron and gamma-ray contamination.

  10. Renovation of epithermal neutron beam for BNCT at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.-W.H. E-mail: ywhliu@ess.nthu.edu.tw; Huang, T.T.; Jiang, S.H.; Liu, H.M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1 cm)+Al(10 cm)+FLUENTAL{sup TM}(16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1 cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li{sub 2}CO{sub 3}-PE at the end. The collimator is surrounded by Li{sub 2}CO{sub 3}-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi{sub epi}=3.4x10{sup 9} n/cm{sup 2}/s, D{sub f}/phi{sub epi}=2.8x10{sup -11} cGy cm{sup 2}/n, D{sub {gamma}}/phi{sub epi}=1.3x10{sup -11} cGy cm{sup 2}/n, and J{sub +}/phi= 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004.

  11. Renovation of epithermal neutron beam for BNCT at THOR.

    Science.gov (United States)

    Liu, Y-W H; Huang, T T; Jiang, S H; Liu, H M

    2004-11-01

    Heading for possible use for clinical trial, THOR (Tsing Hua Open-pool Reactor) at Taiwan was shutdown for renovation of a new epithermal neutron beam in January 2003. In November 2003, concrete cutting was finished for closer distance from core and larger treatment room. This article presents the design base that the construction of the new beam is based on. The filter/moderator design along the beam is Cd(0.1cm)+Al(10 cm)+FLUENTAL (16 cm)+Al(10 cm)+FLUENTAL(24 cm)+Void(18 cm)+Cd(0.1cm)+Bi(10 cm) with 6 cm Pb as reflector. Following the filter/moderator is an 88 cm long, 6 cm thick Bi-lined collimator with Li(2)CO(3)-PE at the end. The collimator is surrounded by Li(2)CO(3)-PE and Pb. The calculated beam parameters under 2 MW at the beam exit is phi(epi) = 3.4 x 10(9) n/cm(2)/s, Df/phi(epi) = 2.8 x 10(-11) cGy cm(2)/n, Dgamma/phi(epi) = 1.3 x 10(-11) cGy cm(2)/n, and J+/phi = 0.8. For a phantom placed 10 cm from beam exit, MCNP calculation shows that the advantage depth is 8.9 cm, and advantage ratio is 5.6 if boron concentration in tumor and normal tissue are assumed to be 65 and 18 ppm. The maximum dose rate for normal tissue is 50 cGy/min. The maximum therapeutic ratio is 6. The construction of the beam is scheduled to be finished by the end of April 2004.

  12. Optimization of the epithermal neutron beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Hu, Jih-Perng; Reciniello, Richard N; Holden, Norman E

    2004-05-01

    The use of epithermal neutron beam in clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumors had been carried out for half a decade at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new BNCT protocols. Details of the conceptual design to produce a highly intensified and focused neutron beam with less gamma and neutron contamination in tissues are presented here for their potential applicability to other reactor facilities. Neutron-photon coupled Monte Carlo calculations were used to predict the flux, current, heating, and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  13. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    Science.gov (United States)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  14. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  15. ILL polarised hot-neutron beam facility D3

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France)]. E-mail: lelievre@ill.fr; Bourgeat-Lami, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Gibert, Y. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Kernavanois, N. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Locatelli, J. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Mary, T. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Pastrello, G. [AZ-Systeme, 38170 Seyssinet-Pariset (France); Petukhov, A. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Pujol, S. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Rouques, R. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Thomas, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Thomas, M. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France); Tasset, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, Cedex 9, 38042 Grenoble (France)

    2005-02-15

    D3 is a very comprehensive polarised beam facility at the renewed hot neutron source of the Institut Laue-Langevin (ILL). In magnetic field up to 10T, it exploits the spin dependency of the neutron scattering cross-section for determining unpaired electron magnetisation in crystals. The technique applies very successfully to molecular compounds, heavy fermions, high-Tc superconductors, transition metals and actinide alloys.Within the frame of the ILL Millennium Programme, we have recently added polarisation analysis by taking advantage of {sup 3}He spin filters and built a dedicated third-generation Cryopad for carrying out spherical neutron polarimetry experiments. In the case of magnetic structures, this leads to the direct determination of the magnetic interaction vector. Hence, D3 has become one of the most powerful tool for solving complex AF structures that had proven to be intractable when employing other techniques. Moreover, when the magnetic and nuclear scattering occur at the same position in the reciprocal space, it allows a precise determination of the AF magnetisation distributions.D3 can also be used for many purposes other than diffraction experiments, e.g. the search for the T-odd asymmetry of light particle emission in Pu239 ternary fission.

  16. First platinum moderated positron beam based on neutron capture

    CERN Document Server

    Hugenschmidt, C; Repper, R; Schreckenbach, K; Sperr, P; Triftshaeuser, W

    2002-01-01

    A positron beam based on absorption of high energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as gamma-e sup + e sup - -converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV gamma-radiation of the annihilating positrons. The posi...

  17. Polarized neutron beam properties for measuring parity-violating spin rotation in liquid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Micherdzinska, A.M., E-mail: amicherd@gwu.ed [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); George Washington University, Washington, DC 20052 (United States); Bass, C.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Bass, T.D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Gan, K. [George Washington University, Washington, DC 20052 (United States); Luo, D. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Markoff, D.M. [North Carolina Central University, Durham, NC 27707 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Opper, A.K. [George Washington University, Washington, DC 20052 (United States); Sharapov, E.I. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Snow, W.M. [Indiana University/IU Center for Exploration of Energy and Matter, Bloomington, IN 47408 (United States); Swanson, H.E. [University of Washington/CENPA, Seattle, WA 98195 (United States); Zhumabekova, V. [Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050038 Almaty (Kazakhstan)

    2011-03-01

    Measurements of parity-violating neutron spin rotation can provide insight into the poorly understood nucleon-nucleon weak interaction. Because the expected rotation angle per unit length is small (10{sup -7} rad/m), several properties of the polarized cold neutron beam phase space and the neutron optical elements of the polarimeter must be measured to quantify possible systematic effects. This paper presents (1) an analysis of a class of possible systematic uncertainties in neutron spin rotation measurements associated with the neutron polarimetry, and (2) measurements of the relevant neutron beam properties (intensity distribution, energy spectrum, and the product of the neutron beam polarization and the analyzing power as a function of the beam phase space properties) on the NG-6 cold neutron beam-line at the National Institute of Standards and Technology Center for Neutron Research. We conclude that the phase space nonuniformities of the polarimeter in this beam are small enough that a parity-violating neutron spin rotation measurement in n-{sup 4}He with systematic uncertainties at the 10{sup -7} rad/m level is possible.

  18. Simulation of the Production of Secondary Particles from a Neutron Beam on Polyethylene Targets using the GEANT4 Simulation Tool

    CERN Document Server

    Ilgner, C

    2003-01-01

    In view of a beam test of RadFET semiconductor detectors and optically stimulated luminescence (OSL) detectors as on-line dosimeters for radiation monitoring purposes in the caverns of the Large Hadron Collider (LHC) experiments, a simulation on the production of secondary particles from a neutron beam on a polyethylene target was carried out. We describe the yield of recoil protons, scattered neutrons as well as electrons, positrons and photons, when neutrons of an average energy of 20 MeV hit polyethylene targets of several thicknesses. The simulation was carried out using the latest release 5.2 of the GEANT4 detector description and simulation tool, including advanced hadron interaction models.

  19. Neutron spectra in two beam ports of a TRIGA Mark III reactor with HEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L.; Aguilar, F., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2012-10-15

    Before to change the HEU for Leu fuel of the ININ's TRIGA Mark III nuclear reactor the neutron spectra were measured in two beam ports using 5 and 10 W. Measurements were carried out in a tangential and a radial beam port using a Bonner sphere spectrometer. It was found that neutron spectra are different in the beam ports, in radial beam port the amplitude of thermal and fast neutrons are approximately the same while, in the tangential beam port thermal neutron peak is dominant. In the radial beam port the fluence-to-ambient dose equivalent factors are 131{+-}11 and 124{+-}10 p Sv-cm{sup 2} for 5 and 10 W respectively while in the tangential beam port the fluence-to-ambient dose equivalent factor is 55{+-}4 p Sv-cm{sup 2} for 10 W. (Author)

  20. Filter/moderator system for a BNCT beam of epithermal neutrons at nuclear reactor MARIA

    Science.gov (United States)

    Tyminska, Katarzyna

    2009-01-01

    Boron Neutron Capture Therapy is a very promising form of cancer therapy, consisting in irradiating a stable isotope of boron (10B) concentrated in tumor cells with a low energy neutron beam. This technique makes it possible to destroy tumor cells, leaving healthy tissues practically unaffected. In order to carry out the therapy in the proper way, the proper range of the neutron beam energy has to be chosen. In this paper we present a filter/moderator system modeled with MCNP code in order to obtain an epithermal neutron beam for BNCT post at MARIA reactor in Swierk.

  1. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  2. Advances in spherical neutron polarimetry with Cryopad

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France)]. E-mail: lelievre@ill.fr; Bourgeat-Lami, E. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Fouilloux, P. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Geffray, B. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Gibert, Y. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Kakurai, K. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Kernavanois, N. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Longuet, B. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Mantegezza, F. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Nakamura, M. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Pujol, S. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Regnault, L.-P. [CEA-DRFMC/SPSMS/MDN, 38054 Grenoble Cedex 9 (France); Tasset, F. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Takeda, M. [ASRC, JAERI, Tokai, Ibaraki 319-1195 (Japan); Thomas, M. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France); Tonon, X. [Institut Laue-Langevin, 6, rue J. Horowitz, BP 156, 38042 Grenoble cedex 9 (France)

    2005-02-15

    Within the frame of the ILL millennium programme, the European ENPI network and the ILL-ASRC/JAERI Memorandum of Understanding, a third-generation Cryopad has been developed and built in three copies. The aim of this collaboration is to open new fields of investigation on the D3/ILL diffractometer, the IN22/CEA and TAS-1/JAERI three-axis spectrometers: complex antiferromagnetic structures, precision determination of antiferromagnetic distributions, magnetic-lattice excitations spectra, search for the neutron electric dipole moment, etc. We present the progress performed with the new-generation devices and show how easy and reliable it is today to carry out spherical neutron polarimetry measurements with Cryopad.

  3. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...... be constructed to optimize beam characteristics for low energy neutron experiments....

  4. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II).

    Science.gov (United States)

    Clement, S D; Choi, J R; Zamenhof, R G; Yanch, J C; Harling, O K

    1990-01-01

    Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams.

  5. Concentration of the velocity distribution of pulsed neutron beams

    CERN Document Server

    Kitaguchi, Masaaki; Shimizu, Hirohiko M

    2016-01-01

    The velocity of neutrons from a pulsed neutron source is well-defined as a function of their arrival time. Electromagnetic neutron accelerator/decelerator synchronized with the neutron time-of-flight is capable of selectively changing the neutron velocity and concentrating the velocity distribution. Possible enhancement of the neutron intensity at a specific neutron velocity by orders of magnitude is discussed together with an experimental design.

  6. Status of neutron beam utilization at the Dalat nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dien, Nguyen Nhi; Hai, Nguyen Canh [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  7. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

  8. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    Science.gov (United States)

    Velikaya, V. V.; Musabaeva, L. I.; Lisin, V. A.; Startseva, Zh. A.

    2016-08-01

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  9. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru; Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  10. Optimization of the Epithermal Neutron Beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor

    Science.gov (United States)

    Hu, Jih-Perng; Rorer, David C.; Reciniello, Richard N.; Holden, Norman E.

    2003-06-01

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  11. It may be Possible to Use a Neutron Beam as Propulsion for Spacecraft

    Science.gov (United States)

    Kriske, Richard M.

    2016-01-01

    It may be possible to keep Xenon 135 in a Superpositioned state with Xe-136 and Cs 135, the two decay products of Xenon 135. This may be done using a Gamma Ray or an X-ray Laser. At first glance it has the look and feel of yet another Noble Gas Laser. The difference is that it uses Neutron states within the Nucleus. The Neutrons would be emitted with a modulated Gamma or X-ray photon. In essence it may be possible to have a totally new type of Laser---This author calls them "Matter Lasers", where a lower energy photon with fewer Quantum Numbers would be used with a Noble Gas to produce a particle beam with higher energy and more Quantum Numbers. It may be possible to replace cumbersome particle accelerators with this type of Laser, to make mass from energy, via a Neutron Gas. This would be a great technological advance in Rocket Propulsion as well; low mass photon to high mass particle, such as a Higgs particle or a Top Quark. The Xenon 135, could come from a Fission Reactor within the Space Craft, as it is a reactor poison. The workings of an X-ray laser is already known and table top versions of it have been developed. Gamma Ray lasers are already in use and have been tested. A Laser would have a columnated beam with a very precise direction, unlike just a Neutron source which would go in all directions. Of course this beam could be used as a spectroscopic tool as well, in order to determine the composition of the matter that the spacecraft encounters. The spectroscopic tool could look for "Dark Matter" and other exotic types of matter that may occur in outerspace. The spacecraft could potentially reach "near speed of light velocities" in a fairly short time, since the Laser would be firing off massive particles, with great momentum. Lastly the precise Neutron beam could be used as a very powerful weapon or as a way of clearing space debri, since it could "force Nuclear Reactions" onto the object being fired upon, making it the ultimate space weapon, and

  12. Comparison of measured parameters from a 24-keV and a broad spectrum epithermal neutron beam for neutron capture therapy: an identification of consequential parameters.

    Science.gov (United States)

    Fairchild, R G; Saraf, S K; Kalef-Ezra, J; Laster, B H

    1990-01-01

    Epithermal neutron beams are under development in a number of locations in the U.S. and abroad. The increased penetration in tissue provided by these neurons should circumvent problems associated with the rapid attenuation of thermal neutron beams encountered in previous clinical trials of neutron capture therapy (NCT). Physical and radiobiological experiments with two "intermediate energy" or "epithermal" beams have been reported. A comparison is made here between the 24-keV iron-filtered beam at Harwell, England, and the broad-spectrum Al2 O3 moderated beam at the Brookhaven Medical Research Reactor (BMRR). In addition, parameters which are relevant for NCT, and which are best suited for evaluation and comparison of beams, are discussed. Particular attention is paid to the mean neutron energy which can be tolerated without significant reduction of therapeutic gain (TG), where TG is the ratio of tumor dose to maximum normal tissue dose. It is suggested that the simplest and most meaningful parameters for comparison of beam intensity and purity are the epithermal neutron fluence rate, and the fast neutron dose per epithermal neutron (4.2 X 10(-11) rad/neutron for the broad-spectrum beam and 29 X 10(-11) rad/neutron for the 24-keV beam). While the Al2O3 beam is close to optimal, the 24-keV beam produces a significant fast neutron dose which results in a lower TG.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Can Neutron Beam Components and Radiographic Image Quality be determined by the Use of Beam Purity and Sensitivity Indicators?

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    In the Euratom Neutron Radiography Working Group Test Program beam purity and s e n s i t i v i t y indicators, as prescribed by the ASTM E 545-81 were used together with the NRWG beam purity i n d i c a t o r - f u e l and c a l i b r a t i o n fuel pin. They were radiographed together at neutron...

  14. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  15. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  16. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  17. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  18. The dose comparison between the THOR and HFR epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Chun [Biomedical Engineering and Environmental Sciences Department, National Tsing Hua University, Hsinchu, Taiwan (China); Roca, Antoaneta [Institute for Energy, Joint Research Centre, European Commission (Netherlands); Faculty of Physics, University of Bucharest, Bucuresti-Magurele (Romania); Liu, Yuan-Hao, E-mail: yhl.taiwan@gmail.co [Health Physics Division, Nuclear Science and Technology Development Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Tsai, Pi-En [Health Physics Division, Nuclear Science and Technology Development Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Nievaart, Sander [Institute for Energy, Joint Research Centre, European Commission (Netherlands); Liu, Hong-Ming [Health Physics Division, Nuclear Science and Technology Development Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Moss, Ray [Institute for Energy, Joint Research Centre, European Commission (Netherlands); Chou, Wen-Tsae [Biomedical Engineering and Environmental Sciences Department, National Tsing Hua University, Hsinchu, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-12-15

    This study is a part of the beam comparison campaign, inter-center dose comparison, between boron neutron capture therapy facilities at the Tsing Hua Open-pool Reactor and the High Flux Reactor. The clinical information exchange can improve the dosimetry uncertainty for medical physics in a mixed field. The method of paired Mg(Ar) and TE(TE) ionization chambers was used to determine the gamma-ray and neutron dose rates. Furthermore, activation foils, including gold, copper, and manganese, were employed to estimate the thermal and epithermal neutron fluxes. Measurements were performed free in air and also in a PMMA phantom. All the chambers were calibrated using a {sup 60}Co primary standard source at the Institute of Nuclear Energy Research, Taiwan. Spectrum dependent neutron sensitivity of TE(TE) chamber is one of the important parameters to evaluate dose components. The requested neutron spectra were calculated by the Monte Carlo code MCNP. The measured thermal neutron fluxes, gamma-ray and neutron dose rates of the THOR beam in the phantom were 2.6, 2.2, and 2.1 times of the HFR beam at 2.5-cm depth, respectively. The higher thermal neutron flux and neutron and gamma-ray dose rates are due to the higher epithermal neutron beam intensity of the THOR.

  19. Development of a monoenergetic neutron beam (Theoretical aspects, experimental developments and applications); Desarrollo de un haz de neutrones monoenergeticos (Aspectos teoricos, desarrollos experimentales y aplicaciones)

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A

    2003-07-01

    By the use of a neutron time of flight system at the Tandem Accelerator of the National Nuclear Research Institute; with neutrons provided by means of the {sup 2} H(d, n) {sup 3} He we intend to use the associated particle technique in order to have monoenergetic neutrons. This neutron beam will be used both in basic and applied research. (Author)

  20. On-line beam monitoring for neutron capture therapy at the MIT Research Reactor

    Science.gov (United States)

    Harling, Otto K.; Moulin, Damien J.; Chabeuf, Jean-Michel; Solares, Guido R.

    1995-08-01

    Neutron capture therapy sets new requirements on the measurement and monitoring of the radiation fields used in this new form of therapy. Beams used for neutron capture therapy are comprised of mixed radiation fields which include slow, epithermal, and fast neutrons, as well as gamma rays. A computer-based beam monitoring system for epithermal or thermal neutron capture therapy is described. This system provides accurate, sensitive, and rapid on-line readout and recording of the various beam components. Readout of fluxes, fluences, and corresponding doses in the target are provided in color coded graphic analog as well as numerical form on the computer monitors. Variations in neutron spectrum or spatial distribution of the beam can be rapidly diagnosed with the aid of the monitor readout. Redundancy of fluence measurement is provided by an independent system using scalers and timers and by utilizing reactor power measuring instruments.

  1. Comparison of neutron spectrum measurement methods used for the epithermal beam of the LVR-15 research reactor.

    Science.gov (United States)

    Viererbl, L; Klupák, V; Lahodová, Z; Marek, M

    2012-07-01

    The LVR-15 research reactor's horizontal channel with its epithermal neutron beam is used mainly for boron neutron capture therapy. Neutrons from the reactor core pass through a special filter before the collimator and the beam outlet. Neutron fluence and spectrum are the basic characteristics of an epithermal neutron beam. Three methods used to measure the beam's neutron spectrum are described: the activation method, a Bonner sphere spectrometer with gold activation detectors and a Bonner sphere spectrometer with LiI(Eu) scintillation detector. Examples of results are compared and discussed.

  2. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    Science.gov (United States)

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Precise determination of the degree of polarization of a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Nastoll, H.; Schreckenbach, K. (Institut Laue - Langevin, 38 - Grenoble (France)); Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P. (LAPP Annecy, 74 - Annecy (France))

    1991-08-15

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.).

  4. The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements

    CERN Document Server

    Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P

    2014-01-01

    This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.

  5. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Science.gov (United States)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S.; Guallini, F.; Vallazza, E.; Prest, M.

    2014-09-01

    Radiotherapy treatments with high-energy (>8 MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the "in vivo" dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  6. Dysprosium detector for neutron dosimetry in external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ostinelli, A.; Berlusconi, C.; Conti, V.; Duchini, M.; Gelosa, S. [Medical Physics - Sant' Anna Hospital, Como (Italy); Guallini, F. [EL.SE s.r.l. (Italy); Vallazza, E. [INFN, Trieste (Italy); Prest, M. [University of Insubria, Como (Italy)

    2014-09-21

    Radiotherapy treatments with high-energy (>8MeV) photon beams are a standard procedure in clinical practice, given the skin and near-target volumes sparing effect, the accurate penetration and the uniform spatial dose distribution. On the other hand, despite these advantages, neutrons may be produced via the photo-nuclear (γ,n) reactions of the high-energy photons with the high-Z materials in the accelerator head, in the treatment room and in the patient, resulting in an unwanted dose contribution which is of concern, given its potential to induce secondary cancers, and which has to be monitored. This work presents the design and the test of a portable Dysprosium dosimeter to be used during clinical treatments to estimate the “in vivo” dose to the patient. The dosimeter has been characterized and validated with tissue-equivalent phantom studies with a Varian Clinical iX 18 MV photon beam, before using it with a group of patients treated at the S. Anna Hospital in Como. The working principle of the dosimeter together with the readout chain and the results in terms of delivered dose are presented.

  7. Fast and thermal neutron profiles for a 25-MV x-ray beam.

    Science.gov (United States)

    Price, K W; Nath, R; Holeman, G R

    1978-01-01

    High-energy x-ray radiotherapy machines generate neutrons by photonuclear reactions in the target and the treatment head and expose the patient to a neutron flux. In order to evaluate the neutron exposure quantitatively, fast and thermal neutron profiles for 25-MV x-ray beams of the Sagittaire accelerator have been measured. An activation technique, using the reactions 31P(n, gamma)32P (thermal neutrons) and 31P(n, p)31Si (fast neutrons, E greater than 0.7 MeV), has been developed to measure fast- and thermal-neutron fluxes in an intense high-energy photon flux. The sensitivity of this activation detector to high-energy photons, which has plagued many previous neutron measurements, was carefully measured and found to be less than 4%. Neutron fluxes for various photon field sizes ranging from 5 X 5 cm to 30 X 30 cm have been measured. The fast-neutron profiles were observed to have rounded edges and the thermal fluxes were found to be relatively uniform. In the central part of the x-ray beam, the ratio of neutron dose equivalent to photon absorbed dose was found to be between 0.2% and 0.5%. Outside of the photon field, the ratio of neutron dose equivalent to the central-axis photon absorbed dose was 0.12%.

  8. A kinematically beamed, low energy pulsed neutron source for active interrogation

    Science.gov (United States)

    Dietrich, Dan; Hagmann, Chris; Kerr, Phil; Nakae, Les; Rowland, Mark; Snyderman, Neal; Stoeffl, Wolfgang; Hamm, Robert

    2005-12-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of special nuclear materials (SNM) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals: (1) energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) neutrons with an energy of approximately 60-100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100 keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n, 2n) or (n, n‧) processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  9. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Buecherl, T. [Lehrstuhl fuer Radiochemie, Technische Universitaet Muenchen, Garching 80748 (Germany); Zou, Y., E-mail: zouyubin@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China); Guo, Z. [State Key Laboratory of Nuclear Physics and Technology and School of Physics, Peking University, 5 Yiheyuan Lu, Beijing 100871 (China)

    2011-09-21

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  10. Irradiation facility for boron neutron capture therapy application based on a rf-driven D-T neutron source and a new beam shaping assembly (abstract)

    Science.gov (United States)

    Cerullo, N.; Esposito, J.; Leung, K. N.

    2002-02-01

    Selecting the best neutron source for boron neutron capture therapy (BNCT) requires optimizing neutron beam parameters. This involves solving many complex problems. Safety issues related to the use of nuclear reactor in hospital environments, as well as lower costs have led to interest in the development of accelerator-driven neutron sources. The BNCT research programs at the Nuclear Departments of Pisa and Genova Universities (DIMNP and DITEC) focus on studies of new concepts for accelerator-based DT neutron sources. Simple and compact accelerator designs using relatively low deuteron beam energy, ˜100 keV, have been developed which, in turn, can generate high neutron yields. New studies have been started for optimization of moderator materials for the 14.1 MeV DT neutrons. Our aim is to obtain an epithermal neutron beam for therapeutic application at the exit end, with minimal beam intensity losses, the specific goal is to achieve an epithermal neutron flux of at least of 1×109 n/cm2 s at the beam port, with low gamma and fast neutron dose contamination. According to the most recent neutron BNCT beam parameters some moderating and spectrum shifter materials and geometrical configurations have thus far been tested, and neutron and gamma beam data at beam port have been computed. A possible beam shaping assembly model has been designed. This research demonstrates that a DT neutron source could be successfully implemented for BNCT application, with performance surpassing the minimum requirements stated above, using DT neutron sources with yields in the range 1013-1014 n/s. The latest Monte Carlo simulation results of an accelerator based facility which relies on a rf-driven DT fusion neutron generator will be presented.

  11. Applications and advances of positron beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  12. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    Science.gov (United States)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  13. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  14. Long distance propagation of a polarized neutron beam in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U.; Bitter, T.; El-Muzeini, P. (Heidelberg Univ. (Germany). Physikalisches Inst.); Dubbers, D. (Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik E21); Schaerpf, O. (Inst. Laue Langevin, 38 - Grenoble (France))

    1992-09-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2[sup 0]. (orig.).

  15. A novel design of beam shaping assembly to use D-T neutron generator for BNCT.

    Science.gov (United States)

    Kasesaz, Yaser; Karimi, Marjan

    2016-12-01

    In order to use 14.1MeV neutrons produced by d-T neutron generators, two special and novel Beam Shaping Assemblies (BSA), including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. The results show that the proposed BSA can provide the qualified epithermal neutron beam for BNCT. The final epithermal neutron flux is about 6e9 n/cm2.s. The final proposed BSA has some different advantages: 1) it consists of usual and well-known materials (Pb, Al, Fluental and Cd); 2) it has a simple geometry; 3) it does not need any additional gamma filter; 4) it can provide high flux of epithermal neutrons. As this type of neutron source is under development in the world, it seems that they can be used clinically in a hospital considering the proposed BSA.

  16. The LUPIN detector supporting least intrusive beam monitoring technique through neutron detection

    CERN Document Server

    Manessi, G P; Welsch, C; Caresana, M; Ferrarini, M

    2013-01-01

    The Long interval, Ultra-wide dynamic Pile-up free Neutron rem counter (LUPIN) is a novel detector initially developed for radiation protection purposes, specifically conceived for applications in pulsed neutron fields. The detector has a measurement capability varying over many orders of neutron burst intensity, from a single neutron up to thousands of interactions for each burst, without showing any saturation effect. Whilst LUPIN has been developed for applications in the radiation protection fields, its unique properties make it also well suited to support other beam instrumentation. In this contribution, the design of LUPIN is presented in detail and results from measurements carried out in different facilities summarize its main characteristics. Its potential use as beam loss monitor (BLM) and complementary detector for non-invasive beam monitoring purposes (e.g. to complement a monitor based on proton beam “halo” detection) in medical accelerators is then examined. In the context of its application...

  17. ADVANCEMENTS IN NEUTRON RADIOGRAPHY WITHIN THE DEPARTMENT OF THE ARMY

    Science.gov (United States)

    2016-11-01

    Carlo N-particle (MCNP) simulation software. The modeling confirmed that acceptable dose rates would be achieved outside of the shooting cell and...advanced nondestructive testing (NDT) technologies and inspections. Within the past five years, neutron radiography (NR) has been a main focus of...development where previous commercial off the shelf systems were inadequate to use. An increase in inspection technology was desired due to the rising need

  18. Summary of monoenergetic neutron beam sources for energies gt 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F.P.; Romero, J.L. (Univ. of California-Davis, Crocker Nuclear Lab., Davis, CA (US))

    1990-11-01

    This paper examines the production of neutron beams for energies between {approx}20 and 100 MeV. Considerations for obtaining monoenergetic beams as well as some of the limiting factors, such as energy resolution are examined as well. Production cross sections at 0 deg are reviewed for proton- and deuteron-induced reactions on light elements. Some current facilities in the context of neutron beams obtained by collimation, by the associate particle method, and by the use of a beam swinger are also discussed.

  19. Neutron beam test of barium fluoride crystal for dark matter direct detection

    Science.gov (United States)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.

    2016-10-01

    In order to test the capabilities of Barium Fluoride (BaF2) crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and γ events are obtained for various recoil energies of the F content in BaF2.

  20. Facility for parity and time reversal experiments with intense epithermal (eV) neutron beams

    Science.gov (United States)

    Bowman, C. D.; Bowman, J. D.; Herczeg, P.; Szymanski, J.; Yuan, V. W.; Anaya, J. M.; Mortensen, R.; Postma, H.; Delheij, P. P. J.; Baker, O. K.; Gould, C. R.; Haase, D. G.; Mitchell, G. E.; Roberson, N. R.; Zhu, X.; McDonald, A. B.; Benton, D.; Tippens, B.; Chupp, T. E.

    1988-12-01

    A facility for polarized epithermal neutrons of high intensity is set up at the Los Alamos National Laboratory for parityviolation and time reversal experiments at neutron resonances over a wide range of neutron energies. The beam is polarized with the aid of a polarized proton target used as a neutronspin filter. Total cross section measurements as well as capture gamma-ray experiments will be carried out. The main features of this system will be discussed.

  1. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Klepp, J.; Fally, M. [Faculty of Physics, University of Vienna, 1090 Wien (Austria); Tomita, Y. [Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182 (Japan); Pruner, C. [Department of Materials Science and Physics, University of Salzburg, 5020 Salzburg (Austria); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  2. Neutron Beam Tests of Barium Fluoride Crystal for Dark Matter Direct Detection

    CERN Document Server

    Guo, Cong; Wang, Zhimin; Bao, Jie; Dai, Changjiang; Guan, Mengyun; Liu, Jinchang; Li, Zuhao; Ren, Jie; Ruan, Xichao; Yang, Changgen; Yu, Zeyuan; Zhong, Weili

    2016-01-01

    In order to test the capabilities of Barium Fluoride (BaF2) Crystal for dark matter direct detection, nuclear recoils are studied with mono-energetic neutron beam. The energy spectra of nuclear recoils, quenching factors for elastic scattering neutrons and discrimination capability between neutron inelastic scattering events and {\\gamma} events are obtained for various recoil energies of the F content in BaF2.

  3. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  4. Shielding and beam performance of the new epithermal neutron irradiation facility at the MITR-II

    Energy Technology Data Exchange (ETDEWEB)

    Riley, K.J.; Binns, P.J.; Ledesma, M.N.; Sutharshan, B.; Harling, O.K. [Nuclear Reactor Laboratory, MIT, Cambridge, MA (United States)

    2000-10-01

    A new epithermal neutron beam for NCT research has been constructed at the MIT Research Reactor. The computer code MCNP was used extensively in the neutronic design of the beamline and shielding for the treatment room. The calculated design parameters compare well with those obtained from a series of measurements performed to assess ambient radiation levels and in-beam performance at the facility. (author)

  5. Prediction of in-phantom dose distribution using in-air neutron beam characteristics for BNCS

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, Jerome M.

    1999-12-14

    A monoenergetic neutron beam simulation study is carried out to determine the optimal neutron energy range for treatment of rheumatoid arthritis using radiation synovectomy. The goal of the treatment is the ablation of diseased synovial membranes in joints, such as knees and fingers. This study focuses on human knee joints. Two figures-of-merit are used to measure the neutron beam quality, the ratio of the synovium absorbed dose to the skin absorbed dose, and the ratio of the synovium absorbed dose to the bone absorbed dose. It was found that (a) thermal neutron beams are optimal for treatment, (b) similar absorbed dose rates and therapeutic ratios are obtained with monodirectional and isotropic neutron beams. Computation of the dose distribution in a human knee requires the simulation of particle transport from the neutron source to the knee phantom through the moderator. A method was developed to predict the dose distribution in a knee phantom from any neutron and photon beam spectra incident on the knee. This method was revealed to be reasonably accurate and enabled one to reduce by a factor of 10 the particle transport simulation time by modeling the moderator only.

  6. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  7. Design of Stopper of Prompt Gamma Neutron Activation Analysis Facility at China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The PGNAA facility consists of the filtered collimated neutron beam, the shielding of the whole facility, the control system, the detecting equipment and the data acquisition and analysis system. The neutron beam is filtered by a mono-crystalline bismuth filter,

  8. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Science.gov (United States)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  9. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Zeitelhack, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany)]. E-mail: karl.zeitelhack@frm2.tum.de; Schanzer, C. [Physik-Department E21, TU Muenchen, D-85747 Garching (Germany); Kastenmueller, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Roehrmoser, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Daniel, C. [Physik-Department E22, TU Muenchen, D-85747 Garching (Germany); Franke, J. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Gutsmiedl, E. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Kudryashov, V. [GKSS Forschungszentrum GmbH, D-21502 Geesthacht (Germany); Maier, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Paethe, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Petry, W. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schoeffel, T. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schreckenbach, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Urban, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Wildgruber, U. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany)

    2006-05-10

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D{sub 2} cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique 'twisted' guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  10. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design%Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    张斌; 陈义学; 王伟金; 杨寿海; 吴军; 殷雯; 梁天骄; 贾学军

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan, Guangdong, China. Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled

  11. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  12. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  13. Flux and instrumentation upgrade for the epithermal neutron beam facility at Washington State University.

    Science.gov (United States)

    Nigg, D W; Venhuizen, J R; Wemple, C A; Tripard, G E; Sharp, S; Fox, K

    2004-11-01

    An epithermal neutron beam facility for preclinical neutron capture therapy research has been constructed at the Washington State University TRIGA research reactor installation. Subsequent to a recent upgrade, this new facility offers a high-purity epithermal beam with intensity on the order of 1.2x10(9)n/cm(2)s. Key features include a fluoride-based design for the neutron filtering and moderating components as well as a novel collimator design that allows ease of assembly and disassembly of the beamline components.

  14. Electron Beam Curing of Advanced Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fundamental concept of electron beam method and the application in cure of composites are elaborated in this paper. The components of electron beam curing system are introduced. The mechanisms of interaction between electron beam and polymer matrix composites are presented. Recent studies reported including work of authors themselves on electron beam curing of composites are also discussed. Moreover, the authors believe that it is necessary to do the basic research about understanding how electron beam affects cured network and the mechanical/physical properties of the composites, for establishing a quantitative or semi-quantitative formulation.

  15. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  16. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A. [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States); Tripard, G.E.; Gavin, P.R. [Washington State University, Pullman, WA (United States)

    2000-10-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  17. "TIVAL" — A development in spectrum tailoring for intermediate-energy neutron beam production

    Science.gov (United States)

    Constantine, G.

    1989-07-01

    Beams of intermediate-energy neutrons produced by filtering offer significant advantages over thermal neutrons for boron neutron capture therapy. Preconditioning the spectrum within the reactor prior to filtering can increase the intensity and lower the mean neutron energy, to give reduced proton recoil damage in normal tissue. Aluminium with a small proportion of D 2O has been proposed as a spectrum shifter to achieve this. We describe here calculations that demonstrate considerable further softening of the spectrum by TIVAL, a mixture of aluminium together with small quantities of titanium and vanadium.

  18. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  19. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S., E-mail: ellsworth7@llnl.gov; Schmidt, A., E-mail: ellsworth7@llnl.gov; Tang, V., E-mail: ellsworth7@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  20. Characterization of deuterium beam operation on RHEPP-1 for future neutron generation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Schall, Michael (University of New Mexico, Albuquerque, NM); Cooper, Gary Wayne (University of New Mexico, Albuquerque, NM); Renk, Timothy Jerome

    2009-12-01

    We investigate the potential for neutron generation using the 1 MeV RHEPP-1 intense pulsed ion beam facility at Sandia National Laboratories for a number of emerging applications. Among these are interrogation of cargo for detection of special nuclear materials (SNM). Ions from single-stage sources driven by pulsed power represent a potential source of significant neutron bursts. While a number of applications require higher ion energies (e.g. tens of MeV) than that provided by RHEPP-1, its ability to generate deuterium beams allow for neutron generation at and below 1 MeV. This report details the successful generation and characterization of deuterium ion beams, and their use in generating up to 3 x 10{sup 10} neutrons into 4{pi} per 5kA ion pulse.

  1. The effects of betatron phase advances on beam-beam and its compensation in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Fischer, W.; Gu, X.; Tepikian, S.; Trbojevic, D.

    2011-03-28

    In this article we perform simulation studies to investigate the effects of betatron phase advances between the beam-beam interaction points on half-integer resonance driving term, second order chromaticty and dynamic aperture in RHIC. The betatron phase advances are adjusted with artificial matrices inserted in the middle of arcs. The lattices for the 2011 RHIC polarized proton (p-p) run and 2010 RHIC Au-Au runs are used in this study. We also scan the betatron phase advances between IP8 and the electron lens for the proposed Blue ring lattice with head-on beam-beam compensation.

  2. Coarse-scaling adjustment of fine-group neutron spectra for epithermal neutron beams in BNCT using multiple activation detectors

    Science.gov (United States)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-01-01

    In order to provide an improved and reliable neutron source description for treatment planning in boron neutron capture therapy (BNCT), a spectrum adjustment procedure named coarse-scaling adjustment has been developed and applied to the neutron spectrum measurements of both the Tsing Hua Open-pool Reactor (THOR) epithermal neutron beam in Taiwan and the High Flux Reactor (HFR) in The Netherlands, using multiple activation detectors. The coarse-scaling adjustment utilizes a similar idea as the well-known two-foil method, which adjusts the thermal and epithermal neutron fluxes according to the Maxwellian distribution for thermal neutrons and 1/ E distribution over the epithermal neutron energy region. The coarse-scaling adjustment can effectively suppress the number of oscillations appearing in the adjusted spectrum and provide better smoothness. This paper also presents a sophisticated 9-step process utilizing twice the coarse-scaling adjustment which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with satisfactory continuity and excellently matched reaction rates between measurements and calculation. The spectrum adjustment algorithm applied in this study is the same as the well-known SAND-II.

  3. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    Energy Technology Data Exchange (ETDEWEB)

    Benck, S. E-mail: benck@fynu.ucl.ac.be; D' Errico, F.; Denis, J.-M.; Meulders, J.-P.; Nath, R.; Pitcher, E.J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm{sup 2} beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization chamber and superheated drop detectors (SDDs). On the beam axis, the calculations agreed well with the ionization chamber data, but disagreed significantly from the SDD data due to the detector's under-response to neutrons above 20 MeV. Off the beam axis, the calculated absorbed doses were significantly lower than the ionization chamber readings, since gamma fields were not accounted for. The calculated data are doses from neutron-induced charge particles, and these agreed with the values measured by the photon-insensitive SDDs. When exposed to the degraded spectra off the beam axis, the SDD offered reliable estimates of the neutron dose equivalent.

  4. Improved methods for the generation of 24.5 keV neutron beams with possible application to boron neutron capture therapy

    Science.gov (United States)

    Constantine, G.; Baker, L. J.; Taylor, N. P.

    1986-09-01

    The production of epithermal neutron beams, filtered to provide a spectrum in which a small energy range predominates, is of importance for radiobiological research and in the development and calibration of instruments for monitoring intermediate energy neutrons. The penetration characteristics of intermediate energy neutrons in tissue lead to the possibility of application in the field of neutron capture therapy if beams of sufficient intensity and adequate spectral properties can be generated. In this paper methods of utilising the 24.5 keV antiresonance in the iron neutron cross section are described, and the DENIS (depth enhanced neutron intense source) principle by which beam intensities may be optimised is explained. Calculations and experimental measurements in an in-core facility in the DIDO reactor at Harwell have indicated that a DENIS scatterer can achieve a 6-fold improvement in 24.5 keV beam intensity compared with a conventional titanium disc scatterer.

  5. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Science.gov (United States)

    Agosteo, S.; Curzio, G.; d'Errico, F.; Nath, R.; Tinti, R.

    2002-01-01

    Neutron capture in 10B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  6. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  7. Corrections in the gold foil activation method for determination of neutron beam density

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1967-01-01

    example for a reactor beam transmitted through a 30 cm Bi filter. The effective cross section differs 0.5% from the capture cross section at 2200 m/s. For a 20 mg/cm2 Au foil the correction for beam attenuation and hardening through the foil is 0.7% and the activity correction is 1.5%.......A finite foil thickness and deviation in the cross section from the 1ν law imply corrections in the determination of neutron beam densities by means of foil activation. These corrections, which depend on the neutron velocity distribution, have been examined in general and are given in a specific...

  8. Spectrum shaping of accelerator-based neutron beams for BNCT

    CERN Document Server

    Montagnini, B; Esposito, J; Giusti, V; Mattioda, F; Varone, R

    2002-01-01

    We describe Monte Carlo simulations of three facilities for the production of epithermal neutrons for Boron Neutron Capture Therapy (BNCT) and examine general aspects and problems of designing the spectrum-shaping assemblies to be used with these neutron sources. The first facility is based on an accelerator-driven low-power subcritical reactor, operating as a neutron amplifier. The other two facilities have no amplifier and rely entirely on their primary sources, a D-T fusion reaction device and a conventional 2.5 MeV proton accelerator with a Li target, respectively.

  9. Magnetised foils as white beam π/2 flippers for polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Rekveldt, M.T.

    2015-08-11

    Magnetic foils as white beam π/2 flippers for polarised neutrons will be discussed. Their main advantage is the application for Larmor precession in strongly inclined precession regions as used in Larmor diffraction and especial in Spin Echo Small Angle Neutron Scattering (SESANS). Inclination angles of a few degrees in fields from mT up to hundreds of mT are achievable that are not possible with present conventional coils. The application in Larmor diffraction will be discussed and the application in SESANS will be explained in detail and supported by a simulated experiment. - Highlights: • A magnetised permalloy film is proposed as white beam π/2 flipper. • Flipper operates at small inclination angles, high fields (1T) in white neutron beam. • Flipper enables high resolution SESANS in white beam also in magnetic samples.

  10. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    Science.gov (United States)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  11. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    Science.gov (United States)

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed.

  12. SIMULATION OF NEUTRON BACKGROUNDS FROM THE ILC EXTRACTION LINE BEAM DUMP

    Energy Technology Data Exchange (ETDEWEB)

    Darbha, S; Keller, L.; Maruyama, T.

    2008-01-01

    The operation of the International Linear Collider (ILC) as a precision measurement machine is dependent upon the quality of the charge-coupled device (CCD) silicon vertex detector. An integrated fl ux of 1010 neutrons/cm2 incident upon the vertex detector will degrade its performance by causing displacement damage in the silicon. One source of the neutron background arises from the dumping of the spent electron and positron beams into the extraction line beam dumps. The Monte Carlo program FLUKA was used to simulate the collision of the electron beam with the dump and to determine the resulting neutron fl ux at the interaction point (IP). A collimator and tunnel were added and their effect on the fl ux was analyzed. A neutron source was then generated and directed along the extraction line towards a model of the vertex detector to determine the neutron fl ux in its silicon layers. Models of the beampipe and BeamCal, a silicon-tungsten electromagnetic calorimeter in the very forward region of the detector, were placed in the extraction line and their effects on scattering were studied. The IP fl uence was determined to be 3.7x1010 +/- 2.3x1010 neutrons/cm2/year when the tunnel and collimator were in place, with no appreciable increase in statistics when the tunnel was removed. The BeamCal was discovered to act as a collimator by signifi cantly impeding the fl ow of neutrons towards the detector. The majority of damage done to the fi rst layer of the detector was found to come from neutrons with a direct line of sight from the fi rst extraction line quadrupole QDEX1, with only a small fraction scattering off of the beampipe and into the detector. The 1 MeV equivalent neutron fl uence was determined to be 9.3x108 neutrons/cm2/year from the electron beam alone. The two beams collectively contribute double to this fl uence, which is 19% of the threshold value in one year. Future work will improve the detector model and other sources of neutron backgrounds will be

  13. In-situ SEOP polarizer and initial tests on a high flux neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, E., E-mail: e.babcock@fz-juelich.d [Institut Laue Langevin, Grenoble (France); Jeulich Centre for Neutron Science, Garching (Germany); Boag, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Andersen, K.H.; Becker, M. [Institut Laue Langevin, Grenoble (France); Beecham, C. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Institut Laue Langevin, Grenoble (France); Bordenave, F.; Chastagnier, J. [Institut Laue Langevin, Grenoble (France); Chen, W.C. [NIST Gaithersburg, MD (United States); Chung, R. [Institut Laue Langevin, Grenoble (France); Chupp, T.E. [FOCUS, University of Michigan, Ann Arbor, MI (United States); Elmore, S. [ISIS, Chilton, Didcot, OX11 QX (United Kingdom); Fouilloux, P. [Institut Laue Langevin, Grenoble (France); Gentile, T.R. [NIST Gaithersburg, MD (United States); Jullien, D.; Lelievre-Berna, E.; Mouveau, P.; Petoukhov, A.; Revert, M.; Soldner, T. [Institut Laue Langevin, Grenoble (France)

    2009-09-01

    Polarized {sup 3}He has shown its unique characteristics in many areas of polarized neutron scattering, its ability to polarize neutrons at short wavelengths, accept wide-angle and divergent beams and low backgrounds enable new classes of experiments. While polarized {sup 3}He is not a steady state solution as commonly applied, the benefits have been shown to offset the drawbacks of polarizing and refreshing the polarization in the neutron spin filter cells. As an extension of this work, in-situ polarization using the spin-exchange optical pumping (SEOP) method was explored as a means to construct a system which could be used to polarize {sup 3}He in the state used for an effective neutron spin filter to constant polarization while on the neutron beam. An in-situ SEOP polarizer was constructed. This device utilized many devices and principles developed for neutron spin filters which are polarized off the beam line using either SEOP or metastability exchange optical pumping (MEOP) under the same research program. As a collimation of this work effects of extremely high neutron capture flux density >1x10{sup 10}cm{sup -2}s{sup -1} incident on the in-situ polarizer were explored.

  14. Neutron beam applications - Development of one dimensional position sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yun; Kang, Hee Dong; Kim, Wan; Moon, Myung Kook [Kyungpook National University, Taegu (Korea)

    2000-04-01

    This research is sponsored and supported by KAERI as a part of {sup D}evelopment of One Dimensional Position Sensitive Neutron Detector{sup .} To apply residual stress measurement and small angle neutron scattering the one dimensional position sensitive neutron detectors which have wide window and good position resolution were designed and fabricated. The detection area are 200 mm x 100, 120 mm x 80 mm. The thermal neutron detection efficiency are about 60%. The spatial resolution of the detector are less than 2mm. The characteristics of the detectors were studied. Using the detector we could get neutron diffraction patterns from some samples. 19 refs., 103 figs., 4 tabs. (Author)

  15. Neutron Generation from Laser-Accelerated Ion Beams: Use of Alternative Deuteron-Rich Targets for Improved Neutron Yield and Control of Neutron Spectra

    Science.gov (United States)

    Albright, B. J.; Yin, L.; Favalli, A.

    2016-10-01

    Laser-ion-beam generation in the break-out afterburner (BOA) acceleration regime has been modeled for several deuteron-rich solid-density targets using the VPIC particle-in-cell code. Monte Carlo modeling of the transport of these beams in a beryllium converter in a pitcher-catcher neutron source configuration shows significant increases in neutron yields may be achievable through judicious choices of laser target material. Additionally, species-separation dynamics in some target materials during the BOA ion acceleration phase can be exploited to control the shapes of the neutron spectra. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  16. Measuring the Density of Different Materials by Using the Collimated Fast Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J. [Rudjer Boskovic Institute, Bijenicka c. 54, 10000 Zagreb (Croatia); Valkovic, V. [Rudjer Boskovic Institute, Zagreb (Croatia); Kvinticka 62, Zagreb (Croatia)

    2015-07-01

    It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays. Although the associated alpha particle technique/associate particle imaging (API) was used to discriminate the neutrons from the gamma rays, it is believed that the same results would be obtained by using the pulse shape discrimination method. In that way API technique can be avoided and the neutron generator which produces much higher beam intensity than 10{sup 8} n/s can be used. (authors)

  17. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  18. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.

    Science.gov (United States)

    Lee, Deok-jae; Han, Chi Young; Park, Sung Ho; Kim, Jong Kyung

    2004-01-01

    The beam shaping assembly design has been investigated in order to improve the epithermal neutron beam for accelerator-based boron neutron capture therapy in intensity and quality, and dosimetric evaluation for the beams has been performed using both mathematical and voxel head phantoms with MCNP runs. The neutron source was assumed to be produced from a conventional 2.5 MeV proton accelerator with a thick (7)Li target. The results indicate that it is possible to enhance epithermal neutron flux remarkably as well as to embody a good spectrum shaping to epithermal neutrons only with the proper combination of moderator and reflector. It is also found that a larger number of thermal neutrons can reach deeply into the brain and, therefore, can reduce considerably the treatment time for brain tumours. Consequently, the epithermal neutron beams designed in this study can treat more effectively deep-seated brain tumours.

  19. Performance of a Medium-Size Area nGEM Detector for Neutron Beam Diagnostics

    Science.gov (United States)

    Croci, G.; Cazzaniga, C.; Albani, G.; Muraro, A.; Claps, G.; Cavenago, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Cippo, E. Perelli; Rebai, M.; Tardocchi, M.; Gorini, G.

    Fast neutron detectors with a sub-centimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. Based on the results obtained with small area prototypes, the first medium-size (20 x 35.2 cm2 active area) nGEM detector has been realized for both the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as a beam monitor for fast neutrons beam lines at spallation sources, too. The nGEM is a Triple GEM gaseous detector equipped with polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the performance of the medium-size nGEM detector tested at the VESUVIO beam line of the ISIS spallation source. Being this detector the actual largest area fast neutron detector based on the GEM technology, particular attention was paid in the study of detector response in different points over the active area. Measurements of GEM counting rate (both as a function of VGEM and of time) and of the capability of the detector to reconstruct the beam in different positions are presented. This detector serves as a basis for the realization of an even larger area detector that will be used in the MITICA NBI prototype for ITER that represents the evolution of SPIDER.

  20. Determination of the [gamma]-ray dose in an epithermal neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Raaijmakers, C.P.J.; Konijnenberg, M.W.; Mijnheer, B.J. (Netherlands Cancer Inst., Amsterdam (Netherlands)); Stecher-Rasmussen, F.; Verhagen, H. (Netherlands Energy Research Foundation, Petten (Netherlands))

    1993-01-01

    Neutron beams used for Boron Neutron Capture Therapy (BNCT) are always accompanied by photons. These two irradiation components have different relative biological effectiveness. Therefore it is necessary to determine the neutron and photon absorbed dose in the mixed field separately. All gamma-ray detectors however are also sensitive for neutrons. In this work preliminary results are presented using TLD-700 chips, a Mg(Ar) ionisation chamber and a GM-counter to determine the gamm-ray component in a mixed beam of gamma-rays and neutrons. The results show a good agreement between the GM-counter and the ionisation chamber, indicating a small realtive neutron sensitivity (k[sub u]) for these detectors. The sensitivity of TLD-700 for thermal neutrons however gives rise to a detector response for which a correction is necessary. The uncertainty however in the relative gamma-ray sensitivity (h[sub u]) of the detectors is at this moment too large to determine accurate values of the relative neutron sensitivities. (orig.).

  1. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  2. A design study for an accelerator-based epithermal neutron beam for BNCT.

    Science.gov (United States)

    Allen, D A; Beynon, T D

    1995-05-01

    An achievable design concept for a boron neutron capture therapy (BNCT) facility, based on a high-current, low-energy proton accelerator, is described. Neutrons are produced within a thick natural lithium target, under bombardment from protons with an initial energy between 2.5 and 3.0 MeV. The proton current will be up to 10 mA. After gamma-ray filtering, the neutrons are partially moderated to epithermal energies within a heavy-water moderator, poisoned with 6Li to remove thermal neutrons. Monte Carlo modelling has been used to predict system performance in terms of neutron fluence rate and neutron and gamma-ray dose at the patient position. The relationship between the system performance and key parameters, such as proton energy, moderator depth and 6Li concentration, has been investigated. With a proton current of 10 mA, the facility is capable of providing a therapy beam with a useful neutron fluence rate of 10(9) cm-2 s-1 and a neutron dose per unit fluence of less than 6 x 10(-13) Gy cm2, with a gamma-ray contamination of the therapy beam of about 10(-13) Gy cm2.

  3. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

  4. SERA - An Advanced Treatment Planning System for Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Wemple; C. L. Albright; D. W. Nigg; D. W. Wessol; F. J. Wheeler; G. J. Harkin; M. B. Rossmeirer; M. T. Cohen; M. W. Frandsen

    1999-06-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required.

  5. Optimization of cold neutron beam extraction at ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels; Batkov, K.; Klinkby, Esben Bryndt

    The present study takes its origin in the baseline design of European Spallation Source where a cold and a thermal moderator are situated next to each other enabling bispectral extraction. The study aims at mapping the differences in various neutron distributions depending on the angle and position...... from which the moderator is viewed. This study does not only show changes in both cold and thermal neutron flux, depending on extraction position, but also shows that there are significant differences in the wavelength spectrum and origin of neutrons depending on the angel of view....

  6. Ion beam characteristics of the controlatron/zetatron family of the gas filled neutron tubes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, R.S.; Shope, L.A.; O' Neal, M.L.; Boers, J.E.; Bickes, R.W. Jr.

    1981-03-01

    A gas filled tube used to produce a neutron flux with the D(T,He/sup 4/)n reaction is described. Deuterium and tritium ions generated in a reflex discharge are extracted and accelerated to 100 keV by means of an accelerator electrode onto a deutero-tritide target electrode. The electrodes are designed to focus the ion beam onto the target. Total tube currents consisting of extracted ions, unsuppressed secondary electrons, and ions generated by interactions with the background gas are typically 100 mA. The characteristics of the extracted ion beam are discussed. Accelerating voltages greater than 50 kV are required to focus the beam through the accelerator aperture for configurations that give beams with the proper energy density onto the target. The perveance of the beam is discussed. Maximum perveance values are 2 to 20 nanopervs. Tube focusing and neutron production characteristics are described.

  7. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  8. Production cross sections of neutron rich isotopes from a 82Se beam

    CERN Document Server

    Tarasov, O B; Amthor, A M; Bandura, L; Baumann, T; Bazin, D; Berryman, J S; Chubarian, G; Fukuda, N; Gade, A; Ginter, T N; Hausmann, M; Inabe, N; Kubo, T; Pereira, J; Portillo, M; Sherrill, B M; Stolz, A; Sumithrarachchi, C; Thoennessen, M; Weisshaar, D

    2012-01-01

    Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 \\le Z \\le 32$ were determined by varying the target thickness. Production cross sections with beryllium and tungsten targets were determined for a large number of nuclei including several isotopes first observed in this work. These are the most neutron-rich nuclides of the elements $22 \\le Z \\le 25$ (64Ti, 67V, 69Cr, 72Mn). One event was registered consistent with 70Cr, and another one with 75Fe. A one-body Qg systematics is used to describe the production cross sections based on thermal evaporation from excited prefragments. The current results confirm those of our previous experiment with a 76Ge beam: enhanced production cross sections for neutron-rich fragments near Z=20.

  9. Preliminary shielding analysis in support of the CSNS target station shutter neutron beam stop design

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bin; CHEN Yi-Xue; WANG Wei-Jin; YANG Shou-Hai; WU Jun; YIN Wen; LIANG Tian-Jiao; JIA Xue-Jun

    2011-01-01

    The construction of China Spallation Neutron Source (CSNS) has been initiated in Dongguan,Guangdong, China.Thus a detailed radiation transport analysis of the shutter neutron beam stop is of vital importance. The analyses are performed using the coupled Monte Carlo and multi-dimensional discrete ordinates method. The target of calculations is to optimize the neutron beamline shielding design to guarantee personal safety and minimize cost. Successful elimination of the primary ray effects via the two-dimensional uncollided flux and the first collision source methodology is also illustrated. Two-dimensional dose distribution is calculated. The dose at the end of the neutron beam line is less than 2.5μSv/h. The models have ensured that the doses received by the hall staff members are below the standard limit required.

  10. Neutron spectra at two beam ports of a TRIGA Mark III reactor loaded with HEU fuel.

    Science.gov (United States)

    Vega-Carrillo, H R; Hernández-Dávila, V M; Aguilar, F; Paredes, L; Rivera, T

    2014-01-01

    The neutron spectra have been measured in two beam ports, one radial and another tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research in Mexico. Measurements were carried out with the reactor core loaded with high enriched uranium fuel. Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a (6)LiI(Eu) scintillator and 2, 3, 5, 8, 10 and 12 in.-diameter high-density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code. For each spectrum total flux, mean energy and ambient dose equivalent were determined. Measured spectra show fission, epithermal and thermal neutrons, being harder in the radial beam port.

  11. A Drabkin-type spin resonator as tunable neutron beam monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, F.M., E-mail: florian.piegsa@phys.ethz.ch [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Ries, D. [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Filges, U.; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2015-09-11

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  12. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    Science.gov (United States)

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation.

  13. Progress report on the Cornell Cold Neutron Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.D.; Atwood, A.G.; Spern, S.A.

    1994-12-31

    The design of the Cornell Cold Neutron Source facility at the Cornell TRIGA reactor is described. The unique features are that a mesitylene moderator and copper conductors will be used which will provide simplicity and safety.

  14. Geant4 simulation of the nTOF-EAR2 neutron beam: Characteristics and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lerendegui-Marco, J.; Guerrero, C.; Cortes-Giraldo, M.A.; Quesada, J.M. [Universidad de Sevilla, Dpto. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Lo Meo, S. [Research Centre ' ' Ezio Clementel' ' , ENEA, Bologna (Italy); INFN, Section of Bologna, Bologna (Italy); Massimi, C.; Vannini, G. [INFN, Section of Bologna, Bologna (Italy); University of Bologna, Physics and Astronomy Dept. ' ' Alma Mater Studiorum' ' , Bologna (Italy); Barbagallo, M.; Colonna, N. [INFN, Section of Bari, Bari (Italy); Mancusi, D.; Vlachoudis, V. [CEA-Saclay, Gif-sur-Yvette (France); Mingrone, F. [INFN, Section of Bologna, Bologna (Italy); Sabate-Gilarte, M. [Universidad de Sevilla, Dpto. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); CEA-Saclay, Gif-sur-Yvette (France); Collaboration: nTOF Collaboration

    2016-04-15

    The characteristics of the neutron beam at the new nTOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam γ-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5 m flight path) beam line, reaching an instantaneous neutron flux beyond 10{sup 5} n/μs/pulse in the keV region, nTOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes. (orig.)

  15. Advances in neutron radiographic techniques and applications: a method for nondestructive testing.

    Science.gov (United States)

    Berger, Harold

    2004-10-01

    A brief history of neutron radiography is presented to set the stage for a discussion of significant neutron radiographic developments and an assessment of future directions for neutron radiography. Specific advances are seen in the use of modern, high dynamic range imaging methods (image plates and flat panels) and for high contrast techniques such as phase contrast, and phase-sensitive imaging. Competition for neutron radiographic inspection may develop as these techniques offer application prospects for X-ray methods.

  16. Initial Experimental Verification of the Neutron Beam Modeling for the LBNL BNCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D.L.; Chu, W.T.; Donahue, R.J.; Ludewigt, B.A.; McDonald, R.J.; Smith, A.R.; Stone, N.A.; Vuji, J.

    1999-01-19

    In preparation for future clinical BNCT trials, neutron production via the 7Li(p,n) reaction as well as subsequent moderation to produce epithermal neutrons have been studied. Proper design of a moderator and filter assembly is crucial in producing an optimal epithermal neutron spectrum for brain tumor treatments. Based on in-phantom figures-of-merit,desirable assemblies have been identified. Experiments were performed at the Lawrence Berkeley National Laboratory's 88-inch cyclotron to characterize epithermal neutron beams created using several microampere of 2.5 MeV protons on a lithium target. The neutron moderating assembly consisted of Al/AlF3 and Teflon, with a lead reflector to produce an epithermal spectrum strongly peaked at 10-20 keV. The thermal neutron fluence was measured as a function of depth in a cubic lucite head phantom by neutron activation in gold foils. Portions of the neutron spectrum were measured by in-air activation of six cadmium-covered materials (Au, Mn, In, Cu, Co, W) with high epithermal neutron absorption resonances. The results are reasonably reproduced in Monte Carlo computational models, confirming their validity.

  17. Resumption of JRR-4 and characteristics of neutron beam for BNCT.

    Science.gov (United States)

    Nakamura, T; Horiguchi, H; Kishi, T; Motohashi, J; Sasajima, F; Kumada, H

    2011-12-01

    The clinical trials of Boron Neutron Capture Therapy (BNCT) have been conducted using Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Agency (JAEA). On December 28th, 2007, a crack of a graphite reflector in the reactor core was found on the weld of the aluminum cladding. For this reason, specifications of graphite reflectors were renewed; dimensions of the graphite were reduced and gaps of water were increased. All existing graphite reflectors of JRR-4 were replaced by new graphite reflectors. In February 2010 the resumption of JRR-4 was carried out with new graphite reflectors. We measured the characteristics of neutron beam at the JRR-4 Neutron Beam Facility. A cylindrical water phantom of 18.6 cm diameter and 24 cm depth was set in front of the beam port with 1cm gap. TLDs and gold wires were inserted within the phantom when the phantom was irradiated. The results of the measured thermal neutron flux and the gamma dose in water were compared with that of MCNP calculation. The neutron energy spectrum of the calculation model with new reflector had little variation compared to that with old reflector, but intensities of the neutron flux and gamma dose with new reflector were rather smaller than those with old reflector. The calculated results showed the same tendency as that of the experimental results. Therefore, the clinical trials of BNCT in JRR-4 could be restarted.

  18. In vitro biological effectiveness of JRR-4 epithermal neutron beam. Experiment under free air beam and in water phantom. Cooperative research

    CERN Document Server

    Yamamoto, T; Horiguchi, Y; Kishi, T; Kumada, H; Matsumura, A; Nose, T; Torii, Y; Yamamoto, K

    2002-01-01

    The surviving curve and the biological effectiveness factor of dose components generated in boron neutron capture therapy (BNCT) were separately determined in neutron beams at Japan Research Reactor No.4. Surviving fraction of V79 Chinese hamster cell with or without sup 1 sup 0 B was obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal neutron beam (TNB-2), which were used or planned to use for BNCT clinical trial. The cell killing effect of these neutron beams with or without the presence of sup 1 sup 0 B depended highly on the neutron beam used, according to the epithermal and fast neutron content in the beam. The biological effectiveness factor values of the boron capture reaction for ENB, TNB-1 and TNB-2 were 3.99+-0.24, 3.04+-0.19 and 1.43+-0.08, respectively. The biological effectiveness factor values of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50+-0.32, 2.34+-0.30 and 2.17+-0.28 for EN...

  19. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    CERN Document Server

    Seo, P -N; Bowman, J D; Chupp, T E; Crawford, C; Dabaghyan, M; Dawkins, M; Freedman, S J; Gentile, T; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Jones, G L; Kandes, M; Lamoreaux, S; Lauss, B; Leuschner, M B; Mahurin, R; Mason, M; Mei, J; Mitchell, G S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Bacci, A Salas; Santra, S; Sharma, M; Smith, T B; Snow, W M; Wilburn, W S; Zhu, H

    2007-01-01

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an app...

  20. Role of IUC-DAEF in promoting neutron beam research in India

    Indian Academy of Sciences (India)

    P S Goyal

    2004-07-01

    Inter University Consortium for Department of Atomic Energy Facilities (IUC-DAEF) is an autonomous institute of the University Grants Commission and provides an interface between the university fraternity and the institutions of Department of Atomic Energy. Mumbai Centre of IUC-DAEF promotes and supports the use of neutron facilities at Dhruva reactor by the university scientists. To augment the existing neutron scattering facilities, IUC-DAEF has developed a neutron beam line at Dhruva reactor. The present paper gives a brief survey of the activities and achievements of Mumbai Centre of IUC-DAEF.

  1. Advanced electron beam resist requirements and challenges

    Science.gov (United States)

    Jamieson, Andrew; Kim, Yong Kwan; Olson, Bennett; Lu, Maiying; Wilcox, Nathan

    2011-11-01

    As photomask minimum feature size requirements continue to shrink, resist resolution limitations and their tradeoffs with exposure dose are critical factors. Recently, nearly every node needs a new electron beam resist, customized for exposure dose requirements while simultaneously meeting resolution specifications. Intel Mask Operations has an active program focused on screening new electron beam resists and processes. We discuss the performance metrics we use to evaluate materials and discuss the relative capabilities of the latest resists. We present fundamental resist metrics (resolution, LER and dose) as well as manufacturing process sensitivities.

  2. Estimation of the neutron field around the HERA proton beam dump

    Science.gov (United States)

    Möhring, H.-J.; Noack, K.; Zazula, J. M.

    1991-01-01

    In this article we present estimates for the neutron fluences above 0.1 MeV to be expected around the proton beam dump of the HERA machine at DESY at 1000 GeV incident energy. The most important details of the absorber and tunnel layout are approximately modeled using the Cartesian and combinatorial geometry packages. In our method a volume neutron source for MORSE Monte Carlo neutron transport calculations has been determined from star densities obtained from the FLUKA Monte Carlo hadronic shower code, combined with estimates of low-energy neutron yields based on results of intranuclear cascade calculations and of the statistical model of evaporation. The calculated neutron fluences are in reasonable agreement with results obtained by the FLUNEV version of the FLUKA code, currently developed at DESY, as well as with estimates based on empirically determined conversion factors between star density and neutron fluence. Additionally, we present neutron spectra and the corresponding dose equivalents as well as the absorbed doses in beam dump materials obtained from the FLUNEV code.

  3. Coulomb excitation of neutron-rich beams at REX-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Scheit, H.; Niedermaier, O.; Bildstein, V.; Boie, H.; Fitting, J.; Hahn, R. von; Koeck, F.; Lauer, M.; Pal, U.K.; Podlech, H.; Repnow, R.; Schwalm, D. [Max-Planck-Insitut fuer Kernphysik, Heidelberg (Germany); Alvarez, C.; Ames, F.; Bollen, G.; Emhofer, S.; Habs, D.; Kester, O.; Lutter, R.; Rudolph, K.; Pasini, M.; Thirolf, P.G.; Wolf, B.H. [Ludwig-Maximilians-Univ., Muenchen (Germany); Eberth, J.; Gersch, G.; Hess, H.; Reiter, P.; Thelen, O.; Warr, N.; Weisshaar, D. [Univ. Koeln, Inst. fuer Kernphysik, Koeln (Germany); Aksouh, F.; Van den Bergh, P.; Van Duppen, P.; Huyse, M.; Ivanov, O.; Mayet, P.; Van de Walle, J. [Univ. of Leuven, Inst. voor Kern- en Stralingsfysica, Leuven (Belgium); Aeystoe, J.; Butler, P.A.; Cederkaell, J.; Delahaye, P.; Fynbo, H.O.U.; Fraile, L.M.; Forstner, O.; Koester, U.; Oinonen, M.; Sieber, T.; Wenander, F. [CERN, Geneva (Switzerland); Franchoo, S. [CERN, Geneva (Switzerland)]|[Johannes Gutenberg-Univ., Mainz (Germany); Nilsson, T. [CERN, Geneva (Switzerland)]|[Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Pantea, M.; Richter, A.; Schrieder, G.; Simon, H. [Technische Univ. Darmstadt, Inst. fuer Kernphysik, Darmstadt (Germany); Behrens, T.; Gernhaeuser, R.; Kroell, T.; Kruecken, R.; Muench, M. [Technische Univ. Muenchen, Garching (Germany); Davinson, T. [Univ. of Edinburgh, Edinburgh (United Kingdom); Gerl, J. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Huber, G.; Schmidt, P. [Johannes Gutenberg-Univ., Mainz (Germany); Hurst, A. [Univ. of Liverpool, Oliver Lodge Lab. (United Kingdom); Iwanicki, J. [Warsaw Univ., Heavy Ion Lab., Warsaw (Poland); Jonson, B. [Chalmers Tekniska Hoegskola, Goeteborg (Sweden); Lieb, P. [Georg-August-Univ., Goettingen (Germany); Liljeby, L. [Manne Siegbahn Lab., Stockholm (Sweden); Schempp, A. [Johann Wolfgang Goethe-Univ., Frankfurt (Germany); Scherillo, A. [Inst. fuer Kernphysik, Univ. Koeln (Germany)]|[Inst. Laue-Langevin, Grenoble (France)

    2005-09-01

    After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) -an accelerator for exotic nuclei produced by ISOLDE- in 2002 and the promotion to a CERN user facility in 2003, first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results on the neutron-rich Na and Mg isotopes show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium {gamma} spectrometer MINIBALL. (orig.)

  4. Deuteron beam interaction with lithium jet in a neutron source test facility

    Science.gov (United States)

    Hassanein, A.

    1996-10-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium—lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥ 14 MeV) neutrons required to simulate a fusion environment via the Li (d, n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities.

  5. SU-F-BRE-11: Neutron Measurements Around the Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Maglieri, R; Seuntjens, J; Kildea, J [McGill University, Montreal, QC (Canada); Liang, L; DeBlois, F [Jewish General Hospital, Montreal, QC (Canada); Evans, M [Montreal General Hospital, Montreal, QC (Canada); Licea, A [Canadian Nuclear Safety Comission, Ottawa, Ontario (Canada); Dubeau, J; Witharana, S [Detec, Gatineau, QC (Canada)

    2014-06-15

    Purpose: With the emergence of flattening filter free (FFF) photon beams, several authors have noted many advantages to their use. One such advantage is the decrease in neutron production by photonuclear reactions in the linac head. In the present work we investigate the reduction in neutrons from a Varian TrueBeam linac using the Nested Neutron Spectrometer (NNS, Detec). The neutron spectrum, total fluence and source strength were measured and compared for 10 MV with and without flattening filter and the effect of moderation by the room and maze was studied for the 15 MV beam. Methods: The NNS, similar to traditional Bonner sphere detectors but operated in current mode, was used to measure the neutron fluence and spectrum. The NNS was validated for use in high dose rate environments using Monte Carlo simulations and calibrated at NIST and NRC Canada. Measurements were performed at several positions within the treatment room and maze with the linac jaws closed to maximize neutron production. Results: The measurements showed a total fluence reduction between 35-40% in the room and maze when the flattening filter was removed. The neutron source strength Qn was calculated from in-room fluence measurements and was found to be 0.042 × 10{sup 2} n/Gy, 0.026 × 10{sup 2} n/Gy and 0.59 × 101{sup 2} n/Gy for the 10 MV, the 10 MV FFF and 15 MV beams, respectively. We measured ambient equivalent doses of 11 mSv/hr, 7 mSv/hr and 218 mSv/hr for the 10 MV, 10 MV FFF and 15 MV by the head. Conclusion: Our measurements revealed a decrease in total fluence, neutron source strength and equivalent dose of approximately 35-40% across the treatment room for the FFF compared to FF modes. This demonstrates, as expected, that the flattening filter is a major component of the neutron production for the TrueBeam. The authors greatly acknowledge support form the Canadian Nuclear Commission and the Natural Sciences and Engineering Research Council of Canada through the CREATE program. Co

  6. Characterization of a polychromatic neutron beam diffracted by pyrolytic graphite crystals

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    The beam spectrum for polychromatic neutrons diffracted by pyrolytic graphite crystals was characterized. The theoretical beam spectrum was obtained using the diffraction model for a mosaic crystal. The lattice vibration effects were included in the calculation using the reported vibration amplitude of the crystal and the measured time-of-flight spectra in the thermal region. The calculated beam spectrum was compared with the results obtained in the absence of thermal motion. The lattice vibration effects became more important for the higher diffraction orders and a large decrease in the neutron flux induced by the vibrations was identified in the epithermal region. The validity of the beam spectrum was estimated by comparing with the effective quantities determined from prompt gamma-ray measurements and Cd-ratios measured both for 1/nu and non-1/nu nuclides.

  7. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. E-mail: stefano.agosteo@polimi.it; Curzio, G.; D' Errico, F.; Nath, R.; Tinti, R

    2002-01-01

    Neutron capture in {sup 10}B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast neutron beam, generated by 7 MeV deuterons impinging on a thick target of beryllium. The neutron field was characterized at several deuteron energies (3.0-6.5 MeV) in an experimental structure installed at the Van De Graaff accelerator of the Laboratori Nazionali di Legnaro, in Italy. Thermal and epithermal neutron fluences were measured with activation techniques and fast neutron spectra were determined with superheated drop detectors (SDD). These neutron spectrometry and dosimetry studies indicated that the fast neutron dose is unacceptably high in the current design. Modifications to the current design to overcome this problem are presented.

  8. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  9. A prompt gamma neutron activation analysis facility using a diffracted beam

    Science.gov (United States)

    Harling, Otto K.; Chabeuf, Jean-Michel; Lambert, Frédérique; Yasuda, Gopika

    1993-12-01

    A prompt gamma neutron activation analysis facility has been constructed at the MIT Research Reactor using a diffracted beam from a multilayered graphite monochromator. A beam of 0.0143 eV neutrons of intensity 6 × 10 6{n}/{cm 2}s is available at the sample position. Backgrounds are low due to the use of the diffracted beam and are further improved by a sapphire crystal in the beam line. This design allowed the Ge detecting crystal to be placed close to the sample position, 4 cm, with a resultant high detection efficiency. The sensitivity of the facility is reported for several representative pure elements. The major impetus for the construction of this facility was the need for accurate analyses of 10B in biological samples for neutron capture therapy research. Detailed results for this type of analysis are provided. The sensitivity of this diffracted beam facility currently exceeds that of two representative direct beam facilities using reactors of twice the power of the MITR-II. Possible major improvements in sensitivity, more than an order of magnitude, and in background levels are outlined for future development.

  10. Measurement and simulation of the response function of time of flight enhanced diagnostics neutron spectrometer for beam ion studies at EAST tokamak

    Science.gov (United States)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.; Du, T. F.; Hu, Z. M.; Ge, L. J.; Zhang, Y. M.; Sun, J. Q.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Pu, N.; Lin, S. Y.; Wan, B. N.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.

    2016-11-01

    The 2.5 MeV TOFED (Time-Of-Flight Enhanced Diagnostics) neutron spectrometer with a double-ring structure has been installed at Experimental Advanced Superconducting Tokamak (EAST) to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas. This work describes the response function of the TOFED spectrometer, which is evaluated for the fully assembled instrument in its final layout. Results from Monte Carlo simulations and dedicated experiments with pulsed light sources are presented and used to determine properties of light transport from the scintillator. A GEANT4 model of the TOFED spectrometer was developed to calculate the instrument response matrix. The simulated TOFED response function was successfully benchmarked against measurements of the time-of-flight spectra for quasi-monoenergetic neutrons in the energy range of 1-4 MeV. The results are discussed in relation to the capability of TOFED to perform beam ion studies on EAST.

  11. Effect of Neutron Irradiation on Beam-Column Interaction of Reinforced Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae-Hyun; Park, Jiho; Kim, Jun Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, HyungTae; Park, Kyoungsoo [Yonsei University, Seoul (Korea, Republic of); Kim, Sang-Ho [Hyundai Engineering, Seoul (Korea, Republic of)

    2015-10-15

    Age-related effects on such RC structures have been extensively studied in detail. However, the effect of neutron irradiation requires further studies from its limited database. Most of RC structures have been regarded as sound as the neutron fluence below 1.0x10{sup 19} n/cm{sup 2}. The reduction of strength is not considered in a periodic inspection program at aging NPPs. However, RC structures, such as biological shields and supports for a reactor vessel, could be exposed to see the critical level of neutron fluence at years of operation. In this regard, beam-column interaction of a typical RC member is numerically investigated as a result of neutron irradiation. The effect of neutron irradiation on beam-column interaction is evaluated. ACI318 requires the strength reduction factor, ϕ=0.70, for the compression controlled area and the higher up to 0.9 as the tensile strain in steel reinforcement goes higher. This concept works well with this example. However, this does not take into account the energy dissipation capacity of the member but it only expresses the ultimate strength. Therefore, the current strength evaluation concept may be misleading when the material behavior of steel reinforcement becomes brittle due to the neutron irradiation. In such case, even for the transient and tension controlled area, the strength reduction factor needs to be modified to account for the potential ductility loss.

  12. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  13. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    Science.gov (United States)

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  14. In-phantom spectra and dose distributions from a high-energy neutron therapy beam

    CERN Document Server

    Benck, S; Denis, J M; Meulders, J P; Nath, R; Pitcher, E J

    2002-01-01

    In radiotherapy with external beams, healthy tissues surrounding the target volumes are inevitably irradiated. In the case of neutron therapy, the estimation of dose to the organs surrounding the target volume is particularly challenging, because of the varying contributions from primary and secondary neutrons and photons of different energies. The neutron doses to tissues surrounding the target volume at the Louvain-la-Neuve (LLN) facility were investigated in this work. At LLN, primary neutrons have a broad spectrum with a mean energy of about 30 MeV. The transport of a 10x10 cm sup 2 beam through a water phantom was simulated by means of the Monte Carlo code MCNPX. Distributions of energy-differential values of neutron fluence, kerma and kerma equivalent were estimated at different locations in a water phantom. The evolution of neutron dose and dose equivalent inside the phantom was deduced. Measurements of absorbed dose and of dose equivalent were then carried out in a water phantom using an ionization ch...

  15. Effect of Sigma-beam Asymmetry Data on the Neutron in Fits to Single Pion Photoproduction

    CERN Document Server

    Strakovsky, I I; Briscoe, W J; Paris, M W; Workman, R L

    2011-01-01

    We investigate the influence of new GRAAL Sigma-beam asymmetry measurements on the neutron in multipole fits to the single-pion photoproduction database. Results are compared to those found with the addition of a double-polarization quantity associated with the sum rule.

  16. Neutron spectra measurement and comparison of the HFR and THOR BNCT beams.

    Science.gov (United States)

    Liu, Yuan-Hao; Nievaart, Sander; Tsai, Pi-En; Liu, Hong-Ming; Moss, Ray; Jiang, Shiang-Huei

    2009-07-01

    This paper aims to measure the spectra of HB11 (high flux reactor, HFR) and the Tsing Hua open-pool reactor (THOR) boron neutron capture therapy (BNCT) beams by multiple activation foils. The self-shielding corrections were made with the aid of MCNP calculations. The initial spectra were adjusted by a sophisticated process named coarse-scaling adjustment using SAND-EX, which can adjust a given coarse-group spectrum into a fine-group structure, i.e. 640 groups, with excellent continuity. The epithermal neutron flux of the THOR beam is about three times of HB11. The thermal neutron flux, boron and gold reaction rates along the central axis of a PMMA phantom are calculated for both adjusted spectra for comparison.

  17. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  18. Silicon detectors for the neutron flux and beam profile measurements of the n_TOF facility at CERN

    Science.gov (United States)

    Musumarra, Agatino; Cosentino, Luigi; Barbagallo, Massimo; Colonna, Nicola; Damone, Lucia; Pappalardo, Alfio; Piscopo, Massimo; Finocchiaro, Paolo

    2016-09-01

    The demand of new and high precision cross section data for neutron-induced reactions is continuously growing, driven by the requirements from several fields of fundamental physics, as well as from nuclear technology, medicine, etc. Several neutron facilities are operational worldwide, and new ones are being built. In the coming years, neutron beam intensities never reached up to now will be available, thus opening new scientific and technological frontiers. Among existing facilities, n_TOF at CERN provides a high intensity pulsed neutron beam in a wide energy range (thermal to GeV) and with an extremely competitive energy resolution that also allows spectroscopy studies. In order to ensure high quality measurements, the neutron beams must be fully characterized as a function of the neutron energy, in particular by measuring the neutron flux and the beam transverse profile with high accuracy. In 2014 a new experimental area (EAR2), with a much higher neutron flux, has been completed and commissioned at n_TOF. In order to characterize the neutron beam in the newly built experimental area at n_TOF, two suitable diagnostics devices have been built by the INFN-LNS group. Both are based on silicon detectors coupled with 6Li converter foils, in particular Single Pad for the flux measurement and Position Sensitive (strips and others) for the beam profile. The devices have been completely characterized with radioactive sources and with the n_TOF neutron beam, fulfilling all the specifications and hence becoming immediately operational. The performances of these devices and their high versatility, in terms of neutron beam intensity, make them suitable to be used in both n_TOF experimental areas. A description of the devices and the main results obtained so far will be presented.

  19. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-01-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  20. Beam position monitor data acquisition for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Kahana, E.; Votaw, A.J.; Decker, G.A.; Chung, Y.; Ciarlette, D.J.; Laird, R.J.

    1993-06-01

    This paper describes the Beam Position Monitor (BPM) data acquisition scheme for the Advanced Photon Source (APS) storage ring. The storage ring contains 360 beam position monitors distributed around its 1104-meter circumference. The beam position monitor data acquisition system is capable of making turn-by-turn measurements of all BPMs simultaneously. It is VXI-based with each VXI crate containing the electronics for 9 BPMS. The VXI Local Bus is used to provide sustained data transfer rates of up to 13 mega-transfers per second to a scanner module. The system provides single-bunch tracking, bunch-to-bunch measurements, fast digital-averaged positions, beam position history buffering, and synchronized multi-turn measurements. Data is accessible to the control system VME crates via an MXI bus. Dedicated high-speed ports are provided to supply position data to beam orbit feedback systems.

  1. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  2. An improved elliptic guide concept for a homogeneous neutron beam without direct line of sight

    CERN Document Server

    Zendler, C; Lieutenant, K

    2014-01-01

    Ballistic neutron guides are efficient for neutron transport over long distances, and in particular elliptically shaped guides have received much attention lately. However, elliptic neutron guides generally deliver an inhomogeneous divergence distribution when used with a small source, and do not allow kinks or curvature to avoid a direct view from source to sample. In this article, a kinked double-elliptic solution is found for neutron transport to a small sample from a small (virtual) source, as given e.g. for instruments using a pinhole beam extraction with a focusing feeder. A guide consisting of two elliptical parts connected by a linear kinked section is shown by VITESS simulations to deliver a high brilliance transfer as well as a homogeneous divergence distribution while avoiding direct line of sight to the source. It performs better than a recently proposed ellipse-parabola hybrid when used in a ballistic context with a kinked or curved central part. Another recently proposed solution, an analyticall...

  3. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.

    Science.gov (United States)

    Kasesaz, Y; Rahmani, F; Khalafi, H

    2015-12-01

    In order to provide an appropriate neutron beam for Boron Neutron Capture Therapy (BNCT), a special Beam Shaping Assembly (BSA) must be designed based on the neutron source specifications. A typical BSA includes moderator, reflector, collimator, thermal neutron filter, and gamma filter. In common BSA, the reflector is considered as a layer which covers the sides of the moderator materials. In this paper, new reflector/moderator geometries including multi-layer and hexagonal lattice have been suggested and the effect of them has been investigated by MCNP4C Monte Carlo code. It was found that the proposed configurations have a significant effect to improve the thermal to epithermal neutron flux ratio which is an important neutron beam parameter.

  4. On-line neutron beam monitoring of the Finnish BNCT facility

    Science.gov (United States)

    Tanner, Vesa; Auterinen, Iiro; Helin, Jori; Kosunen, Antti; Savolainen, Sauli

    1999-02-01

    A Boron Neutron Capture Therapy (BNCT) facility has been built at the FiR 1 research reactor of VTT Chemical Technology in Espoo, Finland. The facility is currently undergoing dosimetry characterisation and neutron beam operation research for clinical trials. The healthy tissue tolerance study, which was carried out in the new facility during spring 1998, demonstrated the reliability and user-friendliness of the new on-line beam monitoring system designed and constructed for BNCT by VTT Chemical Technology. The epithermal neutron beam is monitored at a bismuth gamma shield after an aluminiumfluoride-aluminium moderator. The detectors are three pulse mode U 235-fission chambers for epithermal neutron fluence rate and one current mode ionisation chamber for gamma dose rate. By using different detector sensitivities the beam intensity can be measured over a wide range of reactor power levels (0.001-250 kW). The detector signals are monitored on-line with a virtual instrumentation (LabView) based PC-program, which records and displays the actual count rates and total counts of the detectors in the beam. Also reactor in-core power instrumentation and control rod positions can be monitored via another LabView application. The main purpose of the monitoring system is to provide a dosimetric link to the dose in a patient during the treatment, as the fission chamber count rates have been calibrated to the induced thermal neutron fluence rate and to the absorbed dose rate at reference conditions in a tissue substitute phantom.

  5. Advanced Neutron Radiographic Equipment within the US Army

    Science.gov (United States)

    2014-01-29

    The first of the two new neutron generators developed for ARDEC was built and delivered by Phoenix Nuclear Labs ( PNL ) located in Madison, WI...PRELIMINARY NEUTRON RADIOGRAPHS AND RESULTS During the hardware and software testing of the PNL neutron generator several test shots were

  6. LENDA: A low energy neutron detector array for experiments with radioactive beams in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Perdikakis, G., E-mail: perdikak@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Sasano, M.; Austin, Sam M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Caesar, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Cannon, S. [Hastings College, Hastings, NE 68901 (United States); Deaven, J.M.; Doster, H.J.; Guess, C.J.; Hitt, G.W. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Marks, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Meharchand, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Nguyen, D.T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Peterman, D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); and others

    2012-09-11

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Laboratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p,n) charge-exchange reactions at intermediate energies (>100MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV to 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neutron energy threshold of <150keV, an intrinsic time (position) resolution of {approx} 400 ps ({approx} 6 cm) and an efficiency >20% for neutrons below 4 MeV have been obtained.

  7. Design of epithermal neutron beam for clinical BNCT treatment at Slovenian TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maucec, Marko [Jozef Stefan Institute, Reactor Physics Division, Lubljana (Slovenia). E-mail: marko.mauce@ijs.si

    1999-07-01

    The Monte Carlo feasibility study of development of epithermal neutron beam for BNCT clinical trials on Jozef Stefan Institute (JSI) TRIGA reactor is presented. The investigation of the possible use of fission converter for the purpose of enhancement of neutron beam, as well as the set-up of TRIGA reactor core is performed. The optimization of the irradiation facility components is carried out and the configuration with the most favorable cost/performance ratio is proposed. The simulation results prove that a BNCT irradiation facility with performances, comparable to existing beams throughout the world, could be installed in the thermalizing column of the TRIGA reactor, quite suitable for the clinical treatments of human patients. (author)

  8. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  9. A 2D Acceptance Diagram Description of Neutron Primary Spectrometer Beams

    CERN Document Server

    Cussen, Leo D

    2016-01-01

    Many types of neutron spectrometer use a conventional primary spectrometer consisting of some collimator, a crystal monochromator and a second collimator. Conventional resolution descriptions use instrument parameter values to deduce the beam character and thence the instrument transmission and resolution. This article solves the inverse problem of choosing beam elements to deliver some desired beam character and shows that there are many possible choices of elements to deliver any given beam character. Dealing with this multiplicity seems to be a central issue in the search for optimal instrument designs especially if using numerical methods. The particular approach adopted here is to extend the 2D "Acceptance Diagram" view of the in-scattering-plane component of primary spectrometer beams to include horizontally curved monochromators and a variety of collimator types (beamtubes, guides, Soller collimators and radial Soller collimators). This visual approach clarifies the effect of primary spectrometer varia...

  10. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations.

  11. An optimized neutron-beam shaping assembly for accelerator-based BNCT.

    Science.gov (United States)

    Burlon, A A; Kreiner, A J; Valda, A A; Minsky, D M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon, and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the (7)Li(p,n)(7)Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  12. An optimized neutron-beam shaping assembly for accelerator-based BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Burlon, A.A. E-mail: burlon@tandar.cnea.gov.ar; Kreiner, A.J.; Valda, A.A.; Minsky, D.M

    2004-11-01

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon[reg ], and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the {sup 7}Li(p,n){sup 7}Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases.

  13. Report on neutron beam utilization and study of high Tc superconductors at NRI

    Energy Technology Data Exchange (ETDEWEB)

    Vuong Huu Tan [Nuclear Physics Dept., Nuclear Research Inst. (NRI), Dalat (Viet Nam)

    1998-10-01

    Utilization of reactor neutron beams at NRI for research and applications up to November 1996 had been presented at the last Workshop in Jakarta (25-28 Nov., 1996). This paper describes new research and applications carried out at Nuclear Physics Department of NRI after that time. They consist of neutron beam developments, neutron activation cross section measurements for waste disposal assessment and in-vivo prompt gamma neutron activation analysis for Cd determination in organs. After the last Sub-Workshop on Neutron Scattering in Serpong (21-23 Nov., 1996), we were accepted to participate in the Regional Program on Study of High Tc Superconductors with the topic `The mechanism of Pb and Sb dopant role on superconductivity of 2223 phase of Bi-Sr-Ca-Cu-O system`. Indeed, this study has begun at NRI only since August, 1997 due to the problem of materials. The study has been carried out in collaboration with the Hanoi State University (Superconductors Department) where experts and equipment for superconductors research have been considered as the best ones in Vietnam. Primary results in this study are presented in this workshop. (author)

  14. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Science.gov (United States)

    Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.

    2017-03-01

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.

  15. Neutronic performance of the MEGAPIE spallation target under high power proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Michel-Sendis, F. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Chabod, S. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, 38000 Grenoble (France); Letourneau, A. [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Panebianco, S., E-mail: stefano.panebianco@cea.f [CEA - Saclay, Irfu/Service de Physique Nucleaire, F91191 Gif-sur-Yvette (France); Zanini, L. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2010-07-01

    The MEGAPIE project, aiming at the construction and operation of a megawatt liquid lead-bismuth spallation target, constitutes the first step in demonstrating the feasibility of liquid heavy metal target technologies as spallation neutron sources. In particular, MEGAPIE is meant to assess the coupling of a high power proton beam with a window-concept heavy liquid metal target. The experiment has been set at the Paul Scherrer Institute (PSI) in Switzerland and, after a 4-month long irradiation, has provided unique data for a better understanding of the behavior of such a target under realistic irradiation conditions. A complex neutron detector has been developed to provide an on-line measurement of the neutron fluency inside the target and close to the proton beam. The detector is based on micrometric fission chambers and activation foils. These two complementary detection techniques have provided a characterization of the neutron flux inside the target for different positions along its axis. Measurements and simulation results presented in this paper aim to provide important recommendations for future accelerator driven systems (ADS) and neutron source developments.

  16. Measurement of Neutrons Produced by Beam-Target Interactions via a Coaxial Plasma Accelerator

    Science.gov (United States)

    Cauble, Scott; Poehlmann, Flavio; Rieker, Gregory; Cappelli, Mark

    2011-10-01

    This poster presents a method to measure neutron yield from a coaxial plasma accelerator. Stored electrical energies between 1 and 19 kJ are discharged within a few microseconds across the electrodes of the coaxial gun, accelerating deuterium gas samples to plasma beam energies well beyond the keV energy range. The focus of this study is to examine the interaction of the plasma beam with a deuterated target by designing and fabricating a detector to measure neutron yield. Given the strong electromagnetic pulse associated with our accelerator, indirect measurement of neutrons via threshold-dependent nuclear activation serves as both a reliable and definitive indicator of high-energy particles for our application. Upon bombardment with neutrons, discs or stacks of metal foils placed near the deuterated target undergo nuclear activation reactions, yielding gamma-emitting isotopes whose decay is measured by a scintillation detector system. By collecting gamma ray spectra over time and considering nuclear cross sections, the magnitude of the original neutron pulse is inferred.

  17. Development of energy selective neutron imaging system at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun; Moon, Myung Kook; Kim, TaeJoo; Shin, Eun Joo; Woo, Wanchuck [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Energy selective neutron imaging is one of advanced neutron imaging techniques because it is critical to examine the crystallographic phase distribution and spatial phase transformation for the development and application of new grade high-strength steels using energy selective neutron imaging. In this work, we are developing the energy selective neutron imaging system at the Ex-core Neutron irradiation Facility (ENF) for thermal neutron beam and the 18m Small Angle Neutron Scattering (18mSANS) beam line for cold neutron beam at HANARO. The energy selective neutron imaging system is being developed at the ENF and 18mSANS beam line at HANARO. We are expecting to get neutron radiographic images which can distinguish bcc and fcc phases in the prepared sample. The result of energy selective neutron imaging will provide the spatial distribution of the new deformation induced phase, which is important to make a relationship between phase transformation and mechanical behavior of the sample.

  18. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)] (eds.)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  19. Characterization of the New n_TOF Neutron Beam: Fluence, Profile and Resolution

    CERN Document Server

    Guerrero, C; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Andrzejewski, J; Karadimos, D; Mengoni, A; Mendoza, E; Ganesan, S; Vlachoudis, V; Praena, J; Becares, V; Cortes, G; Variale, V; Quinones, J; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Sarmento, R; Becvar, F; Goncalves, I F; Martin-Fuertes, F; Cerutti, F; Pina, G; Mosconi, M; Tagliente, G; Duran, I; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    After a halt of four years, the n\\_TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and efficient cooling. The first measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated fission chambers, the n\\_TOF Silicon Monitor, a MicroMegas detector with (10)B and (235)U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron fluence. The spatial profile of the beam has been studied with a specially designed ``X-Y{''} MicroMegas which provided a 2D image of the beam as a function of neutron energy. Both properties have been compared with simulations performed. with the FLUKA code. The characterization of the resolution function is based on results from simulations which have been verified by the study of narrow capture...

  20. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  1. Systematic effects on cross-section data derived from reaction rates at a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Žerovnik, Gašper, E-mail: gasper.zerovnik@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel (Belgium); Becker, Björn [European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel (Belgium); Belgya, Tamás, E-mail: belgya.tamas@energia.mta.hu [Institute for Energy Security and Environmental Safety, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest (Hungary); Genreith, Christoph, E-mail: christoph.genreith@frm2.tum.de [Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, D-85748 Garching (Germany); Harada, Hideo, E-mail: harada.hideo@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, 319-1195 Ibaraki (Japan); Kopecky, Stefan, E-mail: stefan.kopecky@ec.europa.eu [European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel (Belgium); Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); CEA, DEN, DER, Instrumentation, Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Sano, Tadafumi, E-mail: t-sano@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, 590-0494 Osaka (Japan); Schillebeeckx, Peter, E-mail: peter.schillebeeckx@ec.europa.eu [European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel (Belgium); and others

    2015-11-01

    The methodology to derive cross-section data from measurements in a cold neutron beam was studied. Mostly, capture cross-sections at thermal energy are derived relative to a standard cross-section, e.g. the cross-section of the {sup 1}H(n,γ), {sup 14}N(n,γ), or {sup 197}Au(n,γ) reaction, and proportionality between the standard and the measured cross-section, evaluated at different energies in the sub-thermal region, is often assumed. Due to this assumption the derived capture cross-section at thermal energy can be biased by more than 10%. Evidently the bias depends on how much the energy dependence of the cross-section deviates from a direct proportionality with the inverse of the neutron speed. The effect is reduced in case the cross-section is not derived at thermal energy but at an energy close to the average energy of the cold neutron beam. Nevertheless, it is demonstrated that the bias can only be avoided in case the energy dependence of the cross-section is known and proper correction factors are applied. In some cases the results are also biased when the attenuation of the neutron beam within the sample is neglected in the analysis. Some of the cross-section data reported in the literature suffer from such bias effects. Hence, the results have to be corrected using the correction factors presented in this paper.

  2. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  3. Voluminous D2 source for intense cold neutron beam production at the ESS

    CERN Document Server

    Klinkby, Esben; Mezei, Ferenc; Schønfeldt, Troels; Takibayev, Alan; Zanini, Luca

    2014-01-01

    The development of the flat moderator concept at ESS recently opened up the possibility that a single flat moderator above the target could serve all the scattering instruments, that rely on high brightness. This would allow for the introduction of a fundamentally different moderator below the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed.

  4. A novel methodology to determine the divergence of a neutron beam

    Science.gov (United States)

    Souza, E. S.; Almeida, G. L.; Lopes, R. T.

    2016-12-01

    This work posits a novel approach to characterize the divergence of a neutron beam emerging from a reactor port. Unlike the usual inverse of the L/D ratio, the term divergence as employed here refers to the deviation from an ideal parallel beam emitted from a surface source. Within this concept, an ideal point source in spite of its conical beam would not exhibit any divergence. Hence, the beam divergence of a surface source is more adequately characterized adopting the notion of Rocking Curve - RC, a term borrowed from the X-ray diffraction field. After this idea, every point of the surface source emits neutrons in all directions but with different intensities following a bell-shaped profile. Once the RC semi-width is determined, it is possible to assess its effect upon the quality of an acquired neutron radiograph, since it incorporates degrading agents such as geometrical unsharpness, neutron scattering, noise and statistical dispersion. In this work an inverse procedure is applied, i.e., to use an actual neutron radiograph to find the RC semi-width. To accomplish this task, synthetic images - generated with defined RC semi-widths and object-detector gaps - are compared with experimental ones acquired with the same gaps in order to find the most resemblance between them. The angular semi-width of the best synthetic image is assigned to that of the experimental one, defining thus the aimed beam divergence, which has been compared with a different method with a fair agreement. An equivalent procedure embedded in the algorithm has been employed to evaluate the L/D using the same radiographic images. The outcome fairly agrees with the value inferred from the neutron flux ratio at different locations. Both approaches RC semi-width and L/D ratio yielded consistent results with other utterly different methods. Yet, the rocking curve approach forecasts more precisely the neutron pattern hitting the detector and does not need a precisely machined test-object as required

  5. Precision measurement of thermal neutron beam densities using a 3He proportional counter

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Bahnsen, A.; Brown, W.K.

    1967-01-01

    A new method, based on the 3He(n, p)T reaction, has been developed for the accurate determination of thermal neutron beam densities. Several comparisons were made with the conventional Au-foil activation method, and agreement was obtained between the two methods within an experimental uncertainty...... of ±0.4%. Fundamental advantages of the method include the 1ν dependence of the 3He(n, p)T cross section up to 1 keV, and the assurance of homogeneity even for very small macroscopic cross sections, because of the gaseous detector material. Although the method requires a relatively clean neutron beam......, it can be used over a wide range of neutron densities and, in particular, is capable of measuring extremely weak beams. A detector has been constructed with a well-defined efficiency and which is able to accept beams of diameters up to 10 cm. The 3He counter method is proposed as a precision standard...

  6. Advanced neutron source reactor probabilistic flow blockage assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool.

  7. Advancements in Neutron Radiography within the Department of the Army

    Science.gov (United States)

    2014-12-29

    mines, medium caliber cartridges , mortars, and large caliber rounds have or are being designed to be anti-personnel devices. Such designs use...Radiographs of layered materials, depicting reduced effectiveness using x-rays. 40mm high explosive, dual purpose (HEDP) cartridge M433 (left). http://media...Mega-, 1E6 m meter MCNP Monte Carlo N-Particle software n neutron NC Neutron Content, thermal NDT Nondestructive Testing NR Neutron

  8. Demonstration of a white beam far-field neutron interferometer for spatially resolved small angle neutron scattering

    CERN Document Server

    Hussey, Daniel S; Yuan, Guangcui; Pushin, Dmitry; Sarenac, Dusan; Huber, Michael G; Jacobson, David L; LaManna, Jacob M; Wen, Han

    2016-01-01

    We provide the first demonstration that a neutron far-field interferometer can be employed to measure the microstructure of a sample. The interferometer is based on the moir\\'e pattern of two phase modulating gratings which was previously realized in hard x-ray and visible light experiments. The autocorrelation length of this interferometer, and hence the microstructure length scale that is probed, is proportional to the grating spacing and the neutron wavelength, and can be varied over several orders of magnitude for one pair of gratings. We compare our measurements of the change in visibility from monodisperse samples with calculations which show reasonable agreement. The potential advantages of a far-field neutron interferometer include high fringe visibility in a polychromatic beam (over 30 %), no requirement for an absorbing grating to resolve the interference fringes, and the ability to measure the microstructure in the length scale range of 100 nm to 10 \\mum by varying either the grating spacing or neu...

  9. Nuclear Waste Removal Using Particle Beams Incineration with Fast Neutrons

    CERN Document Server

    Revol, Jean Pierre Charles

    1997-01-01

    The management of nuclear waste is one of the major obstacles to the acceptability of nuclear power as a main source of energy for the future. TARC, a new experiment at CERN, is testing the practicality of Carlo Rubbia's idea to make use of Adiabatic Resonance Crossing to transmute long-lived fission fragments into short-lived or stable nuclides. Spallation neutrons produced in a large Lead assembly have a high probability to be captured at the energies of cross-section resonances in elements such as 99Tc, 129I, etc. An accelerator-driven sub-critical device using Thorium (Energy Amplifier) would be very effective in eliminating TRansUranic elements which constitute the most dangerous part of nuclear waste while producing from it large amounts of energy. In addition, such a system could transform, at a high rate and little energetic cost, long-lived fission fragments into short-lived elements.

  10. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    Directory of Open Access Journals (Sweden)

    Wilson J.N.

    2013-12-01

    Full Text Available LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  11. LICORNE: A new and unique facility for producing intense, kinematically focused neutron beams at the IPN Orsay

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Halipre, P.; Leniau, B.; Matea, I.; Verney, D.; Oberstedt, S.; Billnert, R.; Oberstedt, A.; Georgiev, G.; Ljungvall, J.

    2013-12-01

    LICORNE is a new neutron source recently installed at the tandem accelerator of the Institut de Physique Nucléaire d'Orsay, where a Li7-beam is used to bombard a hydrogen-containing target to produce an intense forward-directed neutron beam. The directionality of the beam, which is the unique characteristic of LICORNE, will permit the installation of γ-ray detectors dedicated to the investigation of fission fragment de-excitation which are unimpeded by neutrons from the source. A first experimental program will focus on the measurement of prompt γ-ray emission in the neutron-induced fission of fertile and fissile isotopes at incident neutron energies relevant for the core design of Generation-IV nuclear reactors. Other potential uses of the LICORNE facility for both fundamental and applied physics research are also presented.

  12. Neutron beams. Understanding and characterizing matter; Les faisceaux de neutrons. Comprendre et caracteriser la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Pepy, G. [Laboratoire Leon Brillouin (LLB) - Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    2007-01-15

    This article treats of the numerous methods that use the undulatory properties of neutrons (their scattering in matter). Content: 1 - structure of crystallized matter: determination of a magnetic structure, hydrogen localization inside an alloy, 3D mapping of internal stresses inside materials, determination of the crystallographic structure, structure of a monocrystal by 4 circles diffraction; 2 - reflectometry, surface profiles: super-mirrors for neutron guides, giant magnetoresistance thin film devices; 3 - small angle scattering: protein and polyelectrolyte complexes, ropes integrity and microstructure, aggregates growth inside irradiated steels, microstructural evolution of defects inside race car engine pistons; 4 - dynamics: collective mode dynamics - three axis spectrometer, Mn Te magnons in thin film, scattering dynamics - quasi-elastic time-of-flight spectrometer, water diffusion inside cement. (J.S.)

  13. An improved prompt gamma neutron activation analysis facility using a focused diffracted neutron beam

    Science.gov (United States)

    Riley, Kent J.; Harling, Otto K.

    1998-09-01

    The performance of the prompt gamma neutron activation analysis (PGNAA) facility at the MIT Research Reactor has been improved by a series of modifications. These modifications have increased the flux by a factor of three at the sample position to 1.7 × 10 7 n/cm 2 s, and have increased the sensitivity, on average, by a factor of 2.5. The background for many samples of interest is dominated by unavoidable neutron interactions that occur in or near the sample. Other background components comprise only 20% of the total background count rate. The implementation of fast electronics has helped to keep dead time reasonable, in spite of the increased count rates. The PGNAA facility at the MIT Research Reactor continues to serve as a major analytical tool for quantifying 10B in biological samples for Boron Neutron Capture Therapy (BNCT) research. The sensitivity for boron-10 in water is 18 750 cps/mg. The sensitivity for pure elements suitable for PGNAA analysis is reported. Possible further improvements are discussed.

  14. Development of a polarized neutron beam line at Algerian research reactors using McStas software

    Science.gov (United States)

    Makhloufi, M.; Salah, H.

    2017-02-01

    Unpolarized instrumentation has long been studied and designed using McStas simulation tool. But, only recently new models were developed for McStas to simulate polarized neutron scattering instruments. In the present contribution, we used McStas software to design a polarized neutron beam line, taking advantage of the available spectrometers reflectometer and diffractometer in Algeria. Both thermal and cold neutron was considered. The polarization was made by two types of supermirrors polarizers FeSi and CoCu provided by the HZB institute. For sake of performance and comparison, the polarizers were characterized and their characteristics reproduced. The simulated instruments are reported. Flipper and electromagnets for guide field are developed. Further developments including analyzers and upgrading of the existing spectrometers are underway.

  15. Development of a fast traveling-wave beam chopper for the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Jason, A.J.; Krawczyk, F.L.; Power, J.

    1997-10-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the National Spallation Neutron Source (NSNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns to accommodate a 402.5-MHz beam structure--beam chopping in its front end, at the beam energy 2.5 MeV. The R and D program includes both modification of the existing LANSCE coax-plate chopper to reduce parasitic coupling between adjacent plates, and development of new traveling-wave deflecting structures, in particular, based on a meander line. Using analytical methods and three-dimensional time-domain computer simulations the authors study transient effects in such structures to choose an optimal chopper design.

  16. Integration of an advanced sealed-tube neutron generator into a mobile neutron radiology system and resulting performance

    Science.gov (United States)

    Dance, William E.; Cluzeau, Serge; Mast, Hans-Ulrich

    1991-05-01

    The first DIANE ∗ neutron radiology system is being prepared for operation in the IABG laboratories in Ottobrunn (Germany). It utilizes a new D-T generator, designated GENIE 46, developed by SODERN (France) for this application. The generator is being integrated into an upgraded LTV-produced mobile neutron radiology system suitable for practical nonreactor inspection of components and structures. The maximum output of the present version of the GENIE 46 is 5 × 10 11 n s -1 (14 MeV) with less than 10 mA ion beam current at 225 kV. Tube lifetime at maximum output is approximately 500 h, while at 10 11 n s -1 the tube is designed for a lifetime of 1500 h. The geometry of the neutron tube, VHV connectors, ion source power supply, and cooling tubes comprises a cannister designed to be compatible with the 10-in. diameter opening in the LTV moderator/collimator assembly. 3-D Monte Carlo neutron/photon transport simulations of the new integrated radiology system operation have been performed by IABG. The calculations predict a thermal neutron flux at the collimator exit ( {L}/{D} = 13) of φth(0 ≤ En ≤ 0.3 eV) = 1.2 × 10 5 n cm -2 s -1. Comparisons of this value and other Monte Carlo results with actual performance will be made in the near future with the accrual of operational data.

  17. $\\Xi ^{-}$ Production by $\\Sigma ^{-}$,$\\pi^{-}$ and Neutrons in the Hyperon Beam Experiment at CERN

    CERN Document Server

    Adamovich, M I; Barberis, D; Beck, M; Bérat, C; Beusch, Werner; Boss, M; Brons, S; Brückner, W; Buénerd, M; Busch, C; Büscher, C; Charignon, F; Chauvin, J; Chudakov, E A; Dersch, U; Dropmann, F; Engelfried, J; Faller, F; Fournier, A; Gerassimov, S G; Godbersen, M; Grafström, P; Haller, T; Heidrich, M; Hubbard, E L; Hurst, R B; Königsmann, K C; Konorov, I; Keller, N; Martens, K; Martin, P; Masciocchi, S; Michaels, R; Müller, U; Neeb, H; Newbold, D; Newsom, C R; Paul, S; Pochodzalla, J; Potashnikova, I K; Povh, B; Ren, Z; Epherre-Rey-Campagnolle, Marcelle; Rosner, G; Rossi, L; Rudolph, H; Scheel, C V; Schmitt, L; Siebert, Hans-Wolfgang; Simon, A; Smith, V; Thilmann, O; Trombini, A; Vesin, E; Volkemer, B; Vorwalter, K; Walcher, T; Wälder, G; Werding, R; Wittmann, E; Zavertyaev, M V

    1997-01-01

    Inclusive cross sections for \\ximin\\ hyperon production in high-energy \\sigmamin, \\pimin\\ and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary \\sigmamin\\ and \\pimin\\ beams with average momenta of 345~\\gevc1 and a neutron beam of average momentum 65~\\gevc1 were produced by primary protons of 450~\\gevc1\\ from the CERN SPS. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable $x_F$. A strong leading effect for \\ximin\\ produced by \\sigmamin\\ is observed. The influence of the target mass on the \\ximin\\ cross section is explored by comparing reactions on copper and carbon nuclei.

  18. The response of the Sievert instrument in neutron beams up to 180 MeV

    CERN Document Server

    Kylionen, J E; Samuelson, G

    2001-01-01

    Measurements with a tissue-equivalent proportional counter (TEPC) using the variance-covariance method have been performed in neutron beams between 71 keV and 180 MeV and in the cosmic radiation reference field (CERF) at CERN. The results show that with appropriate linear Q/sub D/(y/sub D/) relations, the ambient dose equivalent can be determined within about 55% in these beams. Build- up measurements show that wall thickness is not crucial for H* determinations at 60 and 180 MeV. (26 refs).

  19. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  20. Thermoluminescence response of sodalime glass irradiated with proton and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Marrale, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Longo, A., E-mail: anna.longo@unipa.it [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); Bartolotta, A. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Basile, S. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy); D' Oca, M.C. [Dipartimento STEMBIO, Via delle Scienze, Ed. 16, 90128 Palermo (Italy); Tomarchio, E. [Dipartimento dell' Energia, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Di Rosa, F. [Azienda Sanitaria Provinciale N 2, Pres. Osped. ' M. Raimondi' , Via Forlanini 5, S. Cataldo (Italy); Romano, F. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' Compendio del Viminale, Piazza del Viminale 1, 00184 Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud INFN, Via Santa Sofia 65, 95123 Catania (Italy); Brai, M. [Dipartimento di Fisica, Universita degli Studi di Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy); INFN Gruppo V, Via Santa Sofia 64, 95123 Catania (Italy)

    2012-12-01

    In the research field of emergency dosimeters to be used in case of accidental radiation exposure of the population, watch glass has been considered as a possible fortuitous dosimetric material. This paper reports on results obtained by thermoluminescence of glass samples exposed to neutron and proton beams. Thermoluminescent glow curves have been analyzed for each irradiation studying the modifications induced by the irradiation as a function of proton dose or neutron fluence. The glow curve in a specific temperature range has been used as dosimetric parameter. The thermoluminescence response of samples exposed to protons has been found to be linear in the dose range between 2 and 20 Gy and the lowest detectable dose for this radiation beam is estimated to be smaller than than 1 Gy. In case of exposure with thermal neutrons the TL signal linearly increases with neutron fluence (up to about 3 Multiplication-Sign 10{sup 11} cm{sup -2}) and the lowest detectable fluence has been found to be of the order of magnitude of 10{sup 9} cm{sup -2}. These results could be of interest for accidental retrospective dosimetry.

  1. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    Science.gov (United States)

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences.

  2. Detection of hidden explosives by using tagged neutron beams with sub-nanosecond time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Pesente, Silvia; Nebbia, Giancarlo; Lunardon, Marcello; Viesti, Giuseppe E-mail: giuseppe.viesti@pd.infn.it; Sudac, Davorin; Nad, Karlo; Blagus, Sasha; Valkovic, Vladivoj

    2004-10-01

    Non-destructive inspection of luggage has been simulated in laboratory conditions by using a 14 MeV tagged neutron beam and BaF{sub 2} scintillation detectors (Tagged Neutron Inspection System, TNIS). The tagged neutron beam is produced by detecting the associated alpha particle emitted in the D+T reaction by means of a YAP:Ce scintillator. The TNIS intrinsic time resolution has been measured to be {delta}t=0.9 ns [FWHM], which allows inspection of a minimum voxel of 5 cm depth along the neutron flight path. This characteristic is demonstrated by identifying graphite and water samples hidden inside a hard plastic suitcase filled with background material. Finally, explosive devices such as small anti-personnel or anti-tank landmines have been inspected when placed inside the suitcase. In the case of relatively large explosive objects such as an anti-tank landmine, the system is capable of testing directly the TNT charge inside the device, separating this material from the external plastic case. Further developments of the TNIS concept are discussed.

  3. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, P.; Zhang, Hongxia; Bao, W. [Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 (China); Schneidewind, A. [Jülich Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at Heinz MaierCLeibnitz Zentrum (MLZ), D-85747 Garching (Germany); Link, P. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Grünwald, A.T.D. [II. Physikalisches Institut, Universität zu Köln, D-50937 Köln (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Hao, L.J.; Liu, Y.T. [China Institute of Atomic Energy, PO Box-275-30, Beijing 102413 (China)

    2016-06-11

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×10{sup 7} n/cm{sup 2}/s at neutron incident energy E{sub i}=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  4. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    Science.gov (United States)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  5. Neutron and Ion Beams Emitted from Plasma Focus (112.5 J) Device

    Science.gov (United States)

    El-Aragi M., G.

    2010-02-01

    Preliminary results of recent experiments performed within the Mather-type 112.5 J plasma focus device are presented. The ion beams from the focus device operated with deuterium filling at 1 mbar were registered using CR-39 solid state nuclear track detectors (SSNTD) and a Faraday cup detector for time-resolved measurements. The time-resolved neutron emission from the focus region measurements was detected with a photomultiplier tube (IP-28) optically coupled with a plastic scintillator NE 102.

  6. Optimization studies of photo-neutron production in high- metallic targets using high energy electron beam for ADS and transmutation

    Indian Academy of Sciences (India)

    V C Petwal; V K Senecha; K V Subbaiah; H C Soni; S Kotaiah

    2007-02-01

    Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥ 100 MeV for appropriate thickness of the target. It is also noticed that it can be maximized by further increasing the thickness of the target. Further, at higher electron beam energy heat gradient in the target decreases, which facilitates easier heat removal from the target. This can help in developing a photo-neutron source based on electron LINAC by choosing appropriate electron beam energy and target thickness to optimize the neutron flux for ADS, transmutation studies and as high energy neutron source etc. Photo-neutron yield for different targets, optimum target thickness and photo-neutron energy spectrum and heat deposition by electron beam for different incident energy is presented.

  7. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Science.gov (United States)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  8. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  9. Residual Stress Analysis of Aircraft Part using Neutron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Eun Joo; Seong, Baek Seok; Sim, Cheul Muu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A precise measurement of the residual stress magnitude and distribution is an important factor to evaluate the lifetime or safety of the materials, because the residual stress affects the material properties, such as the strength, fatigue, etc. In the case of a fighter jet, the lifetime and safety of the parts of the landing gear are more important than that of a passenger airplane because of its frequent take offs and landings. In particular in the case of training a fighter jet, a precise evaluation of life time for the parts of the landing gear is strongly required for economic reason. In this study, the residual stress of a part of the landing gear of the training fighter jet which is used to fix the landing gear to the aircraft body was investigated. The part was used for 2000 hours of flight, which corresponds to 10 years. During this period, the fighter jet normally takes off and lands more than 2000 times. These frequent take off and landing can generate residual stress and cause a crack in the part. By measuring the neutron diffraction peaks, we evaluated the residual stress of the landing gear part

  10. SciDAC Advances and Applications in Computational Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  11. SciDAC advances and applications in computational beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R [Lawrence Berkeley National Laboratory (United States); Abell, D [Tech-X Corporation (United States); Adelmann, A [Paul Scherrer Institute, (Switzerland); Amundson, J [Fermi National Accelerator Laboratory (United States); Bohn, C [Fermi National Accelerator Laboratory (United States); Cary, J [Tech-X Corporation (United States); Colella, P [Lawrence Berkeley National Laboratory (United States); Dechow, D [Tech-X Corporation (United States); Decyk, V [University of California at Los Angeles (United States); Dragt, A [University of Maryland (United States); Gerber, R [Lawrence Berkeley National Laboratory (United States); Habib, S [Los Alamos National Laboratory (United States); Higdon, D [Los Alamos National Laboratory (United States); Katsouleas, T [University of Southern California (United States); Ma, K-L [University of California at Davis (United States); McCorquodale, P [Lawrence Berkeley National Laboratory (United States); Mihalcea, D [Northern Illinois University (United States); Mitchell, C [University of Maryland (United States); Mori, W [University of California at Los Angeles (United States); Mottershead, C T [Los Alamos National Laboratory (United States); Neri, F [Los Alamos National Laboratory (United States); Pogorelov, I [Lawrence Berkeley National Laboratory (United States); Qiang, J [Lawrence Berkeley National Laboratory (United States); Samulyak, R [Brookhaven National Laboratory (United States); Serafini, D [Lawrence Berkeley National Laboratory (United States); Shalf, J [Lawrence Berkeley National Laboratory (United States); Siegerist, C [Lawrence Berkeley National Laboratory (United States); Spentzouris, P [Fermi National Accelerator Laboratory (United States); Stoltz, P [Tech-X Corporation (United States); Terzic, B [Northern Illinois University (United States); Venturini, M [Lawrence Berkeley National Laboratory (United States); Walstrom, P [Los Alamos National Laboratory (United States)

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  12. LENDA, a Low Energy Neutron Detector Array for experiments with radioactive beams in inverse kinematics

    CERN Document Server

    Perdikakis, G; Austin, Sam M; Bazin, D; Caesar, C; Cannon, S; Deaven, J M; Doster, H J; Guess, C J; Hitt, G W; Marks, J; Meharchand, R; Nguyen, D T; Peterman, D; Prinke, A; Scott, M; Shimbara, Y; Thorne, K; Valdez, L; Zegers, R G T

    2011-01-01

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Lab- oratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p, n) charge-exchange reactions at intermediate energies (> 100 MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV - 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neut...

  13. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  14. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  15. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    Science.gov (United States)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  16. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  17. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams

    Science.gov (United States)

    Riley, K. J.; Binns, P. J.; Ali, S. J.; Harling, O. K.

    2004-05-01

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm-3 of boron carbide or 210 mg cm-3 of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 ± 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  18. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams.

    Science.gov (United States)

    Riley, K J; Binns, P J; Ali, S J; Harling, O K

    2004-05-21

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm(-3) of boron carbide or 210 mg cm(-3) of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 +/- 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  19. SU-E-T-602: Beryllium Seeds Implant for Photo-Neutron Yield Using External Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Koren, S [St. Lukes Roosevelt Hospital, NY, NY (United States); Veltchev, I [Fox Chase Cancer Center, Philadelphia, PA (United States); Furhang, E [Beth Israel Medical Center, Staten Island, NY (Israel)

    2014-06-01

    Purpose: To evaluate the Neutron yield obtained during prostate external beam irradiation. Methods: Neutrons, that are commonly a radiation safety concern for photon beams with energy above 10 MV, are induced inside a PTV from Beryllium implemented seeds. A high megavoltage photon beam delivered to a prostate will yield neutrons via the reaction Be-9(γ,n)2?. Beryllium was chosen for its low gamma,n reaction cross-section threshold (1.67 MeV) to be combined with a high feasible 25 MV photon beam. This beam spectra has a most probable photon energy of 2.5 to 3.0 MeV and an average photon energy of about 5.8 MeV. For this feasibility study we simulated a Beryllium-made common seed dimension (0.1 cm diameter and 0.5 cm height) without taking into account encapsulation. We created a 0.5 cm grid loading pattern excluding the Urethra, using Variseed (Varian inc.) A total of 156 seeds were exported to a 4cm diameter prostate sphere, created in Fluka, a particle transport Monte Carlo Code. Two opposed 25 MV beams were simulated. The evaluation of the neutron dose was done by adjusting the simulated photon dose to a common prostate delivery (e.g. 7560 cGy in 42 fractions) and finding the corresponding neutron dose yield from the simulation. A variance reduction technique was conducted for the neutrons yield and transported. Results: An effective dose of 3.65 cGy due to neutrons was found in the prostate volume. The dose to central areas of the prostate was found to be about 10 cGy. Conclusion: The neutron dose yielded does not justify a clinical implant of Beryllium seeds. Nevertheless, one should investigate the Neutron dose obtained when a larger Beryllium loading is combined with commercially available 40 MeV Linacs.

  20. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jay [Department of Radiological Technology, Central Taiwan University of Science and Technology, Taiwan (China); Chang, S-J [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan (China); Chuang, K-S [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Taiwan (China); Hsueh, Y-W [Department of Engineering and System Science, National Tsing-Hua University, Taiwan (China); Yeh, K-C [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Taiwan (China); Wang, J-N [Department of Engineering and System Science, National Tsing-Hua University, Taiwan (China); Tsai, W-P [Division of Rheumatology, Immunology and Allergy, Chang Gung Memorial Hospital, Taiwan (China)

    2007-03-21

    Rheumatoid arthritis is one of the most common epidemic diseases in the world. For some patients, the treatment with steroids or nonsteroidal anti-inflammatory drugs is not effective, thus necessitating physical removal of the inflamed synovium. Alternative approaches other than surgery will provide appropriate disease control and improve the patient's quality of life. In this research, we evaluated the feasibility of conducting boron neutron capture synovectomy (BNCS) with the Tsing Hua open-pool reactor (THOR) as a neutron source. Monte Carlo simulations were performed with arthritic joint models and uncertainties were within 5%. The collimator, reflector and boron concentration were optimized to reduce the treatment time and normal tissue doses. For the knee joint, polyethylene with 40%-enriched Li{sub 2}CO{sub 3} was used as the collimator material, and a rear reflector of 15 cm thick graphite and side reflector of 10 cm thick graphite were chosen. The optimized treatment time was 5.4 min for the parallel-opposed irradiation. For the finger joint, polymethyl methacrylate was used as the reflector material. The treatment time can be reduced to 3.1 min, while skin and bone doses can be effectively reduced by approximately 9% compared with treatment using the graphite reflector. We conclude that using THOR as a treatment modality for BNCS could be a feasible alternative in clinical practice.

  1. A conceptual design of a beam-shaping assembly for boron neutron capture therapy based on deuterium-tritium neutron generators.

    Science.gov (United States)

    Martín, Guido; Abrahantes, Arian

    2004-05-01

    A conceptual design of a beam-shaping assembly for boron neutron capture therapy using deuterium-tritium accelerator based neutrons source is developed. Calculations based on a simple geometry model for the radiation transport are initially performed to estimate the assembly materials and their linear dimensions. Afterward, the assembly geometry is produced, optimized and verified. In order to perform these calculations the general-purpose MCNP code is used. Irradiation time and therapeutic gain are utilized as beam assessment parameters. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation. In the present beam-shaping assembly proposal, the therapeutic gain is improved by 23% and the accelerator current required for a fixed irradiation period is reduced by six times compared to previous proposals based on the same D-T reaction.

  2. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  3. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    Science.gov (United States)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  4. Advanced broad-band solid-state supermirror polarizers for cold neutrons

    CERN Document Server

    Petukhov, A K; Bigault, T; Courtois, P; Jullien, D; Soldner, T

    2016-01-01

    An ideal solid-state supermirror (SM) neutron polarizer assumes total reflection of neutrons from the SM coating for one spin-component and total absorption for the other, thus providing a perfectly polarized neutron beam at the exit. However, in practice, the substrate's neutron-nucleai optical potential does not match perfectly that for spin-down neutrons in the SM. For a positive step in the optical potential (as in a Fe/SiN(x) SM on Si substrate), this mismatch results in spin-independent total reflection for neutrons with small momentum transfer Q, limiting the useful neutron bandwidth in the low-Q region. To overcome this limitation, we propose to replace Si single-crystal substrates by media with higher optical potential than that for spin-down neutrons in the SM ferromagnetic layers. We found single-crystal sapphire and single-crystal quartz as good candidates for solid-state Fe/SiN(x) SM polarizers. To verify this idea, we coated a thick plate of single-crystal sapphire with a m=2.4 Fe/SiN(x) SM. At ...

  5. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  6. Study of filtration of reactor beam of neutrons with cadmium in a multilayer shield containing boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M. (Atomic Energy Establishment, Cairo (Egypt)); El-Kalla, El-Sayed H. (Al-Azhar Univ., Cairo (Egypt)); Esmaiel, M.W. (Ain Shams Univ., Cairo (Egypt))

    1985-08-01

    Experimental measurements have been carried out to study the effect of cadmium on the distribution and attenuation of thermal neutrons emitted from a reactor core and thermal neutrons produced in a heterogeneous shield of water, iron, iron + B/sub 4/C and ordinary concrete. Measurements were performed using a cadmium filtered reactor neutron beam emitted from one of the horizontal channels of ET-RR-1. It was found that the presence of a cadmium sheet at the channel exit causes a marked decrease in the thickness of the shield required for attenuating the thermal neutron flux by a certain factor.

  7. SU-E-T-195: Commissioning the Neutron Production of a Varian TrueBeam Linac

    Energy Technology Data Exchange (ETDEWEB)

    Irazola, L; Brualla, L; Rosello, J; Terron, JA; Sanchez-Nieto, B; Bedogni, R; Sanchez-Doblado, F

    2015-06-15

    Purpose: The purpose of this work is the characterization of a new Varian TrueBeam™ facility in terms of neutron production, in order to estimate neutron equivalent dose in organs during radiotherapy treatments. Methods: The existing methodology [1] was used with the reference SRAMnd detector, calibrated in terms of thermal neutron fluence at the reference field operated by PTB (Physikalisch-Technische-Bundesanstalt) at the GeNF (Geesthacht-Neutron-Facility) with the GKSS reactor FRG-1 [2]. Thermal neutron fluence for the 5 available possibilities was evaluated: 15 MV and 10&6 MV with and without Flattening Filter (FF and FFF, respectively). Irradiation conditions are as described in [3]. In addition, three different collimator-MLC configurations were studied for 15 MV: (a) collimator of 10×10 cm{sup 2} and MLC fully retracted (reference), (b) field sizes of 20×20 cm{sup 2} and 10×10 cm{sup 2} for collimator and MLC respectively, and (c) collimator and MLC aperture of 10×10 cm{sup 2}. Results: Thermal fluence rate at the “reference point” [3], as a consequence of the neutron production, obtained for (a) conformation in 15 MV is (1.45±0.11) x10{sup 4} n•cm{sup 2}/MU. Configurations (b) and (c) gave fluences of 96.6% and 97.8% of the reference (a). Neutron production decreases up to 8.6% and 5.7% for the 10 MV FF and FFF beams, respectively. Finally, it decreases up to 2.8% and 0.1% for the 6 MV FF and FFF modes, respectively. Conclusion: This work evaluates thermal neutron production of Varian TrueBeam™ system for organ equivalent dose estimation. The small difference in collimator-MLC configuration shows the universality of the methodology [3]. A decrease in this production is shown when decreasing energy from 15 to 10 MV and an almost negligible production was found for 6 MV. Moreover, a lower neutron contribution is observed for the FFF modes.[1]Phys Med Biol,2012;57:6167–6191.[2]Radiat Meas,2010;45:1513–1517.[3]Med Phys,2015;42:276–281.

  8. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Anand [State University of New York, Stony Brook, NY 11794 (United States); Goland, Allen [State University of New York, Stony Brook, NY 11794 (United States); Herman, Herbert [State University of New York, Stony Brook, NY 11794 (United States)]. E-mail: hherman@ms.cc.sunysb.edu; Allen, Andrew J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Dobbins, Tabbetha [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); DeCarlo, Francesco [Argonne National Laboratory, Argonne, IL 60439 (United States); Ilavsky, Jan [Argonne National Laboratory, Argonne, IL 60439 (United States); Long, Gabrielle G. [Argonne National Laboratory, Argonne, IL 60439 (United States); Fang, Stacy [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States); Lawton, Paul [Chromalloy Gas Turbine Corporation, Orangeburg, NY 10962 (United States)

    2006-06-25

    The ongoing quest to increase gas turbine efficiency and performance (increased thrust) provides a driving force for materials development. While improved engine design and usage of novel materials provide solutions for increased engine operating temperatures, and hence fuel efficiency, reliability issues remain. Thermal barrier coatings (TBCs), deposited onto turbine components using the electron-beam physical vapor deposition (EB-PVD) process, exhibit unique pore architectures capable of bridging the technological gap between insulation/life extension and prime reliance. This article explores the potential of advanced X-ray and neutron techniques for comprehension of an EB-PVD TBC coating microstructure. While conventional microscopy reveals a hierarchy of voids, complementary advanced techniques allow quantification of these voids in terms of component porosities, anisotropy, size and gradient through the coating thickness. In addition, the derived microstructural parameters obtained both further knowledge of the nature and architecture of the porosity, and help establish its influence on the resultant thermal and mechanical properties.

  9. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  10. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac.

    Science.gov (United States)

    Ghasemi, A; Pourfallah, T Allahverdi; Akbari, M R; Babapour, H; Shahidi, M

    2015-01-01

    Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER) utilizing conversion factors of American Association of Physicist in Medicine's (AAPM) report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10(-6) (3 m from isocenter in +Y direction, 0 × 0 field size) and 8.36 × 10(-8) Sv/min (in maze, 40 × 40 field size), respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10(-5) and 1.74 × 10(-5) Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size), respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  11. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kageji, T. E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, S.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n=8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n=4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n=6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4{+-}4.2 Gy, 15.7{+-}1.2 and 13.9{+-}3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8{+-}1.3 Gy in positive and was 12.6{+-}4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8{+-}3.8 Gy in positive and was 13.6{+-}4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  12. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  13. A correlated study between effective total macroscopic cross sections and effective energies for neutron beams with continuous spectra

    CERN Document Server

    Kobayashi, H

    1999-01-01

    Two practically useful quantities have been introduced to characterize a continuous-energy-spectrum neutron beam and to describe transmission phenomena of the beam in the field of quantitative neutron radiography. These quantities are the effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section as defined for a monochromatic energy. Four neutron beams have been used to measure ETM cross sections at effective energies of 29.8, 17.2, 9.8 meV, and at the In resonance energy of 1.46 eV. Results are studied as a function of estimated effective energy, where the effective energy was estimated by a beam quality indicator (BQI) which has been proposed recently. Validity of ETM cross sections as a function of the effective energy is discussed and correlated with recent nuclear data.

  14. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  15. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    CERN Document Server

    Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Nesvizhevsky, V V; Onegin, M S; Sharapov, E I; Strelkov, A V

    2015-01-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium (4He). The PIK reactor is chosen as a perspective example of the application of this idea, which consists of installing a 4He UCN source in a beam of thermal or cold neutrons and surrounding the source with a moderator-reflector, which plays the role of a source of cold neutrons (CNs) feeding the UCN source. The CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator-reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of a 4He source with solid methane (CH4) or/and liquid deuterium (D2) moderator-reflector. We show that such a source with CH4 moderator-reflector at the PIK reactor would provide the UCN density of ~1x10^5 1/cm^3, and the UCN production rate of ~2x10^7 1/s. These values are resp...

  16. Monte-Carlo investigation of radiation beam quality of the CRNA neutron irradiator for calibration purposes

    Energy Technology Data Exchange (ETDEWEB)

    Mazrou, Hakim, E-mail: mazrou_h@crna.d [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, Alger-RP 16000 (Algeria); Sidahmed, Tassadit [Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz, Fanon, B.P. 399, Alger-RP 16000 (Algeria); Allab, Malika [Faculte de Physique, Universite des Sciences et de la Technologie de Houari-Boumediene (USTHB), 16111, Alger (Algeria)

    2010-10-15

    An irradiation system has been acquired by the Nuclear Research Center of Algiers (CRNA) to provide neutron references for metrology and dosimetry purposes. It consists of an {sup 241}Am-Be radionuclide source of 185 GBq (5 Ci) activity inside a cylindrical steel-enveloped polyethylene container with radially positioned beam channel. Because of its composition, filled with hydrogenous material, which is not recommended by ISO standards, we expect large changes in the physical quantities of primary importance of the source compared to a free-field situation. Thus, the main goal of the present work is to fully characterize neutron field of such special delivered set-up. This was conducted by both extensive Monte-Carlo calculations and experimental measurements obtained by using BF{sub 3} and {sup 3}He based neutron area dosimeters. Effects of each component present in the bunker facility of the Algerian Secondary Standard Dosimetry Laboratory (SSDL) on the energy neutron spectrum have been investigated by simulating four irradiation configurations and comparison to the ISO spectrum has been performed. The ambient dose equivalent rate was determined based upon a correct estimate of the mean fluence to ambient dose equivalent conversion factors at different irradiations positions by means of a 3-D transport code MCNP5. Finally, according to practical requirements established for calibration purposes an optimal irradiation position has been suggested to the SSDL staff to perform, in appropriate manner, their routine calibrations.

  17. Present status of neutron beam facilities at the research reactor, HANARO, and its future prospect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee; Kang, Young-Hwan; Kuk, Il-Hiun [Korea Atomic Energy Research Institute, Taejon (Korea)

    2001-03-01

    Korea has been operating its new research reactor, HANARO, since its first criticality in 1995. It is an open-tank-in-pool type reactor using LEU fuel with thermal neutron flux of 2 x 10{sup 14} nominally at the nose in the D{sub 2}O reflector having 7 horizontal beam ports and a provision of vertical hole for cold neutron source installation. KAERI has pursued an extensive instrument development program since 1992 by the support of the nuclear long-term development program of the government and there are now 4 working instruments. A high resolution powder diffractometer and a neutron radiography facility has been operational since late 1997 and 1996, respectively. A four-circle diffractometer has been fully working since mid 1999 and a small angle neutron spectrometer is just under commissioning phase. With the development of linear position sensitive detector with delay-line readout electronics, we have developed a residual stress instrument as an optional machine to the HRPD for last two years. Around early 1998 informal users program started with friendly users and it became a formal users support program by the ministry of science and technology. Short description for peer group formation and users activities is given. (author)

  18. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  19. A concept of advanced broad-band solid-state supermirror polarizers for cold neutrons

    Science.gov (United States)

    Petukhov, A. K.; Nesvizhevsky, V. V.; Bigault, T.; Courtois, P.; Jullien, D.; Soldner, T.

    2016-12-01

    An ideal solid-state supermirror (SM) neutron polarizer assumes total reflection of neutrons from the SM coating for one spin-component and total absorption for the other, thus providing a perfectly polarized neutron beam at the exit. However, in practice, the substrate's neutron-nuclei optical potential does not match perfectly that for spin-down neutrons in the SM. For a positive step in the optical potential (as in a Fe / Si Nx SM on Si substrate), this mismatch results in spin-independent total reflection for neutrons with small momentum transfer Q , limiting the useful neutron bandwidth in the low- Q region. To overcome this limitation, we propose to replace Si single-crystal substrates by media with higher optical potential than that for spin-down neutrons in the SM ferromagnetic layers. We found single-crystal sapphire and single-crystal quartz as good candidates for solid-state Fe / Si Nx SM polarizers. To verify this idea, we coated a thick plate of single-crystal sapphire with a m = 2.5 Fe / Si Nx SM. At the T3 instrument at the ILL, we measured the spin-up and spin-down reflectivity curves with λ = 7.5 Å neutrons incident from the substrate to the interface between the substrate and the SM coating. Results of this experimental test are in excellent agreement with our expectations: the bandwidth of high polarizing power extends significantly into the low- Q region. This finding, together with the possibility to apply a strong magnetizing field, opens a new road to produce high-efficiency solid-state SM polarizers with an extended neutron wavelength bandwidth and near-to-perfect polarizing power.

  20. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    Science.gov (United States)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  1. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  2. Recent advances in polarized 3 He based neutron spin filter development

    Science.gov (United States)

    Chen, Wangchun; Gentile, Thomas; Erwin, Ross; Watson, Shannon; Krycka, Kathryn; Ye, Qiang; NCNR NIST Team; University of Maryland Team

    2015-04-01

    Polarized 3 He neutron spin filters (NSFs) are based on the strong spin-dependence of the neutron absorption cross section by 3 He. NSFs can polarize large area, widely divergent, and broadband neutron beams effectively and allow for combining a neutron polarizer and a spin flipper into a single polarizing device. The last capability utilizes 3 He spin inversion based on the adiabatic fast passage (AFP) nuclear magnetic resonance technique. Polarized 3 He NSFs are significantly expanding the polarized neutron measurement capabilities at the NIST Center for Neutron Research (NCNR). Here we present an overview of 3 He NSF applications to small-angle neutron scattering, thermal triple axis spectrometry, and wide-angle polarization analysis. We discuss a recent upgrade of our spin-exchange optical pumping (SEOP) systems that utilize chirped volume holographic gratings for spectral narrowing. The new capability allows us to polarize rubidium/potassium hybrid SEOP cells over a liter in volume within a day, with 3 He polarizations up to 88%, Finally we discuss how we can achieve nearly lossless 3 He polarization inversion with AFP.

  3. Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gottberg, A. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Consejo Nacional de Pesquisas Cientificas CSIC, Instituto de Estructura de la Materia, 28006 Madrid (Spain); Mendonca, T.M. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); IFIMUP and IN – Institut of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Luis, R. [Instituto Superior Técnico, Campus Tecnológico e Nuclear – IST-CTN, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS (Portugal); Ramos, J.P. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne – EPFL, 1015 Lausanne (Switzerland); Seiffert, C. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Technische Universität Darmstadt, 64289 Darmstadt (Germany); Cimmino, S.; Marzari, S.; Crepieux, B. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Manea, V. [CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay (France); Wolf, R.N.; Wienholtz, F. [Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald (Germany); Kreim, S. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Fedosseev, V.N.; Marsh, B.A.; Rothe, S. [European Organization for Nuclear Research – CERN 1211, Geneva 23 (Switzerland); and others

    2014-10-01

    The suppression of isobaric contaminations is of growing importance for many scientific programs using radioactive isotopes produced at isotope separation on-line (ISOL) facilities, such as ISOLDE-CERN. A solid tungsten proton-to-neutron converter has been used for ten years to produce neutron-rich fission fragments from an UC{sub x} target while suppressing the production of neutron-deficient isobaric contaminants. The remaining contamination is mainly produced by primary protons that are scattered by the heavy neutron converter and finally impinge on the UC{sub x} target itself. Therefore, the knowledge of the energy-dependant cross-sections of proton and neutron induced fission events is crucial in order to evaluate future converter concepts. In this paper, an improved neutron converter prototype design is presented together with the experimentally assessed radioisotope production of Rb, Zn, Cu, Ga and In that validate the converter concept aiming at beams of higher purity neutron-rich isotopes. The experimentally derived release efficiencies for isotopes produced by the 1.4 GeV protons available at ISOLDE are used to evaluate the Monte Carlo code FLUKA and the cross-section codes TALYS and ABRABLA, respectively.

  4. Application of robot kinematics methods to the simulation and control of neutron beam line positioning systems

    Energy Technology Data Exchange (ETDEWEB)

    James, Jonathan A. [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)]. E-mail: j.a.j.james@open.ac.uk; Edwards, Lyndon [Open University, Materials Engineering, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA (United Kingdom)

    2007-02-11

    Neutron stress measurements require specimens of complex geometry to be speedily and accurately positioned and oriented with respect to the neutron beam. Recognition that a majority of the specimen positioning systems in use at strain scanning facilities are effectively serial robot manipulators, suggests that the methods of serial robot kinematic modelling may be applied to advantage. The adoption of robotics methods provides a simple and reliable framework for controlling positioning systems of arbitrary geometry and complexity. In addition the numerical solution of the inverse kinematic problem is facilitated, allowing specimens to be automatically positioned and orientated so that pre-determined strain components are measured. It is also shown that, given sufficient degrees of freedom, a secondary characteristic of the measurement position such as the measurement count time may be simultaneously optimised.

  5. Method to evaluate the L/D ratio of neutron imaging beams

    Energy Technology Data Exchange (ETDEWEB)

    Pugliesi, R.; Pereira, M.A. Stanojev; Schoueri, R.M., E-mail: pugliesi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-04-01

    An alternative simple method to evaluate the L/D ratio of neutron imaging beams is proposed. It is based on the behavior of the ratio 'x/Ut', which asymptotically tends to L/D for large values of the parameter 'x', that corresponds to the distance separating a gadolinium test object to the scintillator plane, where its image is formed. The method was applied to the neutron imaging equipment of the Nuclear and Energy Research Institute IPEN/CNEN-SP and the obtained result was L/D = (104 ± 4). The consistency of the proposed method was verified by comparing this value with those ones obtained by a well - known and established procedure. (author)

  6. Slow neutron beam control using multilayer supermirror and capillary guide at JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Soyama, Kazuhiko [Center for Neutron Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-08-01

    Development of neutron optical devices at JRR-3M is reported. In order to reduce the interface roughness and enhance the reflectivity of supermirrors, ion polishing technique has been investigated for Ni/Ti multilayers. The optimum ion beam conditions of ion polishing time, ion energy and incident angle were determined, and the reflectivity of Ni/Ti has been successfully enhanced. For the application of supermirror, a natural nickel guide tube has been replaced with a supermirror guide tube at JRR-3M. It was evaluated using Monte-Carlo code that the total intensity at the end of a supermirror guide tube is 5.6 times that of the existing nickel guide tube. A silicate glass multi-capillary fiber fabricated and studied for the neutron transmission characteristics has been conducted. (author)

  7. Effect of Neutron Radiation on Moment-Curvature Response of Reinforced Concrete Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taehyun; Kim, Jun Yeon; Cho, Mansoon; Wu, Sangik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Kyoungsoo [Yonsei Univ., Seoul (Korea, Republic of)

    2014-05-15

    Reinforced concrete (RC) is a composite material in which concrete resists compression and steel bars as reinforcement are embedded in tensile regions to counteract the concrete's relative low tensile strength and ductility. RC is commonly used as a biological shield and as a load carrying support for a reactor vessel and, if any, changes in the mechanical properties can be particular significant for long-term irradiation. The highlights can be considered as the most critical due to its load bearing in the RC design. This study investigated the moment-curvature response of an RC beam with incremental neutron radiation. The RC structure close to the reactor vessel was considered as the most critical in estimating that the total fluence for 40 years becomes about 10{sup 14} to 10{sup 18} n/cm{sup 2}. The moment-curvature response of an RC beam was investigated with the maximum neutron fluence up to 10{sup 19} n/cm{sup 2} and it shows twice the increase in ultimate strength, which is mainly contributed from the increased yield stress of mild steel. The RC beam response became so brittle that it may fail without large deformation as a warning. The same observation can be equally applied to other RC designs such as the column, slab, and foundation.

  8. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror

    Science.gov (United States)

    Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K.

    2012-02-01

    Reflective optics is one of the most useful techniques for focusing a neutron beam with a wide wavelength range since there is no chromatic aberration. Neutrons can be focused within a small area of less than 1 mm2 by high-performance aspherical supermirrors with high figure accuracy and a low smooth substrate surface and a multilayer interface. Increasing the mirror size is essential for increasing the focusing gain. We have developed a fabrication process that combines conventional precision grinding, HF dip etching, numerically controlled local wet etching (NC-LWE) figuring, low-pressure polishing and ion beam sputtering deposition of the supermirror coating to fabricate a large aspherical supermirror. We designed and fabricated an piano-elliptical mirror with large clear aperture size using the developed fabrication process. We obtained a figure error of 0.43 μm p-v and an rms roughness of less than 0.2 nm within an effective reflective length of 370 mm. A NiC/Ti supermirror with m = 4 was deposited on the substrate using ion beam sputtering equipment. The results of focusing experiments show that a focusing gain of 52 at the peak intensity was achieved compared with the case without focusing. Furthermore, the result of imaging plate measurements indicated that the FWHM focusing width of the fabricated mirror is 0.128 mm.

  9. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    Science.gov (United States)

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1).

  10. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  11. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  12. UCN sources at external beams of thermal neutrons. An example of PIK reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lychagin, E.V., E-mail: lychag@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Mityukhlyaev, V.A., E-mail: victim@pnpi.spb.ru [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Muzychka, A.Yu., E-mail: muz@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nekhaev, G.V., E-mail: grigorijnekhaev@yandex.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.eu [Institut Max von Laue – Paul Langevin, 71 Avenue des Martyrs, Grenoble 38042 (France); Onegin, M.S., E-mail: oneginm@gmail.com [Petersburg Nuclear Physics Institute, Orlova Roscha, Gatchina 188300 (Russian Federation); Sharapov, E.I., E-mail: sharapov@nf.jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation); Strelkov, A.V., E-mail: str@jinr.ru [Joint Institute for Nuclear Research, 6 Joliot-Curie, Dubna 141980 (Russian Federation)

    2016-07-01

    We consider ultracold neutron (UCN) sources based on a new method of UCN production in superfluid helium ({sup 4}He). The PIK reactor is chosen as a perspective example of application of this idea, which consists of installing {sup 4}He UCN source in the beam of thermal or cold neutrons and surrounding the source with moderator-reflector, which plays the role of cold neutron (CN) source feeding the UCN source. CN flux in the source can be several times larger than the incident flux, due to multiple neutron reflections from the moderator–reflector. We show that such a source at the PIK reactor would provide an order of magnitude larger density and production rate than an analogous source at the ILL reactor. We estimate parameters of {sup 4}He source with solid methane (CH{sub 4}) or/and liquid deuterium (D{sub 2}) moderator–reflector. We show that such a source with CH{sub 4} moderator–reflector at the PIK reactor would provide the UCN density of ~1·10{sup 5} cm{sup −3}, and the UCN production rate of ~2·10{sup 7} s{sup −1}. These values are respectively 1000 and 20 times larger than those for the most intense UCN user source. The UCN density in a source with D{sub 2} moderator-reflector would reach the value of ~2·10{sup 5} cm{sup −3}, and the UCN production rate would be equal ~8·10{sup 7} s{sup −1}. Installation of such a source in a beam of CNs would slightly increase the density and production rate.

  13. Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment

    Science.gov (United States)

    Valkov, S.; Neov, D.; Luytov, D.; Petrov, P.

    2016-03-01

    Ti-Al-based alloys were produced by hybrid electron-beam technologies. A composite Ti-Al film was deposited on a Ti substrate by electron-beam evaporation (EBE), followed by electron-beam treatment (EBT) by a continuously scanned electron beam. The speed of the specimens motion during the EBT were V 1 = 1 cm/sec and V 2 = 5 cm/sec, in order to realize two different alloying mechanisms -- by surface melting and by electron-beam irradiation without melting the surface. The samples prepared were characterized by XRD and neutron diffraction to study the crystal structure on the surface and in depth. SEM/EDX analysis was conducted to explore the surface structure and analyze the chemical composition. Nanoindentation measurements were also carried out. No intermetallic phases were registered in the sample treated at velocity V 1, while the sample treated at V 2 exhibited a Ti3Al/TiAl structure on the surface, transformed to Ti/TiAl in depth. The nanoindentation test demonstrated a significant negative hardness gradient from the surface to the depth of the sample.

  14. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  15. Design calculations of an epithermal neutron beam and development of a treatment planning system for the renovation of thor for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y-W H.; Teng, Y.H.; Liao, M.Z. [National Tsing Hua Univ., Department of Engineering and System Science, Taiwan (China)

    2000-10-01

    Tsing Hua University was recently granted by National Science Council a five-year project to renovate its Open-Pool reactor (THOR) for boron neutron capture therapy. With this support, the whole graphite blocks in the original thermal column region can be removed for redesigning and constructing a better epithermal neutron beam. THOR is a 1 MW research reactor. The cross section area of the core facing the thermal column is 60 cm x 50 cm. By using 60 cm FLUENTAL plus 10 cm Pb, with cross section area of 70 cm x 60 cm and surrounded by 6 cm thick PbF{sub 2} reflector, the epithermal neutron flux at the filter/moderator exit can reach {approx}8.5 x 10{sup 9} n/cm{sup 2}/s. When the collimator is added, the epithermal neutron beam intensity at the beam exit is reduced to 3 x 10{sup 9} n/cm{sup 2}/sec, but is still six times higher than the previous beam. Facing the clinical trials scheduled 3 and half years from now, a preliminary version of treatment planning system is developed. It includes a pre-processor to read CT scan and post-processors to display dose distributions. (author)

  16. On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility

    Science.gov (United States)

    Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian

    2017-09-01

    In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.

  17. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    Objective To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). Methods EL4 tumour-bearing C57BL/J mice received 5-bromo-29-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with c-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a 10B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Results Following c-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a 10B-carrier, especially L-para-boronophenylalanine-10B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. Conclusion The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the 10B-carrier used in the BNCR. Advances in knowledge The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control. PMID:23255546

  18. Neutron measurements around a beam dump bombarded by high energy protons and lead ions

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Silari, M.; Ulrici, L.

    2001-02-01

    Measurements of the spectral fluence and the ambient dose equivalent of secondary neutrons produced by 250 GeV/ c protons and 158 GeV/ c per nucleon lead ions were performed at CERN around a thick beam dump. The experimental results obtained with protons were compared with calculations performed with the FLUKA Monte Carlo code. As the available Monte Carlo codes do not transport particles with mass larger than one atomic mass unit, it is shown that for high energy heavy ions, estimates can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number.

  19. Neutron beam irradiation study of workload dependence of SER in a microprocessor

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, Sarah E [Los Alamos National Laboratory; Graves, Todd L [Los Alamos National Laboratory; Hong, Ted [STANFORD; Ackaret, Jerry [IBM; Sonny, Rao [IBM; Subhasish, Mitra [STANFORD; Pia, Sanda [IBM

    2009-01-01

    It is known that workloads are an important factor in soft error rates (SER), but it is proving difficult to find differentiating workloads for microprocessors. We have performed neutron beam irradiation studies of a commercial microprocessor under a wide variety of workload conditions from idle, performing no operations, to very busy workloads resembling real HPC, graphics, and business applications. There is evidence that the mean times to first indication of failure, MTFIF defined in Section II, may be different for some of the applications.

  20. Mini-beam collimator applications at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shenglan, E-mail: sxu@anl.gov [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keefe, Lisa J.; Mulichak, Anne [IMCA CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Yan Lifen; Alp, Ercan E.; Zhao Jiyong [X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fischetti, Robert F. [GM/CA CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-{mu}m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio . Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside . This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-{mu}m pinhole has been added to create a 'quad-collimator', resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Moessbauer Microscopic system at sector 3-ID.

  1. Charged-particle beam diagnostics for the advanced photon source

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1993-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e -, e +) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest X-ray sources in the 10-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV injector synchrotron (IS), 7-GeV storage ring (SR), and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  2. Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator.

    Science.gov (United States)

    Kalvas, T; Welton, R F; Tarvainen, O; Han, B X; Stockli, M P

    2012-02-01

    A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H(-) ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H(-) currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  3. Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulatora)

    Science.gov (United States)

    Kalvas, T.; Welton, R. F.; Tarvainen, O.; Han, B. X.; Stockli, M. P.

    2012-02-01

    A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H- ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H- currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  4. Average fast neutron flux in three energy ranges in the Quinta assembly irradiated by two types of beams

    Directory of Open Access Journals (Sweden)

    Strugalska-Gola Elzbieta

    2017-01-01

    Full Text Available This work was performed within the international project “Energy plus Transmutation of Radioactive Wastes” (E&T - RAW for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89 samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.

  5. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    Science.gov (United States)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  6. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    Energy Technology Data Exchange (ETDEWEB)

    Buchsteiner, Alexandra [Helmholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, D-14109 Berlin (Germany)], E-mail: buchsteiner@helmholtz-berlin.de; Stuesser, Norbert [Helmholtz Centre Berlin for Materials and Energy, Glienicker Str. 100, D-14109 Berlin (Germany)

    2009-01-11

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation {alpha}{sub 1}, a high take-off angle above 90 deg. at the monochromator and a good collimation {alpha}{sub 3} in front of the detector bank are chosen whereas the value of {alpha}{sub 2} for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  7. Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra

    CERN Document Server

    Zimmer, Oliver

    2016-01-01

    A neutron optical transport system is proposed which comprises nested short elliptical mirrors located halfway between two common focal points M and M'. It images cold neutrons from a diverging beam or a source with finite size at M by single reflections onto a spot of similar size at M'. Direct view onto the neutron source is blocked by a central absorber with little impact on the transported solid angle. Geometric neutron losses due to source size can be kept small using modern supermirrors and distances M-M' of a few tens of metres. Very short flat mirrors can be used in practical implementations. Transport with a minimum of reflections remedies losses due to multiple reflections that are common in long elliptical neutron guides. Moreover, well-defined reflection angles lead to new possibilities for enhancing the spectral quality of primary beams, such as clear-cut discrimination of short neutron wavelengths or beam monochromation using bandpass supermirrors. Multi-mirror imaging systems may thus complemen...

  8. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  9. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    Science.gov (United States)

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  10. 西安脉冲堆超热中子束的理论设计%Design of an Epithermal Neutron Beam for Xi'an Pulsed Reactor

    Institute of Scientific and Technical Information of China (English)

    江新标; 陈达; 朱广宁; 麻江江; 郝金林

    2001-01-01

    The thermal column,which optimized by the three dimension diffusion model and corrected with the code MCNP/4B,is selected as the best duct for obtaining BNCT epithermal neutron beam.A conceptual design method for BNCT epithermal neutron beam has been performed.The method is used to analysis the properties of configuration materials of filter and advanced three schemes for thermal column reformed to epithermal neutron duct.%建立超热中子束孔道筛选的三维扩散模型,并用蒙特卡罗程序 MCNP/4B验证了热柱孔道是实现超热中子束的最佳孔道,还建立了硼中子俘获治疗 (BNCT)所需超热中子束的理论设计方法,对超热中子束过滤材料的特性进行了分析,提出了将西安脉冲堆热柱孔道改造成超热中子束孔道的 3种材料组合方案。

  11. Neutron Spectrum of Thermal Neutron Beam in IHNI%医院中子照射器热中子束能谱特性研究

    Institute of Scientific and Technical Information of China (English)

    鲁谨; 刘心灵; 夏普; 李义国; 彭旦; 吴小波; 张金花; 邹淑芸; 洪景彦; 郝倩

    2012-01-01

    In-Hospital Neutron Irradiator (IHNI) is the first miniature neutron source reactor for special medical treatment purpose. It got critical on December 7th, 2009, and went to full power on January 22th, 2010. Parameters, such as the neutron flux density and neutron spectrum of the thermal neutron beam in IHNI, should be given before the medical treatment. Model was built and calculation results were given by MCNP program. The neutron flux density was measured by gold foil activation technique, and the neutron spectrum was measured by multiple foils activation technique and unfolded by SAND-Ⅱ program. Detectors were irradiated and then measured by HPGe. Neutron flux density and distribution was given, and neutron spectrum was unfolded with SAND-Ⅱ program.%医院中子照射器是我国建造的第1座用于医疗目的的微型反应堆,已于2009年12月7日首次达临界,2010年1月22日达到满功率运行.在治疗前,需测量出口处的中子通量密度及能谱等参数,为后续实验提供依据.本文用MCNP建立医院中子照射器模型,得到能谱计算值.选用金箔活化法测量绝对中子通量密度,多箔活化法测量中子能谱,用SAND-Ⅱ程序解谱,并将实验结果与计算结果进行了比较.

  12. Heavy Ion Reactions with Neutron-Rich Beams - Proceedings of the Riken International Workshop

    Science.gov (United States)

    Yamaji, S.; Ishihara, M.; Takigawa, N.

    1993-11-01

    The Table of Contents for the book is as follows: * Preface * Opening Address * Fusion I * Heavy Ion Fusion at Subbarrier Energies: Progress and Questions * Angular Momentum in Heavy Ion Subbarrier Interaction * Fusion II * High Precision Fusion Excitation Function Measurements: What Can We Learn from Them? * Transfer Reactions for 16O + 144,152Sm near the Coulomb Barrier * Fusion III * Recent Theoretical Developments in the Study of Subbarrier Fusion * Direct Reaction Approach to Heavy Ion Scattering and Fusion at Energies near Coulomb Barrier * Fusion IV * Roles of Multi-Step Transfer in Fusion Process Induced by Heavy Ion Reactions * Special Session * RIKEN Accelerator Research Facility (RARF) * Fission I * Bimodal Nature of Nuclear Fission * Systematics of Isotope Production Rates: Mass Excess Dependence of Fission Products * Semiclassical Methods for the Multi-Dimensional Quantum Decay * Dynamics of Di-Nucleus Systems: Molecular Resonances * Fission II * The Competition Between Fusion-Fission and Deeply Inelastic Reactions in the Medium Mass Systems * Unstable Nuclei I * Coulomb Dissociation and Momentum Distributions for 11Li → 9Li+n+n Breakup Reactions * Unstable Nuclei II * Elastic Scattering and Fragmentation of Halo Nuclei * Secondary Reactions of Neutron-Rich Nuclei at Intermediate Energies * Life Time of Soft Dipole Excitation * Unstable Nuclei III * Shell Structure of Exotic Unstable Nuclei * Properties of Unstable Nuclei Within the Relativistic Many-Body Theory * Fusion with Unstable Nuclei * Barrier Distributions for Heavy Ion Fusion * Heavy Ion Reactions with Neutron-Rich Beams * Heavy Ion Fusion with Neutron-Rich Beams * Superheavy Elements * Study of α Decays Following 40Ar Bombardment on 238U * Production of Superheavy Elements via Fusion: What is Limiting Us? * Panel Session * Comments * List of Participants

  13. Optimization of Neutron Spectrum in Northwest Beam Tube of Tehran Research Reactor for BNCT, by MCNP Code

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, M. [National Radiation Protection Department - NRPD, Atomic Energy Organization of Iran - AEOI, Tehran (Iran, Islamic Republic of); End of North Kargar st, Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Kasesaz, Y.; Khalafi, H.; Shayesteh, M. [Radiation Application School, Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2015-07-01

    In order to gain the neutron spectrum with proper components specification for BNCT, it is necessary to design a Beam Shape Assembling (BSA), include of moderator, collimator, reflector, gamma filter and thermal neutrons filter, in front of the initial radiation beam from the source. According to the result of MCNP4C simulation, the Northwest beam tube has the most optimized neuron flux between three north beam tubes of Tehran Research Reactor (TRR). So, it has been chosen for this purpose. Simulation of the BSA has been done in four above mentioned phases. In each stage, ten best configurations of materials with different length and width were selected as the candidates for the next stage. The last BSA configuration includes of: 78 centimeters of air as an empty space, 40 centimeters of Iron plus 52 centimeters of heavy-water as moderator, 30 centimeters of water or 90 centimeters of Aluminum-Oxide as a reflector, 1 millimeters of lithium (Li) as thermal neutrons filter and finally 3 millimeters of Bismuth (Bi) as a filter of gamma radiation. The result of Calculations shows that if we use this BSA configuration for TRR Northwest beam tube, then the best neutron flux and spectrum will be achieved for BNCT. (authors)

  14. Design and optimization of neutron beam for the treatment of deep brain tumors by BNCT with Reducing damage to skin

    Directory of Open Access Journals (Sweden)

    Zahra Ahmadi Ganjeh

    2017-05-01

    Full Text Available Boron neutron capture therapy (BNCT is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET radiation (particles 4He and 7Li nuclei to tumors at the cellular level whilst avoiding unnecessary dose deposition to healthy tissue. The proper neutron energies for BNCT is 1eV–10keV, namely epithermal energy range. Neutrons can slow down to the thermal energies via passing through the different tissue before reaching the tumor. Neutrons with higher or lower energies and &gamma-radiation are extremely undesirable and should be avoided as much as possible of the spectrum. Therefore, a good spectrum shaping is an essential requirement for BNCT. The following neutron-producing charged particles reactions are considered mainly for use in accelerator based neutron capture therapy: 7Li(p,n7Be, 9Be(p,n9B, 9Be(d,n10B and 13C(d,n13N. The 7Li(p,n7Be reaction is excellent for producing neutron. Neutrons from this reaction have a relatively narrow energy spectrum which requires less moderation than those generated from other reactions. In this paper, we investigate the feasibility of using 7Li(p,n7Be reaction with irradiation of 2.5MeV-20mA proton beam for neutron production in order to treatment deep seated brain tumors. the serious drawback of this source is the low melting point of Li target (180 °C and its low thermal conductivity (84.7 W/m °k. To overcome this problem, a cooling system was optimized and a beam shaping assembly (BSA was proposed for decreasing of the flux of fast neutrons (E>10 keV. The proposed BSA based on 7Li(p,n7Be reaction contains: BeO as moderator, graphite as reflector, Cd as thermal neutron filter and BeO as collimator. Our results show 1.08×109 n/cm2s epithermal neutron flux at the beam port of the proposed BSA

  15. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    2004-01-01

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra, potentia

  16. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-03-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

  17. An examination of the elastic structural response of the Advanced Neutron Source fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Swinson, W.F.; Luttrell, C.R.; Yahr, G.T.

    1994-09-01

    Procedures for evaluating the elastic structural response of the Advanced Neutron Source (ANS) fuel plates to coolant flow and to temperature variations are presented in this report. Calculations are made that predict the maximum deflection and the maximum stress for a representative plate from the upper and from the lower fuel elements.

  18. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    CERN Document Server

    Brown, Duncan A; Lundgren, Andrew; Nitz, Alexander H

    2012-01-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars' angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, $cJ/GM^2$, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method of constructing filter banks for advanced-detector searches, which can create template banks of signals with non-zero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximium signal-to-noise for only 9% (0.2%) of BNS sources with dimensionless spins between 0 and 0.4 (0.05) and isotr...

  19. Measuring neutron star tidal deformability with Advanced LIGO: a Bayesian analysis of neutron star - black hole binary observations

    CERN Document Server

    Kumar, Prayush; Pfeiffer, Harald P

    2016-01-01

    The discovery of gravitational waves (GW) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for LIGO, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability $\\Lambda_\\mathrm{NS}\\propto (R/M)^{5}$ using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if non-tidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of non-tidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than $30$. For similarly loud signals, we also f...

  20. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  1. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  2. SU-E-T-567: Neutron Dose Equivalent Evaluation for Pencil Beam Scanning Proton Therapy with Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Geng, C [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States); Nanjing University of Aeronautics and Astronautics, Nanjing (China); Schuemann, J; Moteabbed, M; Paganetti, H [Massachusetts General Hospotal and Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalent was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)

  3. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  4. Applications and advances of positron beam spectroscopy: appendix a

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  5. Introduction of Prompt Gamma Thermal Neutron Activation Analysis at CARR

    Institute of Scientific and Technical Information of China (English)

    WANG; Xing-hua; XIAO; Cai-jin; ZHANG; Gui-ying; YAO; Yong-gang; JIN; Xiang-chun; WANG; Ping-sheng; HUA; Long; NI; Bang-fa

    2013-01-01

    CARR will provide with maximal neutron flux in Asia,the third of the world.By using the high quality neutron beam and the advanced international experience,Prompt Gamma Neutron Activation Analysis(PGNAA)facility will be setup at high level.PGNAA on CARR will promote the development of nuclear analysis technology and improve Chinese status in the nuclear analysis field.

  6. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    Science.gov (United States)

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  7. Nanodosimetry in a clinical neutron therapy beam using the variance-covariance method and Monte Carlo simulations.

    Science.gov (United States)

    Lillhök, J E; Grindborg, J-E; Lindborg, L; Gudowska, I; Carlsson, G Alm; Söderberg, J; Kopeć, M; Medin, J

    2007-08-21

    Nanodosimetric single-event distributions or their mean values may contribute to a better understanding of how radiation induced biological damages are produced. They may also provide means for radiation quality characterization in therapy beams. Experimental nanodosimetry is however technically challenging and Monte Carlo simulations are valuable as a complementary tool for such investigations. The dose-mean lineal energy was determined in a therapeutic p(65)+Be neutron beam and in a (60)Co gamma beam using low-pressure gas detectors and the variance-covariance method. The neutron beam was simulated using the condensed history Monte Carlo codes MCNPX and SHIELD-HIT. The dose-mean lineal energy was calculated using the simulated dose and fluence spectra together with published data from track-structure simulations. A comparison between simulated and measured results revealed some systematic differences and different dependencies on the simulated object size. The results show that both experimental and theoretical approaches are needed for an accurate dosimetry in the nanometer region. In line with previously reported results, the dose-mean lineal energy determined at 10 nm was shown to be related to clinical RBE values in the neutron beam and in a simulated 175 MeV proton beam as well.

  8. Dependence of neutron rate production with accelerator beam profile and energy range in an ADS-TRIGA RC1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Firoozabadi, M.M.; Karimi, J. [Birjand Univ. (Iran, Islamic Republic of). Dept. of Physics; Zangian, M. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of). Nuclear Engineering Dept.

    2016-12-15

    Lead, mercury, tantalum and tungsten were used as target material for calculation of spallation processes in an ADS-TRIGA RC1 reactor. The results show that tungsten has the highest neutron production rate. Therefore it was selected as target material for further calculations. The sensitivity of neutron parameters of the ADS reactor core relative to a change of beam profile and proton energy was determined. The core assembly and parameters of the TRIGA RC1 demonstration facility were used for the calculation model. By changing the proton energy from 115 to 1 400 MeV by using the intra-nuclear cascade model of Bertini (INC-Bertini), the quantity of the relative difference in % for energy gain (G) and spallation neutron yield (Y{sub n/p}), increases to 289.99 % and 5199.15 % respectively. These changes also reduce the amount of relative difference for the proton beam current (I{sub p}) and accelerator power (P{sub acc}), 99.81 % and 81.28 % respectively. In addition, the use of a Gaussian distribution instead of a uniform distribution in the accelerator beam profile increases the quantity of relative difference for energy gain (G), net neutron multiplication (M) and spallation neutron yield (Y{sub n/p}), up to 4.93 %, 4.9 % and 5.55 % respectively.

  9. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Science.gov (United States)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  10. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  11. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  12. 中国先进研究堆中子束应用关键技术及若干科学问题年度报告(2013年)%Annual Report of Neutron Beam Application on China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    武梅梅; 韩松柏; 陈东风

    2016-01-01

    and new borate and perovskite polycrystalline materials were prepared, and their crystal structure and properties were investigated;(4)Magnetic materials were prepared by melting, rapid quenching and sintering method. Pr13Fe80B7 powder with high anisotropy was prepared first by using the traditional HDDR process successfully, and the highly ordered columnar dismutation micro structure was first discovered in the process;(5)The installation and cold commission of neutron residual stress diffractometer have been completed. Standard samples of steel and aluminum material were prepared. The finite element simulation was carried out;(6)The preliminary design of nuclear fuel element neutron imaging detection device and indirect imaging conversion screen has been finished. The design of real-time neutron imaging was completed. A thermal neutron converter processing platform was set up. The advanced material samples with typical defects were prepared. The programs of project simulation and imaging reconstruction for neutron tomography were developed, and the preliminary experiments of coded source neutron imaging were performed.

  13. The Proton Beams for the New Time-of-Flight Neutron Facility at the CERN-PS

    CERN Document Server

    Cappi, R; Métral, G

    2000-01-01

    The experimental determination of neutron cross sections in fission and capture reactions as a function of the neutron energy is of primary importance in nuclear physics. Recent developments at CERN and elsewhere have shown that many fields of research and development, such as the design of Accelerator-Driven Systems (ADS) for nuclear waste incineration, nuclear astrophysics, fundamental nuclear physics, dosimetry for radiological protection and therapy, would benefit from a better knowledge of neutron cross sections. A neutron facility at the CERN-PS has been proposed with the aim of carrying out a systematic and high resolution study of neutron cross sections through Time-Of-Flight (n-TOF) measurement. The facility requires a high intensity proton beam (about 0.7x1013 particles/bunch) distributed in a short bunch (about 25 ns total length) to produce the neutrons by means of a spallation process in a lead target. To achieve these characteristics, a number of complex beam gymnastics have to be performed. All...

  14. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  15. A quality assessment of the effects of a hydrogenous filter on a p(66)Be(40) neutron beam.

    Science.gov (United States)

    Slabbert, J P; Binns, P J; Jones, H L; Hough, J H

    1989-11-01

    Recent measurements in a p(62)Be(36) neutron therapy beam have shown that the quality of the in-phantom beam changes with depth. This variation can be ascribed to the presence of a relatively large low-energy neutron component emanating from the neutron source. As part of the pre-clinical calibration programme at a newly commissioned neutron therapy facility, radiobiological and microdosimetric observations were made to determine the magnitude of this effect on a p(66)Be(40) beam and to evaluate the hardening effect of a hydrogenous filter. The reported data identify a correlation between the two assays and quantify a linear relationship between y* and filter thicknesses less than or equal to 6 cm. Using the data obtained in the study, a filter thickness was selected to comply with clinical requirements. By employing lineal energy spectra, it is demonstrated that subtle changes in beam quality may be quantified in a reproducible manner without resorting to time-consuming radiobiological studies.

  16. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    CERN Document Server

    Fernández, Rodrigo

    2015-01-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. Here we review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables which provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture ($r$-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  17. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era

    Science.gov (United States)

    Fernández, Rodrigo; Metzger, Brian D.

    2016-10-01

    The mergers of binaries containing neutron stars and stellar-mass black holes are among the most promising sources for direct detection in gravitational waves by the interferometers Advanced LIGO and Virgo over the next few years. The concurrent detection of electromagnetic emission from these events would greatly enhance the scientific return of these discoveries. We review the state of the art in modeling the electromagnetic signal of neutron star binary mergers across different phases of the merger and multiple wavelengths. We focus on those observables that provide the most sensitive diagnostics of the merger physics and the contribution to the synthesis of rapid neutron capture (r-process) elements in the Galaxy. We also outline expected future developments on the observational and theoretical sides of this rapidly evolving field.

  18. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Guzek, J. E-mail: jguzek@debeers.co.za; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S

    1999-06-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 {mu}A beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output.

  19. Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam.

    Science.gov (United States)

    Nievaart, V A; Moss, R L; Kloosterman, J L; van der Hagen, T H J J; van Dam, H; Wittig, A; Malago, M; Sauerwein, W

    2006-07-01

    In 2001, at the TRIGA reactor of the University of Pavia (Italy), a patient suffering from diffuse liver metastases from an adenocarcinoma of the sigmoid was successfully treated by boron neutron capture therapy (BNCT). The procedure involved boron infusion prior to hepatectomy, irradiation of the explanted liver at the thermal column of the reactor, and subsequent reimplantation. A complete response was observed. This encouraging outcome stimulated the Essen/Petten BNCT group to investigate whether such an extracorporal irradiation could be performed at the BNCT irradiation facility at the HFR Petten (The Netherlands), which has very different irradiation characteristics than the Pavia facility. A computational study has been carried out. A rotating PMMA container with a liver, surrounded by PMMA and graphite, is simulated using the Monte Carlo code MCNP. Due to the rotation and neutron moderation of the PMMA container, the initial epithermal neutron beam provides a nearly homogeneous thermal neutron field in the liver. The main conditions for treatment as reported from the Pavia experiment, i.e. a thermal neutron fluence of 4 x 10(12) +/- 20% cm(-2), can be closely met at the HFR in an acceptable time, which, depending on the defined conditions, is between 140 and 180 min.

  20. A system of materials composition and geometry arrangement for fast neutron beam thermalization: An MCNP study

    Science.gov (United States)

    Uhlář, Radim; Alexa, Petr; Pištora, Jaromír

    2013-03-01

    Compact deuterium-tritium neutron generators emit fast neutrons (14.2 MeV) that have to be thermalized for neutron activation analysis experiments. To maximize thermal neutron flux and minimize epithermal and fast neutron fluxes across the output surface of the neutron generator facility, Monte Carlo calculations (MCNP5; Los Alamos National Laboratory) for different moderator types and widths and collimator and reflector designs have been performed. A thin lead layer close to the neutron generator as neutron multiplier followed by polyethylene moderator and surrounded by a massive lead and nickel collimator and reflector was obtained as the optimum setup.

  1. 235U Determination using In-Beam Delayed Neutron Counting Technique at the NRU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, M. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bentoumi, G. [Canadian Nuclear Labs., Chalk River, ON (Canada); Corcoran, E. C. [Royal Military College of Canada, Kingston, ON (United States); Dimayuga, I. [Canadian Nuclear Labs., Chalk River, ON (Canada); Kelly, D. G. [Royal Military College of Canada, Kingston, ON (United States); Li, L. [Canadian Nuclear Labs., Chalk River, ON (Canada); Sur, B. [Canadian Nuclear Labs., Chalk River, ON (Canada); Rogge, R. B. [Canadian Nuclear Labs., Chalk River, ON (Canada)

    2015-11-17

    This paper describes a collaborative effort that saw the Royal Military College of Canada (RMC)’s delayed neutron and gamma counting apparatus transported to Canadian Nuclear Laboratories (CNL) for use in the neutron beamline at the National Research Universal (NRU) reactor. Samples containing mg quantities of fissile material were re-interrogated, and their delayed neutron emissions measured. This collaboration offers significant advantages to previous delayed neutron research at both CNL and RMC. This paper details the determination of 235U content in enriched uranium via the assay of in-beam delayed neutron magnitudes and temporal behavior. 235U mass was determined with an average absolute error of ± 2.7 %. This error is lower than that obtained at RMCC for the assay of 235U content in aqueous solutions (3.6 %) using delayed neutron counting. Delayed neutron counting has been demonstrated to be a rapid, accurate, and precise method for special nuclear material detection and identification.

  2. Advanced Beam-Dynamics Simulation Tools for RIA

    CERN Document Server

    Garnett, Robert; Crandall, Kenneth; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D; Wangler, Thomas; York, Richard; Zhao, Qiang

    2005-01-01

    Understanding beam losses is important for the high-intensity RIA driver linac. Small fractional beam losses can produce radioactivation of the beamline components that can prevent or hinder hands-on maintenance, reducing facility availability. Operational and alignment errors in the RIA driver linac can lead to beam losses caused by irreversible beam-emittance growth and halo formation. We are developing multiparticle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles for the beam-loss calculations. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, and beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for h...

  3. Neutron beam optimization based on a 7Li(p,n)7Be reaction for treatment of deep-seated brain tumors by BNCT

    Science.gov (United States)

    Zahra Ahmadi, Ganjeh; S. Farhad, Masoudi

    2014-10-01

    Neutron beam optimization for accelerator-based Boron Neutron Capture Therapy (BNCT) is investigated using a 7Li(p,n)7Be reaction. Design and optimization have been carried out for the target, cooling system, moderator, filter, reflector, and collimator to achieve a high flux of epithermal neutron and satisfy the IAEA criteria. Also, the performance of the designed beam in tissue is assessed by using a simulated Snyder head phantom. The results show that the optimization of the collimator and reflector is critical to finding the best neutron beam based on the 7Li(p,n)7Be reaction. Our designed beam has 2.49×109n/cm2s epithermal neutron flux and is suitable for BNCT of deep-seated brain tumors.

  4. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.

    Science.gov (United States)

    Lee, Pei-Yi; Liu, Yuan-Hao; Jiang, Shiang-Huei

    2014-06-01

    High energy proton beam (>8MeV) is favorable for producing neutrons with high yield. However, the produced neutrons are of high energies. These high energy neutrons can cause severe fast neutron contamination and degrade the BNCT treatment quality if they are not appropriately moderated. Hence, this study aims to briefly discuss the issue, from the viewpoint of fast neutron contamination control, whether high energy proton beam is ideal for AB-BNCT or not. In this study, D2O, PbF4, CaF2, and Fluental(™) were used standalone as moderator materials to slow down 1-, 6-, and 10-MeV parallelly incident neutrons. From the calculated results, we concluded that neutrons produced by high energy proton beam could not be easily moderated by a single moderator to an acceptable contamination level and still with reasonable epithermal neutron beam intensity. Hence, much more complicated and sophisticated designs of beam shaping assembly have to be developed when using high energy proton beams.

  5. Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Chang

    2011-05-01

    For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

  6. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    Science.gov (United States)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  7. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  8. 26Si excited states via one-neutron removal from a 27Si radioactive ion beam

    Science.gov (United States)

    Chen, J.; Chen, A. A.; Amthor, A. M.; Bazin, D.; Becerril, A. D.; Gade, A.; Galaviz, D.; Glasmacher, T.; Kahl, D.; Lorusso, G.; Matos, M.; Ouellet, C. V.; Pereira, J.; Schatz, H.; Smith, K.; Wales, B.; Weisshaar, D.; Zegers, R. G. T.

    2012-04-01

    A study of 26Si states by neutron removal from a fast radioactive beam of 27Si has been performed. A beam of 27Si of energy 84.3 MeV/nucleon impinged on a polypropylene foil (C3H6) of 180 mg/cm2 thickness. Deexcitation γ rays were detected with a highly segmented germanium detector array, in coincidence with the 26Si recoils, and the corresponding 26Si level energies were determined. In comparing our results to two previous γ-ray spectroscopic studies of 26Si level structures, we find good agreement with a recent measurement of the 12C(16O,2nγ)26Si reaction. Our results support the use of excitation energies from that study in helping determine the important resonance energies for the thermonuclear 25Al(p,γ)26Si reaction rate. We do not observe a bound state at 4093 keV reported in an earlier study of the 24Mg(3He,nγ)26Si reaction.

  9. MCNP5 and GEANT4 comparisons for preliminary Fast Neutron Pencil Beam design at the University of Utah TRIGA system

    Science.gov (United States)

    Adjei, Christian Amevi

    The main objective of this thesis is twofold. The starting objective was to develop a model for meaningful benchmarking of different versions of GEANT4 against an experimental set-up and MCNP5 pertaining to photon transport and interactions. The following objective was to develop a preliminary design of a Fast Neutron Pencil Beam (FNPB) Facility to be applicable for the University of Utah research reactor (UUTR) using MCNP5 and GEANT4. The three various GEANT4 code versions, GEANT4.9.4, GEANT4.9.3, and GEANT4.9.2, were compared to MCNP5 and the experimental measurements of gamma attenuation in air. The average gamma dose rate was measured in the laboratory experiment at various distances from a shielded cesium source using a Ludlum model 19 portable NaI detector. As it was expected, the gamma dose rate decreased with distance. All three GEANT4 code versions agreed well with both the experimental data and the MCNP5 simulation. Additionally, a simple GEANT4 and MCNP5 model was developed to compare the code agreements for neutron interactions in various materials. Preliminary FNPB design was developed using MCNP5; a semi-accurate model was developed using GEANT4 (because GEANT4 does not support the reactor physics modeling, the reactor was represented as a surface neutron source, thus a semi-accurate model). Based on the MCNP5 model, the fast neutron flux in a sample holder of the FNPB is obtained to be 6.52×107 n/cm2s, which is one order of magnitude lower than gigantic fast neutron pencil beam facilities existing elsewhere. The MCNP5 model-based neutron spectrum indicates that the maximum expected fast neutron flux is at a neutron energy of ~1 MeV. In addition, the MCNP5 model provided information on gamma flux to be expected in this preliminary FNPB design; specifically, in the sample holder, the gamma flux is to be expected to be around 108 γ/cm 2s, delivering a gamma dose of 4.54×103 rem/hr. This value is one to two orders of magnitudes below the gamma

  10. Research advances in proton beam therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DAI Shuyang

    2013-10-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the most common malignancies with high prevalence and mortality rate, usually results in poor prognosis and limited survival. A comprehensive analysis on the number and location of tumors, Child-Pugh grade, and Barcelona Clinic Liver Cancer stage will help the development of suitable treatment programs and improve prediction of prognosis. A majority of patients are complicated by cirrhosis, enlarged tumor, multiple lesions, vascular invasion, and even cancer embolus in the portal vein. With the growth of knowledge about the radiation tolerance of normal tissue and the advances in radiotherapy techniques, radiotherapy has become an important tool for step-down therapy and adjuvant therapy for liver cancer. Proton beam therapy (PBT is emerging as a novel radiotherapy for the management of HCC, which, benefiting from the effect of Bragg Peak from PBT, effectively decreases the toxicity of traditional radiotherapies to the liver and does little harm to the uninvolved liver tissue or the surrounding structures while intensifying the destruction in targeted malignant lesions. Furthermore, several previous studies on the treatment of HCC with PBT revealed excellent local control. The distinctive biophysical attributes of PBT in the treatment of HCC, as well as the available literature regarding clinical outcomes and toxicity of using PBT for HCC, are reviewed. Current evidence provides limited indications for PBT, which suggests that further study on the relationship between liver function and PBT is required to gain further insight into its indication and standardization.

  11. Applying Advanced Neutron Transport Calculations for Improving Fuel Performance Codes

    Energy Technology Data Exchange (ETDEWEB)

    Botazzoli, P.; Luzzi, L. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division - CeSNEF, Milano (Italy); Schubert, A.; Van Uffelen, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Haeck, W. [Institute de Radioprotection et de Surete Nucleaire, Fontenay-aux-Roses (France)

    2009-06-15

    TRANSURANUS is a computer code for the thermal and mechanical analysis of fuel rods in nuclear reactors. As part of the code, the TUBRNP model calculates the local concentration of the actinides (U, Pu, Am, Cm), the main fission products (Xe, Kr, Cs and Nd) and {sup 4}He produced during the irradiation as a function of the radial position across a fuel pellet (radial profiles). These local quantities are required for the determination of the local power density, the local burn-up, and the source term of fission products and other inert gases. In previous works the neutronic code ALEPH has been used to validate the models for the actinides and fission products concentrations in UO{sub 2} fuels. A similar approach has been adopted in the present work for verifying the Helium production. The present paper focuses on the modelling of the Helium production in PWR oxide fuels (MOX and UO{sub 2}). A reliable prediction of the Helium production and release in LWR oxide fuels is of great interest in case of increasing burn-up, linear heat generation rates and Plutonium content. The contribution of the Helium released plays a fundamental role in the gap pressure and subsequently in the mechanical behaviour of the fuel rod, in particular during the storage of the high burn-up spent fuel. Helium is produced in oxide fuels by three main paths: (i) alpha decay of the actinides (the main contribution is due to {sup 242}Cm, {sup 238}Pu and {sup 244}Cm); (ii) (n,{alpha}) reactions; and (iii) ternary fission. In the present work, the contributions due to ternary fission and the (n,{alpha}) reaction on {sup 16}O as well as some refinements in the {sup 241}Am burn-up chain have been included in TUBRNP. The VESTA neutronic code has been used for the validation of the He production model. The generic VESTA Monte Carlo depletion interface developed at IRSN allows us to couple different Monte Carlo codes with a depletion module. It currently allows for combining the ORIGEN 2.2 isotope

  12. Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Zertuche, L Magana; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $\\in [1,3] M_{\\odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $\\in [2,99] M_{\\odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35\\pm0.13 M_{\\odot}$ at a volume-weighted average distance of $\\sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_\\odot$ and black hole masses of at least $5M_\\odot$, a volume-weighted average distance of at least $\\sim$ 110Mpc. From this we...

  13. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  14. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    Science.gov (United States)

    Chen, W. C.; Gentile, T. R.; Ye, Q.; Kirchhoff, A.; Watson, S. M.; Rodriguez-Rivera, J. A.; Qiu, Y.; Broholm, C.

    2016-09-01

    Wide-angle polarization analysis with polarized 3He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells.

  15. In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap

    Science.gov (United States)

    John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.

    2017-06-01

    The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.

  16. Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

    CERN Multimedia

    2002-01-01

    Hadron Radiobiology : Investigation of the Inhibition of ten days Growth of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2 Hadron Radiobiology : Investigation of the Inhibition of ten days'Grown of Vicia Faba Roots after Exposure in the 600 MeV Neutron Beam from SC2

  17. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  18. An assessment of the secondary neutron dose in the passive scattering proton beam facility of the national cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2017-06-15

    The purpose of this study is to assess the additional neutron effective dose during passive scattering proton therapy. Monte Carlo code (Monte Carlo N-Particle 6) simulation was conducted based on a precise modeling of the National Cancer Center's proton therapy facility. A three-dimensional neutron effective dose profile of the interior of the treatment room was acquired via a computer simulation of the 217.8-MeV proton beam. Measurements were taken with a 3He neutron detector to support the simulation results, which were lower than the simulation results by 16% on average. The secondary photon dose was about 0.8% of the neutron dose. The dominant neutron source was deduced based on flux calculation. The secondary neutron effective dose per proton absorbed dose ranged from 4.942 ± 0.031 mSv/Gy at the end of the field to 0.324 ± 0.006 mSv/Gy at 150 cm in axial distance.

  19. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    Science.gov (United States)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  20. Nuclear physics with advanced brilliant gamma beams at ELI-NP

    Science.gov (United States)

    Ur, Călin A.; Filipescu, Dan; Gheorghe, Ioana; Iancu, Violeta; Suliman, Gabriel; Teşileanu, Ovidiu

    2016-01-01

    The Extreme Light Infrastructure - Nuclear Physics facility is dedicated to nuclear physics studies with the use of extreme electromagnetic radiation. One of the main research system to be installed and operated in the facility is an outstanding high brilliance gamma beam system. The Gamma Beam System of ELI-NP will produce intense, quasi-monochromatic gamma beams via inverse Compton scattering of short laser pulses on relativistic electron beam pulses. The gamma beams available at ELI-NP will allow for the performance of photo-nuclear reactions aiming to reveal the intimate structure of the atomic nucleus. Nuclear Resonance Fluorescence, photo-fission, photo-disintegration reactions above the particle threshold will be used to study the dipole response of nuclei, the structure of the Pygmy resonances, nuclear processes relevant for astrophysics, production and study of exotic neutron-rich nuclei.

  1. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  2. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    CERN Document Server

    Cortesi, M; Adams, R; Dangendorf, V; Prasser, H -M

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, cool...

  3. Determination of the Neutron Fluence, the Beam Characteristics and the Backgrounds at the CERN-PS TOF Facility

    CERN Multimedia

    Leal, L C; Kitis, G; Guber, K H; Quaranta, A; Koehler, P E

    2002-01-01

    In the scope of our programme we propose to start in July 2000 with measurements on elements of well known cross sections, in order to check the reliability of the whole experimental installation at the CERN-TOF facility. These initial exploratory measurements will provide the key-parameters required for the further experimentation at the CERN-TOF neutron beam. The neutron fluence and energy resolution will be determined as a function of the neutron kinetic energy by reproducing standard capture and fission cross sections. The measurements of capture cross sections on elements with specific cross section features will allow to us to disentangle the different components of backgrounds and estimate their level in the experimental area. The time-energy calibration will be determined and monitored with a set of monoenergetic filters as well as by the measurements of elements with resonance-dominated cross sections. Finally, in this initial phase the behaviour of several detectors scheduled in successive measureme...

  4. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    Science.gov (United States)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  5. Stripping of H- beams by residual gas in the linac at the Los Alamos neutron science center

    Energy Technology Data Exchange (ETDEWEB)

    Mccrady, Rodney C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Cooper, Martin D [Los Alamos National Laboratory; Alexander, Saunders [Los Alamos National Laboratory

    2010-09-07

    The linear accelerator at the Los Alamos Neutron Science Center (LANSCE) accelerates both protons and H{sup -} ions using Cockroft-Walton-type injectors, a drift-tube linac and a coupled-cavity linac. The vacuum is maintained in the range of 10{sup -6} to 10{sup -7} Torr; the residual gas in the vacuum system results in some stripping of the electrons from the H{sup -} ions resulting in beam spill and the potential for unwanted proton beams delivered to experiments. We have measured the amount of fully-stripped H{sup -} beam (protons) that end up at approximately 800 MeV in the beam switchyard at LANSCE using image plates as very sensitive detectors. We present here the motivation for the measurement, the measurement technique and results.

  6. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    National Research Council Canada - National Science Library

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer...

  7. Preliminary study about frequencies of unstable chromosome alterations induced by gamma beam and neutron-gamma mixed field

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mariana E.; Souza, Priscilla L.G.; Brandao, Jose Odinilson de C.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide [Universidade Federal de Pernanmbuco (CCB/UFPE), Recife, PE (Brazil). Centro de Ciencias Biologicas. Dept. de Genetica

    2011-07-01

    The estimate on approximate dose in exposed individual can be made through conventional cytogenetic analysis of dicentric, this technique has been used to support physical dosimetry. It is important to estimate the absorbed dose in case of accidents with the aim of developing an appropriate treatment and biological dosimetry can be very useful in case where the dosimetry is unavailable. Exposure to gamma and neutron radiation leads to the same biological effects such as chromosomal alterations and cancer. However, neutrons cause more genetic damage, such as mutation or more structural damage, such as chromosome alterations. The aim of research is to compare frequencies of unstable chromosome alterations induced by a gamma beam with those from neutron-gamma mixed field. Two blood samples were obtained from one healthy donor and irradiated at different sources. The first sample was exposed to mixed field neutron-gamma sources {sup 241}AmBe at the Neutron Calibration Laboratory (NCL - CRCN/NE - PE - Brazil) and the second one was exposed to {sup 137}Cs gamma rays at {sup 137}Cs Laboratory (CRCN/NE - PE - Brazil), both exposures resulting in an absorbed dose of 0.66Gy. Mitotic metaphase cells were obtained by lymphocyte culture for chromosomal analysis and slides were stained with Giemsa 5%. These preliminary results showed a similarity in associated dicentrics frequency per cell (0.041 and 0.048) after {sup 137}Cs and {sup 241}AmBe sources irradiations, respectively. However, it was not observed centric rings frequency per cell (0.0 and 0.027). This study will be continue to verify the frequencies of unstable chromosome alterations induced by only gamma beam and neutron-gamma mixed field. (author)

  8. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  9. Advanced LIGO Constraints on Neutron Star Mergers and R-Process Sites

    CERN Document Server

    Côté, Benoit; Fryer, Chris L; Ritter, Christian; Paul, Adam; Wehmeyer, Benjamin; O'Shea, Brian W

    2016-01-01

    The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, binary population synthesis models, and Advanced LIGO gravitational wave measurements. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star - neutron star (NS-NS) mergers that is needed in order to reproduce the observed [Eu/Fe] vs [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution (DTD) functions for NS-NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS-NS mergers and black hole - neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. ...

  10. Optimizing a neutron-beam focusing device for the direct geometry time-of-flight spectrometer TOFTOF at the FRM II reactor source

    DEFF Research Database (Denmark)

    Rasmussen, N. G.; Simeoni, G. G.; Lefmann, K.

    2016-01-01

    A dedicated beam-focusing device has been designed for the direct geometry thermal-cold neutron time-of-flight spectrometer TOFTOF at the neutron facility FRM II (Garching, Germany). The prototype, based on the compressed Archimedes' mirror concept, benefits from the adaptive-optics technology (a...

  11. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    NARCIS (Netherlands)

    Nievaart, V.A.; Legrady, D.; Moss, R.L.; Kloosterman, J.L.; Van der Hagen, T.H.; Van Dam, H.

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo simu

  12. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  13. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  14. Design of Real-time Neutron Radiography at China Advanced Research Reactor

    Science.gov (United States)

    He, Linfeng; Han, Songbai; Wang, Hongli; Hao, Lijie; Wu, Meimei; Wei, Guohai; Wang, Yu; Liu, Yuntao; Sun, Kai; Chen, Dongfeng

    A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is below 2.4 e/pixel. It is capable of providing images with much higher resolution and sensitivity at high frame rate. With optimized optical design and custom-built lens, the capture of quantitative information may be greatly enhanced. The maximum photon received by detector is calculated to be 2.1 × 103/pixel, while the camera resolution is 0.2 mm at 30 fps according to the expected flux (5 × 107 n/cm2/s) at the sample position.

  15. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. (Science Applications International Corp., Oak Ridge, TN (United States))

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  16. Advanced ion beam calorimetry for the test facility ELISE

    Science.gov (United States)

    Nocentini, R.; Bonomo, F.; Pimazzoni, A.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Pasqualotto, R.; Riedl, R.; Ruf, B.; Wünderlich, D.

    2015-04-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m2, for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and correlates

  17. Development and characterization of advanced electron beam resists

    Science.gov (United States)

    Agrawal, Ankur

    Over the past twenty years, the amount of research and development work for electron beam resists has seriously lagged that performed for optical resists. This has been due mainly to the relatively low volume use of electron beam lithography for production purposes. However, as electron beam lithography is now becoming the primary solution for achieving future critical dimension requirements in mask making and appears to be a promising NGL technology, interest in electron beam resist development has increased in recent years. The primary issue in electron beam resist design centers around finding a single resist system that combines the required sensitivity and etch resistance that is needed to enable high volume production. In this work, the primary goal was to explore the development of a novel two-component non-chemically amplified electron beam resist material for high keV (>10 keV) patterning for mask-making with: (1) high contrast, (2) high sensitivity, (3) high resolution, and, (4) high etch resistance. Poly (2-methyl-1-pentene co 2-ethoxyethyl-methallyl ether sulfone) was used as a polymeric e-beam sensitive material conjunction with a series of commercial novolac resins to formulate electron beam resists. These two-component resists have been termed sulfone-novolac system (SNS) resists. The approach used in this project is to develop a suite of experimental tools and simulation models that can be used to aid in the rational design, formulation, and characterization of new electron beam resists. The main tasks that have been addressed are: (1) development of the electron beam resist characterization tool set, (2) understanding the fundamental material behavior of a non-chemically amplified polysulfone-novolac (SNS) e-beam resist for next generation mask making, (3) lithographic process development and optimization for the SNS resists, (4) evaluation of the lithographic performance of the SNS resists using the optimized processing conditions, and (5) develop

  18. Neutron Knockout on Beams of $^{108,106}$Sn and $^{106}$Cd

    CERN Document Server

    Cerizza, Giordano

    2015-01-01

    Characterizing the nature of single-particle states outside of double shell closures is essential to a fundamental understanding of nuclear structure. This is especially true for those doubly magic nuclei that lie far from stability and where the shell closures influence nucleo-synthetic pathways. The region around $^{100}$Sn is one of the most important due to the proximity of the N=Z=50 magic numbers, the proton-drip line, and the end of the rp-process. However, owing to the low production rates, there is a lack of spectroscopic information and no firm spin-parity assignment for ground states of odd-A isotopes close to $^{100}$Sn. Neutron knockout reaction experiments on beams of $^{108,106}$Sn and $^{106}$Cd have been performed at the NSCL. By measuring gamma rays and momentum distributions from reaction residues, the spin of ground state and first excited state for $^{107,105}$Sn have been established. The results also show a degree of mixing in the ground states of the isotopes $^{108,106}$Sn between the...

  19. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  20. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  1. Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    CERN Document Server

    Berry, C P L; Farr, W M; Haster, C-J; Mandel, I; Middleton, H; Singer, L P; Urban, A L; Vecchio, A; Vitale, S; Cannon, K; Graff, P B; Hanna, C; Mohapatra, S; Pankow, C; Price, L R; Sidery, T; Veitch, J

    2016-01-01

    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).

  2. Electron beam melting of advanced materials and structures

    Science.gov (United States)

    Mahale, Tushar Ramkrishna

    Layered manufacturing has for long been used for the fabrication of non-functional parts using polymer-based processes. Developments in laser beam and electron beam welding technologies and their adoption to layered manufacturing has made it possible to fabricate high-density functional parts in metal irrespective of the level of complexity. The Electron Beam Melting (EBM) process by Arcam AB is one such layered manufacturing process that utilizes a focused electron beam to process metal powder, layer by layer, in a vacuum environment. Research conducted as part of this body of work looks into the development of both bulk materials in the form of metal alloys and ceramic metal-matrix composites as well as the development of tunable mechanical & thermal metamaterials. Simulation models to approximate electron beam melting were suggested using commercial finite element analysis packages. A framework was developed based on the finite difference method to simulate layered manufacturing using Arcam AB's electron beam melting process. The outputs from the simulation data could be used to better understand the local melting, grain evolution, composition and internal stresses within freeform-fabricated metal parts.

  3. Advanced LIGO Constraints on Neutron Star Mergers and r-process Sites

    Science.gov (United States)

    Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.; Ritter, Christian; Paul, Adam; Wehmeyer, Benjamin; O’Shea, Brian W.

    2017-02-01

    The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 M {}ȯ , the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. These two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.

  4. A new 2.5 MeV injector and beam test facility for the spallation neutron source

    Science.gov (United States)

    Welton, R. F.; Aleksandrov, A.; Han, B. X.; Kang, Y. W.; Middendorf, M. M.; Murray, S. N.; Piller, M.; Pennisi, T. R.; Peplov, V.; Saethre, R.; Santana, M.; Stinson, C.; Stockli, M. P.

    2017-08-01

    The U.S. Spallation Neutron Source (SNS) now operates with 1.2 MW of beam power on target with the near-term goal of delivering 1.4 MW and a longer-term goal of delivering >2 MW to support a planned second target station. Presently, H- beam pulses (50-60 mA, 1 ms, 60 Hz) from an RF-driven, Cs-enhanced, multi-cusp ion source are first accelerated to 2.5 MeV by a Radio Frequency Quadrupole (RFQ) accelerator, injected into a ˜1 GeV linac, compressed to research accelerator employing the original SNS RFQ. After validating the new RFQ with respect to energy, emittance and transmission, the initial applications of the BTF will be to conduct 6D beam dynamic studies, develop & demonstrate ion sources capable of meeting the current and future requirements of the SNS, and contribute to neutron moderator development. This report provides a facility update, description of the BTF ion source systems as well as a discussion of the first LEBT and RFQ beam current measurements performed at the BTF.

  5. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  6. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  7. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Science.gov (United States)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  8. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G. [European Spallation Source, Lund (Sweden); Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Schönfeldt, T. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden); Iverson, E.B., E-mail: iversoneb@ornl.gov [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mocko, M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Baxter, D.V. [Center for the Exploration of Energy and Matter, Indiana University, Bloomington, IN (United States); Hügle, Th.; Gallmeier, F.X. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Klinkby, E.B. [Center for Nuclear Technologies, Technical University of Denmark, Roskilde (Denmark); European Spallation Source, Lund (Sweden)

    2016-09-11

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  9. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ∼ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.

  10. Advances in kilovoltage x-ray beam dosimetry

    Science.gov (United States)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  11. Time-Off-Flight method for neutron rejection in prompt gamma imaging of beam range and density changes in proton therapy

    NARCIS (Netherlands)

    Biegun, Aleksandra; Cambraia Lopes, P.; Rinaldi, I.; Oxley, D.C.; Seravalli, E.; Verhaegen, F.; Dendooven, Peter; Parodi, K.; Schaart, D.R.; Crespo, P.

    2012-01-01

    A therapeutic proton beam penetrating a patient generates a large number of prompt photons as well as neutrons, resulting from proton-induced nuclear reactions. This allows for obtaining longitudinal beam-profile images via the detection of selected prompt-gamma rays emitted perpendicularly to the b

  12. Concept for an advanced exotic beam facility based on ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    The acceleration of beams of unstable nuclei has opened up new research frontiers. Experiments at existing accelerators, and particularly at the first generation of radioactive ion beam facilities, have demonstrated convincingly that unique information becomes accessible. Critical cross sections for astrophysical processes that were impossible to obtain previously, qualitatively new and unexpected nuclear structure effects in nuclei far from stability, completely new approaches to studies of nuclear decays, reactions and structure, all have triggered much excitement for this new dimension in nuclear research. To explore this new dimension, an extension of present technical capabilities and facilities is needed. This need and its scientific basis were discussed in various workshops and symposia and in the Isospin Laboratory (ISL) White Paper. A report by the European community was published recently on prospects of radioactive beam facilities in Europe, and some next-generation projects for such facilities are starting in both Europe and Japan.

  13. Measurement of peak fluence of neutron beams using Bi-fission detectors

    Indian Academy of Sciences (India)

    R K Jain; Ashok Kumar; N L Singh; L Tommasino; B K Singh

    2012-03-01

    Fission fragments and other charged particles leave tracks of permanent damage in most of the insulating solids. Damage track detectors are useful for personal dosimeters and for flux/dose determination of high-energy particles from accelerators or cosmic rays. A detector that has its principal response at nucleon energy above 50 MeV is provided by the fission of Bi-209. Neutrons produce the largest percentage of hadron dose in most high-energy radiation fields. In these fields, the neutron spectrum is typically formed by low-energy neutrons (evaporation spectrum) and high-energy neutrons (knock-on spectrum). We used Bi-fission detectors to measure neutron peak fluence and compared the result with the calculated value of neutron peak fluence. For the exposure to 100 MeV we have used the iThemba Facility in South Africa.

  14. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired......, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability......