WorldWideScience

Sample records for advanced natural-gas reciprocating

  1. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  2. Advanced Natural Gas Reciprocating Engines(s)

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James [Dresser, Inc., Addison, TX (United States)

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  3. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  4. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  5. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  6. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  7. Fiscal 2000 survey report. Feasibility study of reciprocative transportation system for carbon dioxide and natural gas utilizing gas hydrate; 2000 nendo gas hidrate wo riyosuru nisanka tanso to tennen gas no kogo yuso system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A reciprocative CO2/CH{sub 4} transportation system will constitute a foundation on which minor gas fields may be made good use of in the Asia-Pacific region. For the construction of such a system, a survey is conducted into key technologies of separating CO2 from combustion exhaust with the aid of the hydrate process, reciprocative CO2/CH{sub 4} transportation with hydrate acting as medium, and subsurface CO2 storage and its utilization in minor gas fields or the like. The contents of the survey and the results fall in six areas, which are (1) the states of greenhouse gas reduction and natural gas utilization, (2) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (3) CO2 separation from combustion exhaust with the aid of the hydrate process, (4) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (5) subsurface CO2 storage and its utilization in minor gas fields, and (6) the establishment of a reciprocative CO2/CH{sub 4} transportation system and the evaluation of its cost performance. (NEDO)

  8. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  9. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  10. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sreenath [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Muni [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Sekar, Raj [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  11. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-01-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  12. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  13. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  14. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  15. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  16. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  17. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  18. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  19. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    Science.gov (United States)

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  20. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  1. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  2. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  3. Natural gas: an environmental-friendly solution?

    International Nuclear Information System (INIS)

    Vermeire, J.

    1994-01-01

    Since 1970, the portion of natural gas in energy consumption in Western-Europe has grown by 6 percent per year on the average. About 20 percent of the energy demand in Western-Europe is now covered by natural gas. It is forecasted that this growth will continue at a rate of 2 percent per year until 2010. The natural gas consumption will increase from 325 billion cubic metres in 1993 to 450 billion cubic metres per year in 2010. For the coming 10 to 15 years, the natural gas demand is covered by long-term contracts with gas producing countries. From 2010 on, additional contracts, covering 70 to 120 billion cubic metres per year are required. A shift in geographic distribution of countries from which natural gas will be imported by Western-European countries is expected, which implies high investments and additional costs for transport and distribution of natural gas. Due to its qualities with respect to environmental impact, yield, availability, and advanced technology, natural gas is the energy vector of the 21 first century. (A.S.)

  4. Uncanny natural gas advances change the game for EnCana

    International Nuclear Information System (INIS)

    Petkau, R.

    2010-01-01

    A combination of new technologies is now leading Canada's EnCana Corporation to increase its investment in natural gas production. The corporation recently split itself into 2 companies, with Cenovus Energy taking the heavy oil assets, while the new EnCana is keeping its unconventional gas operations in northeast British Columbia (BC), Alberta, Wyoming, Colorado, Texas, and Louisiana. The division will allow EnCana to focus on becoming the best and lowest-cost producers of natural gas in North America. EnCana believes that long-term gas prices will increase over time. Four of its 8 natural gas key resources are located in Canada. The company is now producing gas from coalbed methane resources in south central Alberta, as well as from the Montney, Cadomin, and Doig geological formations. New hydraulic fracturing and horizontal drilling technologies have enabled the company to provide an estimated 100 years of gas supply in North America. EnCana has also adopted the use of various new technologies that reduce the surface disturbances and environmental impacts associated with drilling. It is hoped that EnCana's production methods will help to reduce imports of natural gas from other countries. 4 figs.

  5. Natural gas - Market and environmental needs

    International Nuclear Information System (INIS)

    Beyer, R.

    1995-01-01

    The paper discusses the natural gas market and environmental needs with topics as follow: Importance of the North Sea region; sustainable development on the balance between economic use and environmental protection; role of natural gas in meeting energy demand: market needs, technologies, environmental aspects. According to the author, natural gas causes minimal pollutants because it contains virtually no pollutant-forming substances such as heavy metals, sulphur, chlorine or fluorine. No solid residues exist in the combustion space such as ash, slag, dust or soot, and the formation of thermal NO x through natural gas combustion has decreased to a very large extent as a result of technical advances. Natural gas can make a significant contribution towards reducing CO 2 emissions due to its very high hydrogen content. 12 figs

  6. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  7. Project and implementation of advanced controls in a natural gas reformation unit; Projeto e implementacao de controles avancados em unidade de reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Bruno [Andreoni Servicos de Engenharia Ltda., Rio de Janeiro, RJ (Brazil); Bueno, Roberto Galvao [Prosint S.A., XX (Brazil); Cruz, Luiz Alfredo A [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1993-12-31

    This paper presents an effective implementation of advanced controls using a DCS previously loaded with conventional controls only. The advanced control system for a multiple fuel natural gas reform furnace consists of material and energy on-line balances, multivariable feedback trims, dynamic compensations and adaptive controls. The system performed well without an analyzer despite wide variations in fuel composition. A few items were implemented to improve the system after startup of the original strategies. All implementations were made possible through great involvement of plant personnel, aided by a consulting firm. The system provided tangible benefits and adequate return on the investment. (author)

  8. Sustainable application of reciprocating gas engines operating on coal mine methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Teo, T. [Caterpillar China Investment Co., Beijing (China); Tnay, C.H. [Westrac Inc., Beijing (China)

    2008-07-01

    According to the World Coal Institute, coal provides 25 per cent of worldwide primary energy needs and generates 40 per cent of the world's electricity. China produces the largest amount of hard coal. The anthropogenic release of methane (CH{sub 4}) into the environment is a byproduct of the coal mining process. The global warming potential of this methane continues to draw attention around the world. In particular, China's government has recognized the need for environmental responsibility in the pursuit of greater power production. The Kyoto Protocol requires developed countries to reduce their greenhouse gas emissions and targets must be met within a five-year time frame between 2008 and 2012. Sequestering coal mine methane (CMM) as an alternative fuel for reciprocating gas engine generator sets is a mature and proven technology for greenhouse gas mitigation. Prior to commissioning CMM-fueled power systems, the methane gas composition must be evaluated. An integrated systems approach can then be used to develop a CMM-fueled power project. This paper discussed the sustainable application of reciprocating gas engines operating on coal mine methane. It discussed the Kyoto Protocol, clean development mechanism, and CMM as compared to other fuel sources. It was concluded that there is considerable opportunity for growth in the Asia-Pacific region for electric power applications using CMM. 4 refs., 12 figs.

  9. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  10. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  11. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  12. Trends in high performance compressors for petrochemical and natural gas industry in China

    Science.gov (United States)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  13. Study on pressure pulsation and piping vibration of complex piping of reciprocating compressor

    International Nuclear Information System (INIS)

    Xu Bin; Feng Quanke; Yu Xiaoling

    2008-01-01

    This paper presents a preliminary research on the piping vibration and pressure pulsation of reciprocating compressor piping system. On the basis of plane wave theory, the calculation of gas column natural frequency and pressure pulsation in complex pipelines is done by using the transfer matrix method and stiffness matrix method, respectively. With the discretization method of FEM, a mathematical model for calculating the piping vibration and stress of reciprocating compressor piping system is established, and proper boundary conditions are proposed. Then the structural modal and stress of the piping system are calculated with CAESAR II. The comparison of measured and calculated values found that the one dimensional wave equation can accurately calculate the natural frequency and pressure pulsation in gas column of piping system for reciprocating compressor. (authors)

  14. Advanced gas-cooled reactors (AGR)

    Energy Technology Data Exchange (ETDEWEB)

    Yeomans, R. M. [South of Scotland Electricity Board, Hunterston Power Station, West Kilbride, Ayshire, UK

    1981-01-15

    The paper describes the advanced gas-cooled reactor system, Hunterston ''B'' power station, which is a development of the earlier natural uranium Magnox type reactor. Data of construction, capital cost, operating performance, reactor safety and also the list of future developments are given.

  15. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  16. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  17. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  18. Effect of advanced injection timing on the performance of natural gas ...

    Indian Academy of Sciences (India)

    Recent interest has centred on the use of natural gas in a diesel engine. Natural gas ... temperatures. Fuel was fed to the injector pump under gravity and the volumetric flow rate .... produce very erratic behaviour of the engine. The test results ...

  19. Evolutionary robotics simulations help explain why reciprocity is rare in nature.

    Science.gov (United States)

    André, Jean-Baptiste; Nolfi, Stefano

    2016-09-12

    The relative rarity of reciprocity in nature, contrary to theoretical predictions that it should be widespread, is currently one of the major puzzles in social evolution theory. Here we use evolutionary robotics to solve this puzzle. We show that models based on game theory are misleading because they neglect the mechanics of behavior. In a series of experiments with simulated robots controlled by artificial neural networks, we find that reciprocity does not evolve, and show that this results from a general constraint that likely also prevents it from evolving in the wild. Reciprocity can evolve if it requires very few mutations, as is usually assumed in evolutionary game theoretic models, but not if, more realistically, it requires the accumulation of many adaptive mutations.

  20. Fuel savings with conventional hot water space heating systems by incorporating a natural gas powered heat pump. Preliminary project: Development of heat pump technology

    Science.gov (United States)

    Vanheyden, L.; Evertz, E.

    1980-12-01

    Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.

  1. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  2. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  3. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  4. U.S. natural gas pipeline flow and demand trends

    International Nuclear Information System (INIS)

    Carson, M.M.

    1992-01-01

    It is no surprise that regional natural gas supply and demand patterns in North America are constantly changing. A consensus of forecasters agree that the natural gas resource base is larger than envisaged in the early 1980s due to advances in exploration and production technology. In addition, on the demand side more gas will be burned by US power generators to meet growth in electricity. Gas consumption is up in the commercial sector, and natural gas is correctly seen as environmentally protective. But how much more natural gas does the US need? This paper reports that new pipeline projects are springing up all over the nation --- 43 to be exact, with most of them connecting gas deliverability out of basins west of the Mississippi to new markets along the Atlantic and Pacific coasts

  5. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  6. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  7. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  8. Gas holdup in a reciprocating plate bioreactor: Non-Newtonian - liquid phase

    Directory of Open Access Journals (Sweden)

    Naseva Olivera S.

    2002-01-01

    Full Text Available The gas holdup was studied in non-newtonian liquids in a gas-liquid and gas-liquid-solid reciprocating plate bioreactor. Aqueous solutions of carboxy methyl cellulose (CMC; Lucel, Lučane, Yugoslavia of different degrees of polymerization (PP 200 and PP 1000 and concentration (0,5 and 1%, polypropylene spheres (diameter 8.3 mm; fraction of spheres: 3.8 and 6.6% by volume and air were used as the liquid, solid and gas phase. The gas holdup was found to be dependent on the vibration rate, the superficial gas velocity, volume fraction of solid particles and Theological properties of the liquid ohase. Both in the gas-liquid and gas-liquid-solid systems studied, the gas holdup increased with increasing vibration rate and gas flow rate. The gas holdup was higher in three-phase systems than in two-phase ones under otter operating conditions being the same. Generally the gas holdup increased with increasing the volume fraction of solid particles, due to the dispersion action of the solid particles, and decreased with increasing non-Newtonian behaviour (decreasing flow index i.e. with increasing degree of polymerization and solution concentration of CMC applied, as a result of gas bubble coalescence.

  9. Feeling the pressure from natural gas

    International Nuclear Information System (INIS)

    Taffe, Peter

    1998-01-01

    The European directive establishing a competitive internal natural gas market will be the most important, though not the only, factor in advancing the rapid and far reaching changes which Europe's natural gas sector is undergoing. The knock-on effects which these changes will have on the chemical industry are examined. The benefits of opening up the gas market will be more consumer choice and a more efficient and globally competitive EU gas industry. But for the chemical industry it raises strategic issues surrounding gas procurement such as price risks and security of supply. These are especially acute where gas is used not just as a fuel but also as a feedstock. As the electricity market is progressively deregulated, independent power generation using combined heat and power could be an attractive choice in the chemical industry with the possibility of selling surplus electricity on the spot market. Other changes in the gas sector could arise from the environmental targets agreed in Kyoto which are likely to lead to an increase in fuel taxation, and the development of a spot market in gas as the link between oil and gas prices becomes less direct. (UK)

  10. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  11. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  12. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  13. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  14. Prospective of the Natural Gas marketing 2002-2011

    International Nuclear Information System (INIS)

    2002-01-01

    According with the 109 Th Article of the Natural Gas Regulations the Secretaria de Energia publishes this prospective of the Natural gas market 2002-2011 which describes and analyses the necessities of Mexico in relation with this industry in the mentioned period. Here aspects such as: the present and future international panorama of the natural gas market, international prices, the world demand with base in the Department of Energy (DOE) turnover of the United States, Advances of the in force regulatory framework, Sales, the National Gas pipeline system, Evolution of the National market, Demand at regional and sectoral scales, Supply analysis, Programs and projects of energy savings, natural gas balance with the high demand scene, the methodology of the Instituto Mexicano del Petroleo for calculating the self-generation demand of the electric energy by sector, a glossary with the more used terms, conversion factors and abbreviations and acronyms used in the document are treated. In the next ten years, the national demand of natural gas will suffer an annual average growth of 7.4% passing from 4358 millions of daily cubic feet (mm pcd) in 2001 to 8883 mm pcd in 2011. (Author)

  15. Natural gas and electric power, coordination to improve

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    1999-01-01

    In development of energy diversification strategy, so much in the use of available sources as in the supply of alternative to the final consumer, one comes advancing in Colombia, for several years, the national plan of gas overcrowding. The growing use of natural gas for the new projects of thermal generation has put in evidence the strong link and the existent dependence among of the gas and electric sub sectors. Such a nexus is manifested in four aspects: The electric power substitution for gas affects the demand of both products. The development of the production infrastructure and transport of the natural gas depends in a large part of the electric generation with gas. The costs of electric generation depend directly on the costs of the gas, included that of their transport. The regulation of the natural gas affects the costs of the electric power and vice versa. In this article the nexus and the coordination of both sectors are analyzed and they think about some actions to improve this last one

  16. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  17. Born reciprocity in string theory and the nature of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St., N, Ontario N2L 2Y5, Waterloo (Canada); Leigh, Robert G., E-mail: rgleigh@uiuc.edu [Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801 (United States); Minic, Djordje, E-mail: dminic@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-03-07

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  18. Born reciprocity in string theory and the nature of spacetime

    International Nuclear Information System (INIS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2014-01-01

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  19. Transient nature of cooperation by pay-it-forward reciprocity.

    Science.gov (United States)

    Horita, Yutaka; Takezawa, Masanori; Kinjo, Takuji; Nakawake, Yo; Masuda, Naoki

    2016-01-20

    Humans often forward kindness received from others to strangers, a phenomenon called the upstream or pay-it-forward indirect reciprocity. Some field observations and laboratory experiments found evidence of pay-it-forward reciprocity in which chains of cooperative acts persist in social dilemma situations. Theoretically, however, cooperation based on pay-it-forward reciprocity is not sustainable. We carried out laboratory experiments of a pay-it-forward indirect reciprocity game (i.e., chained gift-giving game) on a large scale in terms of group size and time. We found that cooperation consistent with pay-it-forward reciprocity occurred only in a first few decisions per participant and that cooperation originated from inherent pro-sociality of individuals. In contrast, the same groups of participants showed persisting chains of cooperation in a different indirect reciprocity game in which participants earned reputation by cooperating. Our experimental results suggest that pay-it-forward reciprocity is transient and disappears when a person makes decisions repeatedly, whereas the reputation-based reciprocity is stable in the same situation.

  20. Challenges and opportunities await natural gas industry

    International Nuclear Information System (INIS)

    Mohasseb, S.

    1998-01-01

    During the last two decades, the natural gas industry has gone through drastic changes. On one hand, deregulation and customer choice have been introduced to the industry. On the other hand, technological advances have resulted in substantial growth of available gas resources. In short, deregulation coupled with increased availability of supply has changed the way market participants interact with each other and which avenues they take to become leaders. Many new opportunities for entry into the market have also been created. As a result, the tide of competition has not only turned against the financially strong giants of the past, but it has also turned against new entrants who are fast, flexible and market driven. Natural gas utilities companies have responded by improving their operational efficiencies through process re-engineering, organizational re-alignment, restructuring and strategic alliances or mergers. Deregulation of the electricity industry is expected to increase competitive pressures on the natural gas industry, thus causing even more of a decrease in natural gas prices. In the future, natural gas utilities must be able to improve their effectiveness by accurately forecasting demand and optimizing their own supply and delivery systems in such a way that costs are minimized without compromising the reliability of supply. The new frontier of competitiveness will ensure that structural changes in the industry are characterized by an effective management of the supply-demand relationship and the optimization of risks inherently a part of gas delivery

  1. Alternative ways to transport natural gas; Transporte alternativo de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Moura, N.R.; Campos, F.B. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The Brazilian energy matrix has been showing a huge increase in the demand of natural gas due mainly to industries and power plants. Today the Brazilian gas market is supplied with gas produced by PETROBRAS and imported from Bolivia. To increase the Brazilian gas supply, on the short and middle term, PETROBRAS will import LNG (liquefied natural gas) and exploit the new offshore fields discovered on the pre-salt area. The only proven technology available today to bring this offshore gas to the market is the pipeline, but its costs for the pre-salt area are high enough to keep the solution economically attractive. So, PETROBRAS are evaluating and developing alternative ways to transport offshore gas, such as LNG, CNG (Compressed Natural Gas), GTS (Gas-to-Solids or Natural Gas Hydrates) and ANG (Adsorbed Natural Gas). Using information available in the literature, this paper analyses the main concepts of CNG and LNG floating unities. This paper also presents the PETROBRAS R and D results on ANG and GTS aiming at offshore application. (author)

  2. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  3. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  4. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  5. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  6. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  7. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  8. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  9. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  10. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  11. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  12. Stepless control system for reciprocating compressors: energy savings + process control improvement

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Alvaro; Wenisch, Markus [Hoerbiger Ventilwerke GmbH and Co KG, Wien (Austria); Jacobs, Denis [HOERBIGER do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    In the past, the capacity of reciprocating compressors was typically controlled by on/off unloaders (step-control) and recycle valves. But due to the fact that the power ratings of new reciprocating compressors for the oil and gas industry increase significantly, advanced control systems are required to reduce power costs and save energy. On top of that, multi-stage compressors are frequently integrated into complex process plants that demand precise control and operational flexibility. There are several solutions for this equation, but maybe the most successful is the use of the reverse flow principle applied to an electronically controlled and hydraulically actuated suction valve unloaders system. (author)

  13. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.

  14. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Paranhos, Elizabeth [Univ. of Colorado, Boulder, CO (United States); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Carlson, Ken [Colorado State Univ., Fort Collins, CO (United States)

    2012-11-01

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector.

  15. Maryland air toxics regulation applicable to a natural gas compressor station

    International Nuclear Information System (INIS)

    Weidemann, H.A.; Hoffman, P.M.

    1992-01-01

    Columbia Gas Transmission Corporation submitted an air permit application to the Maryland Department of the Environment to construct a natural gas compressor station near Rutledge, Maryland. The station consists of three natural gas-fueled internal combustion reciprocating engines, each rated at 3200 horsepower. Maximum potential pollutant emissions associated with the station operation did not trigger Prevention of Significant Deterioration review or nonattainment area New Source review. However, a minor source air permit cannot be issued without addressing Maryland's toxic air regulations. Columbia initiated a detailed investigation of toxic air pollutants, including a stack test of an identical engine. Based on this information, the proposed station was subject to the toxic air regulation for acetaldehyde, acrolein, benzene, crotonaldehyde, and formaldehyde. Compliance with the toxic air regulation for crotonaldehyde was demonstrated by having an emission rate less than the threshold emission rate, specified in the regulation. The ambient air quality impact of the other four pollutants was determined using the Industrial Source Complex dispersion model and resulted in predicted concentrations below the pollutant-specific acceptable ambient level. A carcinogenic impact analysis was performed for acetaldehyde, benzene, and formaldehyde to demonstrate compliance with the accepted risk of one in one hundred thousand

  16. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  17. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  18. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  19. Liquefied natural gas projects in Altamira: impacts on the prices of the natural gas; Proyectos de gas natural licuado en Altamira: impactos sobre los precios del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Perez Cordova, Hugo; Elizalde Baltierra, Alberto [Petroleos Mexicanos (PEMEX), (Mexico)

    2004-06-15

    The possible incorporation of new points of supply of natural gas to the Sistema National de Gasoductos (SNG) through the import of Liquified Natural Gas or (GNL) could cause an important modification in the national balance of supply-demand of the fuel and in its price, if large volumes are received. An analysis is presented of the possible impact that would have in the natural gas national market and in its prices the import of GNL made by the region of Altamira, Tamaulipas. [Spanish] La posible incorporacion de nuevos puntos de oferta de gas natural al Sistema Nacional de Gasoductos (SNG) a traves de la importacion de Gas Natural Licuado (GNL), podria provocar una modificacion importante en el balance oferta-demanda nacional del combustible y en su precio, si se reciben fuertes volumenes. Se presenta un analisis del posible impacto que tendria en el mercado nacional del gas natural y en sus precios la importacion de GNL realizada por la region de Altamira, Tamaulipas.

  20. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  1. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  2. Application and improvement of reciprocating-sieve plate extraction column in natural uranium extraction and purification process

    International Nuclear Information System (INIS)

    Wang Xuejun; Li Linyan; Liu Jing; Liu Xin; Yang Lifeng; Xiao Shaohua; Liu Hao

    2013-01-01

    Reciprocating-sieve plate extraction column is commonly used in the extraction process. Optimization and application were conducted successfully via production practice in some chemical and pharmaceutical plants, and good results are obtained while it is applied in the natural uranium extraction and purification process. The key component of reciprocating-sieve plate extraction column is gear-drive equipment in which drive motor serves as its core. Hence, it is important to select appropriate mode of speed regulation. In this paper, the principle and performance of several mode of speed regulation are compared. Both electromagnetic slip and frequency speed-regulation can be applied in general industrial process, but frequency speed-regulation with low energy cost can be used in wider operating range. The application of frequency speed-regulation mode used in reciprocating-sieve plate extraction column will increase the convenience and stability of natural uranium extraction and purification process. (authors)

  3. 77 FR 49489 - Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for...

    Science.gov (United States)

    2012-08-16

    ..., centrifugal compressors, reciprocating compressors, pneumatic controllers and storage vessels. This action... organic compound (VOC) emissions from gas wells, centrifugal compressors, reciprocating compressors... emissions from wet seal centrifugal compressors located between the wellhead and the point at which the gas...

  4. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  5. Energy efficiency - cogeneration - marketing - natural gas market: a complete cycle; Eficiencia energetica - cogeracao - marketing - mercado de gas natural: um ciclo completo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Ricardo Uchoa C. [PETROBRAS - Gas e Energia, Rio de Janeiro, RJ (Brazil). Unidade de Negocios de Gas Natural; Aragao, Raimundo [International Institute for Energy Conservation - IIEC, Rio de Janeiro, RJ (Brazil); Arruda, Rodrigo

    2004-07-01

    This paper shows the current level of some technologies which are applied in Combined Heat Power - CHP, having natural gas as fuel, and the future perspectives for its technological advances. The work introduces the economic feasibility of these technologies having as reference the present prices of electricity and natural gas in Brazilian Market. This report also informs the influence of specific parameters in Combined Heat Power - CHP projects net present value. Finally the paper shows the main barrels for Combined Heat Power - CHP dissemination in Brazil and indicates some recommendations on how to eliminate and/or attenuate them. (author)

  6. Technological advances in endodontics: treatment of a mandibular molar with internal root resorption using a reciprocating single-file system.

    Science.gov (United States)

    de Souza, Samir Noronha; Marques, André Augusto Franco; Sponchiado-Júnior, EmÍlio Carlos; Roberti Garcia, Lucas da Fonseca; da Frota, Matheus Franco; de Carvalho, Fredson Márcio Acris

    2017-01-01

    The field of endodontics has become increasingly successful due to technological advances that allow clinicians to solve clinical cases that would have been problematic a few years ago. Despite such advances, endodontic treatment of teeth with internal root resorption remains challenging. This article presents a clinical case in which a reciprocating single-file system was used for endodontic treatment of a mandibular molar with internal root resorption. Radiographic examination revealed the presence of internal root resorption in the distobuccal root canal of the mandibular right first molar. A reciprocating single-file system was used for root canal instrumentation and final preparation, and filling was obtained through a thermal compaction technique. No painful symptoms or periapical lesions were observed in 12 months of follow-up. The results indicate that a reciprocating single-file system is an adequate alternative for root canal instrumentation, particularly in teeth with internal root resorption.

  7. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  8. Natural gas retailing: writing the last chapter of natural gas deregulation

    International Nuclear Information System (INIS)

    Bjerkelund, T.

    1995-01-01

    Under the A greement on Natural Gas Markets and Prices of October 1985, the Canadian federal government agreed to deregulate the price of natural gas and to allow a competitive gas market to develop. Several beneficial changes that have occurred as a result of the deregulation were described, including the Industrial Gas Users Association's (IGUA) view on the marketing and sale of natural gas by local gas distributor's (LDC) and the sale within the LDC franchise. IGUA's support for the separation between LDC distribution and LDC sales and marketing activities as the last step in deregulation process, was explained. Several arguments for the opposing view were also discussed. Recommendations were made for effective separation of LDC distribution and LDC sales/marketing activities

  9. The future of the US natural gas market

    International Nuclear Information System (INIS)

    Linden, H.R.

    1993-01-01

    The United States gas industry is entering a period when it will have an excellent opportunity to recapture the 30 percent share of the primary energy market it enjoyed in 1973. In spite of unresolved problems stemming from its drastic restructuring during the Reagan and Bush administrations, most aspects of today's political and regulatory climate favor a substantial expansion of natural gas use in the economy. Combined with the now nearly universal recognition that Lower-48 natural gas resources and North American resources as a whole are abundant and recoverable at relatively low cost, this has created unusually high levels of preference for natural gas as a primary energy source. The favorable outlook for the US gas industry at the start of 1993 is the result of an extremely positive political, regulatory, and business climate for expanded use of natural gas, supported by a Lower-48 resource base capable of meeting expected levels of demand at competitive costs for at least 25 years. This assumes continued advances in the whole spectrum of technologies from exploration and production to end use that halted and partially reversed the sharp 1973 to 1986 decline of gas share of the US energy market. In addition to the uncertainties that cloud this assumption, as the gas industry's commitment to aggressive support of R ampersand D seems to be faltering, there are other problems that need to be resolved to ensure the full realization of the potential of gas as the bridge fuel to a sustainable energy system

  10. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  11. LNG (Liquefied Natural Gas): the natural gas becoming a world commodity and creating international price references; GNL (Gas Natural Liquefeito): o gas natural se tornando uma commodity mundial e criando referencias de preco internacionais

    Energy Technology Data Exchange (ETDEWEB)

    Demori, Marcio Bastos [PETROBRAS, Rio de Janeiro, RJ (Brazil). Coordenacao de Comercializacao de Gas e GNL; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    The transportation of large quantities of natural gas through long distances has been done more frequently by Liquefied Natural Gas (LNG). The increase of natural gas demand and the distance of major reserves, allied to technological improvements and cost reduction through LNG supply chain, have triggered the expressive increase of LNG world market This paper tries to evaluate the influence that LNG should cause on natural gas world market dynamic, analyzing the tendency of gas to become a world commodity, creating international price references, like oil and its derivates. For this, are shown data as natural gas world reserves, the participation of LNG in natural gas world market and their increase. Furthermore, will be analyzed the interaction between major natural gas reserves and their access to major markets, still considering scheduled LNG projects, the following impacts from their implementation and price arbitrage that should be provoked on natural gas markets. (author)

  12. Advanced model for expansion of natural gas distribution networks based on geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Garcia-Garrido, E.; Zorzano-Santamaria, P.; Zorzano-Alba, E. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering; Miranda, V.; Montneiro, C. [Porto Univ., Porto (Portugal). Faculty of Engineering]|[Inst. de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2005-07-01

    An advanced geographic information system (GIS) model of natural gas distribution networks was presented. The raster-based model was developed to evaluate costs associated with the expansion of electrical networks due to increased demand in the La Rioja region of Spain. The model was also used to evaluate costs associated with maintenance and amortization of the already existing distribution network. Expansion costs of the distribution network were modelled in various demand scenarios. The model also considered a variety of technical factors associated with pipeline length and topography. Soil and slope data from previous pipeline projects were used to estimate real costs per unit length of pipeline. It was concluded that results obtained by the model will be used by planners to select zones where expansion is economically feasible. 4 refs., 5 figs.

  13. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  14. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  15. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Lenox, Carol; Kaplan, P. Ozge

    2016-01-01

    With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher. - Highlights: • MARKAL analysis of energy system GHG emissions reduction scenarios. • High methane leakage can eliminate the benefit that natural gas brings over coal. • A robust GHG reduction strategy takes into account upstream emissions for all fuels.

  16. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  17. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  18. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  19. Reciprocity in optics

    International Nuclear Information System (INIS)

    Potton, R J

    2004-01-01

    The application of reciprocity principles in optics has a long history that goes back to Stokes, Lorentz, Helmholtz and others. Moreover, optical applications need to be seen in the context of applications of reciprocity in particle scattering, acoustics, seismology and the solution of inverse problems, generally. In some of these other fields vector wave propagation is, as it is in optics, of the essence. For this reason the simplified approach to light wave polarization developed by, and named for, Jones is explored initially to see how and to what extent it encompasses reciprocity. The characteristic matrix of a uniform dielectric layer, used in the analysis of interference filters and mirrors, is reciprocal except when the layer is magneto-optical. The way in which the reciprocal nature of a characteristic matrix can be recognized is discussed next. After this, work on the influence of more realistic attributes of a dielectric stack on reciprocity is reviewed. Some of the numerous technological applications of magneto-optic non-reciprocal media are identified and the potential of a new class of non-reciprocal components is briefly introduced. Finally, the extension of the classical reciprocity concept to systems containing components that have nonlinear optical response is briefly mentioned

  20. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  1. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  2. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  3. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  4. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  5. US crude oil, natural gas, and natural gas liquids reserves: 1990 annual report

    International Nuclear Information System (INIS)

    1991-09-01

    The primary focus of this report is to provide an accurate estimate of US proved reserves of crude oil, natural gas, and natural gas liquids. These estimates were considered essential to the development, implementation, and evaluation of natural energy policy and legislation. In the past, the government and the public relied upon industry estimates of proved reserves. These estimates were prepared jointly by the American Petroleum Institute (API) and the American Gas Association (AGA) and published in their annual report, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada. However, API and AGA ceased publication of reserves estimates after their 1979 report. By the mid-1970's, various federal agencies had separately established programs to collect data on, verify, or independently estimate domestic proved reserves of crude oil or natural gas. Each program was narrowly defined to meet the particular needs of the sponsoring agency. In response to recognized need for unified, comprehensive proved reserves estimates, Congress in 1977 required the Department of Energy to prepare such estimates. To meet this requirement, the EIA's reserves program was undertaken to establish a unified, verifiable, comprehensive, and continuing statistical series for proved reserves of crude oil and natural gas. The program was expanded to include proved reserves of natural gas liquids in the 1979 report. 36 refs., 11 figs., 16 tabs

  6. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  7. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  8. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    Science.gov (United States)

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  9. Natural gas is more than gas power plants

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    Through the Statpipe gas line at Karmoey, Norway supplies 20% of the natural gas on the European market. The pipeline is 'leaking' a little bit of gas to the local communities at Karmoey and Haugesund. These communities have replaced 65% of their oil consumption with natural gas, which is a fine contribution to a better environment. The supplier of the natural gas, Gasnor ASA in this case, claims an energy efficiency of 90% at the end user because the gas burns directly and the loss in the pipeline is minimal. The efficiency of natural gas utilisation is twice that of the planned gas power stations in West-Norway, subtracting the losses in the electrical network. Gasnor ASA competes with oil suppliers and, if necessary, with electric utilities. The county hospital at Haugesund is quoted as an example. The hospital has two large boilers with dual fuel burners. They have been using natural gas since 1998 because it was worth while both economically and environmentally. The use of natural gas in the transport sector would be very important, but the necessary infrastructure is very little developed. For instance, five diesel-powered ferries on the Boknafjord emit as much NOx as the planned gas power plant at Kaarstoe

  10. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  11. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  12. Almacenamiento de gas natural

    Directory of Open Access Journals (Sweden)

    Tomás Correa

    2008-12-01

    Full Text Available The largest reserves of natural gas worldwide are found in regions far of main cities, being necessary different alternatives to transport the fluid to the consumption cities, such as pipelines, CNG or ships, LNG, depending on distances between producing regions and demanding regions and the producing volumes. Consumption regions have three different markets to naturalgas; residential and commercial, industrial and power generation sector. The residential and commercial is highly seasonal and power generation sector is quite variable depending on increases of temperature during summer time. There are also external issuesthat affect the normal gas flow such as fails on the national system or unexpected interruptions on it, what imply that companies which distribute natural gas should design plans that allow supplying the requirements above mentioned. One plan is using underground natural gas storage with capacities and deliverability rates enough to supply demands. In Colombia there are no laws in this sense but it could be an exploration to discuss different ways to store gas either way as underground natural gas storage or above superficies. Existing basically three different types of underground natural gas storage; depleted reservoirs, salt caverns and aquifers. All ofthem are adequate according to geological characteristics and the needs of the distributors companies of natural gas. This paper is anexploration of technical and economical characteristics of different kind of storages used to store natural gas worldwide.

  13. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  14. Environmental benefits of natural gas for buses

    International Nuclear Information System (INIS)

    Rabl, A.

    2002-01-01

    This paper presents a life cycle assessment comparing diesel buses with buses fueled by natural gas. The data for the emission of pollutants are based on the MEET Project of the European Commission (EC), supplemented by data measured for diesel and gas buses in Paris. The benefits of the gas fueled bus are then quantified using the damage cost estimates of the ExternE Project of the EC. A diesel bus with emissions equal to Standard EURO2 of the EC is compared with the same bus equipped with a natural gas engine, for use in Paris and in Toulouse. The damage cost of a diesel bus is significant, in the range of 0.4-1.3 euro/km. Natural gas allows an appreciable reduction of the emissions, lowering the damage cost by a factor of about 2.5 (Toulouse) to 5.5 (Paris). An approximate rule is provided for transferring the results to other cities. A sensitivity analysis is carried out to evaluate the effect of the evolution of the emissions standard towards EURO3, 4 and 5, as well as the effect of uncertainties. Finally a comparison is presented between a EURO2 diesel bus with particle filter, and a gas fueled bus with the MPI engine of IVECO, a more advanced and cleaner technology. With this engine the damage costs of the gas fueled bus are about 3-5 times lower than those of the diesel with particle filter, even though the latter has already very low emissions.(author)

  15. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  16. Low Carbon Technology Options for the Natural Gas ...

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  17. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  18. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  19. Prediction of natural gas consumption

    International Nuclear Information System (INIS)

    Zhang, R.L.; Walton, D.J.; Hoskins, W.D.

    1993-01-01

    Distributors of natural gas need to predict future consumption in order to purchase a sufficient supply on contract. Distributors that offer their customers equal payment plans need to predict the consumption of each customer 12 months in advance. Estimates of previous consumption are often used for months when meters are inaccessible, or bimonthly-read meters. Existing methods of predicting natural gas consumption, and a proposed new method for each local region are discussed. The proposed model distinguishes the consumption load factors from summer to other seasons by attempting to adjust them by introducing two parameters. The problem is then reduced to a quadratic programming problem. However, since it is not necessary to use both parameters simultaneously, the problem can be solved with a simple iterative procedure. Results show that the new model can improve the two-equation model to a certain scale. The adjustment to heat load factor can reduce the error of prediction markedly while that to base load factor influences the error marginally. 3 refs., 11 figs., 2 tabs

  20. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  1. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  2. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  3. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  4. Market prospective of natural gas 2010-2025; Prospectiva del mercado de gas natural 2010-2025

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Alejandro; Doniz Gonzalez, Virginia; Navarrete Barbosa, Juan Ignacio [Secretaria de Energia, Mexico, D.F. (Mexico)

    2010-07-01

    The Ministry of Energy, in compliance to Article 109 of the Natural Gas Regulations, publishes the Prospective natural gas market 2010-2025, which contains the most current information about the historical evolution and growth prospects of the domestic market country's natural gas and its role in the international context. This foresight is attached to the lines of action established in the National Energy Strategy, ratified by Congress in April 2010 in regard to strengthening the transportation infrastructure of natural gas, in order to ensure the supply of this fuel, therefore remains congruence with the instruments of power sector planning. The first one concerns the international panorama of natural gas in the different producing and consuming regions around the world. Chapter two provides a current perspective of those actions in the sector within the regulatory framework for natural gas in Mexico. The third chapter details the issues that occurred in the natural gas market during the period 1999-2009 and the fourth chapter discusses the expected evolution of demand and domestic supply of natural gas by 2025. [Spanish] La Secretaria de Energia, en el cumplimiento al Articulo 109 del Reglamento de Gas Natural, publica la Prospectiva del mercado de gas natural 2010-2025, la cual contiene la informacion mas actualizada acerca de la evolucion historica y las expectativas de crecimiento del mercado interno de gas natural del pais y su papel en el contexto internacional. Esta Prospectiva se apega a las lineas de accion establecidas en la Estrategia Nacional de Energia, ratificada por el Congreso en abril de 2010, en lo relativo a fortalecer la infraestructura de transporte de gas natural, con el fin de asegurar el suministro de este combustible, por lo cual se mantiene congruencia con los instrumentos de planeacion del sector energetico. La Prospectiva esta integrada por cuatro capitulos. El primero se refiere al panorama internacional del gas natural en las

  5. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  6. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  7. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  8. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  9. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  10. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  11. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  12. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  13. Considering the Role of Natural Gas in the Deep Decarbonization of the U.S. Electricity Sector. Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 2

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beppler, Ross [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-12

    2030, natural gas generation in the technology scenarios is quite similar to that in the reference scenarios, indicating relatively little change in the role of natural gas in the near-to-mid-term due to advancements in those technology areas. The 2050 natural gas generation shows more significant differences, suggesting that technology advancements will likely have substantial impacts on the role of natural gas in the longer-term timeframe. Natural gas generation differences are most strongly driven by alternative natural gas price trajectories--changes in natural gas generation in the Low NG Price and High NG Price scenarios are much larger than in any other scenario in both the 2030 and 2050 timeframes. The only low-carbon technology scenarios that showed any increase in long-term natural gas generation relative to the reference case were the Low CCS cost scenarios. Carbon capture and storage technology costs are currently high, but have the potential to allow fossil fuels to play a larger role in low-carbon grid. This work considers three CCS cost trajectories for natural gas and coal generators: a baseline trajectory and two lower cost trajectories where CO2 capture costs reach $40/metric ton and $10/metric ton, respectively. We find that in the context of the ReEDS model and with these assumed cost trajectories, CCS can increase the long-term natural gas generation under a low carbon target (see Figure 2). Under less stringent carbon targets we do not see ReEDS electing to use CCS as part of its electricity generating portfolio for the scenarios considered in this work.

  14. Reciprocity and its utilization in ultrasonic flow meters

    Energy Technology Data Exchange (ETDEWEB)

    Lunde, Per; Vestrheim, Magne; Boe, Reidar; Smoergrav, Skule; Abrahamsen, Atle K.

    2005-07-01

    In ultrasonic transit time flow meters for gas and liquid (USMs), the flow direction, the flow velocity and the sound velocity are estimated from the measured up- and downstream transit times. At no-flow conditions, the up- and downstream transit times of such meters should ideally be the same, or the difference should be negligible. This may not be the case unless special precautions are made. In order to reduce the possibility of the meter to detect a false flow at no-flow conditions, USMs are typically ''dry calibrated'' before being installed in the field. ''Dry calibration'' (which may be made in different ways), in general involves measurement of (a) the time delays due to electronics, cables and transducers, (b) the so called ''{delta}t-correction'' (for each acoustic path, also denoted ''zero flow offset factor''), and (c) geometrical parameters. Various {delta}t-correction approaches may be used by different manufacturers, but these are basically similar and have the same purpose: to reduce the false flow detection and improve the accuracy at low and no-flow conditions (''zero flow adjustment''), without significantly affecting the accuracy at the high velocity measurements. The AGA-9 report and the API MPMS Ch. 5.8 standard both prescribe need for ''zero flow verification test (zero test)'' or ''zeroing the meter'', for gas and liquid USMs, respectively. Advances in USM technology based on the electro acoustic reciprocity principle have provided methods for reduction or even neglect ion of the need for ''{delta} t-correction'' of USMs. That means, if the USM measurement system is reciprocal, and operated in a ''sufficiently reciprocal'' way, the ''{delta}t-correction'' may be negligibly small over the operational range of pressure and temperature, and

  15. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  16. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  17. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  18. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  19. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  20. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... and Export Natural Gas and Liquefied Natural Gas During February 2012 FE Docket Nos. FREEPORT LNG...-LNG QUICKSILVER RESOURCES INC 12-12-NG UNITED ENERGY TRADING CANADA, ULC 12-13-NG ENCANA NATURAL GAS... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  1. Naturally fractured tight gas: Gas reservoir detection optimization. Quarterly report, January 1--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Economically viable natural gas production from the low permeability Mesaverde Formation in the Piceance Basin, Colorado requires the presence of an intense set of open natural fractures. Establishing the regional presence and specific location of such natural fractures is the highest priority exploration goal in the Piceance and other western US tight, gas-centered basins. Recently, Advanced Resources International, Inc. (ARI) completed a field program at Rulison Field, Piceance Basin, to test and demonstrate the use of advanced seismic methods to locate and characterize natural fractures. This project began with a comprehensive review of the tectonic history, state of stress and fracture genesis of the basin. A high resolution aeromagnetic survey, interpreted satellite and SLAR imagery, and 400 line miles of 2-D seismic provided the foundation for the structural interpretation. The central feature of the program was the 4.5 square mile multi-azimuth 3-D seismic P-wave survey to locate natural fracture anomalies. The interpreted seismic attributes are being tested against a control data set of 27 wells. Additional wells are currently being drilled at Rulison, on close 40 acre spacings, to establish the productivity from the seismically observed fracture anomalies. A similar regional prospecting and seismic program is being considered for another part of the basin. The preliminary results indicate that detailed mapping of fault geometries and use of azimuthally defined seismic attributes exhibit close correlation with high productivity gas wells. The performance of the ten new wells, being drilled in the seismic grid in late 1996 and early 1997, will help demonstrate the reliability of this natural fracture detection and mapping technology.

  2. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units

    Science.gov (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.

    2017-08-01

    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  3. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  4. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  5. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  6. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  7. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  8. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012 AGENCY: Office of... LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P 12-03-NG WPX... granting authority to import and export natural gas and liquefied natural gas. These Orders are summarized...

  9. The domestic natural gas industry in developing countries

    International Nuclear Information System (INIS)

    Klass, D.L.; Khan, R.A.; Khwaja, S.

    1992-01-01

    The domestic natural gas industry has generally exhibited slow growth in most developing countries that are fortunate enough to have sufficient proved gas reserves to meet energy needs. But supportive government policies that promote the use of indigenous reserves are now beginning to have a positive impact in many parts of the world. Supply and distribution infrastructures are being built or modernized. And natural gas is now or will be available at prices that encourage the displacement of competitive fuels in the larger, energy-intensive industrial and power-generation markets of these countries. It is expected that the domestic gas industry in many developing countries will expand at higher rates than in the past. In the next few decades, the resulting benefits will include reductions in oil consumption per capita, improvements in the balance of payments for oil-importing and exporting developing countries, greater efficiency of energy usage and lower energy consumption per output unit, and improved environmental quality. The national economies and living standards will also undergo significant advancement

  10. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  11. Some aspects of natural gas and economic development - a short note

    International Nuclear Information System (INIS)

    Banks, F.E.

    1992-01-01

    Just because gas is labelled the fuel of the future does not ensure that it will become exactly that; but faith is important. If the world's energy establishments really want to expand their use of natural gas, all the objective conditions exist to make this expansion possible: large and increasing gas supplies; impressive changes in gas-burning technologies; a widespread acceptance of gas by both the general public and environmentalists; and so on. The considerable increase in the supply of gas is probably regarded as bad news by many exporters of gas, but I am not so sure that this will prove to be the case. Instead, a situation may be foreseen where the widely advertized rising supply will tend to encourage demand, since many actual and potential gas users will be inclined to interpret rapidly increasing gas reserves as the forerunner of an extended buyers' market. Two other factors working in favour of natural gas are the growing belief that the remaining reserves of oil are considerably more limited than previously believed and the increase in the value of natural gas due to technological advances being made in gas-burning equipment. The pattern of economic growth and development in Sweden which does not have natural gas and the key role of the electricity sector, is a pointer to countries which do possess gas that they should pay particular attention to its value in electricity generation. (author)

  12. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  13. Buying natural gas in the spot market: risks related to the natural gas industry globalization; Aquisicao de gas natural em bases 'spot': riscos associados a globalizacao da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, Melissa Cristina [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Szklo, Alexandre Salem [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico

    2008-07-01

    The growth of the international natural gas trade during the last decade resulted in the expectation that this product would be traded as a commodity. This expectation created a boom in the investments related to the commercialization of natural gas between borders, especially in the distinct segments of the chain of liquefied natural gas (LNG). Different agents launched themselves into liquefaction and regasification enterprises, and the ordering of ships also showed significant growth. Despite that, the natural gas market still cannot be considered global, and international gas transactions are primarily done within regional markets. This article investigates the challenges posed to the constitution of a global natural gas market. These challenges represent risks to the commercialization of this product in spot bases, for the agents that launch themselves into projects to export or import LNG to be commercialized through short term contracts in the international market for this product. (author)

  14. Natural Gas Vehicles in Egypt Challenges and Prospects of A Growing industry

    International Nuclear Information System (INIS)

    Badran, M.

    2004-01-01

    Growing industrialization, if not mere population growth, on the face of the Earth will induce organizations and nations world wide to reconsider the variety, priority, and efficiency of their energy sources. Natural gas has become the world's premier energy source because it is efficient, adaptable, and environmentally safer than other fossil fuels. The vehicular sector is a growing and major fuel consuming sector in any economy. Technological advancements and the flow of funds in that industry have allowed nations to target that sector as a priority in a plan to achieve maximum adaptation to natural gas consumption. The use of compressed natural gas vehicles dates back to the 1930 s in Italy. The late 70 however witnessed the launch of and commitment to a growing and developing industry. Today there are 3 million natural gas vehicles world wide with major concentrations in Argentina, Brazil, Italy, Pakistan, USA, and Egypt. The majority of these vehicles are converted gas vehicles adapted to use CNG in bi-fuel systems

  15. Natural-gas supply-and-demand problems

    International Nuclear Information System (INIS)

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally

  16. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  17. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  18. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  19. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  20. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  1. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE... granting authority to import and export natural gas and liquefied natural gas and vacating prior [[Page...

  2. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  3. Feasibility study for liquefied natural gas utilization for commercial vehicles on the Pennsylvania Turnpike.

    Science.gov (United States)

    2012-10-01

    Recent advances in horizontal drilling and fracturing technology in gas shale formations have increased natural gas supply : such that its price has decoupled from petroleum and is likely to remain significantly lower for the foreseeable future. In t...

  4. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  6. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  7. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY... International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12-41-NG Sequent... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  8. A literature survey on gas turbines materials - recent advances

    International Nuclear Information System (INIS)

    Gras, J.M.

    1992-10-01

    The 9001F gas turbine (rating of about 200 MW) is one of the most recent versions of the 9000 series, benefitting from the developments and technological advances, notably in regard to structural materials. In the framework of the EDF gas turbine engineering and construction program, evaluating the nature of these developments can provide guidance in appraising the construction materials proposed by other manufacturers. After a brief comparison between the Gennevilliers 9001F engine and the 85 MW 9000B gas turbine at Bouchain, ordered by EDF in 1971, various research aspects for optimizing gas turbine refractory material mechanical properties and corrosion resistance (superalloys, monolithic ceramics and composite ceramics) are presented; present current and future trends for high power equipment of this type are also discussed

  9. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  10. Natural gas supply and demand outlook

    International Nuclear Information System (INIS)

    McGill, C.B.

    1998-01-01

    The outlook for U.S. natural gas supply and demand in the residential, commercial, industrial/cogeneration, electricity and transportation sectors for 1995, 2000, 2005, 2010, and 2015 was presented. A summary of gas well completions from 1990 to 1997 was also provided. The Canadian natural gas resource was estimated at 184 trillion cubic feet. In 1996, Canada produced 5.6 trillion cubic feet of natural gas, half of which was exported to the U.S. New pipeline projects have been proposed to transport natural gas from eastern offshore areas and the Western Canadian Sedimentary Basin. A table representing U.S. and Canada gas trade from 1990 to 1997 and a map of proposed Canadian and U.S. natural gas pipeline routes were also included. Looking into the future, this speaker predicted continued volatility in natural gas prices. 9 tabs., 9 figs

  11. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  12. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  13. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  14. Natural gas demand prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Jin [Korea Electric Power Corp. (KEPCO), Seoul (Korea, Republic of)

    1997-06-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs.

  15. Natural gas demand prospects in Korea

    International Nuclear Information System (INIS)

    Young-Jin Kwon

    1997-01-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs

  16. Numerical analysis of gas leakage in the piston-cylinder clearance of reciprocating compressors considering compressibility effects

    Science.gov (United States)

    Braga, V. M.; Deschamps, C. J.

    2017-08-01

    Leakage is a major source of inefficiency in low-capacity reciprocating compressors. Not only does it lower the mass flow rate provided by the compressor, reducing its volumetric efficiency, but also gives rise to outflux of energy that decreases the isentropic efficiency. Leakage in the piston-cylinder clearance of reciprocating compressors is driven by the piston motion and pressure difference between the compression chamber and the shell internal environment. In compressors adopted for domestic refrigeration, such a clearance is usually filled by a mixture of refrigerant and lubricating oil. Besides its lubricating function, the oil also acts as sealing element for the piston-cylinder clearance, and hence leakage is expected to be more detrimental to oil-free compressors. This paper presents a model based on the Reynolds equation for compressible fluid flow to predict leakage in oil-free reciprocating compressors. The model is solved throughout the compression cycle so as to assess the effect of the clearance geometry and piston velocity on leakage and compressor efficiency. The results show that compressible fluid flow formulation must be considered for predictions of gas leakage in the cylinder-piston clearance.

  17. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  18. The price of the natural gas in the producing states: Espirito Santo case; O preco do gas natural nos estados produtores: caso Espirito Santo

    Energy Technology Data Exchange (ETDEWEB)

    Cometi, Darcy Lannes

    2008-07-01

    The State of the Espirito Santo will become until the end of 2008, one of the main producers and natural gas exporters of Brazil, where, according to PETROBRAS, the State will produce about 20 million /day m{sup 3}, what it will go to contribute significantly for reduction of the dependence of the Bolivian gas, and still to give support to the natural gas sector in Brazil. The Intention of this work, is to identify proposals so that it has left of the gas produced in the State of the Espirito Santo, has a differentiated price. It does not make sensible the State to pay for the gas that is removed in its proper territory the same price that paid Sao Paulo for the gas that consumes imported of national Bolivia. With the markdown of the gas the State will be able to attract investments of great transport, to generate job and income and to advance in the question of the regional development that is of great importance for the developed cities less. Important to stand out that this study it will present proposals to try to sensitize PETROBRAS, initiating a quarrel on the subject. (author)

  19. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  20. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  1. New engineers for the natural gas and petroleum industry; Nachwuchs fuer die Erdgas-/Erdoelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, K.M.; Pusch, G. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik

    2007-09-13

    Tne natural gas and petroleum industry needs engineers. Universities are faced with the challenge of training them and ensuring their technical, communicative and personal skills. Universities are taking new strategies to do this, joining efforts with other universities and with the oil and natural gas industry. New media are employed, increasingly also for advanced training and for learning by correspondence course in order to provide students with special knowledge and facilitate career changes. The paper describes implemented and projected studies in petroleum and natural gas technology at TU Clausthal university and joint projects with partner universities and industry. (orig.)

  2. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  3. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...

  4. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  5. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  6. Fuel cells: new technology of natural gas for energetical building; Pilas de combustible: nueva tecnologia de gas natural para edificios energeticamente autoabastecidos

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2000-07-01

    Fuel Cells have emerged in the last decade as one of the most promising new and sustainable natural gas technologies for meeting the energy needs of all the economy sectors into the 21st century. Fuel Cells are an environmentally clean, quiet, and highly efficient method for generating electricity and heat from natural gas. A fuel cell is an electrochemical device that converts the chemical energy of a fuel directly to usable energy (electricity and heat) without combustion. For this reason, the application and use of the fuel cell technology may be the most important technological advancement of the next century. At the beginning of the 2000 year Sociedad de Gas de Euskadi, s. a. started a demonstration project in favour of the high-temperature planar solid oxide fuel cell (SOFC) for domestic micro-CHP utilization. This type is certainly most exacting from the materials standpoint, and it offers the advantage of uncomplicated fuel pretreatment. (Author)

  7. Mathematical models of natural gas consumption

    International Nuclear Information System (INIS)

    Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana

    2011-01-01

    In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.

  8. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles

    International Nuclear Information System (INIS)

    Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B.

    2014-01-01

    The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. - Highlights: • Well-to-wheels analysis shows differences in use of natural gas for transportation. • Well-to-wheels approach needed to evaluate total energy use and greenhouse gas emissions. • Well-to-wheels energy and GHG (greenhouse gas) emissions depend on efficiency of the prime mover. • Efficiency of power generation critical for low GHG emissions with electric vehicles. • Fuel economy critical for low GHG emissions with compressed natural gas vehicles

  9. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  10. Natural gas participation on brazilian demand supply of liquefied petroleum gas

    International Nuclear Information System (INIS)

    Freitas Rachid, L.B. de

    1991-01-01

    Natural Gas Liquids Production, Liquefied Petroleum Gas (LPG) among them, has undergone a continuous growth and technological development until the first half of the eighties. This paper presents the natural gas processing activity development in Brazil, in the last 20 years, and the increasing share of LPG produced from natural gas in the supply of LPG domestic market. Possibilities of achieving greater shares are discussed, based on economics of natural gas processing projects. Worldwide gas processing installed capacity and LPG pricing tendencies, and their influence in the construction of new Natural Gas Processing Units in Brazil, are also discussed. (author)

  11. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  12. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  13. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  14. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  15. Origin of natural gas; Tennen gas no kigen

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y. [The Institute of Applied Energy, Tokyo (Japan)

    1996-03-20

    Natural gas, which is a general term of flammable hydrocarbon gases such as methane, is classified by origin into the following categories : (1) oil field gas (oil gas), (2) aquifers (bacteria-fermented methane), (3) coal gas (coal field gas), and (4) abiogenetic gas. The natural gas which has (1-4) origins and is now used as resource in a large quantity is (1) oil field gas. This gas is a hydrocarbon gas recovered in the production process of petroleum and contains components such as ethane, propane and butane. To the contrary, (2) aquifers and (3) coal gas have methane as main component. As (4) abiogenetic methane, there are gas formed in inorganic reaction in activities of submarine volcanos and deep gas (earth origin gas). Oil field gas has kerogen origin. Aquifers were formed by fermentation of organic matters. Coal gas was formed by coalification of vitrinite. As abiogenetic methane, there are inorganic reaction formation gas and deep gas, the latter of which exists little as resource. 7 refs., 11 figs., 1 tab.

  16. Natural gas in the European Community

    International Nuclear Information System (INIS)

    Kalim, Z.

    1991-01-01

    A report is presented on 'Natural Gas in the European Community'. Aspects discussed include the challenges facing the gas industry in the EC, the development of the European gas industry, the structure and role of European gas companies, the sources of European supply, gas contracts and the influences that operate on sales into end markets, electricity generation from natural gas, evolving markets for natural gas in the EC, life in the private sector using British Gas as a role model and country profiles for eleven European countries. (UK)

  17. Overview of U.S. DOE's Natural Gas-to-Liquids RD and D program and commercialization strategy

    International Nuclear Information System (INIS)

    Venkataraman, V.K.; Guthrie, H.D.; Avellanet, R.A.; Driscoll, D.J.

    1998-01-01

    Natural gas, which is comprised mostly of methane, is one of our most abundant natural resources, both in the U.S. and world wide. In the United States alone, recoverable natural gas resources are several times its current estimate of reserves, 166 trillion cubic feet (TCF). Unfortunately, many of these resources are located offshore or in remote areas. High transportation costs, or complete lack of any transportation mechanism, prohibits extensive use of this 'stranded' natural resource. To overcome this limitation, the U.S. Department of Energy's (DOE) Federal Energy Technology Center (FETC) has developed a highly diversified gas-to-liquids research program to evaluate, promote and develop processes that convert natural gas into higher value products (i.e., liquid fuels) which will offset the high transportation costs and allow use of this untapped, environmentally friendly resource. By advancing technologies to convert unmarketable gas resources into valuable products, cooperative efforts between DOE and industry could yield the following benefits by 20 10: (1) Our shortfall in domestic production of oil will be reduced by 200,000 to 500,000 barrels per day of high quality transportation fuel made from Alaska's North Slope gas resources; (2) Advanced gas-to-liquids conversion technology that yields ultra clean burning diesel fuels that meet the most stringent emissions requirements, at costs competitive with those of comparable fuels made from crude oils, will be utilized; and (3) Small-scale gas-to-liquids technology for both natural gas liquefaction and chemical conversion to higher hydrocarbon liquids will provide an economic and environmentally sound option for utilization of the associated gas of remote offshore oil reservoirs, and also for onshore gas reservoirs without pipeline access. In summary, development of efficient gas conversion technologies will enhance U.S. energy security, reduce dependence on oil imports and strengthen the economic

  18. Business cycles and natural gas prices

    International Nuclear Information System (INIS)

    Apostolos, S.; Asghar, S.

    2005-01-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  19. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  20. Agricultural demands for natural gas and liquified petroleum gas in the USA

    International Nuclear Information System (INIS)

    Uri, N.D.; Gill, M.

    1992-01-01

    This study endeavours to determine whether farmers adjust their consumption of natural gas and liquefied petroleum gas in response to changes in the unit price of energy. A demand model is specified and estimated. The conclusions suggest that the unit price of natural gas (liquefied petroleum gas) is a factor impacting the quantity of natural gas (liquefied petroleum gas) demanded by farmers, but there is no indication that other types of energy are substitutes for natural gas or liquefied petroleum gas. Additionally, the number of acres irrigated is an important factor driving the demand for natural gas and liquefied petroleum gas. Finally, the estimated models of natural gas and liquefied petroleum gas demand were structurally stable over the period 1971-1989. (author)

  1. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  2. Strategies for fundamental and exploratory R&D in natural gas extraction

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Natural gas is being increasingly viewed as a key US energy source. While gas supplies are sufficient today, there is concern as to whether sufficient supplies of affordably priced natural gas exist to support its expanded use as an environmentally clean substitute for oil, coal or other fuels. One important strategy for expanding the volumes of affordable gas supplies is to undertake fundamental and exploratory research in gas development, production, and processing. The R&D opportunities have been grouped according to the traditional phases of gas development and use, as follows: Extraction and Development Research Efficient development of gas resources will require detailed reservoir diagnosis, more efficient well drilling and improved well stimulation. Advanced diagnostic tools, more powerful reservoir models, and improved development technologies would enable otherwise submarginal gas resources to become economically recoverable. Production and Processing Research: The primary opportunities in gas production and processing are in new technologies for the identification and separation of low quality gas and for the restimulation and production of abandoned gas fields. This paper examines, in more detail, specific high priority R&D topics for the DOE/FE AE&PT program.

  3. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  4. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  5. Gas supplies of interstate natural gas pipeline companies 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  6. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  7. Quickening construction of natural gas infrastructures and ensuring safe supply of natural gas in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Zhongde, Zhao; Chunliang, Sun; Juexin, Shen

    2010-09-15

    Compared with North America or Europe in respect of natural gas resources, markets and pipeline networks, the current China stands in a special period with natural gas market in quick development, accordingly, it's recommended to strengthen cooperation and coordination between investors by way of diversified investment and joint adventures and on the basis of diversified resource supply modes, so as to accelerate the construction of infrastructures including the natural gas pipeline networks and the storage and peak-shaving facilities, quick up the market development, realize the situation of mutual-win-win, and finally ensure safety of natural gas utilization in the domestic markets.

  8. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  9. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  10. Natural radioactivity at Podravina gas fields

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    2006-01-01

    In Croatia, natural gas is an important source of energy, where its use exceeds other sources by one third. Composed primarily of the methane, natural gas from Croatian Podravina gas fields, beside other impurities, contains small amounts of radioactive elements. At Gas Treatment Plant (GTP) Molve, technological procedures for purification of natural gas and its distribution are performed. With yearly natural gas production of 3.5 109 m3 GTP Molve is major Croatian energy resource. Its safety and environment impact is matter of concern. Using different radioactivity measuring techniques the exposure of population to ionizing radiation were calculated at Central Natural Gas Station Molve and the underground wells. The measurement techniques included in-situ gamma spectrometric measurements, from which contribution to absorbed dose of the natural radionuclide in soil were calculated. Exposure dose measurements were performed using T.L.-dosimeters, and L.A.R.A. electronic dosimeters as well as field dose rate meter. Comparing used different radioactivity measuring methods, the correlations have been calculated. (authors)

  11. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for... OIL COMMERCIAL GP 12-164-NG XPRESS NATURAL GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12...

  12. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  13. 78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas, and Vacating Prior Authority During February 2013 FE... NORTH AMERICA, INC 13-01-NG RESOLUTE FP US INC 13-05-NG GAS NATURAL APROVISIONAMIENTOS SDG, S.A 13-07...

  14. Mechanical, thermo dynamical and environmental comparison of engines using natural gas and gasoline

    International Nuclear Information System (INIS)

    Agudelo S, John R; Bedoya C, Ivan D; Moreno S, Ricardo

    2005-01-01

    This paper shows experimental results of a Toyota Hilux 2400-swept volume, compression ratio 9:1 engine, operating with La Guajira natural gas and petrol. Also shows a thermodynamic study of those fuels in a normalized, variable compression ratio ASTM-CFR monocylinder engine. When using natural gas, Hilux engine increases its fuel consumption around 20% for the same power. Volumetric efficiency increases 10% and co emissions de- crease around 40%. When comparing thermodynamic parameters in CFR engine operating at a compression ratio of 9:1, it was found a 12,5% decrease in indicated power and 17% in maximum combustion pressure, which is proportional to temperature diminish of around 20%. Convective heat transfer coefficient decreases around 28% respect to petrol. First laminar combustion phase is duplicated when using the same spark advance as petrol; nevertheless this is maintained almost constant when spark is advancing 15 degrades over petrol spark advance

  15. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  16. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  17. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  18. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  19. Radon gas in oil and natural gas production facilities

    International Nuclear Information System (INIS)

    Chandler, W.P.

    1994-01-01

    Radon gas is a naturally occurring radionuclide that can be found in some oil and natural gas production facilities, either as a contaminant in a natural gas stream or derived from Radium dissolved in formation waters. The gas itself is not normally a health hazard, but it's decay products, which can be concentrated by plate-out or deposition as a scale in process equipment, can be a health hazard for maintenance personnel. To evaluate possible health hazards, it is necessary to monitor for naturally occurring radioactive materials (NORM) in the gas stream and in the formation water. If Radon and/or Radium is found, a monitoring programme should be initiated to comply with National or State requirements. In some instances, it has been found necessary to dispose of silt and scale materials as low level radioactive waste. 8 refs

  20. Papers of the Canadian Institute's forum on natural gas purchasing strategies : critical information for natural gas consumers in a time of diminishing natural gas supplies and higher prices

    International Nuclear Information System (INIS)

    2003-01-01

    This conference provided insight into how to prosper in an increasingly complex natural gas marketplace. The presentations from key industry players offered valuable information on natural gas purchasing strategies that are working in the current volatile price environment. Diminishing natural gas supplies in North America mean that higher prices and volatility will continue. Other market challenges stem from potential cost increases in gas transportation, unbundling of natural gas services, and the changing energy marketing environment. The main factors that will affect prices for the winter of 2004 were outlined along with risk management and the best pricing strategies for businesses. The key strategies for managing the risks associated with natural gas purchase contracts were also reviewed, along with the issue of converging natural gas and electricity markets and the impact on energy consumers. The conference featured 15 presentations, of which 4 have been indexed separately for inclusion in this database. refs., tabs., figs

  1. A miniaturized optical gas sensor for natural gas analysis

    NARCIS (Netherlands)

    Ayerden, N.P.

    2016-01-01

    The depletion of domestic reserves and the growing use of sustainable resources forces a transition from the locally produced natural gas with a well-known composition toward the ‘new’ gas with a more flexible composition in the Netherlands. For safe combustion and proper billing, the natural gas

  2. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  3. The Natural Gas Vehicle Challenge 1992: Exhaust emissions testing and results

    Science.gov (United States)

    Rimkus, W. A.; Larsen, R. P.; Zammit, M. G.; Davies, J. G.; Salmon, G. S.; Bruetsch, R. I.

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the U.S. Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  4. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  5. Short-term Canadian natural gas deliverability 2008-2010 : an energy market assessment

    International Nuclear Information System (INIS)

    2008-10-01

    This document examined the factors that affect gas supply in the short term and presented an outlook for deliverability through 2010. Its primary purpose was to advance public understanding of the short-term gas supply situation in Canada. For the past several years, Canadian natural gas has provided about 25 per cent of combined Canadian and U.S. production. Canadian gas deliverability remained within a narrow range from 2000 to mid-2007 at around 483 million cubic metres and has since begun to decline. About 98 per cent of the Canadian volume comes from the Western Canada Sedimentary Basin (WCSB), with most of the rest coming from Atlantic Canada. Although drilling and development activity in the WCSB has depended on the price of natural gas relative to costs, that price was influenced by uncertainties such as weather-driven market demand, changes in natural gas supply, cost, attractiveness of other basins, availability of imported liquefied natural gas and possible supply disruptions in the Gulf of Mexico. Shale gas and tight gas prospects in the Horn River and Montney plays of northeast British Columbia have attracted considerable interest from Canada's upstream industry. Early stages of shale gas development are also underway in Quebec and the Maritimes. However, the viability of large scale commercial development of shale gas in Canada has yet to be proven. In order to reflect the short-term uncertainty of the North American natural gas market, this report project deliverability under 3 cases that reflect different levels of drilling investment, namely reference case, high case and low case scenarios. 4 tabs., 12 figs

  6. Short-term Canadian natural gas deliverability 2008-2010 : an energy market assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    This document examined the factors that affect gas supply in the short term and presented an outlook for deliverability through 2010. Its primary purpose was to advance public understanding of the short-term gas supply situation in Canada. For the past several years, Canadian natural gas has provided about 25 per cent of combined Canadian and U.S. production. Canadian gas deliverability remained within a narrow range from 2000 to mid-2007 at around 483 million cubic metres and has since begun to decline. About 98 per cent of the Canadian volume comes from the Western Canada Sedimentary Basin (WCSB), with most of the rest coming from Atlantic Canada. Although drilling and development activity in the WCSB has depended on the price of natural gas relative to costs, that price was influenced by uncertainties such as weather-driven market demand, changes in natural gas supply, cost, attractiveness of other basins, availability of imported liquefied natural gas and possible supply disruptions in the Gulf of Mexico. Shale gas and tight gas prospects in the Horn River and Montney plays of northeast British Columbia have attracted considerable interest from Canada's upstream industry. Early stages of shale gas development are also underway in Quebec and the Maritimes. However, the viability of large scale commercial development of shale gas in Canada has yet to be proven. In order to reflect the short-term uncertainty of the North American natural gas market, this report project deliverability under 3 cases that reflect different levels of drilling investment, namely reference case, high case and low case scenarios. 4 tabs., 12 figs.

  7. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  8. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  9. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  10. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  11. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e

  12. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  13. Norwegian Natural Gas. Liberalization of the European Gas Market

    International Nuclear Information System (INIS)

    Austvik, Ole Gunnar

    2003-01-01

    Leading abstract. This book focuses on issues that are important for Norway as a major gas exporter and to the development of a liberalized European market. Chapter 2 explains main features of the European gas market. Natural gas is sold in regional markets with independent pricing structure and particularities. In Europe, this has led to large investments for the producers and long-term contracts. The strong market growth and EU's actions to liberalize the market may change this. The organization of the Norwegian gas production and sale is discussed, as well as the reorganization taking place in 2001. Pricing mechanisms are discussed in Chapter 3, both in the ''old'' / existing structure and how a liberalization of the market may change price formation. The increased importance of energy taxation in EU countries is covered in Chapter 4. Even though natural gas is the most environmentally friendly of the fossil fuels, the use of natural gas may be taxed far harder in the future. The report discusses price effects of such a development. Chapter 5 discusses whether or not a gas producer, like Norway, necessarily must earn a resource rent. With the use of economic theory for exhaustible resources it is shown how prices to consumers may increase at the same time as prices to producers drop, where the difference is made up by higher gas taxes to the consuming countries. Transportation of natural gas involves considerable scale advantages and there are often scope advantages from production, storage and sale, as well. Chapter 6 discusses how competition and regulation may influence the functioning and social efficiency of the market, and the concentration of market power. When companies become large, they may exploit market power, supported by the authorities of their respective countries. Chapter 7 focuses on regulatory challenges for the EU, and how the transporters may change between conflicting and cooperation with the EU. Chapter 8 focuses on schedules for

  14. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  15. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  16. Natural gas for public and private transportation: Present situation and prospects

    International Nuclear Information System (INIS)

    Gambino, M.; Iannaccone, S.; Unich, A.

    1992-01-01

    In recent years, the use of natural gas as an automotive fuel for private and public vehicles has grown due to its interesting chemical-physical properties which make it an efficient fuel and more environmentally compatible than conventional fuels. This promising consumption trend has led to increased R ampersand D investments in attempts to enhance the fuel's automotive performance and exhaust emission characteristics. This paper reviews the advances in these directions which have been made thus far by research teams around the world and assesses commercialization prospects for natural gas automotive fuels in light of the more stringent air pollution regulations being proposed by the European Communities

  17. Oil and natural gas technology review-lubrication and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Moos, J

    1966-01-01

    A summary is presented of the advances made during 1967 in the following areas: production and transmission of natural gas; geosciences; drilling and production technology; secondary recovery; transportation by tanker, pipelines, and tank cars; storage; planning of refineries; control and automation; cracking and gasification of crude oil; separation and hydrogenation processes; petrochemicals; combustion technology; fuels and additives; air and water pollution control; production of lubricants; lubrication with mist, gas, and vapors; hydraulic fluids; lubricant additives; oxidation and aging of oils; greases; solid lubricants; bearings; machining; friction and wear; and changes in materials of construction. (220 refs.)

  18. 7 CFR 2900.4 - Natural gas requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...

  19. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  20. New Jersey's natural gas shortage: a policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, J.L.; Morell, D.

    1976-12-01

    The public policy problems associated with New Jersey's natural gas shortage are extremely complex and rather difficult to examine. They involve a blend of technology, politics and economics; of regulatory mandates and profit-motivated initiatives; of Federal and state interaction and conflict. To understand the state's gas shortage and to lay the basis for recommending measures to deal with it, information about the basic technology, the organization of the gas industry, the national regulatory posture, and the possible causes of the gas shortage encompasses Part I of the overall study. In Part II, the analysis turns from the national level to a direct examination of New Jersey's gas situation. In Part III, Chapter VIII, the following are considered: the state's supply of natural gas, distribution of these supply volumes within New Jersey by the four major gas utilities, and gas consumption patterns within the state as a whole and then for each major consuming sector (electric utility, industrial, commercial, and residential). This chapter concludes with an analysis of the impacts of the gas shortage to date in New Jersey, and of its probable effects in the near-term. In the final chapter, some tentative conclusions and broad suggestions are advanced for public policies to mitigate the gravity of the state's position with respect to natural gas. Analysis proceeds, in turn, through consideration of possible state actions in several areas: increasing total interstate gas supplies; increasing New Jersey's share of whatever national total exists; making greater (or more effective) use of alternate fuels; and moderating demand for gas through aggressive conservation policies. Some short-term measures to cope better with whatever level of gas shortage exists in the state at any particular time are suggested. 151 references. (MCW)

  1. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  2. Canadian natural gas price debate

    International Nuclear Information System (INIS)

    Wight, G.

    1998-01-01

    Sunoco Inc. is a subsidiary of Suncor Energy, one of Canada's largest integrated energy companies having total assets of $2.8 billion. As one of the major energy suppliers in the country, Sunoco Inc has a substantial stake in the emerging trends in the natural gas industry, including the Canadian natural gas price debate. Traditionally, natural gas prices have been determined by the number of pipeline expansions, weather, energy supply and demand, and storage levels. In addition to all these traditional factors which still apply today, the present day natural gas industry also has to deal with deregulation, open competition and the global energy situation, all of which also have an impact on prices. How to face up to these challenges is the subject of this discourse. tabs., figs

  3. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  4. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  5. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  6. Regulatory issues of natural gas distribution; Aspectos regulatorios acerca da distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Fabio Augusto C.C.M.; Costa, Hirdan Katarina de M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Faculdade de Direito

    2004-07-01

    In these past few years, natural gas in Brazil has arised as one of the alternatives for the energetic crisis suffered by the country. Such situation was one of the motives for its expansion, rising, after that, the importance of the regulation of its distribution. The regulation of canalized natural gas distribution can be found in the Federal Constitution, after Constitutional Amendment n. 05/95, in the article n. 25, para. 2nd, which say that belongs to the Federal States the concession or direct exercise of canalized natural gas services, now clearly classified as a public service. In order of these events, its imperative the analysis of natural gas distribution's public service, because it belongs to the Federal States. According to this situation, the study of the new regulatory function of the Administration and the tracing of action for the regulatory state agencies are the main goals of this work. As so, the present research aims to focus the reflexes from the actual dimension of natural gas distribution, specially referring to its regulatory statements, the limitations of state agencies, the National Petroleum Agency and the market where distribution belongs, and particularly the open access of new agents. (author)

  7. An Energy Bridge Too Far? Unconventional Natural Gas Innovations and Eurasia’s Energy Bridge

    Science.gov (United States)

    2013-03-01

    known as hydraulic fracturing or “ fracking ” and poses possible environmental risks, including poisoning groundwater and increased greenhouse gas...these fissures open while the wellbore delves into the shale rock to extract the gas. This extraction method, known as hydraulic fracturing or “ fracking ...global gas reserves were estimated to last only seventy more years, but recent advances in hydraulic fracturing, enabling natural gas to be

  8. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  9. Legislative competence relative to natural gas; Competencia legislativa atinente ao gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Recursos Humanos da ANP para Habilitacao em Petroleo e Gas Natural, PRH-36

    2004-07-01

    The expansion of the gas industry in our country in the actual days, allied to the constitutional authorization for the private initiative acting in this sector provides the establishment of precise rules to the consequent market consolidation. In spite of the exigencies, one realises that the law no. 9.487/97, often denominated as Oil Law, does not rule in its fullness the specifics situations concerned to the natural gas. Despite the elaboration of the natural gas Law is a target of the governmental politics, overcoming the question pondered, there is not, until now, a detailed study of the legislative competency regimen relative to the natural gas. This very work, notably, gathers relevance in front of the State shape adopted in our country and the federative pact historically built; while aiming the complex distribution of legislative power made to each one of the political entities, there is need to establish the limits of performance to the sort of the coming gas Law, under penalty its arising with an unconstitutionality defect confronting to the federative pact. In the sense of clarifying the probably doubts around the subject and allowing that power comes closer to the people are our considerations proposed for. (author)

  10. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  11. Natural gas for New Brunswick: First report

    International Nuclear Information System (INIS)

    1998-01-01

    The development of the gas field off Sable Island and the imminent construction of a gas pipeline which will deliver natural gas to New Brunswick has prompted a thorough examination of energy-related issues in the province. This report presents the findings of the provincial energy committee which examined the implications of the arrival of natural gas to the province. The committee held a series of public hearings and consultations, and also received written submissions. After a historical perspective on natural gas as an energy source in the province and a review of the gas industry participants and their interests, the report discusses such issues as gas pipeline economics, local distribution company operations, infrastructure development, the regulatory framework, energy market competition, regional price equity, development of in-province gas sources, pipeline access, pipeline laterals and expansions, establishment of gas distribution franchises, municipal involvement in gas development, the impact of gas industry development on electric utility restructuring, and the environmental benefits of natural gas. Finally, recommendations are made regarding how natural gas should be regulated and distributed

  12. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  13. Competition in trade with natural gas

    International Nuclear Information System (INIS)

    1999-01-01

    On 22 June 1998, the European Parliament and the Council of Europe adopted Directive 98/30/EC on common rules for the internal market for natural gas. The Natural Gas Market Directive is aimed at increasing the competition on the gas market and creating an internal market for natural gas. To achieve this, the Directive includes provisions for ensuring that owners of transmission and distribution networks will allow other players access to these networks. The Directive is much more far-reaching and comprehensive than the present Swedish legislation in the field of natural gas. The main task of the committee is to submit a proposal for natural gas legislation that will meet the requirements of the new Directive. According to the committee directives, the work on the new legislation should aim at the regulations serving as a basis for a socio economically efficient market. However, it should also be borne in mind that the Swedish natural gas market is less developed than the markets in most other European countries, and that a lack of equilibrium in the opening of the gas markets should be avoided. Current international deliberations concerning the natural gas network in the Nordic countries and the Baltic Sea region should also be taken into account. Chapter 1 gives more detailed particulars of the points of departure for the work of the committee and the implementation of the work. The report is arranged in the form three main parts, i.e. a background part, a part describing the points of departure, and a proposals part

  14. A natural adsorbent for natural gas industry; Um adsorvente nacional para a industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Cachina, G.H.A.B.; Silveira, V.R.; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Balthar, A.R.; Oliveira, V.M.; Bayer, M.M. [CTGAS - Centro de Tecnologias do Gas, Natal, RN (Brazil); Barbosa, C.M.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    One the natural pollutants in the natural gas considered critical in reference to the corrosion is the H{sub 2}S. Its presence depends on the origin, as well as the own process used in the gas treatment, it can bring problems to the pipes and the final applications of natural gas (NG). The National Petroleum Agency (ANP) in its entrance number 104/02, establishes that the quantity of H{sub 2}S in NG, of national or imported origin, commercialized at the country can only be at the most 10 - 15 mg/m{sup 3}. In the Natural Gas Processing Unit (UPGN) different methods are used for the removal of H{sub 2}S, the absorption process (e.g. with aminas, Sulfinol{sup R} process) or for adsorption in tower filled with activated coal, zeolites and Sulfatreat{sup R}. In this work, the adsorbent material used is the mineral clay Paligorsquita. That class of clay minerals characterized by pores and a crystalline structure containing Tetrahedral layers linked by chains of longitudinal secondary lines. The typical unitary cell is formed basically by moisturized oxides of aluminum, Sicilian and magnesium of (Mg, Al)5SiO2O(OH)2(H20)4.4H20, with Mg specially located in octahedral sites. (author)

  15. Natural gas market assessment. Canadian natural gas market mechanisms: Recent experiences and developments

    International Nuclear Information System (INIS)

    1993-11-01

    The increase in natural gas demand and the associated expansions of most of the pipeline systems serving western Canada have reduced the excess deliverability or excess productive capacity that existed at the time of deregulation of the natural gas industry in 1985. Based on an industry survey, the responses of natural gas buyers and sellers to recent supply difficulties are described. Specific production, transportation, and contractual difficulties were encountered in winter 1992/93 as production was stretched to meet record levels of demand during periods of very cold temperatures and as short-term spot prices reached very high levels. Problems at this time included wellhead freezeups, pipeline outages, and inadequate contract terms and conditions. Methods used to maintain gas flows to end users are reviewed, including a discussion of force majeure, spot gas purchases, storage, supply curtailment, and special loan arrangements. In 1992/93, in most instances where the responsibility fell on the end-user to solve the supply problem, the difficulty was shifted to local distribution companies who have traditionally had more experience with such situations. No cases were identified where either a firm or interruptible end-user was forced to curtail gas consumption because of inadequate supply. New market mechanisms are emerging that will enable buyers and sellers of western Canadian gas to avoid many of the problems encountered in 1992/93. These include prearranged backstopping arrangements, short-term spot markets, access to other gas basins, standardized gas contracts, electronic trading, and price risk management tools. 11 figs

  16. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  17. Natural gas projects, strategies and economics

    International Nuclear Information System (INIS)

    Hamaide, G.

    2000-01-01

    This article summarizes the content of some of the posters presented during the WOC 9 working committee of the CMG 2000 worldwide gas congress: natural gas in the new worldwide energy balance; eastern Russia: the last gas projects; the new underwater technologies and the availability of natural gas. (J.S.)

  18. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  19. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  20. Natural gas - an alternative. Swedish electric power from Norwegian natural gas

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the possible substitution of electric power by natural gas on the heat source market and how gas can be used for power production. The cost of distribution and means of supply are presented. 1/3 of the electric power produced by nuclear power plants can be replaced by the middle of the nineties. Transport techniques for gas and its total volume as well as transport cost from Norwegian North Sea are discussed

  1. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  2. Advanced technology for aero gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The Symposium is aimed at highlighting the development of advanced components for new aero gas turbine propulsion systems in order to provide engineers and scientists with a forum to discuss recent progress in these technologies and to identify requirements for future research. Axial flow compressors, the operation of gas turbine engines in dust laden atmospheres, turbine engine design, blade cooling, unsteady gas flow through the stator and rotor of a turbomachine, gear systems for advanced turboprops, transonic blade design and the development of a plenum chamber burner system for an advanced VTOL engine are among the topics discussed.

  3. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  4. North American Natural Gas Vision

    Science.gov (United States)

    2005-01-01

    hand sales of natural gas and LPG. 17 Decreto Legal, Diario Oficial , Noviembre 25, 1993. 37 Review Section 38 Figure 2. Mexican Natural Gas...California 500 Mexicali Baja California 29 Naco - Hermosillo Sonora 130 Nacozari de Garcia Sonora 85 Agua Prieta Sonora 173

  5. Hidden patterns of reciprocity.

    Science.gov (United States)

    Syi

    2014-03-21

    Reciprocity can help the evolution of cooperation. To model both types of reciprocity, we need the concept of strategy. In the case of direct reciprocity there are four second-order action rules (Simple Tit-for-tat, Contrite Tit-for-tat, Pavlov, and Grim Trigger), which are able to promote cooperation. In the case of indirect reciprocity the key component of cooperation is the assessment rule. There are, again, four elementary second-order assessment rules (Image Scoring, Simple Standing, Stern Judging, and Shunning). The eight concepts can be formalized in an ontologically thin way we need only an action predicate and a value function, two agent concepts, and the constant of goodness. The formalism helps us to discover that the action and assessment rules can be paired, and that they show the same patterns. The logic of these patterns can be interpreted with the concept of punishment that has an inherent paradoxical nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Natural gas reburning technology for NOx reduction from MSW combustion systems

    International Nuclear Information System (INIS)

    Penterson, C.A.; Abbasi, H.; Khinkis, M.J.; Wakamura, Y.; Linz, D.G.

    1990-01-01

    A technology for reducing emissions from municipal solid waste combustion systems through advanced combustion techniques is being developed. Pilot testing of natural gas reburning was first performed in the Institute of Gas Technology's pilot-scale furnace under conditions simulating the firing of 1.7 x 10 6 Btu/hr (0.5 MWth) of MSW. Pilot testing then continued in Riley Stoker Corporation's 3 x 10 6 Btu/hr (0.88 MWth), 7 ton/day, pilot-scale MSW combustor using actual MSW in both test series, injection of up to 15% (HHV basis) natural gas reduced NO, by 50--70% while maintaining or improving combustion efficiency as measured by CO and hydrocarbon emissions and temperature stability. This paper will review the test results and discuss the status of the full-scale field demonstration testing that is planned for 1990

  7. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  8. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  9. Natural gas market assessment: Price convergence in North American natural gas markets

    International Nuclear Information System (INIS)

    1995-12-01

    The extent to which Canadian and U.S. natural gas markets have become integrated in the post-deregulation era was assessed. This assessment was accomplished through a statistical analysis of the price movements in Canadian and U.S. gas markets. The analysis pointed to three broad conclusions: (1) on the whole, there has been an increasing degree of integration among North American natural gas markets since price deregulation and the introduction of open access, (2) there is somewhat of a split between eastern and western markets, (3) Alberta's links are stronger with the western U.S. natural gas market than with the market in the eastern U.S. Several factors were cited as contributing to the general increase in market integration, including: (1) increased pipeline capacity and additional pipeline interconnections, coupled with the development of market hubs, (2) improved flexibility of access to pipeline transportation services, (3) improved access to market information and greater trading flexibility which has been facilitated by growing use of electronic bulletin boards and electronic trading systems. The increased market integration was claimed to have benefited both consumers and producers, and to have increased competition in both countries.. 28 refs., 14 figs

  10. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  11. Conceptos Basicos Sobre el Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-01

    El gas natural abastece cerca de 150.000 vehiculos en los Estados Unidos y aproximadamente 22 millones de vehiculos en todo el mundo. Los vehiculos de gas natural (NGV, por sus siglas en ingles) son una buena opcion para las flotas de vehiculos de alto kilometraje, tales como autobuses, taxis, vehiculos de recoleccion de basura, los cuales son alimentados centralmente u operan dentro de un area limitada o a lo largo de una ruta con estaciones de servicio de gas natural. Las ventajas del gas natural como combustible alternativo incluyen su disponibilidad interna, la red de distribucion establecida, un costo relativamente bajo, y los beneficios de las emisiones.

  12. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  13. 18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.

    Science.gov (United States)

    2010-04-01

    ... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...

  14. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  15. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    Shaffer, Brenda

    2011-01-01

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  16. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Kuenneke, R.W.; Arentsen, M.J.; Manders, A.M.P.; Plettenburg, L.A.

    1998-01-01

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  17. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  18. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013 FE Docket Nos. CONOCOPHILLIPS COMPANY 13-66-NG CONOCOPHILLIPS COMPANY... June 2013, it issued orders granting authority to import and export natural gas and to import liquefied...

  19. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  20. Natural gas 1994: Issues and trends

    International Nuclear Information System (INIS)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A)

  1. Natural gas 1994: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  2. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2004-01-01

    WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, liquefied natural gas (LNG) and economic optimization. This presentation addressed issues facing their proposed construction of an LNG terminal and associated facilities on the west coast of Canada. It presented pie charts comparing world gas reserves with production. NPC gas price projects and WestPac gas cost estimates were also presented. It was noted that an unprecedented growth in LNG imports to North America is essential and that LNG will be the lowest price major source of natural gas supply. Maps illustrating LNG sources and receiving terminals were also presented along with solutions to the not-in-my-back-yard (NIMBY) syndrome. Solutions include selecting locations where communities are pro-development, where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG to Prince Rupert were discussed in terms of serving energy markets, direct provincial benefits, and LNG/power generation synergies. figs

  3. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  4. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  5. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  6. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  7. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  8. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  9. Substitution of petroleum liquefied gas for natural gas in a metallurgical industry: a case study; Substituicao de gas liquefeito de petroleo por gas natural em uma siderurgica: um estudo de caso

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Isac Quintao; Miranda, Luciano Lellis; Fullin Junior, Benjamin; Rodrigues, Henrique de Castro; Manella, Roberto [Aperam South America, Timoteo, MG (Brazil). Utilidades e Eficiencia Energetica; Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Quimica

    2011-12-21

    Minas Gerais is a State where there is no production of natural gas. Aiming to increase the consumption of natural gas in Minas Gerais, PETROBRAS increase the network of gas natural distribution in the State of Minas Gerais and the State concessionaire (GASMIG) installed the Project of Natural Gas Valley. The case study is associated to an enterprise that firmed contract for supplying of natural gas. The fuel to be substituted is the Liquefied Petroleum Gas and the results of the substitution were shown. The advantages of the substitution were related to costs, and environmental aspects with the reduction of CO{sub 2} production. The natural gas contains a lower content of impurities and is operated with higher safety than the petroleum liquefied gas. (author)

  10. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013 FE Docket Nos. NEXEN ENERGY MARKETING SERVICES NG U.S.A. INC... SOLUTIONS TRANSPORT 13-40-LNG MIECO INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING...

  11. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  12. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  13. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  14. North American natural gas pipeline and supply update

    International Nuclear Information System (INIS)

    Molyneaux, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which presented an update of North American natural gas supply. Some of the graphs depicted the following: (1) natural gas consumption in the United States, (2) U.S. imports of Canadian natural gas, (3) natural gas prices differential: Henry Hub versus Empress, (4) natural gas production in the U.S., and (5) Baker Hughes active rig count, U.S. gas rigs. First Energy's view of U.S. natural gas supply is that the estimate of 50.0 Bcf/d for U.S. domestic production is looking too high. The first quarter 1999 exit production rates are behind expectations. U.S. domestic natural gas expenditure budgets are still down by more than 40 per cent compared to 1998 levels. The impact that this will have on prices was discussed. 21 figs

  15. The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL

    International Nuclear Information System (INIS)

    Jiang Binbin; Wenying, Chen; Yu Yuefeng; Zeng Lemin; Victor, David

    2008-01-01

    Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO 2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use

  16. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  17. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  18. Expert System for natural gas transportation network management; Sistema especialista para gerenciamento de redes de transporte de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da; Porciuncula, Gilson Simoes [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica Lab. de Sistemas Hidraulicos e Pneumaticos

    2003-07-01

    This paper presents a project to integrate expert system and dynamic simulation of natural gas transportation network applying the concept of agents. Natural gas pipeline operation requires the intermittent analysis of hundreds interrelated operational parameters, which represent the network state. The combination of expert system and dynamic simulation is a synergic solution for this kind of problem. With expert system techniques, it is possible to implement rules that describe the relationship between current operational parameters and the network normal operational conditions based on heuristic knowledge. By applying such rules, the system aims to evaluate the real network state and to predict abnormal conditions via dynamic simulation, allowing time analysis of operational situation in advance. At the current stage, the project presents a well defined model. The process of knowledge acquisition and representation has taken place following an incremental approach, considered as development paradigm. The project objectives are to reduce costs, increase the reliability and organize pipeline operation and maintenance information. This work is part of SEGRED project established as partnership among LASHIP/UFSC, SCGAS, TBG and PETROBRAS. The project also received support from FINEP. (author)

  19. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  20. Natural Gas Value-Chain and Network Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kobos, Peter H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, LaTonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Myerly, Melissa M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borns, David J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. To illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven

  1. Asian natural gas--For a brighter '90s

    International Nuclear Information System (INIS)

    Klass, D.L.; Ohashi, Tadahiko

    1991-01-01

    The seminar was designed to focus on the business aspects of developing Asian natural gas resources by inclusion of papers on natural gas markets, the role of banks, and financial case histories of existing projects, and papers on commercial and industrial natural gas utilization. The utilization of natural gas was addressed by papers that targeted small-scale, industrial and utility usage of natural gas in electric power production, and by papers on air conditioning and other applications. Each of these topics is important to the development of the Asian natural gas industry. Together, they formed a balanced program when combined with the opening keynote addresses from Tokyo Gas Company, Ltd., and PETRONAS and a panel discussion on gas pricing. All papers have been processed separately for inclusion on the data base

  2. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  3. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    Science.gov (United States)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  4. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  5. Outlook for Noth American natural gas supplies

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.

    1995-01-01

    The underlying resource base for North America natural gas is large, sufficient for nearly 100 years of current consumption. As such, the issues are not the size of the resource, but how to convert this resource into economically competitive supply. The key questions are: Will the cost (price) of natural gas remain competitive? What is the status of near-term deliverability? Will there be enough supply to meet growing demand? These economic and market issues frame the outlook for gas supplies in North America. Most importantly, they will determine how natural gas emerges from its competition for markets with other fuels and electricity. The paper addresses these questions by examining: (1) the underlying nature of the natural gas resource base; (2) the current status and trends in deliverability; and, (3) the potential of new technologies for producing gas more cost-effectively. (author)

  6. The natural gas as integration element in Latin America

    International Nuclear Information System (INIS)

    Morales, Maria Elizabeth; Dutra, Luis Eduardo; Rosa, Luiz Pinguelli

    1999-01-01

    The article discusses the following global aspects of natural gas development: natural gas and worldwide energetic integration; natural gas consumption rates in the world; natural gas industry development in Latin America; and natural gas industry in Brazil. The article concludes that the natural gas can integrate Latin-american economies since the Governments adopt coherent energetic politicians articulated to each other

  7. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  8. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  9. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  10. Bring money and natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The budding natural gas markets in East Europe attract a great deal of interest from natural gas industries in the Western countries. Dutch companies, institutions and the government, too, are active in this market. So far the results have not been spectacular. An analysis is made of the present situation and the Dutch approach

  11. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  12. Natural gas liquids: market outlook

    International Nuclear Information System (INIS)

    Heath, M.

    1996-01-01

    Future market outlook for natural gas liquids was discussed. It was shown that Canadian natural gas and natural gas liquid (NGL) production levels have experienced extraordinary growth over the past few years due to an increased U.S. demand for Canadian natural gas. Recent supply and demand studies have indicated that there will be growing surpluses of NGLs in Canada. By 1996, the majority of NGL surplus that is forecast to be available is ethane (64%), followed by propane (22%), butane (12%) and pentane plus (2%). Throughout the forecast period, the ratio of incremental ethane to the total NGL surplus, over and above forecast demand, was expected to continue to rise. The viability of producing and processing that ethane and transporting it to market, will be crucial. Development of a large ex-Alberta C2+ pipeline from Empress to Mont Belvieu under the reference case supply projection is a possibility, but only if total tariff and fractionation charge on the line is less than or equal to 10 US cents/USG (currently 16-22 US cents/USG). 11 figs

  13. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  14. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  15. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  16. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  17. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  18. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  19. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  20. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  1. Model for negotiation on contingency plans for distribution of natural gas; Modelo de negociacao para planos de contingencia energetica na area de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Sobral, Marcos Felipe Falcao; Morais, Danielle Costa [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    The high consumption of Natural Gas (NG), the environmental and economic turbulences that occurred in recent years raises questions about the supply of the product in critical situations. Characteristic factors of natural gas, like the high cost of storage, show the need for the establishment of contingency plans that define what procedures should be adopted in the distribution of Natural Gas or redistribute among consumers in times of restriction of supply, substantial increase on demand or reduction in the ability of supply. These plans aim to define in advance the actions that will be adopted, providing business and consumer segments clear rules indicate the time to search for alternative sources in case of crisis. The current models can not yet address the problem of negotiation for the division of the product following the concepts proposed by the science of trading, making things like proportionality and envy-free are not observed. The aim of this study is to propose a model for distribution of quotas for supply of NG between different consumer segments. The proposed algorithm combines the procedures of Knaster, Steinhaus and Divide the Dollar, seeking an allocation that minimize the feeling of jealousy and provide an equitable distribution. (author)

  2. Research into the transmission of natural gas by gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Gadonneix, P.

    1998-12-31

    This paper is the press release of the talk given at the `Gaz de France scientific meeting with the press` by P. Gadonneix, chairman of Gaz de France company, on October 7, 1998. The aim of this talk concerns the new French and European supply link for bringing natural gas from the Norwegian North Sea fields. This new supply link is the first direct link between Norway and France and the NorFra gas pipeline which brings natural gas from the North Sea to France is the longest offshore pipeline in the world. The `Artere des Hauts de France` pipeline (the largest diameter gas pipeline ever laid in France) is devoted to the transfer of natural gas from Dunkerque to the Gournay-sur-Aronde underground storage site. This paper describes successively: the French European gas supply hub, the NorFra project, the Artere des Hauts de France pipeline, the network performance research, the safety and quality guaranties, the reduction of overland natural gas transmission costs (improvement of pipe-laying techniques and optimization of line route and welding operations), the specific techniques used for road and river crossing (micro-tunnel digging, river-crossing ditches) and for anchoring (buoyancy compensation). Finally, the environmental impact of the laying operations is briefly described. (J.S.)

  3. The Pricing of natural gas

    International Nuclear Information System (INIS)

    Nese, Gjermund

    2004-11-01

    The report focuses on the pricing of natural gas. The motivation has been the wish of the Norwegian authorities to increase the use of natural gas and that this should follow market conditions. The pricing of gas occurs at present in various ways in the different markets. The report identifies to main factors behind the pricing. 1) The type of market i.e. how far the liberalization of the gas markets has gone in the various countries. 2) The development within the regulation, climate and tax policies. The gas markets are undergoing as the energy markets in general, a liberalization process where the traditional monopoly based market structures are replaced by markets based on competition. There are great differences in the liberalization development of the various countries, which is reflected in the various pricing principles applied for the trade of gas in the countries. The analysis shows that the net-back-pricing is predominant in some countries i.e. that the price is in various ways indexed towards and follow the development of the price of alternative energy carriers so that the gas may be able to compete. The development towards trade places for gas where the pricing is based on offer and demand is already underway. As the liberalization of the European gas markets progresses it is expected that the gas price will be determined increasingly at spot markets instead of through bilateral agreements between monopolistic corporations. The development within the regulation, climate and tax policies and to what extent this may influence the gas prices in the future, are also studied. There seem to be effects that may pull in both directions but it is evident that these political variables will influence the gas pricing in the international market to a large extent and thereby also the future internal natural gas market

  4. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  5. The crude petroleum and natural gas industry, 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A compilation of data regarding the crude petroleum and natural gas industry was presented. This industry includes establishments engaged in exploration for, or production of petroleum or natural gas from wells or tar sands. Data presented in this publication include: the supply and disposition of crude oil and natural gas, operating and capital expenditures of approximately 500 companies of the oil and natural gas industry, drilling completions, and crude oil and natural gas reserves. Data about the oil sands industry is reported in another volume. Much of the data was obtained from the Canadian Association of Petroleum Producers. Overall, in 1995 Canadian natural gas production rose 6.7%; exports of crude oil rose 7.7%. 8 tabs., 2 figs

  6. Composition of the C6+ Fraction of Natural Gas by Multiple Porous Layer Open Tubular Capillaries Maintained at Low Temperatures.

    Science.gov (United States)

    Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J

    2016-03-17

    As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.

  7. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  8. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  9. Radon measurements over a natural-gas contaminated aquifer

    International Nuclear Information System (INIS)

    Palacios, D.; Fusella, E.; Avila, Y.; Salas, J.; Teixeira, D.; Fernández, G.; Salas, A.; Sajo-Bohus, L.; Greaves, E.; Barros, H.; Bolívar, M.; Regalado, J.

    2013-01-01

    Radon and thoron concentrations in soil pores in a gas production region of the Anzoategui State, Venezuela, were determined by active and passive methods. In this region, water wells are contaminated by natural gas and gas leaks exist in the nearby river. Based on soil gas Radon data surface hydrocarbon seeps were identified. Radon and thoron concentration maps show anomalously high values near the river gas leaks decreasing in the direction of water wells where natural gas is also detected. The area where the highest concentrations of 222 Rn were detected seems to indicate the surface projection of the aquifer contaminated with natural gas. The Radon/Thoron ratio revealed a micro-localized anomaly, indicating the area where the gas comes from deep layers of the subsoil. The radon map determined by the passive method showed a marked positive anomaly around abandoned gas wells. The high anomalous Radon concentration localized near the trails of ascending gas bubbles at the river indicates the zone trough where natural gases are ascending with greater ease, associated with a deep geological fault, being this the main source of methane penetration into the aquifer. It is suggested that the source of the natural gas may be due to leaks at deep sites along the structure of some of the abandoned wells located at the North-East of the studied area. - Highlights: ► High Radon/Thoron ratios were localized near the natural-gas emanations in a river. ► Natural gases are ascending trough a deep geological fault. ► Apparently, the radon anomaly shows the site where natural gas enters the aquifer. ► Natural gas source may be related to leaks in the structure of abandoned gas wells

  10. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  11. The European natural gas market

    International Nuclear Information System (INIS)

    Hagland, Jan

    2001-01-01

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  12. Market penetration of natural gas in Europe

    International Nuclear Information System (INIS)

    Haas, R.; Wirl, F.

    1992-01-01

    The strategy of restricting natural gas to noble uses (directive of EEC and endorsed by the IEA) impeded gas expansion despite substantial upward revisions in the assessment of available resources. However, increasing environmental concern slowly but gradually undermines this strategy because natural gas serves as a substitute for costly abatement. This article discusses the prospect of future natural gas consumption considering economic and ecological facts as well as strategic and political considerations. In fact, we argue that inconsistent political interventions first seriously lowered gas penetration but now favor its use

  13. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  14. Limited impact on decadal-scale climate change from increased use of natural gas.

    Science.gov (United States)

    McJeon, Haewon; Edmonds, Jae; Bauer, Nico; Clarke, Leon; Fisher, Brian; Flannery, Brian P; Hilaire, Jérôme; Krey, Volker; Marangoni, Giacomo; Mi, Raymond; Riahi, Keywan; Rogner, Holger; Tavoni, Massimo

    2014-10-23

    The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy-economy-climate systems, but the literature has been limited in either its geographic scope or its coverage of greenhouse gases. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models of energy-economy-climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from -0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy.

  15. The AFG Convention - The future for natural gas

    International Nuclear Information System (INIS)

    Ferrier, Jerome; Lafon, Madeleine; Bouchard, Georges; Figoli, Jean-Michel; Honorat, Augustin; Clodic, Denis; Fauvel, Philippe; Frantz, Ludovic; Rottenberg, Jacques; Stabat, Thibault; Constant, Herve; Ferraris, Patrick; Monserand, David; Padova, Yann; Leeder, Nick

    2017-01-01

    The Association Francaise du Gas (French Gas Association) has held its 'the future of gas' convention in October 2016. After an opening speech, which insisted on the fact that natural gas is now recognized as a low greenhouse gas emission energy source, and a presentation of the gas demand scenario for 2030, two round tables addressed the new utilizations of natural gas (LNG for ships and vehicles, power generation, biomethane, cryogenics, heating systems), and the contributions of new technologies (and more especially digital systems) in the natural gas market and gas utilities

  16. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  17. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  18. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  19. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  20. Eastern Canada natural gas market development

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    2001-07-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs.

  1. Eastern Canada natural gas market development

    International Nuclear Information System (INIS)

    Laird, N.

    2001-01-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs

  2. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  3. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  4. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  5. Natural gas commoditization - evolution and trends

    International Nuclear Information System (INIS)

    Albon, D.R.

    1998-01-01

    This presentation dealt with issues of deregulation in the natural gas industry. The commoditization process, the effect of deregulation as reflected by changes in the percentage distribution of market participation by profession in NYMEX in 1994 and for the first quarter of 1998, the natural gas supply and demand from 1990 to 1996, and natural gas market activities (i.e. swaps, EFPs, spreads, transportation look-alikes, triggers) were reviewed. An Alberta supply and demand forecast for the winter heating season of 1998-1999 and its impact on prices was also provided. tabs., figs

  6. Canadian natural gas market: dynamics and pricing

    International Nuclear Information System (INIS)

    2000-01-01

    This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price

  7. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  8. Natural gas supply strategies for European energy market actors

    International Nuclear Information System (INIS)

    Girault, Vincent

    2007-06-01

    The liberalization of the European energy markets leads to the diversification of supplies. Hence, we analyse the natural gas importation problem in a power producer point of view. Upstream and downstream natural gas markets are concentrated. In this oligopoly context, our topic is to focus on strategies which modify natural gas sourcing price. This by studying the surplus sharing on the natural gas chain. A European firm can bundle gas and electricity outputs to increase its market share. Therefore, a bundling strategy of a power producer in competition with a natural gas reseller on the final European energy market increases upstream natural gas price. Bundling also acts as a raising rival cost strategy and reduces the rivals' profit. Profits opportunities incite natural gas producers to enter the final market. Vertical integration between a natural gas producer and a European gas reseller is a way, for producers, to catch end consumer surplus. Vertical integration results in the foreclosure of the power producer on the upstream natural gas market. To be active on the natural gas market, the power producer could supply bundles. But, this strategy reallocates the rent. The integrated firm on natural gas gets the rent of electricity market in expenses of the power producer. Then, a solution for the power producer is to supply gas and electricity as complements. Then, we consider a case where vertical integration is not allowed. Input price discrimination by a monopolist leads to a lower natural gas price for the actor which diversifies its supplying sources. Furthermore, a bundling strategy increases the gap between the price proposed to the firm which also diversify its output and the firm which is fully dependent from the producer to supply natural gas on final market. (author)

  9. Exploring the Triple Reciprocity Nature of Organizational Value Cocreation Behavior Using Multicriteria Decision Making Analysis

    Directory of Open Access Journals (Sweden)

    Huan-Ming Chuang

    2015-01-01

    Full Text Available Service-dominant (S-D logic is a service science framework that is more robust than the traditional goods-dominant (G-D logic. It emphasizes the importance of operant resources and value Cocreation. This study employs social cognitive theory to explore the triple reciprocity of organizational value Cocreation behavior. Further, this study uses DEMATEL-based ANP to examine the dynamic nature of organizational value Cocreation behavior. The major results of this study can be described as follows. First, the triadic reciprocity of personal, environmental, and behavioral factors are validated. Second, the dominant influencing trends are clearly identified. From a dimensional point of view, environmental factors affect personal factors and behavioral factors, and personal factors affect behavioral factors. Similarly, in terms of organizational value Cocreation behavior, organizational identification affects altruistic behavior and knowledge-sharing behavior, and altruistic behavior affects knowledge-sharing behavior. These findings may provide helpful guidance in effectively promoting organizational value cocreation behavior, enabling organizations to leverage operant resources to their maximum potential.

  10. Impact of hydrogen insertion on vehicular natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Strangueto, Karina Maretti; Silva, Ennio Peres da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. of Mechanical Engineering. Energy Dept.], Email: karinakms@fem.unicamp.br

    2010-07-01

    This article aims to analyze the possibility of insertion of hydrogen in the vehicular natural gas or even the insertion of the hydrogen in the compressed natural gas used in Brazil. For the production of this hydrogen, the spilled turbinable energy from Itaipu would be harnessed. The calculation of production can be extended to other power plants which are close to the natural gas pipelines, where the hydrogen would be introduced. Then, it was analyzed the consumption of natural gas in vehicles in Brazil, the regulation of transportation, the sales of compressed natural gas to fuelling station, the specifications that the piped gas should follow to be sold, and how much hydrogen could be accepted in the mix. (author)

  11. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  12. Natural gas market review 2006 - towards a global gas market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.

  13. Natural gas market review 2006 - towards a global gas market

    International Nuclear Information System (INIS)

    2006-01-01

    Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market

  14. Natural gas industry and its effects on the environment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Kejeijan, B.

    2008-01-01

    The discoveries of natural gas have increased during the last ten years in Syria, These increases lead to the necessity of knowing the effects of this industry on the environment. Syrian Arabic Republic has been planning to convert most of the current electric of plants to natural gas in addition to future plans to export natural gas to the surrounding countries. In addition, the government is working on the use of LPG gas in automobiles. However, environmentally, the importance of natural gas is due to the followings: 1- Natural gas, when burned, emits lower quantities of greenhouse gases and criteria pollutants per unit of energy produced than to other fossil fuels. This occurs in part because natural gas is more fully combusted, and in part because natural gas contains fewer impurities than any other fossil fuel. 2-The amount of carbon dioxide produced from the combustion of natural gas is less than the amount produced from the combustion of other fossil fuels to produce the same amount of heat. One of the important uses of natural gas is in the transportation since natural gas does not produce during combustion toxic compounds which are usually produced during the combustion of diesel and benzene. therefore natural gas is seen and considered as an important fuel to address environmental concerns. (author)

  15. Natural gas market assessment ten years after deregulation

    International Nuclear Information System (INIS)

    1996-11-01

    Changes which have taken place in the Canadian natural gas market in the ten years since the gas market was de-regulated, were reviewed. A 1985 agreement created conditions for a competitive natural gas market. However, the National Energy Board ensured that the pipeline transmission sector of the gas industry would continue to be regulated because of its natural monopoly characteristics. Open non-discriminatory access was to be provided to all shippers on inter-provincial gas pipelines. One objective of this report was to provide the Board with the means of assuring itself that the market was operating in such a way that Canadian requirements for natural gas were being met at fair market prices. The report also provided a review of the major changes in the gas producing and transmission sector, and reviewed developments in gas markets and sales practices. The overall assessment was that the natural gas industry was efficient and responsive to the demands of the marketplace. 5 tabs., 30 figs

  16. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  17. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  18. The petroleum, natural gas and bio fuel transportation; O transporte de petroleo, gas natural e biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Diego Varela; Campos, Carlos Hebert

    2011-01-15

    The paper expose on the activity of petroleum, natural gas and bio fuels transportation, outlining the transportation means used by the petroleum industry. After that, analyses the importance and the economic relevance of the Transpetro. Yet, proceeds an examination of the transportation activity under a constitutional optics, based on the EC 9/95; a legal optic, from the Petroleum Law (Law 9478/97) and some other legal documents related to the theme. Finally, presents the importance that the Law of Natural Gas (Law 11909/09) brought for that activity, by making possible that the natural gas transportation can also be effectuated through the Concession.

  19. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  20. Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas. Environmental assessment

    International Nuclear Information System (INIS)

    1996-09-01

    DOE's natural gas mission, in partnership with its stakeholders, is to undertake and promote activities to maximize the Nation's ability to supply, transport, and use natural gas to encourage economic growth, enhance energy interests security, and improve the environment. In implementing this mission, DOE has been involved in promoting domestic natural gas as a clean, abundant, and reliable source of energy. In particular, DOE is interested in technologies capable of converting natural gas to other valuable resources, such as transportation fuels, hydrogen, and premium chemicals. The purpose of the proposed action is to further examine the potential of one such technology for natural gas conversion. Over the past five years, DOE's Pittsburgh Energy Technology Center has supported a research program to determine the feasibility of producing methyl chloride (CH 3 Cl), a key ingredient used in the silicone industry, directly from methane (the primary component of natural gas) via an oxyhydrochlorination (OHC) process. As a result of this research program the OHC process is now ready for further development. The proposed action would advance the OHC natural gas conversion technology to an integrated engineering-scale process at the Dow Corning plant in Carrollton, Kentucky

  1. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  2. Price discovery in European natural gas markets

    International Nuclear Information System (INIS)

    Schultz, Emma; Swieringa, John

    2013-01-01

    We provide the first high-frequency investigation of price discovery within the physical and financial layers of Europe's natural gas markets. Testing not only looks at short-term return dynamics, but also considers each security's contribution to price equilibrium in the longer-term. Results show that UK natural gas futures traded on the Intercontinental Exchange display greater price discovery than physical trading at various hubs throughout Europe. - Highlights: • We use intraday data to gauge price discovery in European natural gas markets. • We explore short and long-term dynamics in physical and financial market layers. • Results show ICE's UK natural gas futures are the main venue for price discovery

  3. Liquefied natural gas: a harbor plan; Plano diretor portuario para o gas natural liquefeito

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Aluisio de Souza; Baitelo, Ricardo Lacerda [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Rego, Erik Eduardo [Excelencia Energetica Consultoria Empresarial Ltda., Sao Paulo, SP (Brazil); Rosim, Sidney Olivieri [Rosim e Papaleo Consultoria e Participacoes Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    The objective of this article is to present the structuring of a port directing plan for the liquefied natural gas. In this sense, an integrated approach between the applied logistic and the requested market conditions was used. For the large distances transportation of liquefied natural gas, the marine modal must attain technical requirements that are not usual in the port routine. Apart from the proper dimensioning of the naval fleet in order to maximize the transported load, providing the optimization of the economic distance, the entire port infra-structure is planned for the reception of liquefied natural gas, in order to attend the physical peculiarities as well as security aspects of extreme importance. The selection of the studied local was motivated by the fuel supply shortage suffered by the country, especially in the northeast region, which owns already installed thermal units in need of the fuel supply to be operated. (author)

  4. Reciprocity theory of homogeneous reactions

    Science.gov (United States)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  5. Natural gas : the green fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Harbinson, S.W. [Halliburton Energy Services, Calgary, AB (Canada); Tertzakian, P. [ARC Financial, Calgary, AB (Canada); Wall, T.; Wilkinson, J. [Apache Canada Ltd., Calgary, AB (Canada); Graham, M. [EnCana Corp., Calgary, AB (Canada); Young, P.J. [DYAD Consulting, Cambridge, MA (United States)

    2010-07-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  6. Natural gas : the green fuel of the future

    International Nuclear Information System (INIS)

    Taylor, R.S.; Harbinson, S.W.; Tertzakian, P.; Wall, T.; Wilkinson, J.; Graham, M.; Young, P.J.

    2010-01-01

    Studies have shown that the demand for crude oil exceeds supply and other energy sources are needed to met the shortfall. Natural gas and coal are the only 2 current energy sources that have the global capacity to, by themselves, address increased energy demand in a timely manner. Both these resources have been used primarily for power generation and heating. This paper discussed the transition that will likely occur in which natural gas and coal will be used increasingly as transportation fuels. It presented data comparing the environmental impact of using methane versus coal and proposed natural gas as the future green fuel. A strengths, weaknesses, opportunities and threats (SWOT) analysis was conducted to obtain a better understanding of the current Canadian natural gas market. The strengths include recent discoveries in the Horn River Basin and the Montney plays in British Columbia which are expected to triple natural gas production within the next decade. The weaknesses include an oversupply of gas compared to current demand; gas prices are currently in a range that are barely economic for many shale plays; and Canadian gas is disadvantaged for sales in the United States by additional pipeline transportation costs. The opportunities include global export opportunities of liquefied natural gas (LNG) through the proposed Kitimat LNG export facility and others off the west coast of Canada. The threat facing natural gas development is the strong competition for market share with coal. However, emissions data and energy efficiencies provide evidence to support the choice to use natural gas. 5 refs., 2 tabs., 26 figs.

  7. Sustainability and energy security : the squeeze on natural gas

    International Nuclear Information System (INIS)

    Hoover, G.; Howatson, A.; Parmenter, R.

    2004-01-01

    This paper outlines the impact of environmental policy on natural gas demand and describes alternative energy sources such as wind, solar, biomass and clean coal that can increase energy supplies. This briefing also establishes the short-, medium-, and long-term consequences of current natural gas realities. It also outlines the driving forces in Canada and the United States behind the demand for natural gas. The impact of policy formation and the phase-out of coal in Ontario are addressed along with natural gas supply prospects and the prospects and obstacles for riskier incremental supplies such as liquefied natural gas, natural gas from coal, and frontier natural gas. It was concluded that strong demand and tight supply are the factors that have driven up natural gas prices. Continued high natural gas prices in the short term will likely motivate conservation strategies at the personal household level as well as in the business and industrial sectors. Although wind power is seen as a clean, competitively prices alternative to natural gas-fired electricity generation, its contribution is not expected to change the supply and demand equilibrium. Initiatives such as the Mackenzie Valley Pipeline, the Alaskan Pipeline and drilling in the Atlantic may help balance natural gas supply and demand in the mid-term. 44 refs., 2 tabs., 7 figs

  8. Landscape consequences of natural gas extraction in Beaver and Butler Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Roig-Silva, Coral M.; Slonecker, E. Terry; Milheim, Lesley E.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Beaver County and Butler County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  9. Landscape consequences of natural gas extraction in Lackawanna and Wayne Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Lackawanna County and Wayne County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  10. Landscape consequences of natural gas extraction in Somerset and Westmoreland Counties, Pennsylvania,2004--2010

    Science.gov (United States)

    Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Somerset County and Westmoreland County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  11. The influence of reciprocating sliding wear on the oxidation behaviour of Fe-12Cr steel

    International Nuclear Information System (INIS)

    Smith, A.F.

    1988-04-01

    Medium-chromium ferritic alloys are used extensively in the boiler and core sections of advanced gas cooled reactors. It was discovered in the early 1970s, that under certain conditions these alloys could undergo the phenomenon known as breakaway oxidation. In this type of oxidation the rate limiting step is located at the oxide/metal interface rather than the more usual gas/oxide interface and results in linear oxidation kinetics. It has been shown that repeated removal of oxide layers can expose chromium depleted metal to the oxidising gas and promote nucleation of breakaway oxidation. The question has been addressed as to whether high temperature sliding wear processes can also disrupt the surface so as to make the material potentially susceptible to breakaway oxidation. To this end high temperature reciprocating wear of Fe-12Cr material in both low and high pressure reactor gas has been investigated. (author)

  12. Improved of Natural Gas Storage with Adsorbed Natural Gas (ANG) Technology Using Activated Carbon from Plastic Waste Polyethylene Terepthalate

    Science.gov (United States)

    Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.

    2017-07-01

    Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.

  13. Price interactions and discovery among natural gas spot markets in North America

    International Nuclear Information System (INIS)

    Park, Haesun; Mjelde, James W.; Bessler, David A.

    2008-01-01

    Recent advances in modeling causal flows with time series analysis are used to study relationships among eight North American natural gas spot market prices. Results indicate that the Canadian and US natural gas market is a single highly integrated market. Further results indicate that price discovery tends to reflect both regions of excess demand and supply. Across North America, Malin Hub in Oregon, Chicago Hub, Illinois, Waha, Texas, and Henry Hub, Louisiana region, are the most important markets for price discovery. Opal Hub in Wyoming is an information sink in contemporaneous time, receiving price information but passing on no price information. AECO Hub in Alberta, Canada, receives price signals from several markets and passes on information to Opal and the Oklahoma region. (author)

  14. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  15. Natural-gas world reserves and world resources

    International Nuclear Information System (INIS)

    Eickhoff, G.; Rempel, H.

    1995-01-01

    Natural gas is extracted in nearly 80 countries, 12 of which have a share of four fifths in the world extraction and 15 of which have a share of four fifths in the world consumption. The natural-gas world reserves can cover the present annual demand for years beyond the middle of the coming century. According to current assessments, the resources which presently cannot be extracted economically, the expected additional resources, and the extractable share in the potential of unconventional natural gas amount to more than ten times the reliable world reserves of natural gas. From the geological and technical points of view the world natural-gas extraction will not decrease or cease in the near future. However, the more expensive development of unconventional deposits which are located far away from the end-user will have to be preferred over the medium term on account of the exhaustion of the known deposits whose exploitation is comparatively cheap. (orig./UA) [de

  16. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  17. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  18. Natural gas distribution in Brazil - opportunities of improvement; Distribuicao de gas natural no pais - oportunidades de melhoria

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Silvia R. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Quintella, Odair M.; Farias Filho, Jose R. de [Universidade Federal Fluminense, Niteroi, RJ (Brazil)

    2005-07-01

    Great are the challenges established by the Brazilian Government related to goals to be achieved for the increment of the Natural Gas participation in brazilian energetic matrix, from current 5% to 12%, up to 2010. The enlargement of the distribution infrastructure of the gas (gas-pipelines 'mesh') in Brazil is considered one of the greatest challenges for the growth of the Brazilian market of Natural Gas, accomplishment that involves elevated investments. This paper presents a model of Management System for the good organizational performance of the small Natural Gas Supplying Brazilian Companies focused on criteria of Leadership, Strategies and Plans and Results, established by the Premio TOP Empresarial and by the 'Rumo a Excelencia', held by the 'Progama Qualidade Rio' and 'Fundacao para o Premio Nacional da Qualidade', respectively. The management practices of these companies were reviewed, considering the context of the energetic Brazilian scenario, subjected to the political and operational definitions and uncertainties, the available financial resources, limited or not prioritized, and actual barriers to be surpassed by the Gas Supplying Companies in order to achieve the pre-established government goals for this segment. The implementation of the proposed simplified Model, seen as improvement opportunities for the segment of Natural Gas distribution, will lead the Gas Distribution Companies to a intermediary stage envisioning the real steps towards the excellence of the performance. (author)

  19. German natural gas market and the international supply situation. Pt. 1. Supply market for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, U [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (Germany, F.R.). Abt. Bergbau und Energie

    1978-01-01

    Since the oil crisis the buyers's market started to change to a seller's market as a result of the worldwide rising demand for natural gas. This development will be amplified with the increasing significance and volume of LNG trade. This depends upon the availability of handling and tanker capacities. It is considered that technical solutions are available. The internationalisation of the world natural gas market imposes changes in terms of trade for the Federal Republic of Germany. In the sixties, terms of trade made under sales considerations presented no problems. But gas buyers today are forced to accept sellers' terms looking for the buyer offering the highest prices and other sales advantages. The world gas market has assumed the features of a polypolistic market. The security of supply is not a matter of adequate reserves, but almost entirely that of terms of contract on which the natural gas supply can be ensured. It is thereby decisive, whether it will be possible in future to procure the required amount of gas at such terms that it can be sold on the German energy market at competetive rates.

  20. Mexican demand for US natural gas

    International Nuclear Information System (INIS)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000

  1. Mexican demand for US natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  2. Natural gas developments in Latin America

    International Nuclear Information System (INIS)

    Faith, P.L.

    1996-01-01

    Natural gas opportunities in Latin America are discussed with reference to the Bolivia to Brazil Gas Pipeline Project. This fully integrated natural gas project extends from reserves development to market consumption and involves cooperation between countries and between the public and private sector. The project's success will depend, it is argued on the thorough integration and cooperation of all stages from reserve exploration, through pipeline construction, and distribution to power generation. (UK)

  3. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  4. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  5. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  6. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  7. Natural gas conversion new route using halogen derivatives; Nova rota de conversao de gas natural utilizando derivados halogenados

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, Leandro A.; Mota, Claudio J.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia]. E-mail: noronha@iq.ufrj.br; Sousa Aguiar, E. Falabella [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2003-07-01

    Natural gas will have important position in the next decades. Nowadays, there is high demand for petrochemicals products, such as ethene and propene. With the nafta price variation, the development of alternative routes from natural gas will be stimulate, as occur in Rio de Janeiro. Between the main technologies for the natural gas use, arise the gas to liquids (GTL) routes for the conversion to hydrocarbons. Therefore, will be studied the transformation of methyl chloride to light olefins (ethene and propene) and other hydrocarbons in zeolitic catalysts. All of these reactions will be simulate occurring in the zeolitic surface, using a cluster that represents very much the catalyst structure. (author)

  8. Green gas. Gas of natural gas quality from biomass. Update of the 2004 study

    International Nuclear Information System (INIS)

    Welink, Jan-Henk; Dumont, M.; Kwant, K.

    2007-01-01

    In 2004 a study was published on green gas. Green gas is defined as a gaseous energy carrier from renewable biomass with a similar quality as natural gas. As a result of new developments in the field of co-digestion/fermentation the Dutch Ministry of Economic Affairs asked it's agency SenterNovem to update the 2004 study. The aim of the update is (1) to gain insight into operational aspects of green gas projects, e.g. reliability, efficiency and maintenance aspects; (2) stimulate the production of green gas, taking into account the economics of green gas projects, calculation of the financial gap of green gas production, efficient use of biogas (conversion to electricity or directly input into the natural gas distribution systems, and aspects with regard to commercialization and the market; and (3) the potential of green gas [nl

  9. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs

  10. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  11. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  12. Natural gas industry regulations

    International Nuclear Information System (INIS)

    Clo, A.

    1999-01-01

    In the reception of the EU Directive on the internal gas market, it is quite necessary to avoid the mistakes already made in the case of electricity. A possible cause is there suggested which may help rearrange the natural gas industry and market in Italy. It's four points are: general interests, national peculiarities, public policies, regulatory framework [it

  13. Deregulation of natural gas in Georgia

    International Nuclear Information System (INIS)

    Wise, S.

    2002-01-01

    The Natural Gas Competition and Deregulation Act of 1997 in Georgia is discussed. New legislation passed the Natural Gas Consumer Relief Act in 2002 legislative session to provide additional protection and increase competition. This Act and its impacts are discussed in detail. Additional commission responsibilities are summarized. (R.P.)

  14. Natural gas annual 1994: Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994

  15. Natural gas annual 1994: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  16. The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru

    International Nuclear Information System (INIS)

    Gonzales Palomino, Raul; Nebra, Silvia A.

    2012-01-01

    In recent years there have been several discussions on a greater use of natural gas nationwide. Moreover, there have been several announcements by the private and public sectors regarding the construction of new pipelines to supply natural gas to the Peruvian southern and central-north markets. This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of the country based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. First, the paper estimates the market potential and characterizes the energy consumption. Then it makes a selection of technological alternatives for the use of natural gas, and it makes an energetic and economic analysis and economic feasibility. Finally, the potential use of natural gas is calculated through nine different scenarios. The natural gas use in cogeneration systems is presented as an alternative to contribute to the installed power capacity of the country. Considering the introduction of the cogeneration in the optimistic–advanced scenario and assuming that all of their conditions would be put into practice, in 2020, the share of the cogeneration in electricity production in Peru would be 9.9%. - Highlights: ► This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of Peru. ► The potential use of natural gas is calculated through nine different scenarios.► The scenarios were based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. ► We estimated the market potential and characterized the energy consumption, and made a selection of technological alternatives for the use of natural gas.

  17. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  18. Landscape consequences of natural gas extraction in Armstrong and Indiana Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Armstrong County and Indiana County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  19. Logistical management system for natural gas distribution; Sistema de gestao logistica para a distribuicao de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Joao Bosco F; Nobre, Junior, Ernesto F; Praca, Eduardo R [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Nucleo de Pesquisa em Logistica, Transportes e Desenvolvimento

    2004-07-01

    The Brazilian Federal Government has the very purpose of increasing the participation of the Natural Gas in the primary energy internal supply from 7,5% nowadays to about 12% till 2010. However, for that, it is necessary to eliminate the great impedance represented by the restricted accessibility to the product, due to the high distribution costs involved. So, there is an urgent need for availability of technologies to help natural gas distribution systems. This paper proposes an innovative logistics-based approach on the subject of the natural gas distribution, through a computational tool (GASLOG System) to be applied in the North and Northeastern urban and country areas of Brazil, with initial case study in the city of Fortaleza. In its conception, the GASLOG System focuses on the point-of-view of everyone of the actors involved with the natural gas distribution process trying to respond their particular necessities in the sector. (author)

  20. Natural Gas: Investment Strategies In An Uncertain World

    International Nuclear Information System (INIS)

    Soliman, M.; Darwish, M.

    2004-01-01

    Natural Gas investment projects in developing countries (of which Egypt is a typical example) are one of the key industries in the evolving and continually changing energy market. It seems clear that the natural gas industry today is no longer limited by national boundaries, and that countries as well as organizations need to have an adaptive investment strategy and a global perspective if they are to survive and prosper in this . uncertain world. Many strategies will succeed or fail on the basis of their ability to deal with this dynamic environment. Strategy decisions are by their nature complex, and involve many imponderables. The selection of a course of action depends on the availability and interpretation of information, analysis, intuition, emotion, political awareness and many other factors. Different individuals and groups emphasize different aspects and, in the sense that a strategy decision is an advance into tbe unknown, there is no correct course of action; all that can be done is to interpret the current situation, form expectations about the future, and act according to personal views on risk and the likely course of events. It is usually possible to identify courses of action which are unlikely to be successful, and in that sense the strategy process can have real benefits in helping to avoid disastrous courses of action

  1. The natural gas storage in France and in Europe

    International Nuclear Information System (INIS)

    2006-02-01

    The natural gas storages play a great role in the gas supplying security. They allow to compensate for the variations of the supply and demand. This document presents the different natural gas storage technic: in the phreatic cave, in salt hollows, in abandoned deposits and the natural liquefied gas. It includes also a map of the natural gas storage situation in France. (A.L.B.)

  2. Natural gas in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grabarczyk, Ewa; McCallum, Robert; Wergeland, Tor H

    1994-12-31

    The paper is based on Ewa Grabarczyk`s thesis ``The European Gas Market and the Former East Block Countries`` in the Master of International Business Programme at the Norwegian School of Economics and Business Administration. The material of Grabarczyk`s work has been split into two parts; SNF Working Papers Nos. 97/93 and 98/93. Working Paper 97/93 ``The European Gas Markets`` contains an equilibrium model of the European Gas Market employed to investigate some scenarios to the consequences of an integration of the former Soviet Union. Working Paper 98/93 ``Natural Gas in Eastern Europe`` contains descriptions of the energy sectors of former Eastern European countries and an evaluation of the potential future demand for natural gas in these nations. The paper has chapters on each country and sections on reserves, production, exports and markets, transport possibilities and technology, demand and development as well as evaluation of the present situation. 11 figs., 37 tabs., 33 refs

  3. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  4. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  5. Study on the natural gas utilization in the ceramic industry; Estudo sobre a utilizacao do gas natural na industria ceramica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The production, principal applications, characteristics and properties, advantages of the gas natural is showed. A sectorial overview of the ceramic industry and the utilization of the natural gas in the ceramic industry is presented. The expectations are systematized and the impact of the natural gas utilization in the ceramic industry is evaluated. Some conclusions are withdrawn and recommendations suggested.

  6. Landscape consequences of natural gas extraction in Bradford and Washington Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Marr, D.A.; Fisher, G.B.

    2012-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is often located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Bradford County and Washington County, Pennsylvania, between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is used to quantify these changes and are included in this publication.

  7. Does natural gas increase the indoor radon levels?

    International Nuclear Information System (INIS)

    Abdel-Ghany, H.A.; Shabaan, D.H.

    2015-01-01

    The natural gas is naturally occurring hydrocarbon consists mainly of methane and includes varying amounts of other hydrocarbons, carbon dioxide and other impurities such as: nitrogen, and hydrogen sulfide. It is used domestically and industrially as a preferable energy source compared to coal and oil. Because natural gas is found in deep underground natural formations or associated with other underground hydrocarbon reservoirs, there is a potential to contain radon as a contaminant. This work was designated to measure indoor radon concentrations in dwellings supplied with natural gas compared with those not supplied with it, where radon level was estimated using solid state nuclear track detectors (CR-39). The results showed that radon concentration was significantly higher in dwellings supplied with natural gas, where it was 252.30 versus 136.19 Bqm -3 in dwelling not supplied with natural gas (P < 0.001). The mean values of radon exhalation rate was 0.02 ± 6.34 · 10 -4 Bq · m -2 · h -1 in dwellings supplied with natural gas and 0.01 +- 0.008 Bq · m -2 · h -1 in dwellings lacking it. In addition, a significant difference was observed in the mean annual effective doses (4.33 and 2.34 mSv · y -1 , respectively) between both groups. Conclusively, the data indicate that natural gas may represent a potential source of indoor radon

  8. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  9. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  10. Scenarios for Russia's natural gas exports to 2050

    International Nuclear Information System (INIS)

    Paltsev, Sergey

    2014-01-01

    Russia is an important energy supplier as it holds the world's largest natural gas reserves and it is the world's largest exporter of natural gas. Despite a recent reduction in Russia's exports to Europe, it plans to build new pipelines. We explore the long-term (up to 2050) scenarios of Russian natural gas exports to Europe and Asia using the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. We found that over the next 20–40 years natural gas can still play a substantial role in Russian exports and there are substantial reserves to support a development of the gas-oriented energy system both in Russia and in its current and potential gas importers. Based on the considered scenarios, Russia does not need any new pipeline capacity to the EU unless it wants to diversify its export routes to supply the EU without any gas transit via Ukraine and Belarus. Asian markets are attractive to Russian gas and substantial volumes may be exported there. Relatively cheap shale gas in China may sufficiently alter the prospects of Russian gas, especially in Asian markets. In the Reference scenario, exports of natural gas grow from Russia's current 7 Tcf to 11–12 Tcf in 2030 and 13–14 Tcf in 2050. Alternative scenarios provide a wider range of projections, with a share of Russian gas exports shipped to Asian markets rising to more than 30% by 2030 and almost 50% in 2050. Europe's reliance on LNG imports increases, while it still maintains sizable imports from Russia. - Highlights: • In the Reference scenario exports of natural gas grow from Russia’s current 7 Tcf to 11–12 Tcf in 2030 and 13–14 Tcf in 2050. • In alternative scenarios a share of Russian exports to Asian markets is rising to about 30% by 2030 and 50 % in 2050. • Cheap shale gas in China can sufficiently alter Russian natural gas export. • Reduction in nuclear generation in Europe can lead to increased exports of natural gas from

  11. South American natural gas trade: the road ahead

    International Nuclear Information System (INIS)

    Reinsch, A.E.; Tissot, R.; Peacey, D.

    1997-01-01

    The current state and future prospects for the natural gas sector in South America were examined, including the ability of the natural gas resource base to meet potential gas demand in the Southern Cone region (Argentina, Bolivia, Brazil, Chile, Paraguay, Peru and Uruguay). The physical, legal, fiscal, regulatory and political developments in the hydrocarbon-producing countries in the Southern Cone region were reviewed. For example, in Colombia, the domestic gas market potential and resource base argue in favor of a closed domestic gas sector development policy. In contrast, Venezuela, a country that already has a well developed domestic gas sector, is pursuing offshore market development through both petrochemical and liquefied natural gas initiatives. Following a comprehensive description of individual gas resources, markets and market potential, and legal, institutional and political environments, the study reports on a number of alternative scenarios concerning natural gas integration in the Southern Cone region, developed by using the South America Natural Gas (SANG) model. The following scenarios were reviewed: (1) closure and confinement, (2) integration and expansion, and (3) gains from technology. It was estimated that potential gas demand in the Southern Cone region is projected to grow from 900 billion cubic feet per year in 1994 to over 5.3 trillion cubic feet in 2021. The majority of growth is expected in Brazil. The overall conclusion of the study was that regardless of the scenario, Southern Core gas sector integration has strong economic and commercial merit, and that the natural gas resource base in the Southern Cone, as represented by the gas reserves database, is more than adequate to service potential demand. 100 refs., 50 tabs., 54 figs

  12. Short-term Canadian natural gas deliverability 2007-2009

    International Nuclear Information System (INIS)

    2007-01-01

    This report examined factors that may influence gas supply in the near future, and presented an outlook for natural gas deliverability up to the year 2009. Deliverability was projected under the following 3 scenarios to reflect varying levels of drilling investment that may occur: (1) a reference case; (2) a high case; and (3) a low case. Canadian natural gas has provided approximately 25 per cent of North America's natural gas production over the past few years. Marketable gas sales in 2006 were approximately $42 billion. Approximately 98 per cent of the total Canadian volume of natural gas is produced in the western Canadian sedimentary basin (WCSB). Results of the scenario analyses showed that deliverability decreased in all 3 projected scenarios. By 2009, Canadian natural gas deliverability was projected to decrease to between 410 and 449 million m 3 /d. The report also noted that the annual decline rate of the average natural gas well is 55 per cent. Producers have been maintaining deliverability by increasing the number of wells drilled annually. Gas producers are now targeting the western side of the basin, and are drilling deeper wells in order to access richer deposits of gas. Coalbed methane (CBM) production is also expected to increase over the next few years. It was concluded that Canadian deliverability will continue to play an important role in North American gas supplies. 6 tabs., 6 figs

  13. Natural gas in the World 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This document summarizes the key findings of the 160-page 2014 edition of CEDIGAZ's flagship survey 'Natural Gas in the World': Worldwide proved natural gas reserves grew by 0.5% (981 bcm) in 2013. On January 1, 2014, reserves were estimated by Cedigaz to stand at 200,576 bcm, compared to 199,595 bcm for the previous year. Out of the seven regions in our regional breakdown, only North America and the C.I.S. have seen an increase in their reserves base in 2013. The strongest gain, both in absolute terms (+739 bcm) and as a percentage (+6.8%), was recorded in North America, reflecting the growth of unconventional gas reserves, both in the U.S. and Canada. The C.I.S. also posted a solid 669 bcm increase, representing a 1% rise. OPEC countries control about half of the world's gas reserves (47%) whereas C.I.S. countries account for almost one-third (33%). Proved unconventional gas reserves are concentrated in North America, especially in the U.S., which held in particular 3.7 tcm of proven shale gas reserves. Outside North America, large coal bed methane (CBM) reserves also exist in Australia and China. Marketed production was up by only 1% from 2012, reaching 3394 bcm, compared to the average growth rate for the last ten years (2.5%/year). This slowdown is partly explained by growing coal-togas competition on the demand side and a gas supply shortfall on the supply side, especially in emerging markets, where the lack of upstream investment is acute. The highest production increases were recorded in the Middle East (+3.1%) and the C.I.S. (+2.6%), which compensated for output losses in Europe (-2.3%) and Africa (-6.6%). In 2013, the two leading regional producing markets, North America and the C.I.S., accounted for 26% and 24% of global production respectively, followed by the Middle East (17%) and Asia Oceania (15%). In 2013, growth in unconventional gas production was driven by North America, China and Australia. North America no longer accounts

  14. The emergent natural gas markets

    International Nuclear Information System (INIS)

    Dewert, F.; Meeder, J.

    1998-01-01

    A 30% increase of natural gas consumption worldwide is expected to occur since the year 2010. This development will concern countries located outside the traditional markets, in particular in central and eastern Europe, Asia, Africa and south America. This paper summarizes the talks given by the different representatives of these regions who explain the expected evolutions of the natural gas market in these areas: reserves, production, consumption, demand, competition with other energy sources, financial aspects.. (J.S.)

  15. Wellhead deliverabilty of natural gas - assembling the evidence. Final report

    International Nuclear Information System (INIS)

    Hughes, W.R.

    1995-09-01

    This report presents information about the wellhead delivery of natural gas--the amount of gas the supply industry can produce and deliver to the pipeline. It is designed to help power industry planners evaluate essential aspects of gas supply as part of their overall assessment and utilization of gas-fired power generation. Low prices caused by excess deliverability have led to minimal exploration for new supplies, with the open-quotes bubbleclose quotes of excess deliverability ending. The report examines the facts pertinent to assessing the outlook for deliverability over the intermediate term. It develops deliverability concepts and relates deliverability to reserves and resources. It assesses the available information for measuring and monitoring availability and suggests improvements in available data. The regional outlook for deliverability growth in the Gulf of Mexico and other leading producing regions is also discussed. The report reviews the historical background of present deliverability trends and discusses the industry dynamics that affect development of future deliverability: lead times for increasing deliverability, the declining base of skilled exploration manpower, advancing gas supply technology, and prices required to encourage exploration and development

  16. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  17. Cyclic Fatigue Resistance of Reciproc Blue, Reciproc, and WaveOne Gold Reciprocating Instruments.

    Science.gov (United States)

    Keskin, Cangül; Inan, Uğur; Demiral, Murat; Keleş, Ali

    2017-08-01

    The aim of the present study was to compare the cyclic fatigue resistance of Reciproc Blue R25 (VDW, Munich, Germany) with Reciproc R25 (VDW) and WaveOne Gold Primary (Denstply Maillefer, Ballaigues, Switzerland). Fifteen Reciproc Blue R25, 15 Reciproc R25, and 15 WaveOne Gold Primary instruments were collected and tested in a dynamic cyclic fatigue test device, which has an artificial canal with a 60° angle of curvature and a 5-mm radius of curvature. All instruments were operated until fracture occurred, and time to fracture (TF) and the lengths of the fractured fragments were recorded. The mean and standard deviations of TF and fragment length were calculated for each reciprocating system. TF data were subjected to Kruskal-Wallis 1-way analysis of variance and the Dunn test, whereas fractured fragment length data were subjected to 1-way analysis of variance (P  .05). Reciproc Blue R25 instruments had significantly higher cyclic fatigue resistance than WaveOne Gold and Reciproc R25 instruments. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Direct reciprocity in spatial populations enhances R-reciprocity as well as ST-reciprocity.

    Science.gov (United States)

    Miyaji, Kohei; Tanimoto, Jun; Wang, Zhen; Hagishima, Aya; Ikegaya, Naoki

    2013-01-01

    As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2 × 2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner's dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation.

  19. French natural gas industry statistics

    International Nuclear Information System (INIS)

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  20. Security resolution minute for natural gas distribution pipeline; Minuta de resolucao de seguranca na distribuicao do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [ARCE - Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara, Fortaleza, CE (Brazil)

    2003-07-01

    In the current scenery of natural gas distribution regulation, there is no specific resolution about security. The security is boarded in few concession contracts of some private gas companies, but not as principal theme. The security resolution minute presented in this paper aim break the direct and indirect causes of accidents, eliminating their potential. In this new point of view, the quality of services is the principal cause to guarantee the security of natural gas distribution systems. The methodology used to develop the minute was based on the research of Brazilian and American resolutions of state regulation agencies, concession contracts of private distribution gas companies, American code of federal regulation, ASME code for pressure piping B31.8 - 1999 edition and the NBR 12712 standard. The result of the research was the elaboration of an specific minute resolution of security that can be used as reference in the fiscalization of the natural gas distribution piping companies activities. This minute, can be an important instrument to avoid accidents and incidents, eliminating prejudices to the people, to properties, to environment and to the image of natural gas distribution companies and regulation agencies. (author)

  1. The advance of natural gas market using urban information: case study in Sao Paulo city (Brazil); Ampliacao de mercado para o gas natural utilizando informacoes urbanas: estudo de caso dos distritos paulistanos

    Energy Technology Data Exchange (ETDEWEB)

    Massara, Vanessa M.; Faga, Murilo T.W.; Santos, Edmilson M. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Considering the importance of the city of Sao Paulo for the Brazilian natural gas market, the aim of this paper is to propose an analytical methodology that integrates the understanding of the urban dynamics to the strategies of expansion in the natural gas distribution network, characterizing the gas consumption possibilities and attractiveness for each of the 96 districts composing the city. The methodology is developed through the grouping of information such as family income, demographic density and construction area, percentage of land use, number of households as well as commercial, service and industrial establishments, number of real state as well as indicative information released by the Urban Plan of the city regarding the increments in the peripheral districts. Relating the gas consumption esteemed by each type of land occupation and the cost for expanding the gas distribution network, the model will indicate, for each neighborhood, the viability of implementing a gas network as well as the places with potential for growing density in the existing gas distribution system. On this paper, examples of essential information that compose the methodology are presented for three districts: Itaquera, Moema and Tatuape, which have different socio-economic and geographical profiles. (author)

  2. The perspectives of the natural gas in Mexico; Las perspecivas del gas natural en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, Luis [DIAVAZ S.A de C.V, Mexico, D.F. (Mexico)

    2001-07-01

    As never before in the last year we have suffered the increases in the cost of the natural gas. For those who are not aware, the prices have gone from 2.48 dollars per million BTU a year ago to 9.57 last month. The truth is that we are facing a true world-wide energy crisis. From one year to date the prices of all the energy sources have increased an average superior to 30%, including increases in Diesel oil, LP Gas, Natural Gas, Turbine fuel. The causes are many and very varied, from efficiency decisions, as in the case of the electrical Generation that has chosen to incline definitively to the natural gas, confusing de-regulations as in the case of California, increases of demand beyond the anticipated by economic activity, changes of consumption pattern, etc.. This demonstrates the well focussed and the opportunity of this Seminar, since there is no doubt that it has become imperative a single and efficient criterium on this so limited resource. In Mexico, the situation is very similar. Recently a measurement has been implemented that tries to palliate the conjunctural effects of this crisis and PEMEX has put to the disposition of the users a contract at fixed price, for three years and by a specific amount. [Spanish] Como nunca antes en el ultimo ano hemos resentido los incrementos en el gasto del gas natural. Para quien no este al tanto los precios han pasado de 2.48 dolares por millon de BTU hace un ano a 9.57 el mes pasado. La verdad es que os estamos enfrentando a una verdadera crisis energetica mundial. De un ano para aca todos los energeticos han aumentado un promedio superior al 30%, incluyendo aumentos en Diesel, Gas LP, Gas Natural, Turbosina. Las causas son muchas y muy variadas, desde decisiones de eficiencia, como en el caso de la Generacion electrica que ha optado por inclinarse definitivamente por el gas natural, desregulaciones confusas como en el caso de California, incrementos de demanda mas alla de lo previsto por actividad economica, cambios

  3. Natural gas revenues in the Netherlands. Consequences of the liberalization of the natural gas market for the Dutch State

    International Nuclear Information System (INIS)

    Van Dam, J.; Krijnen, L.; Van Maasacker, M.

    1999-01-01

    For the Dutch government, natural gas is an important source of revenue. The liberalisation of the gas market has serious consequences for the revenues the Dutch government generates by producing and selling natural gas. In late September 1999, the Netherlands Office of Audits ('Algemene Rekenkamer') published a report with gloomy prospects concerning future natural gas revenues. The Office expects a reduction in government revenues that may even run into more than 2 billion Dutch guilders a year. A report was prepared to provide insight into the financial effects of market liberalisation and to allow the Dutch Parliament to reach an informed decision

  4. Has the natural gas fueled bus any future?

    International Nuclear Information System (INIS)

    Riikonen, A.

    2001-01-01

    Helsinki City Transport has decided to operate public transport in the center of the city with tramways and gas-fuelled busses. The decision is that there will be about 100 natural gas fueled busses in Helsinki by the year 2003. European exhaust gas emission (NO x and particulates) regulations have tightened strongly during the past few years. The regulations have forced to search for new fuels by the side of development of diesel engines. Alcohols, in spite of favourable fuel properties, are too expensive, so the use of them needs large subsidies for transportation sector. Gaseous fuels, both LPG and natural gas are suitable fuels for Otto cycle-cycle engines. After the previous oil crisis the interest in gas-fuelled engines has steadily decreased, but at present it is increasing again because of the objectives to decrease emissions of heavy vehicles at the level of gasoline-fuelled vehicles, equipped with three-way catalyst. From the point of view of emissions natural gas and LPG are seen as equivalent alternatives. The price of LPG varies on the basis of demand and on the basis of the prices of other oil products. Refuelling of a vehicle and storage of LPG in liquid form in the tank of the vehicle is easier than refuelling and fuel storage of natural gas. Investments to refuelling equipment of LPG are only 20% of those of the natural gas refuelling systems. The problem of natural gas is also the fact that is not easy to carry in the vehicle. Even if natural gas is compressed to pressure of 200 bars, it requires six times larger tanks if the refuelling intervals are the same. Liquefaction of natural gas reduces the volume significantly, but this is complicated and hence expensive. The tank of a vehicle should be vacuum insulated because the temperature of the LNG is about 160 deg C. Tank volume of LPG is only about twice that of diesel oil. Safety of natural gas is high, because it is lighter than the air, nearly a half of the density of the air. Octane ratings

  5. Guidelines For Evaluation Of Natural Gas Projects

    International Nuclear Information System (INIS)

    Farag, H.; El Messirie, A.

    2004-01-01

    This paper is objected to give guidelines for natural gas projects appraisal These guidelines are summarized in modeling of natural gas demand forecast and energy pricing policies for different gas consumers mainly in the manufacturing, mining, transport, trade and agriculture sectors. Analysis of the results is made through sensitivity analysis and decision support system ( DSS )

  6. Natural gas transport with the aid of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Volk, A

    1978-01-01

    After giving a brief explanation on the term natural gas and the chemical composition of natural gases of different origin, the natural gas supply in the FRG and in Western Europe is discussed. Other discussions are included on: (1) planning, construction, and operation of the pipelines; (2) the equipment for pressure increase and the telecommunication equipment which are urgently necessary for gas transport through pipelines; (3) the problem of safety both in connection with the supply and protection of man and material; and (4) problems of profitability of natural gas transport through pipelines.

  7. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  8. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  9. Natural gas consumption trends and demand projections for Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M.A.; Harijan, K.; Memon, H.U.R.

    2005-01-01

    Pakistan is an energy deficient country and heavily depends on imported energy. Natural gas is a dominating source of commercial energy in the country. This paper presents the natural gas consumption trends and future demand projections for Pakistan. The paper also investigates the potential utilization options of natural gas in the country. The study indicates that the natural gas consumption in the country increased rapidly at an average growth rate of about 6.8% per annum during the last three decades. Currently, natural gas contributes about 44.2% of the primary commercial energy supply in the country. Power, Fertilizer, General industry and Domestic sectors are the major consumers of gas in the country. The paper concludes the natural gas demand in the country is projected to increase to about 34-64 MTOE (Million Tonnes of Oil Equivalent) by the year 2018. Enhancement in the indigenous exploration and modulation of gas and import of gas from central Asian Sates is essential for meeting the growing gas demand, protecting the environment and increasing the economic independence in the country. (author)

  10. 75 FR 53371 - Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas Dispersion Models

    Science.gov (United States)

    2010-08-31

    .... PHMSA-2010-0226] Liquefied Natural Gas Facilities: Obtaining Approval of Alternative Vapor-Gas... safety standards for siting liquefied natural gas (LNG) facilities. Those standards require that an..., and Handling of Liquefied Natural Gas. That consensus [[Page 53372

  11. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  12. The natural gas futures markets - is it still inefficient?

    International Nuclear Information System (INIS)

    Herbert, J.H.

    1994-01-01

    The natural gas futures market is fundamental to the current natural gas market both as means of price discovery and for price hedging. Thus, the informational efficiency of the futures market is an important issue. This article re-examines the informational efficiency of the natural gas futures market. In this re-examination several cash price series are considered. It is found that the natural gas futures market is informationally efficient for only one of the cash markets. The characteristics of the current natural gas market that might explain the estimated results are also discussed. (author)

  13. The - compromised? - future of natural gas

    International Nuclear Information System (INIS)

    Rodriguez, Ph.

    2009-01-01

    Will natural gas be the main loser of the January 2009 crisis between Ukraine and Russia? The demonstration is made that the European Union is not free from the risk of a severe supply disruption. This is a bad news considering that the power generation is the growth vector of natural gas. Even if the gas black-out cannot exist, the power black-out still can happen. As soon as the Russian-Ukrainian conflict has occurred, the other energy sources (nuclear and renewable) have been called for help in Europe while coal is in the expectation. Since some time now, gas has to face several trend changes. First, uncertainty is increasing considering its growth prospects. The new version of the gas pluri-annual indicative plan (PIP Gaz) would foresee a stagnation of gas consumption up to 2020 (consequence of the French environmental policy), while the previous plan had foreseen a 2.1% annual growth rate between 2005 and 2015. Second, the direct indexing of gas prices on oil prices can have undesirable effects. Finally, the u-turn of the USA with respect to liquefied natural gas (LNG) may penalize its development. What answers should the European Union give in front of these uncertainties? Have the companies modified their strategy? Is the future of gas still fine? These are the questions debated during a round table organized by the BIP, the French Bulletin of Petroleum Industry. (J.S.)

  14. Proceedings of the 1999 CERI North American natural gas conference and Calgary gasexpo '99 : cresting the capacity wave

    International Nuclear Information System (INIS)

    1999-01-01

    The basic trends in natural gas exploration, production, research and development were discussed. The significant impact that the dynamics of supply and demand has on the industry was also explained. The sessions at this conference focused on various aspects of the natural gas industry including the challenges from the retail energy market, U.S. gas supplies and the maturing Western Canada Sedimentary Basin. Other topics included advances in gas utilization and gas to liquids technology. The issue of climate change and the impact that the Kyoto Protocol will have on the industry was also discussed. One entire session was devoted to the challenges facing the industry with respect to pipelines and regulatory changes. refs., tabs., figs

  15. The factors for the competitiveness in the supply of natural gas; Los factores para la competitividad en la oferta del gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Toledo, Carlos; Aguirre Portillo, Alejandro [Facultad de Quimica, UNAM (Mexico)

    1996-07-01

    The environmental restrictions have caused an increasing demand of natural gas on world-wide scale. In this paper the analysis of the present situation of the natural gas in Mexico and throughout the world is presented, taking into account the structure of the production costs of the natural gas in the reservoirs, as well as the transportation and distribution costs destined to the natural gas consumption in specific markets. It is possible to emphasize that at the moment the transportation of this power source is more expensive than the corresponding one of the crude and of the oil-producing products obtained from oil refinement. [Spanish] Las restricciones medioambientales han provocado una creciente demanda de gas natural a escala mundial. En este trabajo se presenta un analisis de la situacion actual del gas natural en Mexico y en el mundo entero, tomando en cuenta la estructura de los costos de produccion del gas natural en los yacimientos, asi como los costos de transporte y distribucion destinados al consumo de gas natural en mercados especificos. Cabe destacar que actualmente el transporte de esta fuente energetica es mas caro que el correspondiente al crudo y a los productos petroliferos obtenidos de la refinacion de aquel.

  16. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  17. Some economic aspects of the European natural gas market

    International Nuclear Information System (INIS)

    Golombek, R.

    1990-01-01

    The thesis consists of five papers with following titles: Optimal utilization of natural gas. Computation of the resource rent for Norwegian natural gas; The relationship between the price of natural gas and crude oil - some aspects of efficient contracts; Bargaining and international trade - the case of Norwegian natural gas; On bilateral monopoly - a Nash-Wicksell Approach; Bertrand games and duopoly

  18. 10 CFR 221.11 - Natural gas and ethane.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  19. 1991 worldwide natural gas industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides information for the natural gas industry, just as other PennWell directories have for the petroleum industry. Comprehensive in scope, each company listing includes address, phone, fax telex and cable numbers, key personnel, subsidiaries, branches and brief descriptions. The directory is organized in major areas of operation and includes sections on: Distribution, Drilling/Exploration/Production, Gas Utilities, Gathering/Transmission, Industry Associations/Organizations, LNG, LPG, Marketing, Processing, Regulatory Agencies, and Service, Supply and Manufacturers. An invaluable reference source for the natural gas professional

  20. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  1. Maritimes natural gas market : an overview and assessment

    International Nuclear Information System (INIS)

    Booth, G.

    2003-01-01

    In 1987, Canada's National Energy Board (NEB) adopted a market-based procedure (MBP) to assess long-term gas exports. The MPB included monitoring and assessment of Maritimes natural gas markets. The NEB is responsible for interprovincial and international oil and gas pipelines as well as tolls and tariffs on NEB-regulated pipelines. The NEB is also responsible for electricity and natural gas exports and exploration programs on federally regulated lands not covered by an Accord agreement. The province of New Brunswick requested a new set of rules for the export of natural gas from the Maritimes to ensure competitiveness with other jurisdictions. The NEB decided that the public interest is best served by allowing the market to work. It also decided that the developing Maritimes market faces several challenges not faced by buyers in the export market. It was concluded that the market is working reasonably well to meet the needs of domestic consumers. 20 per cent of Scotian gas is being used in the Maritimes and many laterals have been constructed to extend service. Most major population centres have natural gas. However, there is no residential or commercial natural gas service in Nova Scotia, and only limited penetration of natural gas in residential and commercial markets in New Brunswick. Maritimers have a long history of using other fuel options and must make capital investment to switch to natural gas. They must, therefore, be convinced that investment will pay off in fuel savings and other benefits. The NEB will have to improve price transparency and strive for regulatory efficiency and cooperation with other jurisdictions. 2 figs

  2. Natural gas industry in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, Hedayat

    2010-09-15

    Iran holds the second largest gas reserves in the word with over 27.5 trillion cubic meters (TCM) of natural gas. Due to lack of geological surveys in certain geographical regions in Iran, it is likely to explore further reserves in the future.

  3. Worldwide natural gas pipeline situation. Sekai no tennen gas pipeline jokyo

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, T [Osaka Gas Co. Ltd., Osaka (Japan)

    1993-03-01

    Constructing natural gas pipelines in wide areas requires investments of a huge amount. Many countries are building natural gas supply infrastructures under public support as nations' basic policy of promoting use of natural gas. This paper describes the present conditions of building pipelines in Western Europe, the U.S.A., Korea and Taiwan. In Western Europe, transporting companies established in line with the national policy own trunk pipelines and storage facilities, and import and distribute natural gas. The U.S.A. has 2300 small and large pipeline companies bearing transportation business. Pipelines extend about 1.9 million kilometers in total, with trunk pipelines accounting for about 440,000 kilometers. The companies are given eminent domain for the right of way. Korea has a plan to build a pipeline network with a distance of 1600 kilometers in around 2000. Taiwan has completed trunk pipelines extending 330 kilometers in two years. In Japan, the industry is preparing draft plans for wide area pipeline construction. 5 figs., 1 tab.

  4. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  5. Landscape consequences of natural gas extraction in Fayette and Lycoming Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Gillenwater, B.H.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Fayette County and Lycoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  6. Landscape consequences of natural gas extraction in Sullivan and Wyoming Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  7. Rising natural gas prices : impacts on U.S. industries

    International Nuclear Information System (INIS)

    Henry, D.

    2005-01-01

    The impact of rising natural gas prices on the United States economy and domestic industries was examined in this PowerPoint presentation. Industry comments were solicited on the effects of natural gas prices on their business performance from 2000 to 2004 in order to collect data, and macroeconomic impacts were determined through the use of an inter-industry model. Results of the survey and subsequent model suggested that in 2000 and 2001, real gross domestic product (GDP) growth was depressed by 0.2 per cent because of higher natural gas prices. Between 2000 and 2004, the civilian workforce was lower by 489,000 jobs. It was determined that nitrogenous fertilizer manufacturing was the most gas intensive industry. The results indicated that higher natural gas prices were an additional burden on manufacturing industries, and that the economic performance of natural gas intensive industries was poor between 2000-2004. However, it was just as poor between 1997-2000, when gas prices were relatively low and stable. Natural gas intensive industries passed along price increases in their products to their downstream consumers. Despite job losses, wages in natural gas intensive industries were higher and grew faster than in the rest of the manufacturing industry in the 2000-2004 period. Although capital expenditures declined between 2000 to 2004, they declined more rapidly in the 1997-2000 period. There has been no evidence of a decline in international competitiveness of natural gas intensive industries. It was concluded that rising natural gas prices have had a significant impact on the growth of the economy and workforce. tabs., figs

  8. The natural gas ducts and the ICMS; Os dutos de gas natural e o ICMS

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rafael Silva Paes Pires; Silveira Neto, Otacilio dos Santos; Gomes, Carlos Roberto de Miranda [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Recursos Humanos da ANP para o Setor Petroleo e Gas, PRH-36

    2005-07-01

    With the advent of the Constitutional Emendation no. 9/95 operated it the open of the industry of the oil and the natural gas for companies others that came to be contracted by the State. Ahead of the insertion of new players, the regulation of the sector was given for the Law (no. 9.478/97), as well for legal acts edited for the National Agency of the Oil - ANP. Meanwhile, the Oil norm little disciplined the industry of the natural gas that, for its peculiarities, imposes specific rules. In this context, the transport of the natural gas by means of ducts become prominent for the lack of debates on the correct form to classify them. The present work has for target to analyze the legal types instituted by the Law and for the ANP acts for the ducts, as form of if having a correct understanding of the matter. Thus, will reveal as each one of the adopted classifications can cause (or not) the incidence of the ICMS, or either, as the legal regimen of the gas-lines is correlated with the tax. (author)

  9. Petroleum and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    060,

    1965-02-01

    Substantial increases in demand for Canadian petroleum and natural gas in both domestic and export markets resulted in another good year throughout the main sectors of the industry. In February, production averaged 850,000 bpd, or about 8% more than 1963 output of crude oil and natural gas liquids. Construction began on the first full scale plant for the extraction of oil from the Athabasca bituminous sands. In 1964, exploratory and development drilling in western Canada increased 10% from the previous year. A total of 15.5 million ft was drilled, the largest since the record drilling year of 1956. The main oil field development areas in Alberta were the House Mountain, Deer Mountain and Goose River Fields, and the Bantry-Taber heavy oil region in southeastern Alberta. Oil reserves were increased substantially by waterflood pressure maintenance projects in many of the older oil fields. The largest oil accumulation discovered in 1964 was the Syvia-Honda Field in the Devonian Gilwood sandstone in N.-central Alberta. Two graphs illustrate the crude petroleum in Canada in millions of barrels from 1940 to 1964, and natural gas in Canada in billions of cu ft from 1950 to 1964. The outlook for the industry in 1965 is good.

  10. Canadian natural gas market dynamics and pricing : an update

    International Nuclear Information System (INIS)

    2002-10-01

    This energy market assessment (EMA) report discusses natural gas price formation and describes the current functioning of regional gas markets in Canada. This EMA also describes the factors affecting the price of natural gas in Canada and examines natural gas markets on a region-by region basis. It is shown that as part of an integrated North American market, prices of natural gas in Canada reflect supply and demand factors in both Canada and the United States. During the low oil price period of 1997/1998, high demand for natural gas outpaced the supply because of low drilling and production activity by producers. In response to the increased demand and lower levels of supply, the price of natural gas increased significantly in 1999 and 2000. This was followed by a period of market adjustment. The importance of electronic trading systems for enhancing price discovery was also discussed with reference to how spot and futures markets allow market participants to manage price volatility. It was determined that Canadians have had access to natural gas on terms and conditions equal to export customers, and at equal pricing. In early November 2000, natural gas prices in North American began to rise due to low levels of natural gas in storage. The price shocks were felt unevenly across the North American market. In response to the high prices, consumers conserved energy use, and many industrial users switched to cheaper fuels. By the spring 2001, demand continued to decrease at a time when production was high. These factors contributed to the downward pressure on gas prices. This EMA discusses the structure of market transactions and market adjustment mechanisms. It is presented in the context of the approaching 2002/2003 winter season where the tightening between natural gas supply and demand is expected to result in price volatility. 28 figs

  11. Why natural gas for CO2 and climate control?

    International Nuclear Information System (INIS)

    Roose, T.R.

    1996-01-01

    The Intergovernmental Panel on Climate Change (IPCC) and the US Environmental Protection Agency (EPA) have suggested that increased use of natural gas is a possible strategy for reducing the potential for global warming. Carbon dioxide (CO 2 ) contributes as much to global warming as all other greenhouse gases combined. During combustion, natural gas generates less CO 2 per unit of energy produced than either coal or oil. On the basis of the amount of CO 2 emitted, the potential for global warming could be reduced by substituting natural gas to coal or oil. However, since natural gas is primarily methane, a potent greenhouse gas, these emissions could reduce natural gas's inherent advantage of lower CO 2 emissions. To address this issue and compare the fuels on an equivalent basis, it is necessary to account for emissions of all greenhouse gases throughout the fuel cycle of each fuel and to determine the impact of these gases on global warming. Gas Research Institute and EPA jointly funded a study to quantify methane emissions from the natural gas industry so that this information could be used as input to address the issue of the fuel switching strategy. The study found that the natural gas industry emitted 1.4% of natural gas production (314 Bscf of methane) to the atmosphere in 1992. Today, due to voluntary reductions from the gas industry, the percent leaked is even less. This 1992 amount has been analyzed over a broad range of global warming potentials, and the conclusion that fuel switching to natural gas reduces the potential for global warming is supported. The results of this study are presented in this paper

  12. Advanced Combustion Systems for Next Generation Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  13. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  14. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  15. Natural Gas Versus Nuclear New Build Versus Life Extension

    International Nuclear Information System (INIS)

    Barron, B.

    2013-01-01

    Proven natural gas reserves and production in the USA have continued to increase in recent years. This is due to the exploration of shale formations and the expanded use of hydraulic fracking technology. Looking forward, we can expect that high crude oil prices will sustain natural gas production at current levels (approximately 25% of natural gas production in the USA is a by-product of crude oil drilling), and the natural gas liquid cuts are priced with crude oil. Continued drilling in the near term for natural gas is required by lease obligations and by commitments to investors

  16. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  17. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Benjaminsson, Johan; Nilsson, Ronny

    2009-11-01

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  18. Performance of an Otto cycle motor with natural gas direct injection; Desempenho de um motor ciclo Otto com injecao direta de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Cleiton Rubens Formiga

    1997-07-01

    A Otto cycle engine with natural gas direct injection, during the inlet stroke, was submitted to runs with full power in a Foucaut dynamometer. The results obtained show a increase in the volumetric efficiency of the engine with natural gas direct injection when compared with natural gas injection applied in the inlet manifold, upstream of the throttle butterfly. In the conversion to natural gas direct injection, the technical characteristics were not changed. A kit for natural gas direct injection, with electronic management was located on the cylinder head of the test engine. Maintaining the pressure constant in the natural gas fuel line, using a reduction valve, the mass of fuel injected into the cylinder was regulated, varying the opening time of the solenoid valve fuel injector. Engine performance data is compared, emphasizing the factors that contribute to this increase in relative volumetric efficiency. Modifications are made to maximize the power of the engine with natural gas direct injection. (author)

  19. OPEC and natural gas

    International Nuclear Information System (INIS)

    Samsam Bakhtiari, A.M.; Shahbudaghlou, F.

    1998-01-01

    This paper reviews the involvement of OPEC Member Countries in the natural gas industry in the past, present and future. It notes a tenfold increase in marketed production and a fourfold rise in re-injection since 1970. Collectively, Members now hold 41 per cent of the world's proven gas reserves and account for 20 per cent of exports. Individually, four of these countries hold position 2-5 in the world gas reserve rankings. Within OPEC, however, there remains an emphasis of oil over gas, not least because of oil's favourable position with regard to revenue-generation and profitability. As global demand continues on its upward growth curve in a more environmentally aware world, OPEC's gas horizons will widen. OPEC's strong reserve base will give its Members an undeniable role to play on the future global gas stage. However, these countries will give priority to domestic usage, particularly re-injection schemes

  20. Landscape consequences of natural gas extraction in Allegheny and Susquehanna Counties, Pennsylvania, 2004--2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters of wells across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Allegheny County and Susquehanna County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  1. Landscape consequences of natural gas extraction in Greene and Tioga Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Fisher, G.B.

    2012-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Greene County and Tioga County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics are also used to quantify these changes and are included in this publication.

  2. Natural gas as a means of heating liquids

    International Nuclear Information System (INIS)

    Pronovost, M.

    1996-01-01

    Liquids can now be heated at low temperature directly at the point of end use, thanks to flexible and customized natural gas technologies. For customers these advances eliminate the need for poorly-performing central boilers, while investors can look forward to a reduction in the period of time needed to recover investments. Decentralization of the production offers many challenges to industries that have to produce vast quantities of hot water, among them increased efficiency, direct and speedy response to demands for energy, and reduced maintenance expenses. Consumers can also look forward to reduced need for energy, hence better control of the energy dollar. 2 figs

  3. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    Science.gov (United States)

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P cutting efficiency than WaveOne Primary for both the movements used (P cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. North American natural gas supply and demand

    International Nuclear Information System (INIS)

    Goobie, G.

    2006-01-01

    This presentation was given by leading energy analysts Pervin and Gertz, and provided their outlook on the North American natural gas supply and demand as well as transportation and processing options for the Mackenzie Valley project and the Alaska natural gas project. Arctic gas development was discussed in relation to larger North American and world energy markets. The impacts of liquefied natural gas (LNG) infrastructure development were compared with the potential impacts of the Alaska and Mackenzie Valley pipelines. A review of North American gas supplies was presented. LNG imports to the United States are expected to exceed 8 BCF/D by 2010. In addition, huge growth in the LNG markets is expected in middle eastern countries as well as in Africa. There is currently strong growth in liquefaction capacity in most regions. However, many proposed LNG terminals will not proceed due to opposition on the west coast of North America. It is also expected that natural gas liquids (NGL) delivered to Alberta from the Mackenzie Valley Gas project are expected to be used by the heavy oil industry. Canadian crude supplies are expected to grow to nearly 4 million barrels per day by 2015. The impacts of Alaska and Mackenzie Valley gas projects on western NGL markets and the petrochemicals industry were reviewed. It was concluded that major investments in supply and infrastructure are need in order to develop Arctic gas, as LNG is likely to be the largest source of incremental supply. tabs., figs

  5. Liberalising the European natural gas market

    International Nuclear Information System (INIS)

    Mulder, M.

    2002-01-01

    Europe's natural gas market is changing radically. The several national markets dominated by monopolistic suppliers are integrating into one European market in which production and trade are subject to competition, while transport through the networks will be unbundled and placed under regulatory influence. What will be the consequences of these changes on natural gas prices, supply security and the environment?

  6. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  7. Electricity/natural gas competition in Quebec

    International Nuclear Information System (INIS)

    Bernard, J.-T.

    1992-01-01

    The evolution of energy market shares (electricity, natural gas and oil products) in Quebec's residential and commercial sectors in the 1980s shows that energy source relative prices have influenced consumer behavior as expected. A set of comparisons from space and water heating markets in these sectors with regard to prices paid by consumers and costs incurred by society in general is presented. For the residential sector, it is seen that consumers pay only a fraction of the cost for electric space and water heating; the same service could be provided at smaller cost by natural gas. For the commercial sector, the electricity and natural gas tariffs convey the appropriate message with respect to the cost incurred in providing the service. 6 refs., 7 tabs

  8. Dynamic reciprocity in bio-inspired supramolecular materials

    NARCIS (Netherlands)

    Bastings, M.M.C.

    2012-01-01

    Dynamic reciprocity, the spatio-temporal bidirectional process between evolving partners in a functional system is not only found in nature, but also applies to supramolecularly assembling architectures. In this thesis, the focus was on the understanding of nature-inspired supramolecular

  9. Natural gas as raw material for industrial development

    International Nuclear Information System (INIS)

    Kvisle, Steinar

    2006-01-01

    Industrial development based on natural gas has broad, industrial implications. Norway has a vital industry based on natural gas as raw material, here under Ormen Lange, Snoehvit LNG, Tjeldbergodden and Petrochemical Grenland. The petrochemical industry has challenges, e.g. the cost of raw materials and energy, localization related to the markets, and recruitment, but considerable investments are made in the sector. The Northern areas in Norway may have special challenges related to bringing the product to the market. Solutions to this challenge are in LNG (liquid natural gas), GTL (gas to liquids), and GTO (gas to olefins)

  10. Sceneries and projections of demands of natural gas in Brazil; Cenario e projecoes das demandas de gas natural no pais

    Energy Technology Data Exchange (ETDEWEB)

    Chianca, Marcos Duilio de Oliveira; Marques, Ziney Dias [SENAI - Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Sistema FIRJAN

    2004-07-01

    Interest in Natural Gas in Brazil emerged in the second half of the twentieth century, against a background in which the global giants of the petroleum and gas industries stated that reserves within the country were not commercially viable. This scenario changed with the discovery of numerous oil and gas fields and resulted in the participation of numerous foreign companies bidding for exploration and production rights in the new fields established by ANP. Natural Gas has come to assume a new dimension with further recent discoveries in Santos, Espirito Santo, Sergipe and Urucu, with proven reserves in the order of 490 billion m3. This new dimension is reinforced by PETROBRAS's current strategic plan which considers investments in the order of 3.5 Billion U$ dollars for the production, processing and transport of Natural Gas and half a billion dollars for thermoelectric power stations. The use of Natural Gas in industries, in general, and in the generation of electricity will provide a strong push for the country's economy, substituting other sources of energy with the recognized advantages for production and reduced environmental impact. In this new era 24 gas distribution companies, widely distributed throughout Brazil, are also programming new investments to make best the use of Natural Gas for industry, commerce, for the residential sector and throughout all the national territory. (author)

  11. Sceneries and projections of demands of natural gas in Brazil; Cenario e projecoes das demandas de gas natural no pais

    Energy Technology Data Exchange (ETDEWEB)

    Chianca, Marcos Duilio de Oliveira; Marques, Ziney Dias [SENAI - Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Sistema FIRJAN

    2004-07-01

    Interest in Natural Gas in Brazil emerged in the second half of the twentieth century, against a background in which the global giants of the petroleum and gas industries stated that reserves within the country were not commercially viable. This scenario changed with the discovery of numerous oil and gas fields and resulted in the participation of numerous foreign companies bidding for exploration and production rights in the new fields established by ANP. Natural Gas has come to assume a new dimension with further recent discoveries in Santos, Espirito Santo, Sergipe and Urucu, with proven reserves in the order of 490 billion m3. This new dimension is reinforced by PETROBRAS's current strategic plan which considers investments in the order of 3.5 Billion U$ dollars for the production, processing and transport of Natural Gas and half a billion dollars for thermoelectric power stations. The use of Natural Gas in industries, in general, and in the generation of electricity will provide a strong push for the country's economy, substituting other sources of energy with the recognized advantages for production and reduced environmental impact. In this new era 24 gas distribution companies, widely distributed throughout Brazil, are also programming new investments to make best the use of Natural Gas for industry, commerce, for the residential sector and throughout all the national territory. (author)

  12. Securing growth markets for natural gas

    International Nuclear Information System (INIS)

    Evans, G.

    1999-01-01

    The Industry Development Strategy 2000-2005 (IDS) identifies the major growth markets for natural gas, as the industry readies itself for the challenges of the new millenium. An integral part of this process is to examine the key barriers to market expansion, and to devise strategies that both The Australian Gas Association (AGA) and the wider industry can pursue to underpin improvement in overall gas consumption. This is the task of the IDS which examines the opportunities confronting the industry over the next five year period. The significant growth prospects of the gas industry both in the short term (2000-2005) and long term (2005-2015) are indicated in two comprehensive and independent studies. The first, Australian Energy Market Developments and Projections to 2014-15, was released earlier this year by the Australian Bureau of Agricultural and Resource Economics (the ABARE Energy Report). The second, Natural Gas Consumption in Australia to 2015-Prospects by State, Industry and Sector, was commissioned by the AGA, and was completed by the National Institute of Economic and Industry Research in September 1999 (NIEIR Report). Both reports indicate that in terms of consumption levels, in the period up to 2015 the gas industry is forecast to more than double its current size. Natural gas is also projected to increase its primary energy share ranking from third to second place

  13. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  14. Determination of the real structure of artificial and natural opals on the basis of three-dimensional reconstructions of reciprocal space

    NARCIS (Netherlands)

    Eliseev, A.A.; Gorozhankin, D.F.; Napolskii, K.S.; Petukhov, A.V.; Sapoletova, N.A.; Vasilieva, A.V.; Grigoryeva, N.A.; Mistonov, A.A.; Belov, D.V.; Bouwman, W.G.; Kvashnina, K.; Chernyshov, D.Y.; Bosak, A.A.; Grigoriev, S.V.

    2009-01-01

    The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of

  15. A natural gas country halfway between Slochteren and the future

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    Thirty four years ago the natural gas field Slochteren in Groningen, Netherlands made the Netherlands into an outstanding natural gas country. Last summer, exactly half of the original 2680 trillion m 3 of natural gas has been extracted. According to the projections of the Dutch Gasunie the Dutch gas reserves will be about depleted after another thirty four years. To guarantee continuity of the natural gas supply the natural gas will have to become more expensive. Also considerable investments in storage capacity are needed. Comments and opinions of experts regarding the future of the Dutch natural gas market are presented. 2 figs., 14 ills

  16. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  17. Development of a natural Gas Systems Analysis Model (GSAM)

    International Nuclear Information System (INIS)

    Godec, M.; Haas, M.; Pepper, W.; Rose, J.

    1993-01-01

    Recent dramatic changes in natural gas markets have significant implications for the scope and direction of DOE's upstream as well as downstream natural gas R ampersand D. Open access transportation changes the way gas is bought and sold. The end of the gas deliverability surplus requires increased reserve development above recent levels. Increased gas demand for power generation and other new uses changes the overall demand picture in terms of volumes, locations and seasonality. DOE's Natural Gas Strategic Plan requires that its R ampersand D activities be evaluated for their ability to provide adequate supplies of reasonably priced gas. Potential R ampersand D projects are to be evaluated using a full fuel cycle, benefit-cost approach to estimate likely market impact as well as technical success. To assure R ampersand D projects are evaluated on a comparable basis, METC has undertaken the development of a comprehensive natural gas technology evaluation framework. Existing energy systems models lack the level of detail required to estimate the impact of specific upstream natural gas technologies across the known range of geological settings and likely market conditions. Gas Systems Analysis Model (GSAM) research during FY 1993 developed and implemented this comprehensive, consistent natural gas system evaluation framework. Rather than a isolated research activity, however, GSAM represents the integration of many prior and ongoing natural gas research efforts. When complete, it will incorporate the most current resource base description, reservoir modeling, technology characterization and other geologic and engineering aspects developed through recent METC and industry gas R ampersand D programs

  18. Direct reciprocity in structured populations.

    Science.gov (United States)

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  19. Plentiful natural gas headed for big growth in Mideast

    International Nuclear Information System (INIS)

    Hamid, S.H.; Aitani, A.M.

    1995-01-01

    Natural gas is increasingly becoming a major contributor in the industrial development of most Middle Eastern countries. Demand there will rise steeply in coming years. This is because of the abundant and growing natural gas resources in the region, the economic benefits of using local resources, as well as increased emphasis on a cleaner environment. Today, proved reserves of natural gas in the Middle East are 45 trillion cu meters (tcm), or 1,488 trillion cu ft (tcf). This is over 30% of the world's natural gas reserves. A table presents data on reserves and production of natural gas in the region. About 20% of this gross production is rein-injecting for oil field pressure maintenance, 13% is flared or vented, and 7% is accounted as losses. The remaining 60% represents consumption in power generation, water desalination, petrochemicals and fertilizers production, aluminum and copper smelting, and fuel for refineries and other industries. The use of natural gas in these various industries is discussed. Thirteen tables present data on gas consumption by country and sector, power generation capacity, major chemicals derived from natural gas, and petrochemical plant capacities

  20. Indicators of security of natural gas supply in Asia

    International Nuclear Information System (INIS)

    Cabalu, Helen

    2010-01-01

    Natural gas has become an increasingly valuable resource and a global commodity. The demand for it has significantly increased. Japan, Korea and Taiwan heavily rely on liquefied natural gas (LNG) imports for their gas supplies from Malaysia, Brunei, Indonesia, Australia and the Middle East. On the other hand, countries like Thailand and Singapore import gas via trans-border pipelines. Gas supply interruptions, volatile gas prices, transportation and distribution bottlenecks, and a growing reliance on imports over longer distances have renewed interest on gas security in Asia. This paper examines the relative vulnerability to natural gas supply disruptions of seven gas-importing countries in Asia for year 2008. Based on four indicators of security of gas supply, a composite gas supply security index is estimated as an overall indication of gas vulnerability for our sample countries. The results demonstrate that there are differences in the values of the overall indicator of gas vulnerability among countries and the assessment is useful in developing an effective strategy of natural gas supply security in countries in the Asian region. (author)

  1. Administration of the natural gas shortage in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Pluge, W [Koeln Univ. (Germany, F.R.). Inst. fuer Energiewirtschaft

    1978-05-01

    The natural gas deficit is basically a consequence of the price policy of the U.S. government which keeps the prices of natural gas transported from one state to another subject to a maximum-price regulation. In the course of this development, the U.S. natural gas market has been characterized by three different types of shortage since the early seventies. There are regional differences in the administration of the shortage. Compared to the alternatives the rationing plan of the Federal Energy Regulatory Commission (FERC) is the best solution from on overall economic point of view, but it is rather impracticable and hard to put through completely. Natural gas rationing in the USA did not prevent temporary production losses and unemployment due to shortage. If the maximum-price regulation policy for natural gas is continued, the supply deficit for this energy carrier will become even greater. If, as the National Energy Plan proposes, the maximum-price regulation for natural gas would also pertain to the intrastate market in the future, natural gas shortages would occur there, too.

  2. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  3. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  4. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    International Nuclear Information System (INIS)

    Hawkins, D.J.

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion

  5. Deregulation, market structure and gas prices in the Canadian Natural Gas Industry

    International Nuclear Information System (INIS)

    Uhler, R.S.

    1992-01-01

    During the course of the development of the natural gas industry in Canada, gas purchase and sales markets have evolved from being relatively free of regulation to being highly regulated and back again. Though pipeline transport charges were regulated, the pipeline companies, or their subsidiaries, owned the gas that they transported and price and other provisions of purchase and sales contracts were freely negotiated with the producers at one end and distributing utilities or industrial users at the other end. The Western Accord of 1985 set the process of deregulation of the Canadian natural gas industry in motion. On November 1, 1986, natural gas prices in interprovincial trade were deregulated in that domestic natural gas prices were to be freely negotiated. Although not stated explicitly, government policy is to permit export prices to be freely negotiated so long as they do not fall below domestic prices. The deregulation process has dramatically changed the relationship between buyers and sellers. Of particular importance is that deregulation has permitted companies to negotiate gas purchase contracts directly with producers with the pipeline company acting solely as a gas transporter. The purpose of this paper is to examine the forces that have led to shorter term contracts and to examine the likely effect of these contract terms on reservoir development investment incentives. 5 refs., 3 figs

  6. The changing roles of natural gas aggregators - a Pan-Alberta Gas perspective

    International Nuclear Information System (INIS)

    Field, D. L.

    1999-01-01

    Traditional roles played by the various forms of natural gas marketing entities (margin-marketers, aggregators, brokers) and the factors that influence a producer of natural gas to market its gas through one or more of these entities are the subject of this paper. The author also reviews current developments in the natural gas marketing industry, focusing on changes from the perspective of the gas aggregator.The most significant change has been the trend by aggregators to branch out to provi