WorldWideScience

Sample records for advanced natural-gas reciprocating

  1. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  2. Advanced Natural Gas Reciprocating Engines(s)

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James [Dresser, Inc., Addison, TX (United States)

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  3. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  4. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  5. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  6. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  7. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  8. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  9. Advanced exergetic analysis of five natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Vatani, Ali; Mehrpooya, Mehdi; Palizdar, Ali

    2014-01-01

    Highlights: • Advanced exergetic analysis was investigated for five LNG processes. • Avoidable/unavoidable and endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: Conventional exergy analysis cannot identify portion of inefficiencies which can be avoided. Also this analysis does not have ability to calculate a portion of exergy destruction which has been produced through performance of a component alone. In this study advanced exergetic analysis was performed for five mixed refrigerant LNG processes and four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) were calculated for the components with high inefficiencies. The results showed that portion of endogenous exergy destruction in the components is higher than the exogenous one. In fact interactions among the components do not affect the inefficiencies significantly. Also this analysis showed that structural optimization cannot be useful to decrease the overall process irreversibilities. In compressors high portion of the exergy destruction is related to the avoidable one, thus they have high potential to improve. But in multi stream heat exchangers and air coolers, unavoidable inefficiencies were higher than the other parts. Advanced exergetic analysis can identify the potentials and strategies to improve thermodynamic performance of energy intensive processes

  10. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  11. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  12. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-01-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  13. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  14. Natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, J W

    1967-08-01

    This report on the natural gas industry of Canada includes: composition and uses of natural gas, production statistics, exploration and development, reserve estimates, natural gas processing, transportation, and marketing. For the Canadian natural gas industry, 1966 was a year of moderate expansion in all phases, with a strong demand continuing for sulfur and liquid hydrocarbons produced as by-products of gas processing. Value of natural gas production increased to $199 million and ranked sixth in terms of value of mineral ouput in Canada. Currently, natural gas provides over 70% of Canada's energy requirements. Proved remaining marketable reserves are estimated to be in excess of a 29-yr supply.

  15. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  16. Natural Gas

    OpenAIRE

    Bakar, Wan Azelee Wan Abu; Ali, Rusmidah

    2010-01-01

    Natural gas fuel is a green fuel and becoming very demanding because it is environmental safe and clean. Furthermore, this fuel emits lower levels of potentially harmful by-products into the atmosphere. Most of the explored crude natural gas is of sour gas and yet, very viable and cost effective technology is still need to be developed. Above all, methanation technology is considered a future potential treatment method for converting the sour natural gas to sweet natural gas.

  17. Advanced model for expansion of natural gas distribution networks based on geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Garcia-Garrido, E.; Zorzano-Santamaria, P.; Zorzano-Alba, E. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering; Miranda, V.; Montneiro, C. [Porto Univ., Porto (Portugal). Faculty of Engineering]|[Inst. de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2005-07-01

    An advanced geographic information system (GIS) model of natural gas distribution networks was presented. The raster-based model was developed to evaluate costs associated with the expansion of electrical networks due to increased demand in the La Rioja region of Spain. The model was also used to evaluate costs associated with maintenance and amortization of the already existing distribution network. Expansion costs of the distribution network were modelled in various demand scenarios. The model also considered a variety of technical factors associated with pipeline length and topography. Soil and slope data from previous pipeline projects were used to estimate real costs per unit length of pipeline. It was concluded that results obtained by the model will be used by planners to select zones where expansion is economically feasible. 4 refs., 5 figs.

  18. Effect of advanced injection timing on the performance of natural gas ...

    Indian Academy of Sciences (India)

    Recent interest has centred on the use of natural gas in a diesel engine. Natural gas ... temperatures. Fuel was fed to the injector pump under gravity and the volumetric flow rate .... produce very erratic behaviour of the engine. The test results ...

  19. Uncanny natural gas advances change the game for EnCana

    International Nuclear Information System (INIS)

    Petkau, R.

    2010-01-01

    A combination of new technologies is now leading Canada's EnCana Corporation to increase its investment in natural gas production. The corporation recently split itself into 2 companies, with Cenovus Energy taking the heavy oil assets, while the new EnCana is keeping its unconventional gas operations in northeast British Columbia (BC), Alberta, Wyoming, Colorado, Texas, and Louisiana. The division will allow EnCana to focus on becoming the best and lowest-cost producers of natural gas in North America. EnCana believes that long-term gas prices will increase over time. Four of its 8 natural gas key resources are located in Canada. The company is now producing gas from coalbed methane resources in south central Alberta, as well as from the Montney, Cadomin, and Doig geological formations. New hydraulic fracturing and horizontal drilling technologies have enabled the company to provide an estimated 100 years of gas supply in North America. EnCana has also adopted the use of various new technologies that reduce the surface disturbances and environmental impacts associated with drilling. It is hoped that EnCana's production methods will help to reduce imports of natural gas from other countries. 4 figs.

  20. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    Science.gov (United States)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  1. Advancing Knowledge on Fugitive Natural Gas from Energy Resource Development at a Controlled Release Field Observatory

    Science.gov (United States)

    Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.

    2017-12-01

    Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted

  2. Natural Gas Multi-Year Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  3. Fiscal 2000 survey report. Feasibility study of reciprocative transportation system for carbon dioxide and natural gas utilizing gas hydrate; 2000 nendo gas hidrate wo riyosuru nisanka tanso to tennen gas no kogo yuso system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A reciprocative CO2/CH{sub 4} transportation system will constitute a foundation on which minor gas fields may be made good use of in the Asia-Pacific region. For the construction of such a system, a survey is conducted into key technologies of separating CO2 from combustion exhaust with the aid of the hydrate process, reciprocative CO2/CH{sub 4} transportation with hydrate acting as medium, and subsurface CO2 storage and its utilization in minor gas fields or the like. The contents of the survey and the results fall in six areas, which are (1) the states of greenhouse gas reduction and natural gas utilization, (2) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (3) CO2 separation from combustion exhaust with the aid of the hydrate process, (4) reciprocative CO2/CH{sub 4} transportation with hydrate acing as medium, (5) subsurface CO2 storage and its utilization in minor gas fields, and (6) the establishment of a reciprocative CO2/CH{sub 4} transportation system and the evaluation of its cost performance. (NEDO)

  4. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  5. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  6. Natural gas trends

    International Nuclear Information System (INIS)

    Anderson, A.

    1991-01-01

    This book provides data on many facets of the natural gas industry. Topics include: Canadian, Mexican; US natural gas reserves and production; Mexican and US natural gas consumption; market conditions for natural gas in the US; and Canadian natural gas exports

  7. Natural gas technology

    International Nuclear Information System (INIS)

    Todaro, J.M.; Herbert, J.H.

    1997-01-01

    This presentation is devoted to a discussion regarding current and planned US fossil energy research and development for fiscal years 1996, 1997 and 1998. The principal focus of research in the immediate future will be: clean coal fuels, natural gas and oil exploration and production, especially reservoir life extension, advanced drilling completion and stimulation systems, advanced diagnostics and imaging systems, environmental compliance in technology development, regulatory streamlining and risk assessment. Program goals to 2010 were summarized as: increasing domestic oil and gas recovery; increasing recoverable reserves; decreasing cumulative industry environmental compliance costs; increasing revenues to the federal government; saving jobs in the U.S

  8. Natural gas in India

    International Nuclear Information System (INIS)

    Lefevre, Thierry; Todoc, Jessie L.

    1999-11-01

    Contains Executive Summary and Chapters on: Country background; Overview of the energy sector; Natural gas supply; Natural gas infrastructure; Natural gas infrastructure; Natural gas demand; Outlook-government policy reform and industry development, and Appendices on Global and regional energy and gas trends; Overview of India's investment policy, incentives and regulation; The ENRON Dabhol power project. (Author)

  9. Natural gas monthly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  10. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  11. The influence of the reciprocal hip joint link in the advanced reciprocating gait orthosis on standing performance in paraplegia

    NARCIS (Netherlands)

    Baardman, G.; IJzerman, Maarten Joost; Hermens, Hermanus J.; Veltink, Petrus H.; Boom, H.B.K.; Zilvold, G.; Zilvold, G.

    1997-01-01

    The effect of reciprocally linking the hip hinges of a hip-knee-ankle-foot orthosis on standing performance was studied in a comparative trial of the Advanced Reciprocating Gait Orthosis (ARGO) and an ARGO in which the Bowden cable was removed (A_GO). Six male subjects with spinal cord injury (SCI)

  12. Natural gas annual 1995

    International Nuclear Information System (INIS)

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level

  13. Natural gas annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1993 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition from 1989 to 1993 are given for each Census Division and each State. Annual historical data are shown at the national level

  14. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1991 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. Tables summarizing natural gas supply and disposition form 1987 to 1991 are given for each Census Division and each State. Annual historical data are shown at the national level

  15. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities

  16. Natural gas annual 1991

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Annual 1991 provides information on the supply and disposition of natural gas to a wide audience including industry, consumers Federal and State agencies, and education institutions. This report, the Natural Gas Annual 1991 Supplement: Company Profiles, presents a detailed profile of selected companies

  17. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  18. Natural gas marketing II

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing

  19. Project and implementation of advanced controls in a natural gas reformation unit; Projeto e implementacao de controles avancados em unidade de reforma de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Andreoni, Bruno [Andreoni Servicos de Engenharia Ltda., Rio de Janeiro, RJ (Brazil); Bueno, Roberto Galvao [Prosint S.A., XX (Brazil); Cruz, Luiz Alfredo A [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    1993-12-31

    This paper presents an effective implementation of advanced controls using a DCS previously loaded with conventional controls only. The advanced control system for a multiple fuel natural gas reform furnace consists of material and energy on-line balances, multivariable feedback trims, dynamic compensations and adaptive controls. The system performed well without an analyzer despite wide variations in fuel composition. A few items were implemented to improve the system after startup of the original strategies. All implementations were made possible through great involvement of plant personnel, aided by a consulting firm. The system provided tangible benefits and adequate return on the investment. (author)

  20. Natural gas annual 1997

    International Nuclear Information System (INIS)

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs

  1. Natural gas annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

  2. Natural gas outlook

    International Nuclear Information System (INIS)

    Molyneaux, M.P.

    1998-01-01

    An overview of natural gas markets in Canada and in the United States was provided. The major factors that determine the direction of natural gas prices were depicted graphically. Price volatility has decreased in recent months. As expected, April through November total energy consumption reached historically high levels. Demand for natural gas during the summer of 1997 was not as strong as anticipated. Nuclear energy appears to be on the slippery slope, with natural gas-driven electricity projects to fill the void. Hydroelectricity had a strong showing in 1997. Prospects are less bright for 1998 due to above average temperatures. Canadian natural gas export capacity has increased 5.5 times between 1986 and estimated 1999 levels. Despite this, in 1997, deliveries to the United States were marginally behind expectations. Natural gas consumption, comparative fuel prices, natural gas drilling activity, natural gas storage capacity, actual storage by region, and average weekly spot natural gas prices, for both the U. S. and Canada, were also provided. With regard to Canada, it was suggested that Canadian producers are well positioned for a significant increase in their price realization mostly because of the increase in Canada's export capacity in 1997 (+175 Mmcf/d), 1998 (1,060 Mmcf/d) and potentially in 1999 or 2000, via the Alliance Pipeline project. Nevertheless, with current production projections it appears next to impossible to fill the 10.9 Bcf/d of export capacity that will be potentially in place by the end of 1999. tabs., figs

  3. European natural gas

    International Nuclear Information System (INIS)

    Thackeray, Fred

    1999-11-01

    Contains Executive Summary and Chapters on: Main issues; Natural gas consumption and supply: statistics and key features of individual countries; Sectoral natural gas consumption; Indigenous production; Imports; Prices and taxes; The spot market: The interconnector; Forecasts of production and consumption and contracted imports; Progress of markets liberalisation; Effects of environmentalist developments; Transmission networks and storage; Some principal players. (Author)

  4. Growing natural gas usage

    International Nuclear Information System (INIS)

    Saarni, T.

    1996-01-01

    Finnish natural gas usage topped the 3.3 billion cubic metre mark last year, up 3.6 % on the 1994 figure. Growth has increased now for 12 years in a row. Thanks to offtake by large individual users, the pipeline network has been expanded from South-East Finland to the Greater Helsinki area and central southern Finland. Natural gas plays a much larger role in this region than the 10 % accounted for by natural gas nationally would indicate. The growth in the share of Finland's energy use accounted for by natural gas has served to broaden the country's energy supply base. Natural gas has replaced coal and oil, which has considerably reduced the level of emissions resulting form energy generation

  5. Natural gas in Mexico

    International Nuclear Information System (INIS)

    Ramirez, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which focused on various aspects of the natural gas industry in Mexico. Some of the viewgraphs depicted statistics from 1998 regarding natural gas throughput from various companies in North America, natural gas reserves around the world, and natural gas reserves in Mexico. Other viewgraphs depicted associated and non-associated natural gas production from 1988 to 1998 in million cubic feet per day. The Burgos Basin and the Cantarell Basin gas production from 1997 to 2004 was also depicted. Other viewgraphs were entitled: (1) gas processing infrastructure for 1999, (2) cryogenic plant at Cd. PEMEX, (3) average annual growth of dry natural gas production for 1997-2004 is estimated at 5.2 per cent, (4) gas flows for December 1998, (5) PGPB- interconnect points, (6) U.S. Mexico gas trade for 1994-1998, (7) PGPB's interconnect projects with U.S., and (8) natural gas storage areas. Technological innovations in the industry include more efficient gas turbines which allow for cogeneration, heat recovery steam generators which reduce pollutant emissions by 21 per cent, cold boxes which increase heat transfer efficiency, and lateral reboilers which reduce energy consumption and total costs. A pie chart depicting natural gas demand by sector shows that natural gas for power generation will increase from 16 per cent in 1997 to 31 per cent in 2004. The opportunities for cogeneration projects were also reviewed. The Comision Federal de Electricidad and independent power producers represent the largest opportunity. The 1997-2001 investment program proposes an 85 per cent sulphur dioxide emission reduction compared to 1997 levels. This presentation also noted that during the 1998-2001 period, total ethane production will grow by 58 tbd. 31 figs

  6. Natural Gas Acquisition Program

    Data.gov (United States)

    General Services Administration — The "NGAP" system is a web based application which serves NGAP GSA users for tracking information details for various natural gas supply chain elements like Agency,...

  7. Natural gas pricing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    Natural gas pricing is the heart and soul of the gas business. Price specifically affects every phase of the industry. Too low a price will result in short supplies as seen in the mid-1970s when natural gas was scarce and in tight supply. To fully understand the pricing of this energy commodity, it is important to understand the total energy picture. In addition, the effect and impact of world and US economies, and economics in general are crucial to understanding natural gas pricing. The purpose of this presentation will be to show the parameters going into US natural gas pricing including the influence of the many outside industry factors like crude oil and coal pricing, market drivers pushing the gas industry, supply/demand parameters, risk management for buyers and sellers, and other elements involved in pricing analysis

  8. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  9. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Chauveron, S. de

    1996-01-01

    This article presents compressed natural gas for vehicles (CNG), which can provide considerable advantages both as an alternative fuel and as a clean fuel. These assets are not only economic but also technical. The first part deals with what is at stake in developing natural gas as a motor fuel. The first countries to use CNG were those with natural gas resources in their subsoil. Today, with a large number of countries having to cope with growing concern about increasing urban pollution, natural gas is also seen as a clean fuel that can help cut vehicle pollutant emissions dramatically. In the second part a brief technical descriptions is given of CNG stations and vehicles, with the aim of acquainting the reader with some of CNG's specific technical features as compared to gasoline and diesel oil. Here CNG technologies are seen to be very close to the more conventional ones. (author)

  10. Natural gas benefits

    International Nuclear Information System (INIS)

    1999-01-01

    The General Auditor in the Netherlands studied the natural gas policy in the Netherlands, as has been executed in the past decades, in the period 1997-1999. The purpose of the study is to inform the Dutch parliament on the planning and the backgrounds of the natural gas policy and on the policy risks with respect to the benefits for the Dutch State, taking into account the developments in the policy environment. The final conclusion is that the proposed liberalization of the national natural gas market will result in a considerable deprivation of income for the State in case the benefit policy is not adjusted. This report includes a reaction of the Dutch Minister of Economic Affairs and an afterword of the General Auditor. In the appendix an outline is given of the natural gas policy

  11. Natural Gas Market Hubs

    Data.gov (United States)

    Department of Homeland Security — A hub is a physical transfer point for natural gas where several pipelines are connected. A market center is a hub where the operator offers services that facilitate...

  12. More natural gas

    International Nuclear Information System (INIS)

    Leprince, P.; Valais, M.

    1993-01-01

    This paper reports that large resources and growing markets are the salient prospects of natural gas for the coming decades. The greater impact of natural gas on the worldwide energy market can become a reality if several scientific disciplines can be mobilized in order to succeed in cutting production costs. Modeling, mechanics of complex fluids, and physical chemistry of interfaces are basic disciplines for understanding and mastering the gas processing technologies

  13. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  14. Natural gas prices

    International Nuclear Information System (INIS)

    Johnson, W.A.

    1990-01-01

    Since the 1970s, many electric utilities and industrial boiler fuel users have invested in dual fuel use capability which has allowed them to choose between natural gas, residual fuel oil, and in some instances, coal as boiler fuels. The immediate reason for this investment was the need for security of supply. Wellhead regulation of natural gas prices had resulted in shortages during the 1970s. Because many industrial users were given lowest priority in pipeline curtailments, these shortages affected most severely boiler fuel consumption of natural gas. In addition, foreign supply disruptions during the 1970s called into question the ready availability of oil. Many boiler fuel users of oil responded by increasing their ability to diversify to other sources of energy. Even though widespread investment in dual fuel use capability by boiler fuel users was initially motivated by a need for security of supply, perhaps the most important consequence of this investment was greater substitutability between natural gas and resid and a more competitive boiler fuel market. By the early 1980s, most boiler fuel users were able to switch from one fuel to another and often did for savings measured in pennies per MMBtu. Boiler fuel consumption became the marginal use of both natural gas and resid, with coal a looming threat on the horizon to both fuels

  15. Natural gas purchasing

    International Nuclear Information System (INIS)

    Freedenthal, C.

    1993-01-01

    In recent years, natural gas has gained new momentum because of changes in marketing and regulations. The gas industry has always received an inordinate amount of regulatory control starting at the well head where the gas is produced to the consuming burner tip. Regulations have drastically impacted the availability of gas. Changes in the marketing and regulations have made the natural gas market sensitive at the point of production, the well head. Now, with plentiful supply and ease of transportation to bring the gas from the producing fields to the consumer, natural gas markets are taking advantage of the changed conditions. At the same time, new markets are developing to take advantage of the changes. This section shows consumers, especially the energy planners for large buyers of fuel, the advantages, sources and new methods of securing natural gas supplies. Background on how natural gas is produced and marketed are given. This section lists marketing sources, regulatory agencies and information groups available to help buyers and consumers of this important fuel for US industries and residences. 7 figs., 8 tabs

  16. Natural gas deregulation

    International Nuclear Information System (INIS)

    Ronchi, M.

    1993-01-01

    With the aim of establishing realistic options for deregulation in the natural gas industry, this paper first considers the structural evolution of this industry and evidences how it differs from the petroleum industry with which it exhibits some essential characteristics in common. This comparison is made in order to stress that, contrary to popular belief, that which is without doubt good for the petroleum industry is not necessarily so also for the natural gas industry. The paper concludes with separate analyses of the natural gas markets in the principal industrialized countries. Arguments are provided to show that the 'soft' deregulation option for the natural gas industry is not feasible, and that 'total' deregulation instead, backed by the passing of a suitable package of anti-trust laws 'unbundling' the industry's four major activities, i.e., production, storage, primary and secondary distribution, is the preferable option. The old concept of guaranteed supplies for minor users of natural gas should give way to the laws of supply and demand governing inter-fuel competition ensured through the strict supervision of vigilance committees

  17. Natural gas - Market and environmental needs

    International Nuclear Information System (INIS)

    Beyer, R.

    1995-01-01

    The paper discusses the natural gas market and environmental needs with topics as follow: Importance of the North Sea region; sustainable development on the balance between economic use and environmental protection; role of natural gas in meeting energy demand: market needs, technologies, environmental aspects. According to the author, natural gas causes minimal pollutants because it contains virtually no pollutant-forming substances such as heavy metals, sulphur, chlorine or fluorine. No solid residues exist in the combustion space such as ash, slag, dust or soot, and the formation of thermal NO x through natural gas combustion has decreased to a very large extent as a result of technical advances. Natural gas can make a significant contribution towards reducing CO 2 emissions due to its very high hydrogen content. 12 figs

  18. Natural Gas Regulation

    International Nuclear Information System (INIS)

    1995-01-01

    The regulation of Natural Gas. Natural gas Regulation clarifies and consolidates the legal and institutional framework for development of the industry through six principal elements: 1) Establishment of a vision of the industry. 2) Development of regulatory objectives. 3) Determination of relationships among industry participants. 4) Clear specification of the role of PEMEX in the industry. 5) Definition of the functions of the Regulatory authority. 6) Creation of a transition regime. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implement the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  19. Canadian natural gas

    International Nuclear Information System (INIS)

    Lucas, D.A.

    1991-01-01

    Canada's natural gas industry enjoys a quiet confidence as it looks ahead to the 1990s. In this paper, the author explains why, despite some critical uncertainties, the optimism endures. Reviewing the current conditions of supply, production, consumption, pipelines, and pipeline expansion plans, the author contends that the New World of the 1990s will belong to natural gas. The author's assessment of natural gas markets proceeds far beyond the borders of Canada. The author examines the determinants of gas prices throughout North America and he identifies the one force that promises to seize almost complete control of gas prices throughout the continent. While the analysis points out the attributes of this new pricing regime, it also names the obstacles that could prevent this emerging mechanism from assuming its anticipated position

  20. Natural gas's hottest spot

    International Nuclear Information System (INIS)

    Peterson, T.

    1993-01-01

    This paper reviews the growing power and economic strength of Enron Corp., a natural gas distributor and exploration company. The paper reviews the policy of the company to exploit deregulation at home and privatization of all sorts of energy companies abroad. Enron is actively building its own power plants in the US and has successfully boosted their profits by 20 percent in what was considered a flat natural gas market. The paper goes on to discuss the company's view of the new energy tax and how it should benefit natural gas companies as a whole. Finally the paper reviews the contracting procedures of the company to secure long-term fixed price contracts in a volatile market which precludes most companies from taking the risk

  1. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  2. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sreenath [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Muni [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Sekar, Raj [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  3. The natural gas market

    International Nuclear Information System (INIS)

    Lagrasta, F.; Kaminski, V.; Prevatt, R.

    1999-01-01

    This chapter presents a brief history of the natural gas market highlighting the changes in the gas market and examining risk management in practice detailing the types of price risks, and the use of hedging using forwards and swaps. Options to manage risk are identified, and the role of risk management in financing, the role of the intermediary, and the market outlook are discussed. Panels describing the market structure, storage and natural gas risk management, the art of risk management, the winter 1995-96 basis blowout, spark spreads, the UK gas market and Europe, and weather derivatives are presented

  4. Natural gas for vehicles

    International Nuclear Information System (INIS)

    Tissot-Favre, V.; Sudour, D.; Binutti, M.; Zanetta, P.; Rieussec, J.L.

    2005-01-01

    As a true alternative to oil products, and environment friendly fuel, Natural Gas for Vehicles complies with requirements for sustainable development. In addition, it is part of the European Union policy which underlines the importance of energy diversification through alternative fuels. This workshop will look into the current offer to the public transport segment, waste collection vehicles, and commercial vehicle fleets. Actions taken to spread the use of natural gas to all types of cars will also be covered. This article gathers 5 presentations about this topic given at the gas conference

  5. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  6. Natural gas industry regulations

    International Nuclear Information System (INIS)

    Clo, A.

    1999-01-01

    In the reception of the EU Directive on the internal gas market, it is quite necessary to avoid the mistakes already made in the case of electricity. A possible cause is there suggested which may help rearrange the natural gas industry and market in Italy. It's four points are: general interests, national peculiarities, public policies, regulatory framework [it

  7. Venezuela natural gas outlook

    International Nuclear Information System (INIS)

    Silva, P.

    1991-01-01

    This paper reports on the natural gas outlook for Venezuela. First of all, it is very important to remember that in the last few years we have had frequent and unforeseen changes in the energy, ecological, geopolitical and economical fields which explain why all the projections of demand and prices for hydrocarbons and their products have failed to predict what later would happen in the market. Natural gas, with its recognized advantages over other traditional competitors such as oil, coal and nuclear energy, is identified as the component that is acquiring more weight in the energy equation, with a strengthening projection, not only as a resource that covers demand but as a key element in the international energy business. In fact, natural gas satisfies 21% of overall worldwide energy consumption, with an annual increase of 2.7% over the last few years, which is higher than the global energy growth of other fossil fuels. This tendency, which dates from the beginning of the 1980's, will continue with a possibility of increasing over the coming years. Under a foreseeable scenario, it is estimated that worldwide use of natural gas will increase 40% over the next 10 years and 75% on a longer term. Specifically for liquid methane (LNG), use should increase 60% during this last decade. The LPG increase should be moderate due to the limited demand until 1995 and to the stable trends that will continue its use until the end of this century

  8. Natural gas annual 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies

  9. Liquefied Natural Gas for Trucks and Buses

    International Nuclear Information System (INIS)

    James Wegrzyn; Michael Gurevich

    2000-01-01

    Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems

  10. Natural gas: an environmental-friendly solution?

    International Nuclear Information System (INIS)

    Vermeire, J.

    1994-01-01

    Since 1970, the portion of natural gas in energy consumption in Western-Europe has grown by 6 percent per year on the average. About 20 percent of the energy demand in Western-Europe is now covered by natural gas. It is forecasted that this growth will continue at a rate of 2 percent per year until 2010. The natural gas consumption will increase from 325 billion cubic metres in 1993 to 450 billion cubic metres per year in 2010. For the coming 10 to 15 years, the natural gas demand is covered by long-term contracts with gas producing countries. From 2010 on, additional contracts, covering 70 to 120 billion cubic metres per year are required. A shift in geographic distribution of countries from which natural gas will be imported by Western-European countries is expected, which implies high investments and additional costs for transport and distribution of natural gas. Due to its qualities with respect to environmental impact, yield, availability, and advanced technology, natural gas is the energy vector of the 21 first century. (A.S.)

  11. Petroleum and natural gas

    Energy Technology Data Exchange (ETDEWEB)

    060,

    1965-02-01

    Substantial increases in demand for Canadian petroleum and natural gas in both domestic and export markets resulted in another good year throughout the main sectors of the industry. In February, production averaged 850,000 bpd, or about 8% more than 1963 output of crude oil and natural gas liquids. Construction began on the first full scale plant for the extraction of oil from the Athabasca bituminous sands. In 1964, exploratory and development drilling in western Canada increased 10% from the previous year. A total of 15.5 million ft was drilled, the largest since the record drilling year of 1956. The main oil field development areas in Alberta were the House Mountain, Deer Mountain and Goose River Fields, and the Bantry-Taber heavy oil region in southeastern Alberta. Oil reserves were increased substantially by waterflood pressure maintenance projects in many of the older oil fields. The largest oil accumulation discovered in 1964 was the Syvia-Honda Field in the Devonian Gilwood sandstone in N.-central Alberta. Two graphs illustrate the crude petroleum in Canada in millions of barrels from 1940 to 1964, and natural gas in Canada in billions of cu ft from 1950 to 1964. The outlook for the industry in 1965 is good.

  12. Natural gas monthly, April 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-06

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. There are two feature articles in this issue: Natural gas 1998: Issues and trends, Executive summary; and Special report: Natural gas 1998: A preliminary summary. 6 figs., 28 tabs.

  13. Oil and natural gas

    International Nuclear Information System (INIS)

    Riddell, C.H.

    1993-01-01

    The natural gas industry and market prospects in Canada are reviewed from a producer's point of view. In the first eight months of 1993, $2.3 billion in new equity was raised for natural gas exploration and production, compared to $900 million in 1991 and $1.2 billion in 1992. The number of wells drilled in the western Canada basin is expected to reach 8,000-9,000 in 1993, up from 5,600 in 1992, and Canadian producers' share of the North American natural gas market will probably reach 20% in 1993, up from 13% in 1986. Potential and proved gas supply in North America is ca 750 trillion ft 3 , of which ca 30% is in Canada. Factors affecting gas producers in Canada are the deregulated nature of the market, low costs for finding gas (finding costs in the western Canada basin are the lowest of any basin in North America), and the coming into balance of gas supply and demand. The former gas surplus has been reduced by expanding markets and by low prices which reduced the incentive to find new reserves. This surplus is largely gone, and prices have started rising although they are still lower than the pre-deregulation prices. Progress is continuing toward an integrated North American gas market in which a number of market hubs allow easy gas trading between producers and consumers. Commodity exchanges for hedging gas prices are beginning operation and electronic trading of gas contracts and pipeline capacity will also become a reality. 4 figs

  14. Liquid Natural Gas

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    After a brief introduction on the origins of the Liquid Natural Gas (LNG) industry the production and transportation of LNG are discussed. Special attention is paid to the importance of the safety aspect during every activity or handling of LNG. Next the most important trade flows for LNG are dealt with. Two zones can be distinguished: the western part of the Pacific and the Atlantic basin. Subsequently the main aspects of a LNG-project are mentioned, as well as the success factors. Finally the prospects for the LNG-industry are reviewed. 11 figs

  15. Western Australian natural gas

    International Nuclear Information System (INIS)

    Harman, Frank

    1994-01-01

    Western Australia has 80% of Australia's natural gas resources. These are currently exploited to supply the Western Australian market and LNG to Japan. Growth in the market is dependent on limited prospects for power generation and mineral resource processing. Future exploitation of gas resources will require new export LNG markets and/or the installations of a transcontinental pipeline to eastern Australia. The transcontinental option should only be considered after other options for energy supply in eastern Australia are eliminated. Competition to meet market growth in North-east Asia will be considerable and Australia lacks the policies to underpin future LNG capacity. (author)

  16. Natural gas monthly, October 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  17. Natural gas monthly, May 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  18. Natural gas monthly, June 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. 6 figs., 27 tabs.

  19. Natural gas monthly, August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  20. Natural gas monthly, November 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground state data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information

  1. Natural gas for vehicles (NGV)

    International Nuclear Information System (INIS)

    Prieur, A.

    2006-01-01

    Following a decade-long upsurge in the use of natural gas in the energy sector (heating and especially electricity), new outlets for natural gas are being developed in the transport sector. For countries endowed with substantial local resources, development in this sector can help reduce oil dependence. In addition, natural gas is often used to reduce pollution, particularly in cities. (author)

  2. US crude oil, natural gas, and natural gas liquids reserves

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1991, as well as production volumes for the United States, and selected States and State subdivisions for the year 1991. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1991 is also presented

  3. Natural gas; Erdgas

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Frank [DVGW-Forschungsstelle am KIT, Karlsruhe (Germany); Groeschl, Frank; Wetzel, Uwe [DVGW, Bonn (Germany); Heikrodt, Klaus [Hochschule Ostwestfalen-Lippe, Lemgo (Germany); Krause, Hartmut [DBI Gastechnologisches Institut, An-Institut der TU Bergakademie, Freiberg (Germany); Beestermoeller, Christina; Witschen, Bernhard [Team Consult G.P.E. GmbH, Berlin (Germany); Albus, Rolf; Burmeister, Frank [Gas- und Waerme-Institut Essen e.V., Essen (Germany)

    2015-07-01

    The reform of the EEG in Germany, a positive global development in natural gas, the decline in oil prices, questions about the security of supply in Europe, and not least the effect of the decision by E.on at the end of 2014 have moved the gas industry. Gas has the lowest CO{sub 2} emissions of fossil fuels. Flexibility, storability, useful for networks and the diversity in the application make it an ideal partner for renewable energy. However, these complementary properties are valued at wind and photovoltaics internationally and nationally different. The situation in the gas power plants remains tense. LNG - liquefied natural gas - is on the rise. [German] Die Reform des EEG in Deutschland, eine positive Entwicklung beim Gas weltweit, der Verfall der Oelpreises, Fragen zur Versorgungssicherheit in Europa und nicht zuletzt die Auswirkung der Entscheidung von E.on Ende 2014 haben die Gaswirtschaft bewegt. Gas weist die geringsten CO{sub 2}-Emissioen der fossilen Energietraeger auf. Flexibilitaet, Speicherbarkeit, Netzdienlichkeit sowie die Vielfalt in der Anwendung machen es zum idealen Partner der erneuerbaren Energien. Allerdings werden diese komplementaeren Eigenschaften zu Wind und Photovoltaik international und national unterschiedlich bewertet. Die Lage bei den Gaskraftwerken bleibt weiter angespannt. LNG - verfluessigtes Erdgas - ist auf dem Vormarsch.

  4. Role of natural gas in meeting an electric sector emissions ...

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  5. Prediction of natural gas consumption

    International Nuclear Information System (INIS)

    Zhang, R.L.; Walton, D.J.; Hoskins, W.D.

    1993-01-01

    Distributors of natural gas need to predict future consumption in order to purchase a sufficient supply on contract. Distributors that offer their customers equal payment plans need to predict the consumption of each customer 12 months in advance. Estimates of previous consumption are often used for months when meters are inaccessible, or bimonthly-read meters. Existing methods of predicting natural gas consumption, and a proposed new method for each local region are discussed. The proposed model distinguishes the consumption load factors from summer to other seasons by attempting to adjust them by introducing two parameters. The problem is then reduced to a quadratic programming problem. However, since it is not necessary to use both parameters simultaneously, the problem can be solved with a simple iterative procedure. Results show that the new model can improve the two-equation model to a certain scale. The adjustment to heat load factor can reduce the error of prediction markedly while that to base load factor influences the error marginally. 3 refs., 11 figs., 2 tabs

  6. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  7. Natural gas monthly, August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-24

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. This month`s feature article is on US Natural Gas Imports and Exports 1994.

  8. Natural gas monthly, August 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-25

    The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.

  9. Natural gas vehicles in Italy

    International Nuclear Information System (INIS)

    Mariani, F.

    1991-01-01

    The technology of compressed natural gas (CNG) for road vehicles originated 50 years ago in Italy, always able to adapt itself to changes in energy supply and demand situations and national assets. Now, due to the public's growing concern for air pollution abatement and recent national energy policies calling for energy diversification, the commercialization of natural gas road vehicles is receiving new momentum. However, proper fuel taxation and an increased number of natural gas distribution stations are required to support this growing market potential. Operators of urban bus fleets stand to gain substantially from conversion to natural gas automotive fuels due to natural gas being a relatively cheap, clean alternative

  10. Natural gas monthly, May 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is ``Restructuring energy industries: Lessons from natural gas.`` 6 figs., 26 tabs.

  11. Natural gas monthly, June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article this month is the executive summary from Natural Gas 1994: Issues and Trends. 6 figs., 31 tabs.

  12. Natural gas : nirvana

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2001-01-01

    Despite completing 8,900 gas wells in year 2000, the deliverability of natural gas out of the Western Canadian Sedimentary Basin (WCSB) was stagnant which has left many analysts wondering whether the basin has reached its limit. It also leaves many wondering if gas producers will be able to meet the strong demand for natural gas in the future. Nearly all new electrical generation being built in the U.S. is gas-based due to strict new environmental standards limiting the growth in hydro and coal-powered generation. Any future coal plants will use gasification technology and combined cycle turbines. Combined cycle turbines developed by Boeing and Lockheed are more efficient than combustion turbines, making gas more competitive with fuel alternatives. The lack of growth in natural gas supply has left storage levels near record lows. Demand is expected to increase in 2001 by 3.2 per cent to 23 trillion cubic feet in the U.S. Longer term, major new reserves must be brought on stream to meet this demand. It was noted that the easy discoveries within the WCSB have been made. The new plays are smaller, more technically complex and expensive which suggests that more investment is needed in training geologists, geophysicists and petroleum engineers to find new reserves. The Canadian Energy Research Institute agrees that there is enough gas in Alberta and British Columbia to meet current demands but efforts must shift towards drilling in the foothills front and northwest regions of Alberta to increase deliverability. Brief notes on several gas finds by various oil and gas companies in the area were presented. The article also discussed the huge untapped potential of northern reserves. Analysts have noted 44 Tcf of proven reserve, with a potential of 165 Tcf. In addition, new pipelines from the Alaskan North Slope and the Mackenzie Delta could transport nearly 2 Tcf annually to market. Wells drilled by Chevron and Paramount at Fort Liard in 1999 initially flowed at rates up to

  13. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  14. Natural gas powered bus

    International Nuclear Information System (INIS)

    Ambuehl, D.; Fernandez, J.

    2003-01-01

    This report for the Swiss Federal Office of Energy presents the results of a project carried out by the Swiss Federal Institute of Technology in Zurich to evaluate the performance of a natural-gas-powered bus in comparison with two diesel buses. The report provides details on the vehicles, their routes and the results of interviews made with both passengers and drivers. Details of measurements made on fuel consumption and pollutant emissions are presented in tabular and graphical form, as are those made on noise emissions inside and outside the vehicles. The conclusions of the project are presented including economic aspects of using gas as a motor fuel. Also, the views of passengers, who were more concerned with comfort aspects, and drivers, who were more interested in technical aspects, are quoted

  15. OPEC and natural gas

    International Nuclear Information System (INIS)

    Samsam Bakhtiari, A.M.; Shahbudaghlou, F.

    1998-01-01

    This paper reviews the involvement of OPEC Member Countries in the natural gas industry in the past, present and future. It notes a tenfold increase in marketed production and a fourfold rise in re-injection since 1970. Collectively, Members now hold 41 per cent of the world's proven gas reserves and account for 20 per cent of exports. Individually, four of these countries hold position 2-5 in the world gas reserve rankings. Within OPEC, however, there remains an emphasis of oil over gas, not least because of oil's favourable position with regard to revenue-generation and profitability. As global demand continues on its upward growth curve in a more environmentally aware world, OPEC's gas horizons will widen. OPEC's strong reserve base will give its Members an undeniable role to play on the future global gas stage. However, these countries will give priority to domestic usage, particularly re-injection schemes

  16. Oil and natural gas

    International Nuclear Information System (INIS)

    Hamm, Keith

    1992-01-01

    The two major political events of 1991 produced a much less dramatic reaction in the global oil industry than might have been expected. The economic dislocation in the former USSR caused oil production to fall sharply but this was largely offset by a concurrent fall in demand. Within twelve months of the invasion of Kuwait, crude oil prices had returned to their pre-invasion level; there was no shortage of supply due to the ability of some producers to boost their output rapidly. Details are given of world oil production and developments in oil demand. Demand stagnated in 1991 due to mainly to the economic chaos in the former USSR and a slowdown in sales in the USA; this has produced problems for the future of the refining industry. By contrast, the outlook for the natural gas industry is much more buoyant. Most clean air or carbon emissions legislation is designed to promote the use of gas rather than other hydrocarbons. World gas production rose by 1.5% in 1991; details by production on a country by country basis are given. (UK)

  17. Repowering with natural gas

    International Nuclear Information System (INIS)

    Wilkinson, P.L.

    1992-01-01

    This chapter examines the concept of combined-cycle repowering with natural gas as one possible solution to the impending dilemma facing electric utilities - tight capacity margins in the 1990s and the inordinate expense of traditional powerplants. Combined-cycle repowering refers to the production of electricity through the integration of new and used equipment at an existing site, with the final equipment configuration resembling a new gas-fired combined-cycle unit (i.e., gas turbine, waste heat recovery unit and steam turbine/generator). Through the utilization of improved waste heat recovery and gas-fired equipment, repowering provides both additional capacity and increased generating efficiency. Three modes of repowering are considered: (1) peak turbine repowering refers to the addition of a steam turbine and heat recovery unit to an existing gas turbine, with the efficiency improvement allowing the unit to convert from peaking to baseload operation; (2) heat recovery repowering is the replacement of an old coal boiler with a gas turbine and heat recovery unit, leaving the existing steam turbine in place; and (3) boiler repowering, in which the exhaust from a new gas turbine is fed into an existing coal boiler, replacing existing forced-draft fans and air heaters. These three options are compared with the option of adding new coal-fired boilers on the basis of economics, energy efficiency and environmental impacts

  18. Turkey and natural gas

    International Nuclear Information System (INIS)

    Yardim, G.

    1992-01-01

    Turkey is a developing country with a population of 56 millions and approximately $ 2604 per capita income. Geographically she is located among the energy rich countries whereas almost half of her energy requirement is met by imports. Turkey is relatively well endowed with hydro-power and lignite resources, some limited amount of oil, gas and coal resources exist and there is significant geothermal potential in the country. Environmental issues are increasingly important consideration in energy policy decisions in the world. Energy production, transportation and use are contributing to environmental degradation to a certain extent. Protection of the environment and public health from pollution arising from energy production and consumption activities is one of the principles of Turkish national energy policy. In conjunction with this policy the 'Environment Law' was promulgated in 1983 and 'The Regulation on Protection of the Air Quality' in order to control all kinds of emissions in the form of soot, smoke, fines and particulate and to prevent the adverse impacts of the air pollution, was issued in October 1986. Policy of diversification of energy sources and the environmental issues which were explained above brought the natural gas usage into the energy scene in Turkey. 6 figs., 4 tabs

  19. Natural gas monthly, February 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-25

    The NGM highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. The NGM also features articles designed to assist readers in using and interpreting natural gas information.

  20. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  1. Who's afraid of natural gas?

    International Nuclear Information System (INIS)

    Patterson, W.

    1999-01-01

    Changes in our electricity systems provoked by natural gas power generation technology are paving the way for large-scale renewables use in the future. Natural gas and gas turbines are now such a cheap and easy option for electricity generation that they appear to cast a pall over renewables. The market share of gas-fired generation continues expanding inexorably. Its cost continues to fall, setting renewables an ever more demanding competitive target. Nevertheless, paradoxical though this may sound, natural gas is actually the natural ally of renewables. Despite the fierce competitive challenge it represents, natural gas may even be the most important single factor shaping a bright future for renewables. (author)

  2. Finland's leading natural gas company

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The ownership structure of Finland's leading natural gas company, Gasum, changed fundamentally in 1999, and the company is now no longer a subsidiary of Fortum Corporation. 'Our new strong and broad ownership base will enable us to develop the natural gas business and pipeline network in Finland in response to the requirements of our Finnish customers', says Antero Jaennes, Gasum's Chairman and CEO, who stresses that Gasum is committed to remaining the leading developer of the Finnish natural gas market and the number-one gas supplier. Natural gas usage in Finland in 1999 totalled 3.9 billion m 3 (38.7 TWh), unchanged from 1998. Natural gas accounted for 11% of Finland's total primary energy need, as it did in 1998. The proportion of natural gas used in district heating rose by 2% to 36%, and moved down 2% in power generation to 10%. Industry's use of natural gas fell 1% to 17%. 75% of natural gas was used in combined heat and power (CHP) generation in industry and district heating. In 2000, Gasum expects to sell 4 billion m 3 of natural gas (40 TWh)

  3. Challenges and opportunities await natural gas industry

    International Nuclear Information System (INIS)

    Mohasseb, S.

    1998-01-01

    During the last two decades, the natural gas industry has gone through drastic changes. On one hand, deregulation and customer choice have been introduced to the industry. On the other hand, technological advances have resulted in substantial growth of available gas resources. In short, deregulation coupled with increased availability of supply has changed the way market participants interact with each other and which avenues they take to become leaders. Many new opportunities for entry into the market have also been created. As a result, the tide of competition has not only turned against the financially strong giants of the past, but it has also turned against new entrants who are fast, flexible and market driven. Natural gas utilities companies have responded by improving their operational efficiencies through process re-engineering, organizational re-alignment, restructuring and strategic alliances or mergers. Deregulation of the electricity industry is expected to increase competitive pressures on the natural gas industry, thus causing even more of a decrease in natural gas prices. In the future, natural gas utilities must be able to improve their effectiveness by accurately forecasting demand and optimizing their own supply and delivery systems in such a way that costs are minimized without compromising the reliability of supply. The new frontier of competitiveness will ensure that structural changes in the industry are characterized by an effective management of the supply-demand relationship and the optimization of risks inherently a part of gas delivery

  4. Natural gas conversion. Part VI

    International Nuclear Information System (INIS)

    Iglesia, E.; Spivey, J.J.; Fleisch, T.H.

    2001-01-01

    This volume contains peer-reviewed manuscripts describing the scientific and technological advances presented at the 6th Natural Gas Conversion Symposium held in Alaska in June 2001. This symposium continues the tradition of excellence and the status as the premier technical meeting in this area established by previous meetings. The 6th Natural Gas Conversion Symposium is conducted under the overall direction of the Organizing Committee. The Program Committee was responsible for the review, selection, editing of most of the manuscripts included in this volume. A standing International Advisory Board has ensured the effective long-term planning and the continuity and technical excellence of these meetings. The titles of the contributions are: Impact of syngas generation technology selection on a GTL FPSO; Methane conversion via microwave plasma initiated by a metal initiator; Mechanism of carbon deposit/removal in methane dry reforming on supported metal catalysts; Catalyst-assisted oxidative dehydrogenation of light paraffins in short contact time reactors; Catalytic dehydrogenation of propane over a PtSn/SiO 2 catalyst with oxygen addition: selective oxidation of H2 in the presence of hydrocarbons; Hydroconversion of a mixture of long chain n-paraffins to middle distillate: effect of the operating parameters and products properties; Decomposition/reformation processes and CH4 combustion activity of PdO over Al2O3 supported catalysts for gas turbine applications; Lurgi's mega-methanol technology opens the door for a new era in down-stream applications;Expanding markets for GTL fuels and specialty products; Some critical issues in the analysis of partial oxidation reactions in monolith reactors

  5. North American Natural Gas Vision

    Science.gov (United States)

    2005-01-01

    hand sales of natural gas and LPG. 17 Decreto Legal, Diario Oficial , Noviembre 25, 1993. 37 Review Section 38 Figure 2. Mexican Natural Gas...California 500 Mexicali Baja California 29 Naco - Hermosillo Sonora 130 Nacozari de Garcia Sonora 85 Agua Prieta Sonora 173

  6. Natural gas monthly, July 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-03

    This report highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. A glossary is included. 7 figs., 33 tabs.

  7. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  8. Natural gas monthly, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This document highlights activities, events, and analysis of interest to the public and private sector associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  9. Bring money and natural gas

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The budding natural gas markets in East Europe attract a great deal of interest from natural gas industries in the Western countries. Dutch companies, institutions and the government, too, are active in this market. So far the results have not been spectacular. An analysis is made of the present situation and the Dutch approach

  10. Natural gas pipeline technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by

  11. Natural gas resources in Canada

    International Nuclear Information System (INIS)

    Meneley, R.A.

    2001-01-01

    Natural gas is an important component in many of the technologies aimed at reducing greenhouse gas emissions. In order to understand the role that natural gas can play, it is important to know how much may be present, where it is, when can it be accessed and at what cost. The Canadian Gas Potential Committee has completed its second report 'Natural Gas Potential in Canada - 2001' (CGPC, 2001). This comprehensive study of exploration plays in Canada addresses the two issues of 'how much may be present' and 'where is it'. The Report deals with both conventional gas and non-conventional gas. One hundred and seven Established Conventional Exploration Plays, where discoveries of gas exist, have been assessed in all of the sedimentary basins in Canada. In addition, where sufficient information was available, twelve Conceptual Exploration Plays, where no discoveries have been made, were assessed. Sixty-five other Conceptual Plays were described and qualitatively ranked. An experienced volunteer team of exploration professionals conducted assessments of undiscovered gas potential over a four-year period. The team used technical judgment, statistical techniques and a unique peer review process to make a comprehensive assessment of undiscovered gas potential and estimates of the size of individual undiscovered gas accumulations. The Committee assessed all gas in place in individual exploration plays. For Established Plays, estimates of Undiscovered Nominal Marketable Gas are based on the percentage of the gas in place that is marketable gas in the discovered pools in a play. Not all of the Nominal Marketable Gas will be available. Some underlies areas where exploration is not possible, such as parks, cities and other closed areas. Some will be held in gas pools that are too small to be economic and some of the pools will never be found. In some areas no production infrastructure will be available. Detailed studies of individual exploration plays and basins will be required

  12. Canadian natural gas price debate

    International Nuclear Information System (INIS)

    Wight, G.

    1998-01-01

    Sunoco Inc. is a subsidiary of Suncor Energy, one of Canada's largest integrated energy companies having total assets of $2.8 billion. As one of the major energy suppliers in the country, Sunoco Inc has a substantial stake in the emerging trends in the natural gas industry, including the Canadian natural gas price debate. Traditionally, natural gas prices have been determined by the number of pipeline expansions, weather, energy supply and demand, and storage levels. In addition to all these traditional factors which still apply today, the present day natural gas industry also has to deal with deregulation, open competition and the global energy situation, all of which also have an impact on prices. How to face up to these challenges is the subject of this discourse. tabs., figs

  13. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  14. Natural gas and the environment

    International Nuclear Information System (INIS)

    DeCarufel, A.

    1991-01-01

    The role of various atmospheric pollutants in environmental changes and the global water cycle, carbon cycle, and energy balance is explained. The role of sulfur dioxide and nitrogen oxides in acid deposition is also outlined. The pollutants that contribute to environmental problems include nitrogen oxides and volatile organic compounds, carbon dioxide, and other greenhouse gases. The potential for natural gas utilization to mitigate some of these pollution problems is explored. Natural gas combustion emits less carbon dioxide and nitrogen oxides than combustion of other fossil fuel, and also does not produce sulfur dioxide, particulates, or volatile organics. Other pollution controlling opportunities offered by natural gas include the use of low-polluting burners, natural gas vehicles, and cogeneration systems. 18 figs., 4 tabs

  15. The emergent natural gas markets

    International Nuclear Information System (INIS)

    Dewert, F.; Meeder, J.

    1998-01-01

    A 30% increase of natural gas consumption worldwide is expected to occur since the year 2010. This development will concern countries located outside the traditional markets, in particular in central and eastern Europe, Asia, Africa and south America. This paper summarizes the talks given by the different representatives of these regions who explain the expected evolutions of the natural gas market in these areas: reserves, production, consumption, demand, competition with other energy sources, financial aspects.. (J.S.)

  16. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  17. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  18. 75 FR 42432 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-07-21

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... abandonment of facilities by Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas... resources, fisheries, and wetlands; Cultural resources; Vegetation and wildlife; Endangered and threatened...

  19. Natural gas and crude oil

    International Nuclear Information System (INIS)

    Valais, M.R.

    1991-01-01

    Two main development could gradually modify these traditional features of natural gas markets and prices. First, environmental pressures and the tightening of emission standards and of the quality specifications for fuels should work in favor of natural gas. Second the increasing distance of resources in relation to the major consuming zones should bring about a considerable development of international natural gas trade. International expansion should mark the development of the gas industry in the coming decades. This evolution will give natural gas an importance and a role appreciably closer to those of oil on the world energy scene. But it is obvious that such a development can come about only at the cost of considerable investments for which the economic viability is and will remain dependent on the level of the prices of natural gas as the inlet to its consuming markets. This paper attempts to answer the questions: Will these markets accept a new scale of value for gas in relation to other fossil fuels, including oil, which will take into account new environmental constraints and which will be able to fulfill the formidable financial needs of the gas industry in the coming decades?

  20. Economics of natural gas upgrading

    International Nuclear Information System (INIS)

    Hackworth, J.H.; Koch, R.W.

    1995-01-01

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels

  1. Natural gas industry in Bulgaria

    International Nuclear Information System (INIS)

    Mashkin, L.

    1994-01-01

    An overview of the Bulgarian natural gas industry is presented. The starting point was the discovery of the indigenous Chiren gas-field in 1967. The first agreement with the ex-USSR for supply of natural gas and construction of main pipelines was signed in 1968. The state gas company BULGARGAZ is responsible for transportation, storage, distribution, processing and marketing of the gas to over 150 industrial companies in the country, as well as for the transportation services to gas importers in neighboring Turkey. The GAZSTROJMONTAZH company accomplish the construction of the local and transit pipelines to Turkey and Greece, as well as of some objects in Iran, Syria, Ukraine and Germany. In the past 20 years, 87890 million m 3 natural gas from Russia are supplied and 846 million m 3 - from domestic sources. The share of natural gas in the overall energy balance is 13.6% for 1992. The restructuring and further development of gas industry require to take into account some factors as: security in supply; investments for technical assurance; pricing policy for natural gas; development of private business. Some administrative problems are also mentioned. 2 tabs., 1 fig

  2. Insight conference proceedings : natural gas

    International Nuclear Information System (INIS)

    2005-01-01

    The state of Quebec's energy industry was discussed at this conference. Quebec's energy market is distinct by the diversity of its clients, the resource exploitation sector and its types of industries. As such, the energy needs are specific and the strategies for developing natural gas should be adapted to meet these needs. This conference focused on recent energy policy developments at Quebec's Office of Energy and other regulatory bodies. Topics of discussion included the risks and opportunities of the natural gas export market; volatile gas prices; public consultation processes; perspectives of large energy consumers; hydrocarbon potential and exploration in Quebec; natural gas exploration and development in Quebec; energy security and strategies to address carbon dioxide emissions. Other topics of discussion included the investment climate in Quebec; the profitability of Canada's oil and gas sector and refining capacity in Quebec. The conference featured 17 presentations, of which 6 have been indexed separately for inclusion in this database. refs., tabs., figs

  3. Green future of natural gas

    International Nuclear Information System (INIS)

    Mallardi, P.

    1991-01-01

    A sectoral analysis of current trends in the use of natural gas in Italy shows that this energy source, now estimated to be covering 23.7% of total Italian national energy requirements, is fulfilling its role as an environmentally compatible, low cost and readily available energy alternative well suited to alleviate Italy's worrisome over-dependence on foreign supplied oil and reduce the severity of the urban air pollution problem (it being a low nitrogen oxide and carbon dioxide emitting, non-sulfur containing fuel). This paper expands this theme by giving a complete panorama of the natural gas market in Italy, sector by sector, and by coupling projections on the expected increased use of this energy source (as mandated by the National Energy Plan) with estimates of consequent reductions in air pollution based on a comparative analysis of fuel oil versus natural gas combustion

  4. LIQUIFIED NATURAL GAS (LNG CARRIERS

    Directory of Open Access Journals (Sweden)

    Daniel Posavec

    2010-12-01

    Full Text Available Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 LNG carriers currently in operation (the paper is published in Croatian.

  5. LIQUIFIED NATURAL GAS (LNG) CARRIERS

    OpenAIRE

    Daniel Posavec; Katarina Simon; Matija Malnar

    2010-01-01

    Modern liquefied natural gas carriers are double-bottom ships classified according to the type of LNG tank. The tanks are specially designed to store natural gas cooled to -161°C, the boiling point of methane. Since LNG is highly flammable, special care must be taken when designing and operating the ship. The development of LNG carriers has begun in the middle of the twentieth century. LNG carrier storage space has gradually grown to the current maximum of 260000 m3. There are more than 300 L...

  6. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  7. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  8. North American Natural Gas Markets

    International Nuclear Information System (INIS)

    1988-12-01

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models

  9. North American Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  10. Natural gas in Latin America

    International Nuclear Information System (INIS)

    1997-01-01

    Despite having proven reserves equal to that of North America, natural gas has traditionally played a minor role in the energy policies of Latin American countries, being considered secondary to oil. There has, therefore, been a neglect of the sector with a resultant lack of an adequate infrastructure throughout the region, perhaps with the exception of Argentina. However, with a massive increase in energy demand, growing concerns with environmental matters and a need to reduce the massive pollution levels in major cities in the region, natural gas is forecast to play a much greater role in Latin America's energy profile, with final consumption forecast to rise at 5.4% per annum for the next 15 years. This book assesses both the development of the use of natural gas in the power industrial sector and proposals for its growth into the residential, commercial and transport sectors. It analyses the significant investment required and the governments' need to turn to the private sector for investment and innovation. Natural Gas in Latin America analyses the possibilities and pitfalls of investing in the sector and describes the key trends and issues. It analyses all aspects of the gas industry from exploration and production to transportation and distribution to end users. (Author)

  11. Natural gas news; Gaz actualites

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-12-01

    This brochure is a compilation of practical information concerning the Gaz de France group: organization chart, daughter companies, services, economical activity, natural gas market, trade, regulations etc. A list of partners, directions, centres, groups, associations and other various organisms in relation with Gaz de France company is given. (J.S.)

  12. The European Natural Gas Market

    NARCIS (Netherlands)

    Correlje, A.F.

    The European Union started the introduction of competition in the European market for natural gas. Today, mid-2016, the process of restructuring is still going on. In parallel, important changes in geopolitical, environmental and technological determinants can be observed in the European and global

  13. Natural gas industry in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Omidvar, Hedayat

    2010-09-15

    Iran holds the second largest gas reserves in the word with over 27.5 trillion cubic meters (TCM) of natural gas. Due to lack of geological surveys in certain geographical regions in Iran, it is likely to explore further reserves in the future.

  14. Natural gas in developing countries

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    Everywhere in the world plans are being made to stimulate the natural gas industry in developing countries. High investment costs are the biggest problem almost everywhere. Even countries with a closed economy realize that they do not get far without foreign capital. Cases are presented for Africa, Pakistan, and Indonesia

  15. The natural gas for vehicles

    International Nuclear Information System (INIS)

    2006-11-01

    This document aims to present the trumps of the natural gas for vehicle (NGV). It discusses the particularities, the actions of the government in favor of the NGV by the creation of financial and legal incentives and the challenges. A detail description of the financial and fiscal assistances and the regulation references are given. (A.L.B.)

  16. Natural gas and energy security

    International Nuclear Information System (INIS)

    Saga, B.P.

    1996-01-01

    This paper relates to energy security by natural gas supply seen in an International Energy Agency perspective. Topics are: Security of supply, what is it; the role gas on the European energy scene; short term security of supply; long term security of supply; future structural and regulatory developments and possible implications for security of supply. 6 figs

  17. Natural gas liquids: market outlook

    International Nuclear Information System (INIS)

    Heath, M.

    1996-01-01

    Future market outlook for natural gas liquids was discussed. It was shown that Canadian natural gas and natural gas liquid (NGL) production levels have experienced extraordinary growth over the past few years due to an increased U.S. demand for Canadian natural gas. Recent supply and demand studies have indicated that there will be growing surpluses of NGLs in Canada. By 1996, the majority of NGL surplus that is forecast to be available is ethane (64%), followed by propane (22%), butane (12%) and pentane plus (2%). Throughout the forecast period, the ratio of incremental ethane to the total NGL surplus, over and above forecast demand, was expected to continue to rise. The viability of producing and processing that ethane and transporting it to market, will be crucial. Development of a large ex-Alberta C2+ pipeline from Empress to Mont Belvieu under the reference case supply projection is a possibility, but only if total tariff and fractionation charge on the line is less than or equal to 10 US cents/USG (currently 16-22 US cents/USG). 11 figs

  18. Natural gas, the new deal?

    International Nuclear Information System (INIS)

    Encel, Frederic; Boroumand, Raphael H.; Charlez, Philippe; Goutte, Stephane; Lafargue, Francois; Lombardi, Roland; Porcher, Thomas; Rebiere, Noemie; Schalck, Christophe; Sebban, Anne-Sophie; Sylvestre, Stephan

    2016-01-01

    As natural gas is about to become the first energy source in the world, is abundant and easy to transport, this collective publication addresses issues related to shale gas and to natural gas. The first part addresses shale gas. Four articles propose a global overview, comment the situation in the USA which, in eight years of time, reduced their oil dependency by half and became almost self-sufficient as far as gas is concerned, discuss technical and legal issues related to shale gas exploitation, discuss the perspective of evolution of the world gas markets, and notice that shale gas will not be a game changer in Europe. The second part addresses the natural gas. The articles discuss the possible influence of natural gas exploitation by Israel on the Middle-East geopolitical situation, the influence of the emergence of new producers in Africa (Tanzania and Mozambique), the contribution of gas-fuelled power station to the coverage of market risks, and the issue of European energy safety with a focus on the role of Turkey

  19. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  20. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  1. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  2. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    Science.gov (United States)

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...

  3. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  4. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  5. The price of natural gas

    International Nuclear Information System (INIS)

    Bakhtiari, A.M.S.

    2001-01-01

    Natural gas used to be a relatively cheap primary energy source, always at a discount to crude oil (on a comparative British thermal unit basis). It gradually evolved into a major resource during the 20th century - reaching a 24 per cent share of global primary energy in 1999. In the year 2000, natural gas prices in the USA rose to unheard-of highs of 10/million US dollars Btu, ushering in a new era, with natural gas at a 120 per cent premium to crude oil. This clearly was a watershed for gas, somehow similar to the 1973-74 watershed for oil prices. And similarly, any return to the status quo-ante looks rather improbable, although a number of experts (alongside the International Energy Agency) still believe the 2000 price 'spike' to have been ''only transitory''. The consequences of higher gas prices (at a level equal to crude oil prices on a Btu basis) will be multifaceted and momentous, altering habits and uses in downstream industries and economic sectors, as well as providing added income for major gas-exporters, such as Russia, Canada and Algeria. Another potential consequence of the 2000 watershed might be to propel US standard prices (such as the 'Henry Hub' spot) to international status and gas price-setter, as the 'WTI spot' became an 'international benchmark' for crude oils in the post-1993 era. For the time being, the equality of gas and oil prices has become the new norm; but, in the longer term, a discount of crude oil relative to natural gas might be envisaged, as the latter is a cleaner fuel and emits less carbon dioxide when used. (author)

  6. The French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    This little folder summarizes in few pages the main economical data of the French natural gas industry: supplies according to the country of origin, length of transport and distribution networks, LNG tanker ship fleet, underground storage capacity, population of LNG-fueled vehicles, cogeneration installations, consumption by sectors and by industrial activities, LPG consumption, supplies, distribution and sales, LPG-fuel for vehicles, CO 2 and NO x releases, equipment of households. (J.S.)

  7. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2005-01-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs

  8. Western Pacific liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [WestPac Terminals Inc., Calgary, AB (Canada)

    2005-07-01

    This presentation addressed issues facing WestPac Terminals' proposed construction of a liquefied natural gas (LNG) terminal and associated facilities on the Ridley Island on the coast of British Columbia. WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, LNG and economic optimization. Although a review of proposals for receiving terminals in North America has demonstrated the urgency and attractiveness of LNG imports, west coast terminals are not proceeding, largely due to lack of support by local communities. WestPac's proposal includes a deep enough port to accommodate the largest LNG tankers; a port en route to west coast terminal locations to serve as a transshipment hub; sufficient space for LNG storage tanks and natural gas liquids extraction; sea, rail, air and highway access. Other solutions include selecting locations where communities are pro-development where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG at the proposed site were discussed in terms of serving energy markets and provincial benefits. LNG source and cost issues were reviewed along with existing markets and required infrastructure for LNG market development. tabs., figs.

  9. Western Pacific liquefied natural gas

    International Nuclear Information System (INIS)

    Woronuk, R.

    2004-01-01

    WestPac Terminals Inc. has expertise in natural gas supply and demand, transportation, liquefied natural gas (LNG) and economic optimization. This presentation addressed issues facing their proposed construction of an LNG terminal and associated facilities on the west coast of Canada. It presented pie charts comparing world gas reserves with production. NPC gas price projects and WestPac gas cost estimates were also presented. It was noted that an unprecedented growth in LNG imports to North America is essential and that LNG will be the lowest price major source of natural gas supply. Maps illustrating LNG sources and receiving terminals were also presented along with solutions to the not-in-my-back-yard (NIMBY) syndrome. Solutions include selecting locations where communities are pro-development, where LNG terminals can provide direct financial benefits to the community, and using existing infrastructure to minimize socio-economic impacts. The advantages of developing LNG to Prince Rupert were discussed in terms of serving energy markets, direct provincial benefits, and LNG/power generation synergies. figs

  10. Forecasting world natural gas supply

    International Nuclear Information System (INIS)

    Al-Fattah, S. M.; Startzman, R. A.

    2000-01-01

    Using the multi-cyclic Hubert approach, a 53 country-specific gas supply model was developed which enables production forecasts for virtually all of the world's gas. Supply models for some organizations such as OPEC, non-OPEC and OECD were also developed and analyzed. Results of the modeling study indicate that the world's supply of natural gas will peak in 2014, followed by an annual decline at the rate of one per cent per year. North American gas production is reported to be currently at its peak with 29 Tcf/yr; Western Europe will reach its peak supply in 2002 with 12 Tcf. According to this forecast the main sources of natural gas supply in the future will be the countries of the former Soviet Union and the Middle East. Between them, they possess about 62 per cent of the world's ultimate recoverable natural gas (4,880 Tcf). It should be noted that these estimates do not include unconventional gas resulting from tight gas reservoirs, coalbed methane, gas shales and gas hydrates. These unconventional sources will undoubtedly play an important role in the gas supply in countries such as the United States and Canada. 18 refs., 2 tabs., 18 figs

  11. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    Science.gov (United States)

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  12. Multi-criteria evaluation of natural gas resources

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Pilavachi, Petros A.; Carvalho, Maria G.

    2007-01-01

    Geologically estimated natural gas resources are 500 Tcm. With the advance in geological science increase of estimated resources is expected. Natural gas reserves in 2000 have been proved to be around 165 Tcm. As it is known the reserves are subject to two constraints, namely: capital invested in the exploration and drilling technologies used to discover new reserves. The natural gas scarcity factor, i.e. ratio between available reserves and natural gas consumption, is around 300 years for the last 50 years. The new discovery of natural gas reserves has given rise to a new energy strategy based on natural gas. Natural gas utilization is constantly increasing in the last 50 years. With new technologies for deep drilling, we have come to know that there are enormous gas resources available at relatively low price. These new discoveries together with high demand for the environment saving have introduced a new energy strategy on the world scale. This paper presents an evaluation of the potential natural gas utilization in energy sector. As the criteria in this analysis resource, economic, environmental, social and technological indicators are used. Among the potential options of gas utilization following systems are considered: Gas turbine power plant, combine cycle plant, CHP power plant, steam turbine gas-fired power plant, fuel cells power plant. Multi-criteria method was used for the assessment of potential options with priority given to the Resource, Economic and Social Indicators. Results obtained are presented in graphical form representing priority list of potential options under specific constraints in the priority of natural gas utilization strategy in energy sector

  13. U.S. natural gas pipeline flow and demand trends

    International Nuclear Information System (INIS)

    Carson, M.M.

    1992-01-01

    It is no surprise that regional natural gas supply and demand patterns in North America are constantly changing. A consensus of forecasters agree that the natural gas resource base is larger than envisaged in the early 1980s due to advances in exploration and production technology. In addition, on the demand side more gas will be burned by US power generators to meet growth in electricity. Gas consumption is up in the commercial sector, and natural gas is correctly seen as environmentally protective. But how much more natural gas does the US need? This paper reports that new pipeline projects are springing up all over the nation --- 43 to be exact, with most of them connecting gas deliverability out of basins west of the Mississippi to new markets along the Atlantic and Pacific coasts

  14. The Pricing of natural gas

    International Nuclear Information System (INIS)

    Nese, Gjermund

    2004-11-01

    The report focuses on the pricing of natural gas. The motivation has been the wish of the Norwegian authorities to increase the use of natural gas and that this should follow market conditions. The pricing of gas occurs at present in various ways in the different markets. The report identifies to main factors behind the pricing. 1) The type of market i.e. how far the liberalization of the gas markets has gone in the various countries. 2) The development within the regulation, climate and tax policies. The gas markets are undergoing as the energy markets in general, a liberalization process where the traditional monopoly based market structures are replaced by markets based on competition. There are great differences in the liberalization development of the various countries, which is reflected in the various pricing principles applied for the trade of gas in the countries. The analysis shows that the net-back-pricing is predominant in some countries i.e. that the price is in various ways indexed towards and follow the development of the price of alternative energy carriers so that the gas may be able to compete. The development towards trade places for gas where the pricing is based on offer and demand is already underway. As the liberalization of the European gas markets progresses it is expected that the gas price will be determined increasingly at spot markets instead of through bilateral agreements between monopolistic corporations. The development within the regulation, climate and tax policies and to what extent this may influence the gas prices in the future, are also studied. There seem to be effects that may pull in both directions but it is evident that these political variables will influence the gas pricing in the international market to a large extent and thereby also the future internal natural gas market

  15. Natural Gas Storage Facilities, US, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Platts Natural Gas Storage Facilities geospatial data layer contains points that represent locations of facilities used for natural gas storage in the United...

  16. Natural gas 1995: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Natural Gas 1995: Issues and Trends addresses current issues affecting the natural gas industry and markets. Highlights of recent trends include: Natural gas wellhead prices generally declined throughout 1994 and for 1995 averages 22% below the year-earlier level; Seasonal patterns of natural gas production and wellhead prices have been significantly reduced during the past three year; Natural gas production rose 15% from 1985 through 1994, reaching 18.8 trillion cubic feet; Increasing amounts of natural gas have been imported; Since 1985, lower costs of producing and transporting natural gas have benefitted consumers; Consumers may see additional benefits as States examine regulatory changes aimed at increasing efficiency; and, The electric industry is being restructured in a fashion similar to the recent restructuring of the natural gas industry.

  17. Natural gas market in Europe

    International Nuclear Information System (INIS)

    Mons, L.

    2001-07-01

    The natural gas market is opened to competition since August 2000. The economical impact of this new situation remains moderate in 2001 because the conditions of competition are not fulfilled everywhere. In France, for instance, the European directive on markets deregulation has not been transposed yet and the conditions of access of third parties to the national gas network have not been clearly defined. In this context of uncertainties, several questions remain unanswered. This study draws out a precise status of the situation of the 7 main European gas markets. It comprises also an analysis of the behaviour and strategy of the 18 main actors of this sector. (J.S.)

  18. Environmental benefits of natural gas for buses

    International Nuclear Information System (INIS)

    Rabl, A.

    2002-01-01

    This paper presents a life cycle assessment comparing diesel buses with buses fueled by natural gas. The data for the emission of pollutants are based on the MEET Project of the European Commission (EC), supplemented by data measured for diesel and gas buses in Paris. The benefits of the gas fueled bus are then quantified using the damage cost estimates of the ExternE Project of the EC. A diesel bus with emissions equal to Standard EURO2 of the EC is compared with the same bus equipped with a natural gas engine, for use in Paris and in Toulouse. The damage cost of a diesel bus is significant, in the range of 0.4-1.3 euro/km. Natural gas allows an appreciable reduction of the emissions, lowering the damage cost by a factor of about 2.5 (Toulouse) to 5.5 (Paris). An approximate rule is provided for transferring the results to other cities. A sensitivity analysis is carried out to evaluate the effect of the evolution of the emissions standard towards EURO3, 4 and 5, as well as the effect of uncertainties. Finally a comparison is presented between a EURO2 diesel bus with particle filter, and a gas fueled bus with the MPI engine of IVECO, a more advanced and cleaner technology. With this engine the damage costs of the gas fueled bus are about 3-5 times lower than those of the diesel with particle filter, even though the latter has already very low emissions.(author)

  19. Natural gas: modern application - the environmental question

    International Nuclear Information System (INIS)

    Suarez, Miriam Liliana Hinostroza; Guerra, Sinclair Mallet-Guy

    1999-01-01

    Natural gas has been proposed as a transition fuel. The combustion of natural gas emits less CO 2 per unit of energy than the combustion of other fossil fuels. Increased reliance upon natural gas in preference to other fossil fuels would be encouraged to mitigate greenhouse gas releases while more comprehensive responses are devised to provide more time for adaptation to the inevitable climate change. In this context, the article overviews of natural gas and its relation with the environment

  20. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  1. 40 CFR 1065.715 - Natural gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Natural gas. 1065.715 Section 1065.715... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.715 Natural gas. (a) Except as specified in paragraph (b) of this section, natural gas for testing must meet the...

  2. Eastern Canada natural gas developments

    International Nuclear Information System (INIS)

    Wall, A.

    2001-01-01

    This power point presentation addressed the following topics regarding development of natural gas in eastern Canada: (1) the 18 Tcf of proven natural gas reserves at Sable Island, (2) Canadian markets benefiting from the Maritimes and Northeast Pipeline (M and NP), (3) a 20 year franchise agreement between Enbridge Gas and the government of New Brunswick, (4) the 25 year provincial franchise agreement by Sempra Atlantic Gas, and (5) Sable Island's influence on central Canada. The Sable Offshore Energy Project (SOEP) is now producing about 540,000 MMBtu/day from 6 fields. Plans for Tier 2 expansion are underway. Firm contracts for the M and NP are scheduled to transport gas from the SOEP to markets in Nova Scotia, New Brunswick, Maine and New Hampshire. Sable gas is also a potential supply for the Quebec market. Gaz Metropolitain and Enbridge have proposed to build the Cartier Pipeline from the Quebec/New Brunswick border to Quebec City. It is unlikely that Sable Island supply will directly serve the Ontario market. Canadian customers for Sable gas and M and NP service include pulp and paper companies, oil refineries, power generators and local distribution companies (LDC), with the majority of demand coming form the electric power industry. tabs., figs

  3. Natural gas industry competitiveness study

    International Nuclear Information System (INIS)

    1999-09-01

    A national study on the competitiveness of the natural gas industry was undertaken by the BC Oil and Gas Commission in cooperation with, and with the encouragement of the Canadian Association of Petroleum Producers (CAPP). The objective of the study was to compare the cost competitiveness of natural gas exploration , production, gathering and processing in British Columbia to the costs of the same processes in Alberta. The study was carried out by building an 'expected case' for each gas producing area in British Columbia and Alberta by averaging past events in such specific areas as pool sizes, production profiles, loads, drilling success rates, gas compositions, land, drilling, exploration and production/gathering costs, third party production/gathering and processing fees and abandonment costs; by constructing a cash flow model for each case, calculating unit cost, and ranking cases. The report provides the details of the methodology, displays the results of the investigation in graphical form, comments on the results factoring in also labour costs and cost differences due to resource characteristics, identifies some trends such as an increase in the proportion of connections to smaller plants, and provides suggestions for improvements

  4. The European natural gas market

    International Nuclear Information System (INIS)

    Hagland, Jan

    2001-01-01

    An increasing amount of natural gas is flowing into continental Europe, one of the largest gas markets in the world. There are three main sources of gas: Africa, Russia and Norway. Norway is an important supplier of gas, but may be vulnerable to competition. The demand for gas is increasing on a global basis and the largest increase is expected in Asia, followed by America and Europe. It is expected that Norwegian gas deliveries will be a principle source of natural gas for North Europe in the next years and that they will take an increasing part of the British market as the gas deliveries from the British shelf is going down. The European gas market is likely to become liberalized according to the EU's competition- and gas directives. This will not necessarily be a problem, and Norway may be able to increase the export of gas to Great Britain considerably from the year 2010, perhaps up to 40 billion standard m3 per year. Russia is expected to take an increased share of the European gas market, especially in East- and Central Europe, Germany and North Italy. But large investments in existing fields, new developments and new strategic pipelines are necessary

  5. French natural gas industry statistics

    International Nuclear Information System (INIS)

    2004-01-01

    The opening of the French natural gas market is effective since August 2000. In this context, some information, which were published in the past, have become confidential and strategic and can no longer be revealed. The data published in this 2004 edition concern only the years 2001 and 2002 for which data are available. The year 2000 inquiry could not be exploited. A first part presents the natural gas industry in France (consumption, supplies, production, storage, distribution, definition of gases, information sources, energy equivalence, map of transportation networks, storage, compression and production facilities). The statistical data are summarized in the second part in the form of tables: resources and uses in 1999, 2001 and 2002; sectoral use of the network distributed gas since 1972; regional distribution of gas production; domestic production and imports since 1972; sectoral distribution of network gas supplies; pipelines and distribution systems; personnel in the gas industry; gas supplies in 2002; supplies to the residential-tertiary sector in 2002; supplies to the industry in 2002; regional supplies in 2002; share of gas supplies per use in each region; regional distribution of gas supplies for each use. A comparison between the 2002 inquiry results and the provisional status is given in appendix. The 2002 energy status and the 2002 questionnaire are also given in appendixes. (J.S.)

  6. Natural gas in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grabarczyk, Ewa; McCallum, Robert; Wergeland, Tor H

    1994-12-31

    The paper is based on Ewa Grabarczyk`s thesis ``The European Gas Market and the Former East Block Countries`` in the Master of International Business Programme at the Norwegian School of Economics and Business Administration. The material of Grabarczyk`s work has been split into two parts; SNF Working Papers Nos. 97/93 and 98/93. Working Paper 97/93 ``The European Gas Markets`` contains an equilibrium model of the European Gas Market employed to investigate some scenarios to the consequences of an integration of the former Soviet Union. Working Paper 98/93 ``Natural Gas in Eastern Europe`` contains descriptions of the energy sectors of former Eastern European countries and an evaluation of the potential future demand for natural gas in these nations. The paper has chapters on each country and sections on reserves, production, exports and markets, transport possibilities and technology, demand and development as well as evaluation of the present situation. 11 figs., 37 tabs., 33 refs

  7. Natural gas and electricity convergence

    International Nuclear Information System (INIS)

    Calger, C.

    1998-01-01

    Convergence between the gas and electricity industries was described as a means for creating an increasingly more efficient energy market where prices and fundamental relationships exist between gas and electricity. Convergence creates new opportunities for producers and consumers. Convergence will likely lead to the disaggregation of the electricity and gas industry into segments such as: (1) power generation and production, (2) transmission wires and pipelines, (3) wholesale merchants, (4) distribution wires and pipelines, and (5) retail marketing, services and administration. The de-integration of integrated utilities has already begun in the U.S. energy markets and retail open access is accelerating. This retail competition will create very demanding customers and the changing risk profile will create new issues for stakeholders. The pace of reform for the telecommunications, airlines, natural gas and electricity industries was graphically illustrated to serve as an example of what to expect. The different paths that the industry might take to deregulation (aggressively embrace reform, or defensively blocking it), and the likely consequences of each reaction were also described. A map indicating where U.S. electric and natural gas utility merger and acquisition activities have taken place between 1994-1997, was included. Another map showing the physical asset positions of the Enron grid, one of the largest independent oil and gas companies in the U.S., with increasing international operations, including an electric power transmission and distribution arm, was also provided as an illustration of a fully integrated energy market company of the future. 9 figs

  8. Natural gas in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    de Voogd, J G

    1965-08-01

    In 1948, the first natural gas was found in Netherlands. Since 1951 it has been supplied by gas undertakings. Originally reserves were limited (c. 350 milliard ftU3D of dry gas in the NE. and c. 175 milliard ftU3D, mostly wet gas, in the SW). These finds have been completely overshadowed by the huge deposits discovered in 1960 in the province of Groningen near the village of Slochteren, these reserves being estimated now at 38.5 billion ftU3D at least. This gas is not of high cal val (894 Btu/ftU3D), but contains only traces of sulfur. The concession is being developed for a partnership formed by Shell (30%), Standard Oil Company of new Jersey (Esso, 30%), and ''Staatsmijnen,'' the Government owned Netherlands State Mining Industry (40%). The natural gas is destined, first, for domestic use, especially, for space heating, and secondly, for industrial purpose, after which important quantities will be available for export.

  9. Strengthening Canada's position in the North American natural gas market

    International Nuclear Information System (INIS)

    2001-09-01

    The Canadian Gas Association (CGA) is the industry organization that represents the Canadian natural gas and energy delivery industry. It is on the frontline of consumer perceptions regarding natural gas, which is the fuel of choice for Canadian homeowners. Canadian consumers have benefitted from the deregulation initiatives of the mid-1980s which provided significant growth opportunities. Given the tumultuous energy environment throughout North America, the CGA believes that a national energy strategy should be developed to address future supply issues and also to examine ways to ensure that extreme market shifts are anticipated and mitigated as much as possible. The CGA is ready to provide governments with input for such a strategy representing the perspective of the Canadian consumer. The CGA recommends that the Government of Canada, the provinces and territories adopt the following initiatives regarding the use of natural gas: (1) recognize and promote the environmental qualities and applications of natural gas, (2) encourage competition, (3) promote transparent and consistent approach to regulation, (4) reaffirm commitment to market-based policies, (5) facilitate economic research, analysis and communication about trends in the natural gas market, and (6) promote the development of new technologies that expand the uses of natural gas and support research in infrastructure development. The government's actions in the areas proposed in this report will contribute to advancing Canada's environmental objectives and economic growth. 2 figs

  10. Nanoporous Materials for the Onboard Storage of Natural Gas.

    Science.gov (United States)

    Kumar, K Vasanth; Preuss, Kathrin; Titirici, Maria-Magdalena; Rodríguez-Reinoso, Francisco

    2017-02-08

    Climate change, global warming, urban air pollution, energy supply uncertainty and depletion, and rising costs of conventional energy sources are, among others, potential socioeconomic threats that our community faces today. Transportation is one of the primary sectors contributing to oil consumption and global warming, and natural gas (NG) is considered to be a relatively clean transportation fuel that can significantly improve local air quality, reduce greenhouse-gas emissions, and decrease the energy dependency on oil sources. Internal combustion engines (ignited or compression) require only slight modifications for use with natural gas; rather, the main problem is the relatively short driving distance of natural-gas-powered vehicles due to the lack of an appropriate storage method for the gas, which has a low energy density. The U.S. Department of Energy (DOE) has set some targets for NG storage capacity to obtain a reasonable driving range in automotive applications, ruling out the option of storing methane at cryogenic temperatures. In recent years, both academia and industry have foreseen the storage of natural gas by adsorption (ANG) in porous materials, at relatively low pressures and ambient temperatures, as a solution to this difficult problem. This review presents recent developments in the search for novel porous materials with high methane storage capacities. Within this scenario, both carbon-based materials and metal-organic frameworks are considered to be the most promising materials for natural gas storage, as they exhibit properties such as large surface areas and micropore volumes, that favor a high adsorption capacity for natural gas. Recent advancements, technological issues, advantages, and drawbacks involved in natural gas storage in these two classes of materials are also summarized. Further, an overview of the recent developments and technical challenges in storing natural gas as hydrates in wetted porous carbon materials is also included

  11. Feeling the pressure from natural gas

    International Nuclear Information System (INIS)

    Taffe, Peter

    1998-01-01

    The European directive establishing a competitive internal natural gas market will be the most important, though not the only, factor in advancing the rapid and far reaching changes which Europe's natural gas sector is undergoing. The knock-on effects which these changes will have on the chemical industry are examined. The benefits of opening up the gas market will be more consumer choice and a more efficient and globally competitive EU gas industry. But for the chemical industry it raises strategic issues surrounding gas procurement such as price risks and security of supply. These are especially acute where gas is used not just as a fuel but also as a feedstock. As the electricity market is progressively deregulated, independent power generation using combined heat and power could be an attractive choice in the chemical industry with the possibility of selling surplus electricity on the spot market. Other changes in the gas sector could arise from the environmental targets agreed in Kyoto which are likely to lead to an increase in fuel taxation, and the development of a spot market in gas as the link between oil and gas prices becomes less direct. (UK)

  12. Business cycles and natural gas prices

    International Nuclear Information System (INIS)

    Apostolos, S.; Asghar, S.

    2005-01-01

    This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural gas has been traded on an organised exchange and the methodology suggested by Kydland and Prescott (1990). Our results indicate that natural gas prices are procyclical and lag the cycle of industrial production. Moreover, natural gas prices are positively contemporaneously correlated with United States consumer prices and lead the cycle of consumer prices, raising the possibility that natural gas prices might be a useful guide for US monetary policy, like crude oil prices are, possibly serving as an important indicator variable. (author)

  13. Making sure natural gas gets to market

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    The role of natural gas in power generation was discussed with reference to price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. 13 figs

  14. Natural gas: redistributing the economic surplus

    International Nuclear Information System (INIS)

    Oliveira, A. de; Pinto Junior, H.Q.

    1990-01-01

    The natural gas has a limited role in the Brazilian energy balance. This role in industrial countries and some developing countries is much more important. Historically this contrasting situation can be explained by the limited natural gas reserves Brazil used to have. Since the oil crisis however the Brazilian natural gas reserves increased substantially without a similar increase in the role of natural gas in the energy balance. The existing institutional arrangement generates a struggle for the economic rent generated by natural gas production and consumption that seems to be at the core of this question. Our paper estimates the economic rent generated by natural gas in Brazil and its distribution among producers and consumers: it points toward a new institutional arrangement that could arguably, generate a new role for the natural gas in the Brazilian energy balance. (author)

  15. Technological advances in endodontics: treatment of a mandibular molar with internal root resorption using a reciprocating single-file system.

    Science.gov (United States)

    de Souza, Samir Noronha; Marques, André Augusto Franco; Sponchiado-Júnior, EmÍlio Carlos; Roberti Garcia, Lucas da Fonseca; da Frota, Matheus Franco; de Carvalho, Fredson Márcio Acris

    2017-01-01

    The field of endodontics has become increasingly successful due to technological advances that allow clinicians to solve clinical cases that would have been problematic a few years ago. Despite such advances, endodontic treatment of teeth with internal root resorption remains challenging. This article presents a clinical case in which a reciprocating single-file system was used for endodontic treatment of a mandibular molar with internal root resorption. Radiographic examination revealed the presence of internal root resorption in the distobuccal root canal of the mandibular right first molar. A reciprocating single-file system was used for root canal instrumentation and final preparation, and filling was obtained through a thermal compaction technique. No painful symptoms or periapical lesions were observed in 12 months of follow-up. The results indicate that a reciprocating single-file system is an adequate alternative for root canal instrumentation, particularly in teeth with internal root resorption.

  16. 75 FR 13524 - Northern Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC...

    Science.gov (United States)

    2010-03-22

    ... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...

  17. Development of natural gas vehicles in China

    Energy Technology Data Exchange (ETDEWEB)

    Zongmin, Cheng

    1996-12-31

    Past decade and current status of development of natural gas vehicles (NGVs) in China is described. By the end of 1995, 35 CNG refueling stations and 9 LPG refueling stations had been constructed in 12 regions, and 33,100 vehicles had been converted to run on CNG or LPG. China`s automobile industry, a mainstay of the national economy, is slated for accelerated development over next few years. NGVs will help to solve the problems of environment protection, GHGs mitigation, and shortage of oil supply. The Chinese government has started to promote the development of NGVs. Projects, investment demand, GHG mitigation potential, and development barriers are discussed. China needs to import advanced foreign technologies of CNGs. China`s companies expect to cooperate with foreign partners for import of CNG vehicle refueling compressors, conversions, and light cylinders, etc.

  18. Fiscal 1994 entrusted task report. Surveys of advanced natural gas development and efficient utilization (Survey of coal hydrogasification technology development); 1994 nendo tennen gas kodo kaihatsu yuko riyo chosa tou itaku gyomu hokokusho. Sekitan suiten gaska gijutsu kaihatsu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    For the establishment of a practical process for substitute natural gas (SNG) production, technological and economical assessments were made, and tasks to discharge for the development were discussed. In this fiscal year, the results of surveys conducted in the past five-year period were compiled, and studies were made to prepare for a smooth transition to the element research stage. Findings obtained are described below. SNG producing technologies need to be developed, with the demand for SNG increasing sharply, to further stabilize the base for SNG supply; coal which is abundantly available should be used as the material for SNG; and coal hydrogasification, among various methods for producing SNG from coal, is the most suitable in view of efficiency and cost performance. It was also found after a prolonged study for the improvement of efficiency and cost performance that probabilities were high that the yield of BTX (benzene, toluene, xylene) would increase and cost performance would improve. Besides, a basic plan and an element technology research plan were prepared for the development of the ARCH (advanced rapid coal hydrogasification) process. (NEDO)

  19. Mathematical models of natural gas consumption

    International Nuclear Information System (INIS)

    Sabo, Kristian; Scitovski, Rudolf; Vazler, Ivan; Zekic-Susac, Marijana

    2011-01-01

    In this paper we consider the problem of natural gas consumption hourly forecast on the basis of hourly movement of temperature and natural gas consumption in the preceding period. There are various methods and approaches for solving this problem in the literature. Some mathematical models with linear and nonlinear model functions relating to natural gas consumption forecast with the past natural gas consumption data, temperature data and temperature forecast data are mentioned. The methods are tested on concrete examples referring to temperature and natural gas consumption for the area of the city of Osijek (Croatia) from the beginning of the year 2008. The results show that most acceptable forecast is provided by mathematical models in which natural gas consumption and temperature are related explicitly.

  20. Natural gas supply and demand outlook

    International Nuclear Information System (INIS)

    McGill, C.B.

    1998-01-01

    The outlook for U.S. natural gas supply and demand in the residential, commercial, industrial/cogeneration, electricity and transportation sectors for 1995, 2000, 2005, 2010, and 2015 was presented. A summary of gas well completions from 1990 to 1997 was also provided. The Canadian natural gas resource was estimated at 184 trillion cubic feet. In 1996, Canada produced 5.6 trillion cubic feet of natural gas, half of which was exported to the U.S. New pipeline projects have been proposed to transport natural gas from eastern offshore areas and the Western Canadian Sedimentary Basin. A table representing U.S. and Canada gas trade from 1990 to 1997 and a map of proposed Canadian and U.S. natural gas pipeline routes were also included. Looking into the future, this speaker predicted continued volatility in natural gas prices. 9 tabs., 9 figs

  1. Development of natural gas ocean transportation chain by means of natural gas hydrate (NGH)

    International Nuclear Information System (INIS)

    Nogami, T.; Oya, N.; Ishida, H.; Matsumoto, H.

    2008-01-01

    Recent studies in Japan have suggested that natural gas hydrate (NGH) transportation of natural gas is more economical than liquefied natural gas (LNG) transportation systems for small, medium and remote gas fields. Researchers in Japan have built a 600 kg per day NGH production and pelletizing plant and regasification facility. This paper discussed feasibility studies conducted in southeast Asia to determine the unit's commercialization potential with large natural gas-related businesses including shipping companies and electric power utilities. The total supply chain was compared with the corresponding liquefied natural gas (LNG) and compressed natural gas (CNG) supply chains. The study also examined natural gas reserves, energy policies, the positioning of natural gas supplies, and future forecasts of natural gas demand. A conceptual design for an NGH supply chain in Indonesia was presented. Results of the study have demonstrated that the NGH chain is an appropriate and economically feasible transportation method for many areas in southeast Asia. 8 refs., 10 figs

  2. New opportunities for natural gas

    International Nuclear Information System (INIS)

    Newcomb, J.

    1991-01-01

    This paper reports that the prospect of extremely low gas prices - approaching $1.00 per million Btu (MMBtu) on a seasonal basis - is frightening many producers. The presence of large gas inventories only serves to intensify these fears. Threats of declining market conditions stir the question: How should producers react to these prices? On the score, the experts advise: One of the first rules of playing the power game is that all bad news must be accepted calmly as if one already knew and didn't much care. Although stated jokingly, there is a kernel of truth to the suggestion. Having thought through the adversities involved in the worst case scenario - and for natural gas producers and other industry participants, those adversities are formidable - companies may be better prepared to adapt to the worst case, should it happen to materialize. Here, the bad news is that CERA foresees serious near-term perils that could route the industry toward that worst case. The good news is that long-term prospects provide a cause for optimism

  3. Natural gas for utility generation

    International Nuclear Information System (INIS)

    Moore, T.

    1992-01-01

    Forecasters predict that natural gas will be the dominant fuel choice for utility capacity additions in the coming decade and that power generation will be by far the largest growth market for gas sales. While gas's low emissions, high efficiency potential, and present low cost argue persuasively for a surge in gas-fired generation, many utilities have been slow to commit to a gas future, citing reasoned concern about long-term price trends and the ability of gas suppliers to deliver the fuel where and when it will be needed. Meanwhile, the relatively low cost of gas-fired units is providing an opportunity for independent power producers to compete strongly with utilities for generation contracts. EPRI studies suggest that a sound, competitive strategy will be based not on how much gas a utility burns, but rather on how this capacity fits into its overall generating mix at various fuel price levels. Gas suppliers will need to pay special attention to the operating needs of power generators if they are to solidify this important market

  4. Canadian natural gas price forecast

    International Nuclear Information System (INIS)

    Jones, D.

    1998-01-01

    The basic factors that influenced NYMEX gas prices during the winter of 1997/1998 - warm temperatures, low fuel prices, new production in the Gulf of Mexico, and the fact that forecasters had predicted a mild spring due to El Nino - were reviewed. However, it was noted that for the last 18 months the basic factors had less of an impact on market direction because of an increase in Fund and technical trader participation. Overall, gas prices were strong through most of the year. For the winter of 1998-1999 the prediction was that NYMEX gas prices will remain below $2.00 through to the end of October 1998 because of high U.S. storage levels and moderate temperatures. NYMEX gas prices are expected to peak in January 1999 at $3.25. AECO natural gas prices were predicted to decrease in the short term because of increasing levels of Canadian storage, and because of delays in Northern Border pipeline expansions. It was also predicted that AECO prices will peak in January 1999 and will remain relatively strong through the summer of 1999. tabs., figs

  5. Natural gas potential in Canada

    International Nuclear Information System (INIS)

    1997-01-01

    An independent assessment of the undiscovered gas potential in Canada was conducted by a group of volunteer geoscientists. This report is the first of a series of assessments that are planned to be issued every three to four years. Separate assessments were made of conventional gas resources, unconventional gas resources and frontier gas resources. The assessment for conventional gas resources was organized into three categories: (1) gas producing areas where new discoveries can be integrated into existing producing and transportation infrastructure, (2) frontier basins where gas discoveries have been made, but no production is currently underway, and (3) frontier areas where gas-containing sedimentary rocks are known to exist, but where no gas discoveries have been made to date. The committee used year-end 1993 reserves data from discovered pools in each exploration play to predict the undiscovered potential. Information about discovered pools, geological setting, geographic limits and pool sizes of undiscovered pools in each exploration play was provided. Results of the investigation led to the conclusion that the natural gas potential in Canada is in fact larger than hitherto expected. It was estimated that in the Western Canada Sedimentary Basin 47 per cent of the total volume of conventional gas is yet to be discovered. 152 figs

  6. The economics of natural gas

    International Nuclear Information System (INIS)

    Julius, D.; Mashayekhi, A.

    1990-01-01

    Natural gas resembles oil in fulfilling a wide variety of uses as both a source of energy and a feedstock, but the proportion of world production that is traded internationally is very much lower, and insufficient for a world price of gas to be established. Written specifically for economists interested in energy, development and industrial economics; oil and gas industry personnel; officials of developing countries; and intergovernmental organizations concerned with development. This book addresses the issues of how the economic price of gas is determined within individual countries with different characteristics and which factors should be taken into account by governments in the formulation of pricing policies that are appropriate for gas. These are illustrated with estimates of the costs of exploration and production of gas, and of the benefits to be derived from its use in various economic sectors for a number of Third World countries. The book also presents a detailed case study of the development of gas pricing in Bangladesh, and an analytical framework for the development of a formal gas planning model that could be applied to the cases of actual countries contemplating the development of gas use in the future

  7. North American natural gas price outlook

    International Nuclear Information System (INIS)

    Denhardt, R.

    1998-01-01

    Issues regarding future natural gas prices for North America were discussed. Various aspects of the issue including the relationship between storage, weather and prices, received attention. It was noted that strong demand-growth will be needed to support near-term Canadian export increases without price declines. The issue of Gulf Coast production was also discussed. Power generation using natural gas as fuel is expected to support strong growth in the demand for natural gas. tabs., figs

  8. Natural gas 1998: Issues and trends

    International Nuclear Information System (INIS)

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today's natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs

  9. Natural gas vehicles in Europe: Commercialization prospects

    International Nuclear Information System (INIS)

    Vettori, P.; Merigo, F.

    1992-01-01

    This paper tables numerous statistical data to evidence that whereas the use of natural gas as an automotive fuel for private and public vehicles is growing in Asia, North and South America, in Europe this trend is currently being followed only in Italy. However, with the relatively recent expansion of the European Communities' natural gas distribution network, coupled with growing interest in this fuel as a cost effective and environmentally compatible alternative to petroleum, the demand for natural gas automotive fuels is expected to increase even in this continent. The trucking industry in particular should derive significant benefits from the switch to natural gas

  10. Natural gas industry R and D

    International Nuclear Information System (INIS)

    Pavan, S.

    1992-01-01

    The last three decades have witnessed significant developments in engineering relative to the distribution and use of natural gas. This paper reviews these developments which, in natural gas distribution, include - polyethylene conduits, the use of radar to trace buried conduits, telemetering, innovative pressure reducing techniques and equipment, optimized retrofitting of buried pipelines, leak detection techniques, and energy recovery systems applied to pressure reducing operations. Relative to the efficient combustion and new uses of natural gas, the paper reviews the state-of-the-art in the design of compact wall mounted gas fired boilers for building space heating, gas fuelled space heating ventilation and air conditioning systems, and natural gas fed fuel cells

  11. Suggestion for a natural gas development policy

    International Nuclear Information System (INIS)

    Drummond, P.H.

    1987-01-01

    First, this work presents some aspects concerning the reserves and the future of natural gas consumption in Brazil. Then, from the results of a case-study about the implementation of a natural gas distribution company in Fortaleza (Ceara), we analyse under which conditions the business of natural gas distribution is economically interesting (subject of the M.Sc. thesis developed by the author). In possession of this results, the author proposes directions for a Natural Gas Policy in Brazil, approaching also aspects of Tariffs Policy. (author)

  12. Natural gas vehicles. An option for Europe

    International Nuclear Information System (INIS)

    Engerer, Hella; Horn, Manfred

    2010-01-01

    In Europe natural gas vehicles play a minor role. A decisive reason for this is the dependence of most European countries from gas imports. Except for Italy, there is no tradition to use natural gas as fuel. In addition, there is a lack of infrastructure (e.g. fuelling stations). In contrast to Europe, in Latin American and Asian countries natural gas vehicles are widespread. Some countries foster natural gas vehicles because they have own gas resources. Many countries must reduce the high air pollution in big cities. Environmental reasons are the main motive for the use of natural gas vehicles in Europe. In last years, high oil prices stimulated the use of natural gas as fuel. European governments have developed incentives (e.g. tax reductions) to foster natural gas vehicles. However, the focus is on hybrid technology and the electric car, which, however, need further technical improvement. In contrast, the use of natural gas in conventional engines is technically mature. Additional gas imports can be avoided by further improvements of energy efficiency and the use of renewable energy. In sum, the market penetration of natural gas as fuel should be promoted in Europe. (author)

  13. Evaluation And Analysis of Natural Gas Rates

    International Nuclear Information System (INIS)

    Taheri, Ali Akbar

    1999-01-01

    Natural gas is considered as a preferred fuel and its utility is growing every day in the country (Iran). The usage of natural gas has increased from 3.5 to 44 billion cubic meters from 1980 to 1997, respectively. Currently, 4 million residences and most of the industrial sector are being provided with the pipelined natural gas. Because of the tremendous increase in consumption, it is necessary to give the needed considerations to natural gas rate structure. The objective of the paper is to 1.Evaluate the fundamentals and principal methods used for rate structures. 2. Identification of effective components. 3. Analyze the current rates including connection fees and other customer charges

  14. Natural gas 1998: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Natural Gas 1998: Issues and Trends provides a summary of the latest data and information relating to the US natural gas industry, including prices, production, transmission, consumption, and the financial and environmental aspects of the industry. The report consists of seven chapters and five appendices. Chapter 1 presents a summary of various data trends and key issues in today`s natural gas industry and examines some of the emerging trends. Chapters 2 through 7 focus on specific areas or segments of the industry, highlighting some of the issues associated with the impact of natural gas operations on the environment. 57 figs., 18 tabs.

  15. Globalization of the Natural Gas Industry

    International Nuclear Information System (INIS)

    Burns, RJ.

    1996-01-01

    This document deals with the foreseeable evolution of natural gas demand in the next 15 years. Natural gas consumption is growing faster than any other fossil fuel and, according to ENRON, the natural consumption growth will continue. The environmental aspect of natural gas use for power generation is presented, showing that gas use reduces pollution emissions (when compared with coal). On top of that, it appears that the conversion efficiency of gas is much higher than the conversion efficiency of coal steam. Eventually, natural gas resources should meet energy demand for decades. (TEC)

  16. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  17. Market development in the natural gas market

    International Nuclear Information System (INIS)

    Kuenneke, R.W.; Arentsen, M.J.; Manders, A.M.P.; Plettenburg, L.A.

    1998-01-01

    Options for the liberalization of the Dutch natural gas market have been investigated. Three models are compared and assessed for the impacts on the economic performance, the national interests and the so-called public tasks. The results of the report can be used to base the proposals for a new Natural Gas Act, which is expected to be sent to the Dutch parliament in the spring of 1999. The three liberalization models are specified according to the different phases in the industrial column of natural gas. Except for transport (limited possibilities) and distribution (monopolistic character and thus not suitable for market development), market development is possible in all the phases of the column. The models are the cooperation model (equal position for the natural gas trade company Gasunie and the natural gas distribution companies, and management of the natural gas infrastructure and the Dutch gas reserves by means of mutual tuning, cooperation and coordination), the EZ-model (price mechanism for the tariffs for natural gas, and access to the natural gas network through negotiated third party access (TPA) with indicative prices and conditions), and the market model (optimal use of market development options to stimulate the economic performance, introduction of price mechanism options, access through regulated TPA with tariffs, based on long-term marginal costs, role of the government limited to a favorable policy with respect to access to the network, competition and security of the interests which arise from the exploitation of the Dutch natural gas fields). 26 refs

  18. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    Science.gov (United States)

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Prospective of the Natural Gas marketing 2002-2011

    International Nuclear Information System (INIS)

    2002-01-01

    According with the 109 Th Article of the Natural Gas Regulations the Secretaria de Energia publishes this prospective of the Natural gas market 2002-2011 which describes and analyses the necessities of Mexico in relation with this industry in the mentioned period. Here aspects such as: the present and future international panorama of the natural gas market, international prices, the world demand with base in the Department of Energy (DOE) turnover of the United States, Advances of the in force regulatory framework, Sales, the National Gas pipeline system, Evolution of the National market, Demand at regional and sectoral scales, Supply analysis, Programs and projects of energy savings, natural gas balance with the high demand scene, the methodology of the Instituto Mexicano del Petroleo for calculating the self-generation demand of the electric energy by sector, a glossary with the more used terms, conversion factors and abbreviations and acronyms used in the document are treated. In the next ten years, the national demand of natural gas will suffer an annual average growth of 7.4% passing from 4358 millions of daily cubic feet (mm pcd) in 2001 to 8883 mm pcd in 2011. (Author)

  20. Well-to-wheel analysis of direct and indirect use of natural gas in passenger vehicles

    International Nuclear Information System (INIS)

    Curran, Scott J.; Wagner, Robert M.; Graves, Ronald L.; Keller, Martin; Green, Johney B.

    2014-01-01

    The abundance of natural gas in the United States because of the number of existing natural gas reserves and the recent advances in extracting unconventional reserves has been one of the main drivers for low natural gas prices. A question arises of what is the optimal use of natural gas as a transportation fuel. Is it more efficient to use natural gas in a stationary power application to generate electricity to charge electric vehicles, compress natural gas for onboard combustion in vehicles, or re-form natural gas into a denser transportation fuel? This study investigates the well-to-wheels energy use and greenhouse gas emissions from various natural gas to transportation fuel pathways and compares the results to conventional gasoline vehicles and electric vehicles using the US electrical generation mix. Specifically, natural gas vehicles running on compressed natural gas are compared against electric vehicles charged with electricity produced solely from natural gas combustion in stationary power plants. The results of the study show that the dependency on the combustion efficiency of natural gas in stationary power can outweigh the inherent efficiency of electric vehicles, thus highlighting the importance of examining energy use on a well-to-wheels basis. - Highlights: • Well-to-wheels analysis shows differences in use of natural gas for transportation. • Well-to-wheels approach needed to evaluate total energy use and greenhouse gas emissions. • Well-to-wheels energy and GHG (greenhouse gas) emissions depend on efficiency of the prime mover. • Efficiency of power generation critical for low GHG emissions with electric vehicles. • Fuel economy critical for low GHG emissions with compressed natural gas vehicles

  1. SEAPORT LIQUID NATURAL GAS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    COOK,Z.

    1999-02-01

    The Seaport Liquid Natural Gas Study has attempted to evaluate the potential for using LNG in a variety of heavy-duty vehicle and equipment applications at the Ports of Los Angeles and Oakland. Specifically, this analysis has focused on the handling and transport of containerized cargo to, from and within these two facilities. In terms of containerized cargo throughput, Los Angeles and Oakland are the second and sixth busiest ports in the US, respectively, and together handle nearly 4.5 million TEUs per year. At present, the landside handling and transportation of containerized cargo is heavily dependent on diesel-powered, heavy-duty vehicles and equipment, the utilization of which contributes significantly to the overall emissions impact of port-related activities. Emissions from diesel units have been the subject of increasing scrutiny and regulatory action, particularly in California. In the past two years alone, particulate matter from diesel exhaust has been listed as a toxic air contaminant by CAM, and major lawsuits have been filed against several of California's largest supermarket chains, alleging violation of Proposition 65 statutes in connection with diesel emissions from their distribution facilities. CARE3 has also indicated that it may take further regulatory action relating to the TAC listing. In spite of these developments and the very large diesel emissions associated with port operations, there has been little AFV penetration in these applications. Nearly all port operators interviewed by CALSTART expressed an awareness of the issues surrounding diesel use; however, none appeared to be taking proactive steps to address them. Furthermore, while a less controversial issue than emissions, the dominance of diesel fuel use in heavy-duty vehicles contributes to a continued reliance on imported fuels. The increasing concern regarding diesel use, and the concurrent lack of alternative fuel use and vigorous emissions reduction activity at the Ports

  2. The natural gas as integration element in Latin America

    International Nuclear Information System (INIS)

    Morales, Maria Elizabeth; Dutra, Luis Eduardo; Rosa, Luiz Pinguelli

    1999-01-01

    The article discusses the following global aspects of natural gas development: natural gas and worldwide energetic integration; natural gas consumption rates in the world; natural gas industry development in Latin America; and natural gas industry in Brazil. The article concludes that the natural gas can integrate Latin-american economies since the Governments adopt coherent energetic politicians articulated to each other

  3. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  4. ATF [Advanced Toroidal Facility] edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1990-01-01

    Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs

  5. Guidelines For Evaluation Of Natural Gas Projects

    International Nuclear Information System (INIS)

    Farag, H.; El Messirie, A.

    2004-01-01

    This paper is objected to give guidelines for natural gas projects appraisal These guidelines are summarized in modeling of natural gas demand forecast and energy pricing policies for different gas consumers mainly in the manufacturing, mining, transport, trade and agriculture sectors. Analysis of the results is made through sensitivity analysis and decision support system ( DSS )

  6. Natural gas situation between 1970 and 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H; Trillhose, A

    1986-03-01

    Trends in production, consumption, reserves, international trade, and transport of natural gas are described and illustrated by tables. Natural gas today contributes about 20% to the total primary energy supply worldwide. The construction of two new pipelines is being planned, from Jamburg and Jakutsk to Japan via Sachalin.

  7. Natural gas supply - a producer's perspective

    International Nuclear Information System (INIS)

    Papa, M.G.

    1994-01-01

    The supply of natural gas from the producers standpoint is discussed. The following factors in the marketing demand for natural gas are considered to be important: gas demand is growing, U.S. gas resource base is large, chronic gas bubble has shrunk, and North American supply is more resilient than expected

  8. Natural gas projects, strategies and economics

    International Nuclear Information System (INIS)

    Hamaide, G.

    2000-01-01

    This article summarizes the content of some of the posters presented during the WOC 9 working committee of the CMG 2000 worldwide gas congress: natural gas in the new worldwide energy balance; eastern Russia: the last gas projects; the new underwater technologies and the availability of natural gas. (J.S.)

  9. Trends in natural gas distribution and measurements

    International Nuclear Information System (INIS)

    Crone, C.F.A.

    1993-01-01

    On the occasion of the GAS EXPO 93, to be held from 13-15 October 1993 in Amsterdam, Netherlands, an overview is given of trends in the distribution of natural gas and the measuring of natural gas, as noted by experts from the energy utilities, GASTEC and Gasunie in the Netherlands. With regard to the natural gas distribution trends attention is paid to synthetic materials, the environmental effects, maintenance, underground natural gas pressure control, horizontal drilling (no-dig techniques), and other trends. With regard to natural gas metering trends brief discussions are given of the direct energy meter, the search for a new gas meter in households, telemetering, improving the accuracy of the gas meters by means of electronics, on the spot calibration of large gas meters, the use of an online chromatograph to determine the calorific value, the development of a calibration instrument, the so-called piston prover, to measure large quantities of natural gas, the recalibration of natural gas stations, the ultrasonic gas meter, and finally the quality of the natural gas supply. 1 fig., 11 ills

  10. Natural gas foothold in world energy market

    International Nuclear Information System (INIS)

    D'Ermo, V.; Forli, C.

    1991-01-01

    In this article, the expansion of natural gas from the '50s to the early '80s is analyzed. Following its positive success in industrial, residential and thermoelectric uses, natural gas still has new market spaces to win both in conventional and technical and process innovation-oriented industries

  11. Wingas in natural gas supply in Belgium

    International Nuclear Information System (INIS)

    2003-01-01

    Recently Wingas has become active in the transport and supply of natural gas in Belgium and succeeded in entering contracts for the supply of natural gas which cover 6% of the Belgian market. Wingas is a German-Russian joint venture between BASF-daughter Wintershall and OAO Gasprom [nl

  12. British Columbia natural gas: Core market policy

    International Nuclear Information System (INIS)

    1988-06-01

    The core market for natural gas in British Columbia is defined as all natural gas consumers in the residential, institutional, commercial, and industrial sectors not currently purchasing natural gas directly and not exempted from the core market by the British Columbia Utilities Commission (BCUC). The intent of the definition is to include all customers who must be protected by contracts which ensure long-term security of supply and stable prices. Core market customers are excluded from direct natural gas purchase and will be served by distribution utilities. A customer may apply to BCUC to leave the core market; such an application may be approved if it is demonstrated that the customer has adequate long-term natural gas supplies or alternative fuel supplies to protect him from supply interruptions. The non-core market is defined as all large industrial customers who elect to make their own natural gas supply arrangements and who can demonstrate to the BCUC sufficient long-term natural gas supply protection or alternative fuel capability to ensure security of the industry. Non-core market customers have full and open access to the competitive natural gas market. The British Columbia government will not apply its core market policy to other jurisdictions through Energy Removal Certificates

  13. Natural gas applications in waste management

    International Nuclear Information System (INIS)

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs

  14. Natural gas annual 1994: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994.

  15. Deregulation of natural gas in Georgia

    International Nuclear Information System (INIS)

    Wise, S.

    2002-01-01

    The Natural Gas Competition and Deregulation Act of 1997 in Georgia is discussed. New legislation passed the Natural Gas Consumer Relief Act in 2002 legislative session to provide additional protection and increase competition. This Act and its impacts are discussed in detail. Additional commission responsibilities are summarized. (R.P.)

  16. Natural gas annual 1994: Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data fro the Nation from 1930 to 1994, and by State from 1967 to 1994

  17. Liberalising the European natural gas market

    International Nuclear Information System (INIS)

    Mulder, M.

    2002-01-01

    Europe's natural gas market is changing radically. The several national markets dominated by monopolistic suppliers are integrating into one European market in which production and trade are subject to competition, while transport through the networks will be unbundled and placed under regulatory influence. What will be the consequences of these changes on natural gas prices, supply security and the environment?

  18. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  19. Natural gas demand prospects in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Jin [Korea Electric Power Corp. (KEPCO), Seoul (Korea, Republic of)

    1997-06-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs.

  20. Natural gas supply, demand and price outlook

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Natural gas consumption in the US grew 15.9 percent between 1986 and 1989. Its share of total primary energy use in the US grew from 22.5 percent to 23.8 percent. Despite unusually warm weather and an economic downturn, natural gas use in the first eight months of 1990 fell only modestly from its 1989 pace - while its market share of US total primary energy use has remained stable. The American Gas Association's Total Energy Resource Analysis energy modeling system (A.G.A.-TERA) projects continued growth in natural gas demand and supply. Natural gas is projected to gain a growing share of total US primary use. Natural gas prices are projected to be sufficient to encourage growth in well completions and reserve additions, yet competitive with electricity, fuel oil and other alternative forms of energy

  1. Natural gas pricing: concepts and international overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorodicht, Daniel Monnerat [Gas Energy, Rio de Janeiro, RJ (Brazil); Veloso, Luciano de Gusmao; Fidelis, Marco Antonio Barbosa; Mathias, Melissa Cristina Pinto Pires [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The core of this article is a critical analysis of different forms of pricing of natural gas existing in the world today. This paper is to describe the various scenarios of natural gas price formation models. Along the paper, the context is emphasized by considering their cases of applications and their results. Today, basically, there are three main groups of models for natural gas pricing: i) competition gas-on-gas, i.e., a liberalized natural gas market, II) gas indexed to oil prices or its products and III) bilateral monopolies and regulated prices. All the three groups of models have relevant application worldwide. Moreover, those are under dynamic influence of economic, technological and sociopolitical factors which bring complexity to the many existing scenarios. However, at first this paper builds a critical analysis of the international current situation of natural gas today and its economic relevance. (author)

  2. Natural gas demand prospects in Korea

    International Nuclear Information System (INIS)

    Young-Jin Kwon

    1997-01-01

    Korea s natural gas demand has increase enormously since 1986. Natural gas demand in Korea will approach to 29 million tonnes by the year 2010, from little over 9 million tonnes in 1996. This rapid expansion of natural gas demand is largely due to regulations for environmental protection by the government as well as consumers preference to natural gas over other sources of energy. Especially industrial use of gas will expand faster than other use of gas, although it will not be as high as that in European and North America countries. To meet the enormous increase in demand, Korean government and Korea Gas Corporation (KOGAS) are undertaking expansion of capacities of natural gas supply facilities, and are seeking diversification of import sources, including participation in major gas projects, to secure the import sources on more reliable grounds. (Author). 5 tabs

  3. Natural gas annual 1993 supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  4. Petroleum and natural gas in Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Presentations made at the 7th Annual Illinois Energy Conference are compiled and reported. Specific topics include: Illinois petroleum and natural gas supply; energy use patterns for Illinois and the nation; impacts of the National Energy Act on the natural gas industry; natural gas for North America; natural gas supply under the Natural Gas Policy; US access to international oil; deregulation and its impact on the US petroleum supply; the US Energy Policy; petroleum pricing and taxation policies in Illinois; the high cost of energy and its impact on the poor; impact of increased fuel prices on Illinois' industrial future; energy prices and inflation; opportunities for energy conservation in transportaton; overview of energy and synfuels from biomass and wastes; an inventory of energy potential from biomass in Illinois; problems and potential of alcohol from agriculture; liquid and gaseous fuels from coal; and alternatives to liquid and gaseous fuels.

  5. Natural gas monthly, September 1991. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production distribution consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia.

  6. Australian natural gas market outlook

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    A new study of the Australian natural gas industry by leading Australian economics and policy consultancy ACIL Tasman highlights the significant supply and demand side uncertainties currently facing the industry. The ACIL Tasman 'Australian Gas Market Review and Outlook 2004' study presents modelling results for three supply/demand scenarios in Eastern Australia and two in Western Australia. The results show that, even under moderate assumptions about future levels of gas demand growth, major supply-side investment is likely to be needed over the next ten to fifteen years. The base supply/demand scenario for Eastern Australia and Northern Territory, illustrated in Figure 1, shows that even allowing for substantial new discoveries in existing production basins and major expansion of coal seam methane production, in the absence of a northern gas connection to the eastern states (Timor Sea or PNG Highlands) a significant supply gap will begin to emerge from around 2013. The study identifies several supply-side options for Eastern Australia - new discoveries in the established production provinces in Bass Strait and Central Australia; greenfield developments such as the Otway Basin offshore from Victoria and South Australia; continuing expansion of coal seam methane production in Queensland and New South Wales; and gas from Papua New Guinea, Timor Sea or from the North West Shelf region delivered via a trans-continental pipeline. The study concludes that it is unlikely that any single option will suffice to meet future demand. Almost inevitably, a combination of these sources will be needed if anticipated growth opportunities are to be met. With regard to prices, the study shows that in the short to medium term the outlook is for some real reductions in wholesale prices in most regional markets. This reflects increasing levels of upstream competition and declining real costs of pipeline transportation. However in the longer term, supply-side constraints will tend to

  7. Canadian natural gas and climate change

    International Nuclear Information System (INIS)

    2002-03-01

    The Canadian Gas Association (CGA) has expressed concerns regarding how the goal to reduce greenhouse gas emissions can be met. It also has concerns regarding the possible economic impacts of required measures to reduce emissions to 6 per cent below 1990 levels. The CGA argued that since the initial negotiations of the Kyoto Protocol, Canada's greenhouse gas emissions have increased significantly, meaning that if the agreement were to come into force, Canada would have to reduce emissions by about 29 per cent below the currently-projected 2008-2012 level. The report states that 28 per cent of Canada's energy needs are met by natural gas. Excluding energy use in transportation, natural gas contributes more than 40 per cent to Canada's energy portfolio. More than half of Canadian households rely on pipeline services and distribution companies to deliver natural gas for household use. The manufacturing sector relies on natural gas for more than half of its energy needs. Natural gas is a major energy source for the iron/steel, petroleum refining and chemical manufacturing industries. Natural gas is a cleaner-burning fuel than coal or crude oil, and its use results in fewer environmental impacts than other fossil fuels. Vehicles powered by natural gas produce 20 - 30 per cent less carbon dioxide emissions than vehicles powered by gasoline. Pipelines are also a more efficient way of transporting and distributing natural gas than marine transport, railways or trucks. The CGA recommends that policy development should emphasize the environmental benefits of natural gas and recognize its role as a bridge fuel to a cleaner energy-based economy. It also recommends that policies should be developed to encourage the use of natural gas in electricity generation to lower greenhouse gases and air pollutants such as oxides of nitrogen that cause smog

  8. 75 FR 70350 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...

  9. 76 FR 4417 - Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...

  10. Assessment of future natural gas vehicle concepts

    Science.gov (United States)

    Groten, B.; Arrigotti, S.

    1992-10-01

    The development of Natural Gas Vehicles is progressing rapidly under the stimulus of recent vehicle emission regulations. The development is following what can be viewed as a three step progression. In the first step, contemporary gasoline or diesel fueled automobiles are retrofitted with equipment enabling the vehicle to operate on either natural gas or standard liquid fuels. The second step is the development of vehicles which utilize traditional internal combustion engines that have been modified to operate exclusively on natural gas. These dedicated natural gas vehicles operate more efficiently and have lower emissions than the dual fueled vehicles. The third step is the redesigning, from the ground up, of a vehicle aimed at exploiting the advantages of natural gas as an automotive fuel while minimizing its disadvantages. The current report is aimed at identifying the R&D needs in various fuel storage and engine combinations which have potential for providing increased efficiency, reduced emissions, and reductions in vehicle weight and size. Fuel suppliers, automobile and engine manufacturers, many segments of the natural gas and other industries, and regulatory authorities will influence or be affected by the development of such a third generation vehicle, and it is recommended that GRI act to bring these groups together in the near future to begin, developing the focus on a 'designed-for-natural-gas' vehicle.

  11. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  12. Thermodynamic DFT analysis of natural gas.

    Science.gov (United States)

    Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C

    2017-08-01

    Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.

  13. Natural gas in the transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ask, T Oe; Einang, P M; Stenersen, D [MARINTEK (Norway)

    1996-12-01

    The transportation sector is responsible for more than 50% of all oil products consumed, and it is the fastest growing oil demand sector and the fastest growing source of emissions. During the last 10 years there have been a considerable and growing effort in developing internal combustion gas engines. This effort has resulted in gas engines with efficiencies comparable to the diesel engines and with emissions considerably lower than engines burning conventional fuels. This development offers us opportunities to use natural gas very efficiently also in the transportation sector, resulting in reduced emissions. However, to utilize all the built in abilities natural gas has as engine fuel, the natural gas composition must be kept within relatively narrow limits. This is the case with both diesel and gasoline today. A further development require therefore specified natural gas compositions, and the direct use of pipeline natural gas as today would only in limited areas be acceptable. An interesting possibility for producing a specified natural gas composition is by LNG (Liquid Natural Gas) production. (EG)

  14. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  15. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  16. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided

  17. Natural gas 1994: Issues and trends

    International Nuclear Information System (INIS)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A)

  18. Natural gas in the European Community

    International Nuclear Information System (INIS)

    Kalim, Z.

    1991-01-01

    A report is presented on 'Natural Gas in the European Community'. Aspects discussed include the challenges facing the gas industry in the EC, the development of the European gas industry, the structure and role of European gas companies, the sources of European supply, gas contracts and the influences that operate on sales into end markets, electricity generation from natural gas, evolving markets for natural gas in the EC, life in the private sector using British Gas as a role model and country profiles for eleven European countries. (UK)

  19. Natural gas annual 1992: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

  20. Natural gas commoditization - evolution and trends

    International Nuclear Information System (INIS)

    Albon, D.R.

    1998-01-01

    This presentation dealt with issues of deregulation in the natural gas industry. The commoditization process, the effect of deregulation as reflected by changes in the percentage distribution of market participation by profession in NYMEX in 1994 and for the first quarter of 1998, the natural gas supply and demand from 1990 to 1996, and natural gas market activities (i.e. swaps, EFPs, spreads, transportation look-alikes, triggers) were reviewed. An Alberta supply and demand forecast for the winter heating season of 1998-1999 and its impact on prices was also provided. tabs., figs

  1. Natural gas 1994: Issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This report provides an overview of the natural gas industry in 1993 and early 1994 (Chapter 1), focusing on the overall ability to deliver gas under the new regulatory mandates of Order 636. In addition, the report highlights a range of issues affecting the industry, including: restructuring under Order 636 (Chapter 2); adjustments in natural gas contracting (Chapter 3); increased use of underground storage (Chapter 4); effects of the new market on the financial performance of the industry (Chapter 5); continued impacts of major regulatory and legislative changes on the natural gas market (Appendix A).

  2. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    Jensen, J.; Tafdrup, S.; Christensen, J.

    1997-01-01

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  3. The geopolitics of natural gas in Asia

    International Nuclear Information System (INIS)

    Bahgat, G.

    2001-01-01

    Over the last few years, natural gas has been the fastest-growing component of primary world energy consumption. This study seeks to examine the recent efforts by the Islamic Republic of Iran, Qatar, the United Arab Emirates and Saudi Arabia to develop their natural gas resources and capture a large share of the Asian market, particularly in Turkey, India, China, Japan and South Korea. Counter-efforts by rivals, such as the Russian Federation and the Caspian Basin states, are analysed. Finally, international ventures to transport natural gas from producers to consumers, including the Dolphin Project, the Trans-Caspian Pipeline and Blue Stream, are discussed. (author)

  4. Natural gas industry at the 2020 prospects

    International Nuclear Information System (INIS)

    Chabrelie, M.F.

    2006-01-01

    Natural gas was for a long time reserved to the most noble uses in the industry. However, natural gas, which get a priori no captive market, has progressively imposed itself in all possible energy uses. The gas resources and abundant enough to represent the main contribution of the energy industry of the 21 century. With intrinsic qualities which make it an energy less polluting than the other fossil fuels, natural gas is the commercial energy source with the highest potential growth in the energy status of the future. (J.S.)

  5. Market penetration of natural gas in Europe

    International Nuclear Information System (INIS)

    Haas, R.; Wirl, F.

    1992-01-01

    The strategy of restricting natural gas to noble uses (directive of EEC and endorsed by the IEA) impeded gas expansion despite substantial upward revisions in the assessment of available resources. However, increasing environmental concern slowly but gradually undermines this strategy because natural gas serves as a substitute for costly abatement. This article discusses the prospect of future natural gas consumption considering economic and ecological facts as well as strategic and political considerations. In fact, we argue that inconsistent political interventions first seriously lowered gas penetration but now favor its use

  6. Low Carbon Technology Options for the Natural Gas ...

    Science.gov (United States)

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic

  7. The future of the US natural gas market

    International Nuclear Information System (INIS)

    Linden, H.R.

    1993-01-01

    The United States gas industry is entering a period when it will have an excellent opportunity to recapture the 30 percent share of the primary energy market it enjoyed in 1973. In spite of unresolved problems stemming from its drastic restructuring during the Reagan and Bush administrations, most aspects of today's political and regulatory climate favor a substantial expansion of natural gas use in the economy. Combined with the now nearly universal recognition that Lower-48 natural gas resources and North American resources as a whole are abundant and recoverable at relatively low cost, this has created unusually high levels of preference for natural gas as a primary energy source. The favorable outlook for the US gas industry at the start of 1993 is the result of an extremely positive political, regulatory, and business climate for expanded use of natural gas, supported by a Lower-48 resource base capable of meeting expected levels of demand at competitive costs for at least 25 years. This assumes continued advances in the whole spectrum of technologies from exploration and production to end use that halted and partially reversed the sharp 1973 to 1986 decline of gas share of the US energy market. In addition to the uncertainties that cloud this assumption, as the gas industry's commitment to aggressive support of R ampersand D seems to be faltering, there are other problems that need to be resolved to ensure the full realization of the potential of gas as the bridge fuel to a sustainable energy system

  8. Natural gas 1992: Issues and trends

    International Nuclear Information System (INIS)

    1993-03-01

    This report provides an overview of the natural gas industry in 1991 and 1992, focusing on trends in production, consumption, and pricing of natural gas and how they reflect the regulatory and legislative changes of the past decade (Chapter 1). Also presented are details of FERC Order 636 and the Energy Policy Act of 1992, as well as pertinent provisions of the Clean Air Act Amendments of 1990 (Chapter 2). In addition, the report highlights a range of issues affecting the industry, including: Trends in wellhead prices and natural gas supply activities (Chapter 3); Recent rate design changes for interstate pipeline companies (Chapter 4); Benefits to consumers from the more competitive marketplace (Chapter 5); Pipeline capacity expansions during the past 2 years (Chapter 6); Increasing role of the natural gas futures market (Chapter 7)

  9. Natural gas 1996 - issues and trends

    International Nuclear Information System (INIS)

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry

  10. More natural gas from Russia, but when?

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    The fourth article in a series about changes in the European natural gas market focuses on Russia, a country with gigantic potential reserves (216,000 billion m 3 ) and a production unequalled in the world (780.4 billion m 3 in 1992 in the Russian Federation), but also with enormous economic and technical problems. The question is what role Russia is able to play in the European natural gas supply. Attention is paid to the organizational structure in former Soviet Union regarding the natural gas industry, the environmental effects of exploration and exploitation, the need for foreign capital, and the disappointing progress of the 1991 Energy Charter. On a short term the infrastructure must be improved. Also the conflicts on the price of natural gas transport between the transfer countries Ukraine, Slovenia and Czechoslovakia and the West-European clients must be solved. 1 fig., 7 ills., 2 tabs

  11. Outlook for Noth American natural gas supplies

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.

    1995-01-01

    The underlying resource base for North America natural gas is large, sufficient for nearly 100 years of current consumption. As such, the issues are not the size of the resource, but how to convert this resource into economically competitive supply. The key questions are: Will the cost (price) of natural gas remain competitive? What is the status of near-term deliverability? Will there be enough supply to meet growing demand? These economic and market issues frame the outlook for gas supplies in North America. Most importantly, they will determine how natural gas emerges from its competition for markets with other fuels and electricity. The paper addresses these questions by examining: (1) the underlying nature of the natural gas resource base; (2) the current status and trends in deliverability; and, (3) the potential of new technologies for producing gas more cost-effectively. (author)

  12. Unconventional Oil and Natural Gas Development

    Science.gov (United States)

    EPA works with states and other key stakeholders, through sound scientific research and regulation; to help ensure that natural gas extraction from shale formations, also called fracking or hydrofracking, does not harm public health and the environment.

  13. Natural gas encasement for highway crossings.

    Science.gov (United States)

    2015-03-01

    The University Transportation Center for Alabama researchers examined the Alabama Department of : Transportations current policy regarding the encasement of natural gas and hazardous liquid pipelines at roadway : crossings. The group collected inf...

  14. Liquefied natural gas tender crashworthiness research

    Science.gov (United States)

    2015-03-23

    Research is being conducted to develop technical : information needed to formulate effective natural gas fuel : tender crashworthiness standards. This research is being : performed for the Federal Railroad Administrations (FRAs) : Office of Res...

  15. Price discovery in European natural gas markets

    International Nuclear Information System (INIS)

    Schultz, Emma; Swieringa, John

    2013-01-01

    We provide the first high-frequency investigation of price discovery within the physical and financial layers of Europe's natural gas markets. Testing not only looks at short-term return dynamics, but also considers each security's contribution to price equilibrium in the longer-term. Results show that UK natural gas futures traded on the Intercontinental Exchange display greater price discovery than physical trading at various hubs throughout Europe. - Highlights: • We use intraday data to gauge price discovery in European natural gas markets. • We explore short and long-term dynamics in physical and financial market layers. • Results show ICE's UK natural gas futures are the main venue for price discovery

  16. Natural gas 1996 - issues and trends

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This publication presents a summary of the latest data and information relating to the U.S. natural gas industry, including prices, production, transmission, consumption, and financial aspects of the industry.

  17. The golden age of natural gas

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The experts of energy policy agree to predict a brilliant future for natural gas. Among fossil energies, natural gas produces the least quantity of CO 2 . Geological reserves are estimated to 65 years for gas and 43 years for petroleum. Throughout the world, industrial infrastructures of gas production, transport and distribution are being developed, for instance 430000 km of gas pipeline are planned. In western Europe half the increase of gas demand by 2010 will be due to electricity production. Innovative techniques using natural gas are studied in various fields: cogeneration, transport, urban heating and fuel cells. The gas-fed fuel cell is based on a reversed electrolysis: hydrogen produced by the decomposition of natural gas interacts with oxygen and yields electricity. (A.C.)

  18. Resourceful utilization technology for natural gas

    International Nuclear Information System (INIS)

    Matsumura, Y.

    1994-01-01

    This paper is a description of new applications that will contribute in increasing the demand for natural gas. First, technical issues to turn natural gas into a more resourceful fuel (efficient transportation and storage, integrated utilization of energies, uses as non-fuel), and also pitch-based high performance carbon materials and utilization techniques in the field of energy (isotropic carbon fiber, activated carbon fiber, spherical carbon micro-beads, high modulus carbon fiber). (TEC)

  19. Canadian natural gas market: dynamics and pricing

    International Nuclear Information System (INIS)

    2000-01-01

    This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price

  20. The eligibility of the natural gas consumers

    International Nuclear Information System (INIS)

    2004-07-01

    The eligible consumers are allowed to chose freely their natural gas producers and negotiate the prices and the supply modalities. In this context this information paper presents the legislative and regulation framework of the natural gas consumers eligibility, a definition of the possible eligible consumers and a list at the 30 january 2004. It provides also recommendations and answers to the more often asked questions on the administrative procedures and the contracts. (A.L.B.)

  1. Conveyance of natural gas. Organization and regulation

    International Nuclear Information System (INIS)

    1995-01-01

    This International Energy Agency (IEA) study deals with the conveyance of natural gas. The socio-economic factors are given as well as the different organization and regulations modes of natural gas conveyance and storage in the IEA countries and in central and eastern Europe. The main questions forming the subject of discussions in the IEA countries are analyzed too. (O.L.). 50 refs., 55 figs., 16 tabs

  2. Natural gas supply and demand in Italy

    International Nuclear Information System (INIS)

    Comaschi, C.; Di Giulio, E.; Sormani, E.

    2007-01-01

    This article explores the dynamics between natural gas supply and demand in Italy. In order to supply Italy with increasing volumes of gas, several new pipelines and re gasification plants are expected in the next future, but their implementation is uncertain. Thus, there exist the possibility of natural gas shortage in the future. On the other hand, if all the expected projects will be implemented, situations of oversupply cannot be excluded. A system dynamics model deepens such as issue [it

  3. Natural gas developments in Latin America

    International Nuclear Information System (INIS)

    Faith, P.L.

    1996-01-01

    Natural gas opportunities in Latin America are discussed with reference to the Bolivia to Brazil Gas Pipeline Project. This fully integrated natural gas project extends from reserves development to market consumption and involves cooperation between countries and between the public and private sector. The project's success will depend, it is argued on the thorough integration and cooperation of all stages from reserve exploration, through pipeline construction, and distribution to power generation. (UK)

  4. Natural Gas Extraction, Earthquakes and House Prices

    OpenAIRE

    Hans R.A. Koster; Jos N. van Ommeren

    2015-01-01

    The production of natural gas is strongly increasing around the world. Long-run negative external effects of extraction are understudied and often ignored in social) cost-benefit analyses. One important example is that natural gas extraction leads to soil subsidence and subsequent induced earthquakes that may occur only after a couple of decades. We show that induced earthquakes that are noticeable to residents generate substantial non-monetary economic effects, as measured by their effects o...

  5. Price Comovement Between Biodiesel and Natural Gas

    OpenAIRE

    Janda, Karel; Kourilek, Jakub

    2016-01-01

    We study relationship between biodiesel, as a most important biofuel in the EU, relevant feedstock commodities and fossil fuels. Our main interest is to capture relationship between biodiesel and natural gas. They are both used either directly as a fuel or indirectly in form of additives in transport. Therefore, our purpose is to �nd price linkage between biofuel and natural gas to support or reject the claim that they compete as alternative fuels and potential substitutes. The estimated p...

  6. Natural gas consumption and economic growth: Are we ready to natural gas price liberalization in Iran?

    International Nuclear Information System (INIS)

    Heidari, Hassan; Katircioglu, Salih Turan; Saeidpour, Lesyan

    2013-01-01

    This paper examines the relationship between natural gas consumption and economic growth in Iran within a multivariate production model. We also investigate the effects of natural gas price on its consumption and economic growth using a demand side model. The paper employs bounds test approach to level relationship over the period of 1972–007. We find evidence of bidirectional positive relationship between natural gas consumption and economic growth in short-run and long-run, based on the production model. The findings also suggest that real GDP growth and natural gas have positive and negative impacts on gross fixed capital formation, respectively. Employment, however, was found to have negative but insignificant impact on gross fixed capital formation. Moreover, the estimation results of demand side model suggest that natural gas price has negative and significant impact on natural gas consumption only in the long-run, though there is insignificant impact on economic growth. These results imply that the Iranian government's decision for natural gas price liberalization has the adverse effects on economic growth and policy makers should be cautious in doing this policy. - Highlights: • Iran has been considered as a major natural gas producer in the world. • This paper examines the relationship between gas consumption and growth in Iran. • Positive impact of gas consumption on growth has been obtained. • The paper finds that gas consumption and income reinforce each other in Iran. • Natural gas price has also negative and significant impact on natural gas consumption in Iran

  7. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  8. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  9. Short-term natural gas consumption forecasting

    International Nuclear Information System (INIS)

    Potocnik, P.; Govekar, E.; Grabec, I.

    2007-01-01

    Energy forecasting requirements for Slovenia's natural gas market were investigated along with the cycles of natural gas consumption. This paper presented a short-term natural gas forecasting approach where the daily, weekly and yearly gas consumption were analyzed and the information obtained was incorporated into the forecasting model for hourly forecasting for the next day. The natural gas market depends on forecasting in order to optimize the leasing of storage capacities. As such, natural gas distribution companies have an economic incentive to accurately forecast their future gas consumption. The authors proposed a forecasting model with the following properties: two submodels for the winter and summer seasons; input variables including past consumption data, weather data, weather forecasts and basic cycle indexes; and, a hierarchical forecasting structure in which a daily model was used as the basis, with the hourly forecast obtained by modeling the relative daily profile. This proposed method was illustrated by a forecasting example for Slovenia's natural gas market. 11 refs., 11 figs

  10. 77 FR 12274 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-02-29

    ... Authority To Import and Export Natural Gas and Liquefied Natural Gas During January 2012 AGENCY: Office of... LNG, LP 11-98-LNG ENERGY PLUS NATURAL GAS LLC 11-155-NG BROOKFIELD ENERGY MARKETING L.P 12-03-NG WPX... granting authority to import and export natural gas and liquefied natural gas. These Orders are summarized...

  11. 77 FR 31838 - Notice of Orders Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas...

    Science.gov (United States)

    2012-05-30

    ... Granting Authority to Import and Export Natural Gas and Liquefied Natural Gas During April 2012 AGENCY... International, LLC....... 12-33-NG Phillips 66 Company 12-34-NG Northwest Natural Gas Company 12-41-NG Sequent... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  12. 77 FR 19277 - Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During...

    Science.gov (United States)

    2012-03-30

    ... and Export Natural Gas and Liquefied Natural Gas During February 2012 FE Docket Nos. FREEPORT LNG...-LNG QUICKSILVER RESOURCES INC 12-12-NG UNITED ENERGY TRADING CANADA, ULC 12-13-NG ENCANA NATURAL GAS... authority to import and export natural gas and liquefied natural gas. These Orders are summarized in the...

  13. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas and Vacating Prior Authority During December 2012 FE... granting authority to import and export natural gas and liquefied natural gas and vacating prior [[Page...

  14. Natural gas: A bridge to the future?

    International Nuclear Information System (INIS)

    Andriesse, C.D.

    1991-01-01

    Natural gas is the cleanest fossil fuel, but never got the chance to develop its use. The reason for that is the notion that the natural gas supplies would last for only some decennia. That is only right for the conventional gas supplies. In ice crystals, some hundreds of meters deep in the oceans, enormous methane reserves, many times larger than the conventional supplies, are enclosed in so-called clathrates. From the literature it appears that other sources of natural gas or methane and new options to use these energy sources are considered or to be developed. Attention is paid to the methane reserves in geologic formations, methane produced by microbes, and methane in clathrates. It is estimated that the methane reserve is 8 x 10 2 3 Joule. By using natural gas as a fuel CO 2 emission will be reduced considerably. Methane emission however must be limited, because of the reducing effect of methane on the oxygen production in the troposphere. The large reserves of methane also offer good prospects for the production of hydrogen, large-scale applications to generate electric power or the use of CH 4 as a fuel in the transportation sector. New techniques and economic, social and institutional factors determine how fast the use of natural gas will increase. It is expected that 0.54 Tm 3 of natural gas will be needed for the twelve countries of the European Community. Main users in the year 2030 will be the electric power industry (39%), industry (26%), households and trade (18%), and transportation sector and supply (15%). In 2030 63% of natural gas has to be imported. 3 refs

  15. Competition in trade with natural gas

    International Nuclear Information System (INIS)

    1999-01-01

    On 22 June 1998, the European Parliament and the Council of Europe adopted Directive 98/30/EC on common rules for the internal market for natural gas. The Natural Gas Market Directive is aimed at increasing the competition on the gas market and creating an internal market for natural gas. To achieve this, the Directive includes provisions for ensuring that owners of transmission and distribution networks will allow other players access to these networks. The Directive is much more far-reaching and comprehensive than the present Swedish legislation in the field of natural gas. The main task of the committee is to submit a proposal for natural gas legislation that will meet the requirements of the new Directive. According to the committee directives, the work on the new legislation should aim at the regulations serving as a basis for a socio economically efficient market. However, it should also be borne in mind that the Swedish natural gas market is less developed than the markets in most other European countries, and that a lack of equilibrium in the opening of the gas markets should be avoided. Current international deliberations concerning the natural gas network in the Nordic countries and the Baltic Sea region should also be taken into account. Chapter 1 gives more detailed particulars of the points of departure for the work of the committee and the implementation of the work. The report is arranged in the form three main parts, i.e. a background part, a part describing the points of departure, and a proposals part

  16. Quickening construction of natural gas infrastructures and ensuring safe supply of natural gas in China

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Zhongde, Zhao; Chunliang, Sun; Juexin, Shen

    2010-09-15

    Compared with North America or Europe in respect of natural gas resources, markets and pipeline networks, the current China stands in a special period with natural gas market in quick development, accordingly, it's recommended to strengthen cooperation and coordination between investors by way of diversified investment and joint adventures and on the basis of diversified resource supply modes, so as to accelerate the construction of infrastructures including the natural gas pipeline networks and the storage and peak-shaving facilities, quick up the market development, realize the situation of mutual-win-win, and finally ensure safety of natural gas utilization in the domestic markets.

  17. A critical view on the new Dutch Natural Gas Law

    International Nuclear Information System (INIS)

    2000-01-01

    A brief overview is given of the opinions of several players in the market for natural gas on the new Dutch Natural Gas Law, which is drafted within the framework of the liberalization of the European market for natural gas

  18. Feasibility study for liquefied natural gas utilization for commercial vehicles on the Pennsylvania Turnpike.

    Science.gov (United States)

    2012-10-01

    Recent advances in horizontal drilling and fracturing technology in gas shale formations have increased natural gas supply : such that its price has decoupled from petroleum and is likely to remain significantly lower for the foreseeable future. In t...

  19. European key issues concerning natural gas: Dependence and vulnerability

    International Nuclear Information System (INIS)

    Reymond, Mathias

    2007-01-01

    Due to the high demand for natural gas from emerging countries and because natural gas has become an increasingly valuable resource is electricity production, natural gas demand should increase. This paper re-examines the geopolitical key issues related to natural gas as well as the uneven distribution of natural gas resources on a worldwide scale. This paper proposes to define the significance of liquefied natural gas in gas exchanges and it analyses the problem of European gas vulnerability using several indicators

  20. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  1. Eastern Canada natural gas market development

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    2001-07-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs.

  2. Natural gas for New Brunswick: First report

    International Nuclear Information System (INIS)

    1998-01-01

    The development of the gas field off Sable Island and the imminent construction of a gas pipeline which will deliver natural gas to New Brunswick has prompted a thorough examination of energy-related issues in the province. This report presents the findings of the provincial energy committee which examined the implications of the arrival of natural gas to the province. The committee held a series of public hearings and consultations, and also received written submissions. After a historical perspective on natural gas as an energy source in the province and a review of the gas industry participants and their interests, the report discusses such issues as gas pipeline economics, local distribution company operations, infrastructure development, the regulatory framework, energy market competition, regional price equity, development of in-province gas sources, pipeline access, pipeline laterals and expansions, establishment of gas distribution franchises, municipal involvement in gas development, the impact of gas industry development on electric utility restructuring, and the environmental benefits of natural gas. Finally, recommendations are made regarding how natural gas should be regulated and distributed

  3. Eastern Canada natural gas market development

    International Nuclear Information System (INIS)

    Laird, N.

    2001-01-01

    An overview an update of PanCanadian's exploration operations in Atlantic Canada was presented along with market delivery options. PanCanadian is one of Canada's largest natural gas producers and the most active Canadian driller with 2,479 wells. With its' 94 per cent success rate, the company is emerging as an international exploration success and is marketing energy throughout North America. In terms of marketing natural gas, PanCanadian is ranked twelfth of 68 suppliers in customer satisfaction. The company also markets about 10 per cent of western crude production and is the second largest Canadian marketer for natural gas liquids. Also, with the deregulation of electricity in Alberta, PanCanadian is constructing two 106 megawatt power plants in Alberta to provide electricity to Southern Alberta and to take advantage of the economics of energy conversion. PanCanadian also has a dominant, 20 per cent position in the Scotia Shelf and has plans for offshore processing. Graphs depicting its Deep Panuke operations and pipeline routes to market the natural gas were included. Forecast charts for natural gas demand show a steady increase in demand from 2000 to 2010. tabs., figs

  4. Trading in LNG and natural gas

    International Nuclear Information System (INIS)

    1992-01-01

    We have examined the market for natural gas from a number of viewpoints, starting with the role of natural gas in the global energy market where its 20% share of primary energy demand has been captured in the space of almost as many years. In discussion regional energy markets we cover the disparities between supply and demand which give rise to trade by pipeline, and by sea in the form of liquefied natural gas (LNG). Both have in fact increased steadily in recent years, yet even in 1991, only 12-15% of total gas production was traded across international boundaries, whereas for oil it was closer to 40%. For the moment pipeline trade remains heavily concentrated in Europe and North America, and it is in the LNG sector where the spread of projects, both existing and planned, is more global in nature. We examine the development of LNG trades and the implications for shipping. Finally, we look at transportation costs, which are likely to be an important component in the viability of many of the natural gas export schemes now under review. There is good reason to be ''bullish'' about parts of the natural gas industry but this Report suggests that there are areas of concern which could impinge on the development of the market in the 1990s. (author)

  5. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Paranhos, Elizabeth [Univ. of Colorado, Boulder, CO (United States); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Carlson, Ken [Colorado State Univ., Fort Collins, CO (United States)

    2012-11-01

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector.

  6. Natural gas poised to penetrate deeper into electric generation

    International Nuclear Information System (INIS)

    Swanekamp, R.

    1995-01-01

    This article describes how advancements in gas supply, distribution and storage, coupled with new options in combustion equipment, continue to expand the use of natural gas for electric generation. The challenge is to meet the increasing demand while keeping prices competitive with other fuels--and keep a small band of skeptics at bay. To prepare for the projected growth in gas consumption, the natural-gas industry has invented in new infrastructure and technologies. Pipelines have been built; storage facilities have been expanded; and highly precise flow measurement stations have been installed. To mitigate supply and price risk, suppliers are offering short-, mid-, or long-term contracts which include service options and guarantees. In spite of these preparations, not all power producers are comfortable with the potential tidal wave of gas-fired capacity. Reason: It limits the electric-generation resource base to one fuel for future capacity

  7. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    Science.gov (United States)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  8. Ideas and suggestions for marketing natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.)

    1980-04-01

    The changes in the situation on the world energy market have also affected the gas supply business. This led to a re-examination of the marketing concept for natural gas. The impetus to this came from the procurement situation, the rational use of energy, the appearance of new technologies and the need to arrive at a pricing policy in line with the market. All this required a great deal of PR work and more extensive cooperation. Clarification of some points will require a market analysis to show how long-term plans will have to be established. Sales promotion activities for natural gas will have to show that the aim is to use natural gas as a substitute in high-efficiency applications rather than to increase the consumption of energy. The various activities must be closely coordinated.

  9. Green gas in the natural gas network

    International Nuclear Information System (INIS)

    Bruinsma, B.

    2007-09-01

    The aim of this study is to map the technical, economic and organizational options and limitations of feeding biogas back into the natural gas grid by means of regional co-digestion. Emphasis is put on feeding back into the natural gas grid, analogous to a comparable situation in a number of landfill gas projects. This report first provides insight into the energetic potential of co-digestion. Next several landfill gas projects are examined that feed back into the natural gas grid. After that the political and policy-related issues and preconditions for feeding back biogas from co-digestion are discussed, including the technical and economic aspects. Finally, a picture is painted of the future potential of green gas. [mk] [nl

  10. Natural gas and production of electricity

    International Nuclear Information System (INIS)

    Defago, E.

    2005-01-01

    The forthcoming power supply shortage in Switzerland due to increasing consumption is discussed, as are the possibilities for securing the future supply. Today, the main sources are hydroelectric (roughly 55 %) and nuclear (40 %) power. The share of electricity from natural gas amounts to only 1.4 %. The possibilities of further economic production of hydropower are practically exhausted. Therefore, further electric power has to be either imported or generated from other energy sources (renewable, nuclear, fossil) in the country itself. Due to the low acceptance of nuclear energy and the limited potential of renewable energy sources, natural gas is the most favoured candidate. The advantages of distributed production in cogeneration plants are compared with the centralized production in larger plants using combined cycles. Finally, a project currently under development is presented: an existing thermal power plant fueled with heavy fuel oil shall be refurbished and converted to natural gas as the new fuel

  11. Regulatory reform in Mexico's natural gas sector

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years Mexico has implemented remarkable structural changes in its economy. However, until recently its large and key energy sector was largely unreformed. This is now changing. In 1995 the Mexican Government introduced legislative changes permitting private sector involvement in natural gas storage, transportation and distribution. Subsequent directives set up a detailed regulatory framework. These developments offer considerable promise, not only for natural gas sector development but also for growth in the closely linked electricity sector. This study analyses the changes which have taken place and the rationale for the regulatory framework which has been established. The study also contains recommendations to assist the Government of Mexico in effectively implementing its natural gas sector reforms and in maximizing the benefits to be realised through the new regulatory framework. (author)

  12. Electricity/natural gas competition in Quebec

    International Nuclear Information System (INIS)

    Bernard, J.-T.

    1992-01-01

    The evolution of energy market shares (electricity, natural gas and oil products) in Quebec's residential and commercial sectors in the 1980s shows that energy source relative prices have influenced consumer behavior as expected. A set of comparisons from space and water heating markets in these sectors with regard to prices paid by consumers and costs incurred by society in general is presented. For the residential sector, it is seen that consumers pay only a fraction of the cost for electric space and water heating; the same service could be provided at smaller cost by natural gas. For the commercial sector, the electricity and natural gas tariffs convey the appropriate message with respect to the cost incurred in providing the service. 6 refs., 7 tabs

  13. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  14. Pricing of natural gas in Kazakhstan

    International Nuclear Information System (INIS)

    Zhapargaliev, I.K.

    1996-01-01

    Two state companies are in charge of natural gas supply in Kazakhstan. They buy, transport and sell natural gas and have monopolized the industry and provoked increase of gas prices. Ministry of Oil and gas Industry proposed demonopolization. The restructuring that took place caused new distribution of tasks in the gas industry. A more competitive environment was created leading to normalization of the natural gas prices. All economic subjects were granted the right to acquire gas regardless the type of ownership. Measures implemented for reorganization of gas companies contributed to the reduction of gas transport costs and prices by 50% and to decrease of gas prices in the southern regions by 50%. Despite these measures gas prices for household sector are still unchanged and are below the import prices, the main reason being the low average household income

  15. Natural gas annual 1992: Supplement: Company profiles

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  16. The new East Coast natural gas market

    International Nuclear Information System (INIS)

    MacLean, I.; Cowan, N.

    1998-01-01

    Market demand for natural gas in Canada's Maritime provinces was discussed. The Atlantic market represents the largest potential region, currently without access to natural gas in Canada or the United States. Maritimes and Northeast Pipelines and the Sable Offshore Energy partners have made great efforts to introduce and market natural gas as well as to provide pipeline transportation services in the Maritimes and New England markets. Maritimes and Northeast Pipelines is a partnership project with Westcoast Energy, Mobil Oil, and Duke Energy. Theirs is the first pipeline project to deliver gas, but it will certainly not be the last gas project in the region. Maritimes and Northeast Pipelines now has 180,000 MMBtu/day of phased-in Canadian load committed to firm service agreements for delivery in the first 24 months of operation. In addition to these firm service agreements, an additional 60,000 MMBtu/day is signed for future lateral extensions to service emerging markets. figs

  17. Challenges for the future of natural gas

    International Nuclear Information System (INIS)

    Gadonneix, P.

    1997-01-01

    This paper reports on the closure talk from P. Gadonneix, president of Gaz de France (GdF) company, who draws out the perspectives of development of the French national company in the context of an increasing natural gas demand with new competition and with an evolution of the European regulations: perspectives of demand and production, the dependency of Europe, the competition with other energy sources, the European deregulation of natural gas market, the strategy of Gaz de France, the relation with consumers, the development of distribution systems, the promotion of new products, the environmental qualities of natural gas and the development of clean technologies, the construction of new pipelines within the national territory, the partnerships of GdF with other national companies, the socio-economical actions of GdF (employment etc..). (J.S.)

  18. Natural gas and electricity generation in Queensland

    International Nuclear Information System (INIS)

    Webb, G.

    2001-01-01

    The focus of this article is on electricity generation in Queensland. Black coal accounted for 97 percent, while natural gas made up only 1 percent of the fuel used in thermal power generation in 1997-98. The share of natural gas in thermal electricity generation is expected to rise to 21 percent by 2014-2015, because of the emphasis on natural gas in Queensland's new energy policy. Since 1973-1974, Queensland has led the way in electricity consumption, with an average annual growth rate of 6.8 percent but the average thermal efficiency has fallen from 38.0 percent in 1991-1992, to 36.6 percent in 1997-1998

  19. Economics of natural gas conversion processes

    International Nuclear Information System (INIS)

    Gradassi, M.J.; Green, N.W.

    1995-01-01

    This paper examines the potential profitability of a selected group of possible natural gas conversion processes from the perspective of a manufacturing entity that has access to substantial low cost natural gas reserves, capital to invest, and no allegiance to any particular product. The analysis uses the revenues and costs of conventional methanol technology as a framework to evaluate the economics of the alternative technologies. Capital requirements and the potential to enhance cash margins are the primary focus of the analysis. The basis of the analysis is a world-scale conventional methanol plant that converts 3.2 Mm 3 per day (120 MMSCFD) of natural gas into 3510 metric tonnes (3869 shorts tons) per day of methanol. Capital and operating costs are for an arbitrary remote location where natural gas is available at 0.47 US dollars per GJ (0.50 US dollars per MMBtu). Other costs include ocean freight to deliver the product to market at a US Gulf Coast location. Payout time, which is the ratio of the total capital investment to cash margin (revenue less total operating expenses), is the economic indicator for the analysis. Under these conditions, the payout time for the methanol plant is seven years. The payout time for the alternative natural gas conversion technologies is generally much higher, which indicates that they currently are not candidates for commercialization without consideration of special incentives. The analysis also includes an evaluation of the effects of process yields on the economics of two potential technologies, oxidative coupling to ethylene and direct conversion to methanol. This analysis suggests areas for research focus that might improve the profitability of natural gas conversion. 29 refs., 14 figs., 5 tabs

  20. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    Science.gov (United States)

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.

  1. Market screening of natural gas reformers

    International Nuclear Information System (INIS)

    Themsen, J.; Pagh Nielsen, M.; Knudsen Kaer, S.

    2005-01-01

    This report presents results from the project: Market screening of natural gas reformers. The project objective was to screen the natural gas reformers available on the international market. The technology is developing rapidly, and the results from this project will assist in determining the focus for the future Danish activities and in setting up ambitious and realistic targets. The reformer screening is partly based on AAU and Dantherm's experiences from previous studies, and the screening has been further extended with a number of activities, including seminars and contact with some of the most interesting suppliers. (BA)

  2. 1991 worldwide natural gas industry directory

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book provides information for the natural gas industry, just as other PennWell directories have for the petroleum industry. Comprehensive in scope, each company listing includes address, phone, fax telex and cable numbers, key personnel, subsidiaries, branches and brief descriptions. The directory is organized in major areas of operation and includes sections on: Distribution, Drilling/Exploration/Production, Gas Utilities, Gathering/Transmission, Industry Associations/Organizations, LNG, LPG, Marketing, Processing, Regulatory Agencies, and Service, Supply and Manufacturers. An invaluable reference source for the natural gas professional

  3. Natural gas utilization study : offshore Newfoundland

    International Nuclear Information System (INIS)

    1998-10-01

    A study was conducted to quantify the natural gas resources of Newfoundland and to identify production and transportation options. The objective was to create a development strategy for natural gas which is growing in global importance as an energy source and as a feedstock for the downstream industry. The growth is driven by general economic expansion and the fact that natural gas is far less polluting than its main fossil fuel alternatives of oil and coal. New use is dominated by the power generation sector. The natural gas industry is also evolving rapidly as new reserves are established and pipelines are being constructed. Proven world reserves of natural gas now stand in excess of 5000 Tcf, 70 per cent of which is in the Russian Federation (CIS) and Middle East regions. Production and consumption, however, is dominated by the industrialized countries of North America and western Europe. This difference between markets and reserves has major implications including the need to develop cost effective long-distance transportation technologies and delivery systems or to relocate downstream industries closer to the reserves. In Newfoundland, the estimated reserves total 61.9 Tcf, including 8.2 Tcf of discovered reserves and 53.7 Tcf of undiscovered reserves. Of the discovered reserves, 4.2 Tcf is on the Labrador Shelf and 4.0 Tcf is in the the Jeanne d'Arc Basin on the Grand Banks. The Hibernia development could play a major role in the development of the natural gas resources of fields within a radius of 50 km around the platform. The general conclusion from the first phase of this study is that Newfoundland's natural gas resources are valuable and potentially capable of supporting significant industrial activities. The undiscovered potential holds significant promise for both the Newfoundland offshore and onshore areas. Phase Two of the study will deal with the development and implementation of a Strategic Plan for Newfoundland's natural gas resources. A series of

  4. Natural gas: Fuel for urban fleets

    International Nuclear Information System (INIS)

    Mariani, F.

    1992-01-01

    The search for new ecological solutions for public transport has given an important role to natural gas for vehicles in the national context. Under current prices of fuel and costs of plants, the management of a bus fleet running on natural gas allows consistent savings, besides reducing the atmospheric pollution of urban centres. Within this context, solutions offered by current technology available on the market are examined. Low polluting emissions are taken into consideration and a complete analysis of costs and savings is reported. Reference is made to the Thermie European programme which calls for fuel diversification, energy conservation and air pollution abatement

  5. On modelling the market for natural gas

    International Nuclear Information System (INIS)

    Mathiesen, Lars

    2001-12-01

    Several features may separately or in combination influence conduct and performance of an industry, e.g. the numbers of sellers or buyers, the degree of economies of scale in production and distribution, the temporal and spatial dimensions, etc. Our main focus is on how to model market power. In particular, we demonstrate the rather different solutions obtained from the price-taking behavior versus the oligopolistic Coumot behavior. We also consider two approaches to model the transportation of natural gas. Finally, there is a brief review of previous modeling efforts of the European natural gas industry. (author)

  6. North American Natural Gas Markets. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  7. Natural gas fuelling stations installation code

    Energy Technology Data Exchange (ETDEWEB)

    Barrigar, C; Burford, G; Adragna, M; Hawryn, S

    2004-07-01

    This Canadian Standard applies to natural gas fuelling stations that can be used for fleet and public dispensing operations. This document is divided into 11 sections that address the scope of the Standard; definitions and reference publications; general requirements; compressors; storage; dispensing; flow control devices; storage vessel dispatch and receiving; design, installation and testing of piping, tubing and fittings; and installation of vehicle refuelling appliances (VRAs) connected to storage piping. The most recent revision to the Standard includes requirements for indoor fuelling of natural gas vehicles. This Standard, like all Canadian Standards, was subject to periodic review and was most recently reaffirmed in 2004. tabs., figs.

  8. Mercury Removal from Natural Gas in Egypt

    International Nuclear Information System (INIS)

    Korkor, H.; AI-Alf, A.; EI-Behairy, S.

    2004-01-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems

  9. Mercury Removal from Natural Gas in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Korkor, H; AI-Alf, A; EI-Behairy, S [EGAS, Cairo (Egypt)

    2004-07-01

    Worldwide natural gas is forecasted to be the fastest growing primary energy source. In Egypt, natural gas is recently playing a key role as one of the major energy sources. This is supported by adequate gas reserves, booming gas industry, and unique geographical location. Egypt's current proven gas reserves accounted for about 62 TCF, in addition to about 100 TCF as probable gas reserves. As a result, it was decided to enter the gas exporting market, where gas is transported through pipelines as in the Arab Gas pipelines project and as a liquid through the liquefied natural gas (LNG) projects in Damietta, and ld ku. With the start up of these currently implemented LNG projects that are dealing with the very low temperatures (down to -162 degree c), the gas has to be subjected to a regular analysis in order to check the compliance with the required specifications. Mercury is a trace component of all fossil fuels including natural gas, condensates, crude oil, coal, tar sands, and other bitumens. The use of fossil hydrocarbons as fuels provides the main opportunity for emissions of mercury they contain to the atmospheric environment: while other traces exist in production, transportation and processing systems.

  10. Mexican demand for US natural gas

    International Nuclear Information System (INIS)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000

  11. Case Study: Natural Gas Regional Transport Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, M.; Burnham, A.

    2016-08-01

    Learn about Ryder System, Inc.'s experience in deploying nearly 200 CNG and LNG heavy-duty trucks and construction and operation of L/CNG stations using ARRA funds. Using natural gas in its fleet, Ryder mitigated the effects of volatile fuel pricing and reduced lifecycle GHGs by 20% and petroleum by 99%.

  12. North American natural gas supply and demand

    International Nuclear Information System (INIS)

    Goobie, G.

    2006-01-01

    This presentation was given by leading energy analysts Pervin and Gertz, and provided their outlook on the North American natural gas supply and demand as well as transportation and processing options for the Mackenzie Valley project and the Alaska natural gas project. Arctic gas development was discussed in relation to larger North American and world energy markets. The impacts of liquefied natural gas (LNG) infrastructure development were compared with the potential impacts of the Alaska and Mackenzie Valley pipelines. A review of North American gas supplies was presented. LNG imports to the United States are expected to exceed 8 BCF/D by 2010. In addition, huge growth in the LNG markets is expected in middle eastern countries as well as in Africa. There is currently strong growth in liquefaction capacity in most regions. However, many proposed LNG terminals will not proceed due to opposition on the west coast of North America. It is also expected that natural gas liquids (NGL) delivered to Alberta from the Mackenzie Valley Gas project are expected to be used by the heavy oil industry. Canadian crude supplies are expected to grow to nearly 4 million barrels per day by 2015. The impacts of Alaska and Mackenzie Valley gas projects on western NGL markets and the petrochemicals industry were reviewed. It was concluded that major investments in supply and infrastructure are need in order to develop Arctic gas, as LNG is likely to be the largest source of incremental supply. tabs., figs

  13. Natural gas product and strategic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  14. Natural gas annual 1992. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-22

    This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, Volume 2, presents historical data for the Nation from 1930 to 1992, and by State from 1967 to 1992. The Supplement of this report presents profiles of selected companies.

  15. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  16. Discussion paper 'Natural Gas for Sale'

    International Nuclear Information System (INIS)

    1995-04-01

    The information in this report must support a discussion on policy starting points for the structure of natural gas tariffs in the Netherlands. The discussion will be held within EnergieNed (the association for energy distribution companies in the Netherlands) in the light of recent developments in the energy distribution sector in Europe

  17. The complexity of natural gas contracts

    International Nuclear Information System (INIS)

    De Boer, A.

    2000-01-01

    In the process of the deregulation of the energy market large consumers will have lots of opportunities to purchase natural gas and electricity cheaper than before. However, only one third seizes those opportunities. Special consultants can help to conclude supply contracts, focusing on the customer, supplier and commodity. Advantages and disadvantages of collective purchases of energy are briefly outlined

  18. Mexican demand for US natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kanter, M.A.; Kier, P.H.

    1993-09-01

    This study describes the Mexican natural gas industry as it exists today and the factors that have shaped the evolution of the industry in the past or that are expected to influence its progress; it also projects production and use of natural gas and estimates the market for exports of natural gas from the United States to Mexico. The study looks ahead to two periods, a near term (1993--1995) and an intermediate term (1996--2000). The bases for estimates under two scenarios are described. Under the conservative scenario, exports of natural gas from the United States would decrease from the 1992 level of 250 million cubic feet per day (MMCF/d), would return to that level by 1995, and would reach about 980 MMCF/D by 2000. Under the more optimistic scenario, exports would decrease in 1993 and would recover and rise to about 360 MMCF/D in 1995 and to 1,920 MMCF/D in 2000.

  19. Natural gas, energy with a future

    International Nuclear Information System (INIS)

    Dauger, Jean-Marie

    2010-01-01

    Similar to the trend observed over the last thirty years, the production of electricity will likely account for much of the growth in natural gas consumption worldwide, regardless of the region. However transportation, storage and distribution make up, on the average, 70% of the total costs of producing gas

  20. Liquefied natural gas (LNG) market and Australia

    Science.gov (United States)

    Alam, Firoz; Alam, Quamrul; Reza, Suman; Khurshid-ul-Alam, S. M.; Saleque, Khondkar; Ahsan, Saifuddin

    2017-06-01

    As low carbon-emitting fossil fuel, the natural gas is mainly used for power generation and industrial applications. It is also used for heating and cooling in commercial and residential buildings as well as in transport industry. Although the natural gas reaches the end-user mainly through pipelines (if gas is available locally), the liquefied form is the most viable alternative to transport natural gas from far away location to the end user. The economic progress in Asia and other parts of the world creates huge demand for energy (oil, gas and coal). As low carbon-emitting fuel, the demand for gas especially in liquefied form is progressively rising. Having 7th largest shale gas reserve (437 trillion cubic feet recoverable), Australia has become one of the world's major natural gas producers and exporters and is expected to continue a dominating role in the world gas market in foreseeable future. This paper reviews Australia's current gas reserve, industries, markets and LNG production capabilities.

  1. Liquefied natural gas storage at Ambergate

    Energy Technology Data Exchange (ETDEWEB)

    Higton, C W; Mills, M J

    1970-08-19

    Ambergate works was planned in 1965-1966 and the decision was taken to install 4 ICI lean gas reformers using natural gas as feedstock, fuel, and enrichment. To cover the possible failure of natural gas supplies, petroleum distillate would be used as alternative feedstock and fuel. The choice for alternative enrichment lay between LPG or LNG. Since LNG would provide peak-on-peak storage facilities for either the East Midlands Board or the Gas Council when conversion was completed--and in the meantime would provide an additional source of LNG for local requirements when temporary LNG installations were used during conversion--agreement was reached with the Gas Council for it to build a 5,000-ton storage installation at Ambergate. The installation consists of 3 major sections: (1) the offloading bay and storage tank; (2) the reliquefaction system; and (3) the export system. The offloading bay and storage tank are for the reception and storage of liquefied Algerian natural gas, delivered to Ambergate by road tanker from the Canvey Is. Terminal. The reliquefaction system is to maintain the necessary storage tank conditions by reliquefying the boil-off natural gas. The export system delivers LNG from the storage tank at high pressure through a vaporization section in the national methane grid.

  2. The advance of natural gas market using urban information: case study in Sao Paulo city (Brazil); Ampliacao de mercado para o gas natural utilizando informacoes urbanas: estudo de caso dos distritos paulistanos

    Energy Technology Data Exchange (ETDEWEB)

    Massara, Vanessa M.; Faga, Murilo T.W.; Santos, Edmilson M. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Considering the importance of the city of Sao Paulo for the Brazilian natural gas market, the aim of this paper is to propose an analytical methodology that integrates the understanding of the urban dynamics to the strategies of expansion in the natural gas distribution network, characterizing the gas consumption possibilities and attractiveness for each of the 96 districts composing the city. The methodology is developed through the grouping of information such as family income, demographic density and construction area, percentage of land use, number of households as well as commercial, service and industrial establishments, number of real state as well as indicative information released by the Urban Plan of the city regarding the increments in the peripheral districts. Relating the gas consumption esteemed by each type of land occupation and the cost for expanding the gas distribution network, the model will indicate, for each neighborhood, the viability of implementing a gas network as well as the places with potential for growing density in the existing gas distribution system. On this paper, examples of essential information that compose the methodology are presented for three districts: Itaquera, Moema and Tatuape, which have different socio-economic and geographical profiles. (author)

  3. Natural gas and electric power, coordination to improve

    International Nuclear Information System (INIS)

    Unidad de Planeacion Minero Energetica, UPME

    1999-01-01

    In development of energy diversification strategy, so much in the use of available sources as in the supply of alternative to the final consumer, one comes advancing in Colombia, for several years, the national plan of gas overcrowding. The growing use of natural gas for the new projects of thermal generation has put in evidence the strong link and the existent dependence among of the gas and electric sub sectors. Such a nexus is manifested in four aspects: The electric power substitution for gas affects the demand of both products. The development of the production infrastructure and transport of the natural gas depends in a large part of the electric generation with gas. The costs of electric generation depend directly on the costs of the gas, included that of their transport. The regulation of the natural gas affects the costs of the electric power and vice versa. In this article the nexus and the coordination of both sectors are analyzed and they think about some actions to improve this last one

  4. Some economic aspects of the European natural gas market

    International Nuclear Information System (INIS)

    Golombek, R.

    1990-01-01

    The thesis consists of five papers with following titles: Optimal utilization of natural gas. Computation of the resource rent for Norwegian natural gas; The relationship between the price of natural gas and crude oil - some aspects of efficient contracts; Bargaining and international trade - the case of Norwegian natural gas; On bilateral monopoly - a Nash-Wicksell Approach; Bertrand games and duopoly

  5. Natural gas in France: main results in 2008

    International Nuclear Information System (INIS)

    2008-01-01

    This document briefly presents and comments the main data about natural gas in France: gas consumption, natural gas-based electricity production, refineries, energetic final consumption of natural gas, non-energetic final consumption of natural gas, gas imports and suppliers (countries), national production, and stocks

  6. 7 CFR 2900.4 - Natural gas requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...

  7. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  8. Natural gas contracts in efficient portfolios

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, R.J.

    1994-12-01

    This report addresses the {open_quotes}contracts portfolio{close_quotes} issue of natural gas contracts in support of the Domestic Natural Gas and Oil Initiative (DGOI) published by the U.S. Department of Energy in 1994. The analysis is a result of a collaborative effort with the Public Service Commission of the State of Maryland to consider {open_quotes}reforms that enhance the industry`s competitiveness{close_quotes}. The initial focus of our collaborative effort was on gas purchasing and contract portfolios; however, it became apparent that efficient contracting to purchase and use gas requires a broader consideration of regulatory reform. Efficient portfolios are obtained when the holder of the portfolio is affected by and is responsible for the performance of the portfolio. Natural gas distribution companies may prefer a diversity of contracts, but the efficient use of gas requires that the local distribution company be held accountable for its own purchases. Ultimate customers are affected by their own portfolios, which they manage efficiently by making their own choices. The objectives of the DGOI, particularly the efficient use of gas, can be achieved when customers have access to suppliers of gas and energy services under an improved regulatory framework. The evolution of the natural gas market during the last 15 years is described to account for the changing preferences toward gas contracts. Long-term contracts for natural gas were prevalent before the early 1980s, primarily because gas producers had few options other than to sell to a single pipeline company, and this pipeline company, in turn, was the only seller to a gas distribution company.

  9. US crude oil, natural gas, and natural gas liquids reserves: 1990 annual report

    International Nuclear Information System (INIS)

    1991-09-01

    The primary focus of this report is to provide an accurate estimate of US proved reserves of crude oil, natural gas, and natural gas liquids. These estimates were considered essential to the development, implementation, and evaluation of natural energy policy and legislation. In the past, the government and the public relied upon industry estimates of proved reserves. These estimates were prepared jointly by the American Petroleum Institute (API) and the American Gas Association (AGA) and published in their annual report, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada. However, API and AGA ceased publication of reserves estimates after their 1979 report. By the mid-1970's, various federal agencies had separately established programs to collect data on, verify, or independently estimate domestic proved reserves of crude oil or natural gas. Each program was narrowly defined to meet the particular needs of the sponsoring agency. In response to recognized need for unified, comprehensive proved reserves estimates, Congress in 1977 required the Department of Energy to prepare such estimates. To meet this requirement, the EIA's reserves program was undertaken to establish a unified, verifiable, comprehensive, and continuing statistical series for proved reserves of crude oil and natural gas. The program was expanded to include proved reserves of natural gas liquids in the 1979 report. 36 refs., 11 figs., 16 tabs

  10. Natural gas supply in Denmark - A model of natural gas transmission and the liberalized gas market

    International Nuclear Information System (INIS)

    Bregnbaek, L.

    2005-01-01

    In the wake of the liberalization of European energy markets a large area of research has spawned. This area includes the development of mathematical models to analyze the impact of liberalization with respect to efficiency, supply security and environment, to name but a few subjects. This project describes the development of such a model. In Denmark the parallel liberalization of the markets of natural gas and electricity and the existence of an abundance of de-centralized combined heat and power generators of which most are natural gas fired, leads to the natural assumption that the future holds a greater deal of interdependency for these markets. A model is developed describing network flows in the natural gas transmission system, the main arteries of natural gas supply, from a technical viewpoint. This yields a technical bounding on the supply available in different parts of the country. Additionally the economic structure of the Danish natural gas market is formulated mathematically giving a description of the transmission, distribution and storage options available to the market. The supply and demand of natural gas is put into a partial equilibrium context by integrating the developed model with the Balmorel model, which describes the markets for electricity and district heat. Specifically on the demand side the consumption of natural gas for heat and power generation is emphasized. General results and three demonstration cases are presented to illustrate how the developed model can be used to analyze various energy policy issues, and to disclose the strengths and weaknesses in the formulation. (au)

  11. Annual survey 2013 - Natural gas in the World 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The 2013 Edition of 'Natural Gas in the World' by CEDIGAZ is built on CEDIGAZ's unique natural gas statistical database. This 170-page study, published since 1983, provides an in-depth analysis of the latest developments in the gas markets along with the most complete set of statistical data on the whole gas chain covering close to 130 countries. Topics covered by Natural Gas in the World 2013 include: proved natural gas reserves; unconventional gas status in the world; gross and marketed natural gas production; the international gas trade; existing and planned underground gas storage facilities in the world; natural gas consumption; natural gas prices

  12. New engineers for the natural gas and petroleum industry; Nachwuchs fuer die Erdgas-/Erdoelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, K.M.; Pusch, G. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik

    2007-09-13

    Tne natural gas and petroleum industry needs engineers. Universities are faced with the challenge of training them and ensuring their technical, communicative and personal skills. Universities are taking new strategies to do this, joining efforts with other universities and with the oil and natural gas industry. New media are employed, increasingly also for advanced training and for learning by correspondence course in order to provide students with special knowledge and facilitate career changes. The paper describes implemented and projected studies in petroleum and natural gas technology at TU Clausthal university and joint projects with partner universities and industry. (orig.)

  13. Alaska gas pipeline and the global natural gas market

    International Nuclear Information System (INIS)

    Slutz, J.

    2006-01-01

    The global natural gas market was discussed in relation to the Alaska natural gas pipeline project. Natural gas supply forecasts to the year 2025 were presented. Details of the global liquefied natural gas (LNG) market were discussed. Charts were included for United States natural gas production, consumption, and net imports up to the year 2030. The impact of high natural gas prices on the manufacturing sector and the chemicals industry, agricultural, and ethanol industries were discussed. Natural gas costs around the world were also reviewed. The LNG global market was discussed. A chart of world gas reserves was presented, and global LNG facilities were outlined. Issues related to the globalization of the natural gas trade were discussed. Natural gas imports and exports in the global natural gas market were reviewed. A chart of historical annual United States annual LNG imports was presented. tabs., figs

  14. 78 FR 38309 - Northern Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission...

    Science.gov (United States)

    2013-06-26

    ... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...

  15. 78 FR 21349 - Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, To Export Liquefied Natural Gas, To Export Compressed Natural Gas, Vacating Prior Authority and Denying Request for... OIL COMMERCIAL GP 12-164-NG XPRESS NATURAL GAS LLC 12-168-CNG MERRILL LYNCH COMMODITIES CANADA, ULC 12...

  16. Oil and natural gas technology review-lubrication and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Moos, J

    1966-01-01

    A summary is presented of the advances made during 1967 in the following areas: production and transmission of natural gas; geosciences; drilling and production technology; secondary recovery; transportation by tanker, pipelines, and tank cars; storage; planning of refineries; control and automation; cracking and gasification of crude oil; separation and hydrogenation processes; petrochemicals; combustion technology; fuels and additives; air and water pollution control; production of lubricants; lubrication with mist, gas, and vapors; hydraulic fluids; lubricant additives; oxidation and aging of oils; greases; solid lubricants; bearings; machining; friction and wear; and changes in materials of construction. (220 refs.)

  17. Natural gas as a means of heating liquids

    International Nuclear Information System (INIS)

    Pronovost, M.

    1996-01-01

    Liquids can now be heated at low temperature directly at the point of end use, thanks to flexible and customized natural gas technologies. For customers these advances eliminate the need for poorly-performing central boilers, while investors can look forward to a reduction in the period of time needed to recover investments. Decentralization of the production offers many challenges to industries that have to produce vast quantities of hot water, among them increased efficiency, direct and speedy response to demands for energy, and reduced maintenance expenses. Consumers can also look forward to reduced need for energy, hence better control of the energy dollar. 2 figs

  18. Progress in industrial utilization of natural gas

    International Nuclear Information System (INIS)

    Boschetto, F.

    1991-01-01

    For many years, due to its intrinsic qualities, flexibility, cleanness, etc., natural gas has been one of the major energy sources used in industry. This paper examines gas appliances of a new conception which use ceramic products in order to reach temperatures of about 1400 degrees C: jet gas burners, counter-rotation burners, integrated preheating burners, high speed burners, double recuperation burners and regenerative ones. Furthermore, the paper deals with these burners applied to industrial furnaces, radiant panels, liquid heating systems and to thermal treatment and crucible furnaces. Particular reference to made to the steam pump, which permits reaching the highest efficiency, and to the gas combustion regulator. With the increased marketing of these new appliances, natural gas ill certainly consolidate its leading position in the industrial and energy fields

  19. Revolution in the natural gas industry?

    International Nuclear Information System (INIS)

    Thomas, V.

    1999-01-01

    The demand for cleaner automotive fuels has created an opening for converting natural gas to liquid transport fuels and blending agents using Fischer-Tropsch technology. While the technology is well established, it is not yet clear whether the conversion can compete with crude oil refining or with pipelines and liquefied natural gas. Although all the oil giants are interested in the technology, the only commercial-sized plant in the world was the Shell plant in Malaya which had capacity of 12,000 bpd, but the profitability of the plant came from the wax by-products. The plant has been closed since a fire and explosion in 1997. The process chain is described. The gas-to-liquid activities and achievements of Saol, Exxon and Texaco are reported. It was concluded that although there are still some problems to be ironed-out, there is a promising future for gas-to-liquid conversion. (UK)

  20. The future of European natural gas

    International Nuclear Information System (INIS)

    Ausems, D.

    1991-01-01

    Western Europe's natural gas markets abound with opportunities. They also contain major challenges. This paper presents a revealing assessment of both the challenges and the opportunities that arise from those markets. It also explains some of the surprising ways in which the European Commission and Dutch gas industry will influence gas markets throughout the Continent. Gas consumption is well-established and expanding in a small group of European nations. These countries rely on an equally small collection of suppliers, both within and beyond the Community's borders, to provide the required volumes of natural gas. Because supply and demand are likely to grow at significantly different rates, it is suggested what a major market imbalance could materialize before the end of the decade. Averting major gas supply problems beyond the year 2000 will require multi-billion dollar commitments by producers and will necessitate long-term take-or-pay contacts backed by strong and financially healthy buyers

  1. FSU's natural gas liquids business needs investment

    International Nuclear Information System (INIS)

    Plotnikov, V.S.; Berman, M.; Angerinos, G.F.

    1995-01-01

    Production of natural gas liquids has fallen seriously behind its potential in the former Soviet Union (FSU). Restoration of the gas liquids business thus represents a rich investment opportunity. Capital, however, must come from international sources, which remain uncertain about the FSU's legal, commercial, and political systems. If these hurdles can be overcome, FSU output of liquid petroleum gas alone might double between 1990 and 2010. In the FSU, LPG is produced from associated and nonassociated natural gas, condensate, and refinery streams. It also comes from what is known in the FSU as ShFLU--a mixture of propane, butane, pentane, and hexane produced at gas processing plants in Western Siberia and fractionated elsewhere. The paper reviews FSU production of gas liquids focusing on West Siberia, gives a production outlook, and describes LPG use and business development

  2. Australia's changing natural gas and pipeline industry

    International Nuclear Information System (INIS)

    Kimber, M.J.

    1998-01-01

    The future is bright for continued development of Australia's natural gas pipeline infrastructure, as well as for privatization and private energy infrastructure growth. Gas demands are growing and the development of open access principles for all natural gas transmission and distribution pipelines heralds a much more market focused industry. Within the next few years gas-on-gas competition will apply to supply, pipelines, and retail marketing. No longer will operators be able to pass on high costs resulting from inefficiencies to their customers. This article describes the changing Australian gas industry, evaluates the drivers for change and looks at ways the industry is responding to new regulatory regimes and the development and use of new pipeline technology

  3. Comparative Assessment Of Natural Gas Accident Risks

    International Nuclear Information System (INIS)

    Burgherr, P.; Hirschberg, S.

    2005-01-01

    The study utilizes a hierarchical approach including (1) comparative analyses of different energy chains, (2) specific evaluations for the natural gas chain, and (3) a detailed overview of the German situation, based on an extensive data set provided by Deutsche Vereinigung des Gas- und Wasserfaches (DVGW). According to SVGW-expertise DVGW-data can be regarded as fully representative for Swiss conditions due to very similar technologies, management, regulations and safety culture, but has a substantially stronger statistical basis because the German gas grid is about 30 times larger compared to Switzerland. Specifically, the following tasks were carried out by PSI to accomplish the objectives of this project: (1) Consolidation of existing ENSAD data, (2) identification and evaluation of additional sources, (3) comparative assessment of accident risks, and (4) detailed evaluations of specific issues and technical aspects for severe and smaller accidents in the natural gas chain that are relevant under Swiss conditions. (author)

  4. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  5. Natural gas industry and global warming

    International Nuclear Information System (INIS)

    Staropoli, R.; Darras, M.

    1997-01-01

    Natural gas has a very good potential compared to other fossil fuels as regard to global warming because of its high content of hydrogen, and its versatility in uses. To take full advantage of this potential, further development of gas designed boilers and furnaces, gas catalytic combustion, fuel cells are needed, but progresses in the recent years have been very promising. The natural gas industry' environmental potential is discussed. Regarding methane emission, progresses have been done is Western Europe on the distribution network, and some improvement are underway. It is however important to rationalize the effort by acting on the most emitting subsystem: this can be achieved by cooperation along the whole gas chain. (R.P.)

  6. Natural gas cooling: Part of the solution

    International Nuclear Information System (INIS)

    Jones, D.R.

    1992-01-01

    This paper reviews and compares the efficiencies and performance of a number of gas cooling systems with a comparable electric cooling system. The results show that gas cooling systems compare favorably with the electric equivalents, offering a new dimension to air conditioning and refrigeration systems. The paper goes on to compare the air quality benefits of natural gas to coal or oil-burning fuel systems which are used to generate the electricity for the electric cooling systems. Finally, the paper discusses the regulatory bias that the author feels exists towards the use of natural gas and the need for modification in the existing regulations to provide a 'level-playing field' for the gas cooling industry

  7. Nigeria: petroleum; natural gas and economic crisis

    International Nuclear Information System (INIS)

    Gugliotta, A.

    2008-01-01

    Conflicts in Nigeria have recently deepened and they show a continuous escalation. The endless attacks against all infrastructures led to a reduction of oil production, thus effecting international oil market as well. This article provides a Nigeria's economy and energy framework. First, we will focus on troubles characterizing oil companies activities in Nigeria. Then, we will analyze how a higher exploitation of natural gas could affect Nigeria's economy, politics and society. [it

  8. Canadian natural gas : market review and outlook

    International Nuclear Information System (INIS)

    2001-01-01

    This annual working paper provides summaries of trends within the North American natural gas industry and also reviews Canadian gas exports. It is designed to promote dialogue between industry and the government and to obtain feedback on natural gas issues. The main section of the report consists of graphs, with limited text comments on the side. It provides a structured look at supply and demand for the year 2000 as well as for the near term (2001) and long-term (2010). The sources of information included private consultants, industry associations and federal agencies in Canada and the United States. It was shown that gas demand had grown steadily in North America since 1997, at about 2.5 per cent annually, and then fell 3.4 per cent in 1998 and remained low in 1999, below 1997 demand. This was due mainly to mild winters. In 2000, the demand for natural gas increased again to 5 per cent as a result of a colder winter and increased gas use for power generation. The report also stated that the combination of various factors including low storage balances due to previously low drilling years and high oil prices, were responsible for natural gas price increases in 2000. The tight supply/demand balance was exacerbated by restraints in pipeline capacity. Producers and pipeline groups are now looking seriously at developing the large gas deposits in Alaska and the Mackenzie Delta which were previously considered to be uneconomic. It was noted that in the near term, storage must be rebuilt to normal levels. Storage balances will be a good indicator of the relative strengths of gas production and demand growth. It was forecasted that Canada to U.S. gas exports should continue to increase in 2001 as a large new export pipeline was completed in 2000, but there is considerable uncertainty for the medium to longer-term. refs., tabs., figs

  9. California Natural Gas Pipelines: A Brief Guide

    Energy Technology Data Exchange (ETDEWEB)

    Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Price, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pezzola, Genny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-01-22

    The purpose of this document is to familiarize the reader with the general configuration and operation of the natural gas pipelines in California and to discuss potential LLNL contributions that would support the Partnership for the 21st Century collaboration. First, pipeline infrastructure will be reviewed. Then, recent pipeline events will be examined. Selected current pipeline industry research will be summarized. Finally, industry acronyms are listed for reference.

  10. The commercialization of natural gas for vehicles

    International Nuclear Information System (INIS)

    Wray, P.

    1997-01-01

    A successful NGV industry depends upon the skilled use of prime geographic and economic drivers. But a vital ingredient to a sustained and profitable industry is the pioneering example of the gas suppliers and the combined commercial skills of fleet operators equipment suppliers and government. The use of natural gas for vehicles must be long-term commercially viable both for the vehicles whole life cost and the refuelling stations capital investment. (au)

  11. Computer calculations of compressibility of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Mattar, L.; Dranchuk, P.M

    An alternative method for the calculation of pseudo reduced compressibility of natural gas is presented. The method is incorporated into the routines by adding a single FORTRAN statement before the RETURN statement. The method is suitable for computer and hand-held calculator applications. It produces the same reduced compressibility as other available methods but is computationally superior. Tabular definitions of coefficients and comparisons of predicted pseudo reduced compressibility using different methods are presented, along with appended FORTRAN subroutines. 7 refs., 2 tabs.

  12. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  13. Natural gas pipeline leaks across Washington, DC.

    Science.gov (United States)

    Jackson, Robert B; Down, Adrian; Phillips, Nathan G; Ackley, Robert C; Cook, Charles W; Plata, Desiree L; Zhao, Kaiguang

    2014-01-01

    Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions.

  14. Canadian natural gas price debate : TCGS view

    International Nuclear Information System (INIS)

    Johnson, J.

    1998-01-01

    Issues regarding the Alberta supply of natural gas were debated. Factors considered include pipeline expansions, storage and foreign exchange. The influence of NYMEX was also cited as an important determinant of gas pricing. Currently, the Western Canada Sedimentary Basin's (WCSB) market share is 22 per cent of the North American demand. The WCSB extends through Alberta, British Columbia, Saskatchewan, the Northwest Territories and the Yukon. The Basin's estimated reserves at the end of 1996 were 65 TCF. tabs., figs

  15. Natural Gas : Physical Properties and Combustion Features

    OpenAIRE

    Corre, Olivier Le; Loubar, Khaled

    2010-01-01

    The actual composition of natural gas depends primarily on the production field from which it is extracted and limited variations in composition must therefore be accepted. Moreover, at a local distribution level, seasonal adjustments by the local gas distributor may cause significant variations in the gas composition. Consequently, physical properties and energy content are subject to variations and their calculation / estimation is of great importance for technical and economical aspects. I...

  16. Liquefied natural gas in full euphoria

    International Nuclear Information System (INIS)

    Lepetit, V.; Ketels, O.

    2007-01-01

    Liquefied natural gas (LNG) is making progress with several projects of terminal facilities and liquefaction plants everywhere in the world. This too fast development leads to an increase of costs and delays in the construction of LNG facilities and at the medium term the offer will become unable to meet the demand. Today, the LNG engineering market is living on the 2005-2006 endorsed projects but the turning point will be 2010 when all main projects will be achieved. (J.S.)

  17. Description of the Lewin Natural Gas Model

    International Nuclear Information System (INIS)

    Kuuskraa, V.; Godec, M.

    1989-01-01

    This paper provides a brief description of the Lewin Natural Gas Model, shows how this model differs in key features from the other models participating in EMF-9, and describes how the different modeling scenarios analyzed in EMF-9 were implemented in the Lewin model. This background helps explain the key results that have been gained from applying the Lewin model to the EMF scenarios

  18. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  19. Combined natural gas and electricity network pricing

    Energy Technology Data Exchange (ETDEWEB)

    Morais, M.S.; Marangon Lima, J.W. [Universidade Federal de Itajuba, Rua Dr. Daniel de Carvalho, no. 296, Passa Quatro, Minas Gerais, CEP 37460-000 (Brazil)

    2007-04-15

    The introduction of competition to electricity generation and commercialization has been the main focus of many restructuring experiences around the world. The open access to the transmission network and a fair regulated tariff have been the keystones for the development of the electricity market. Parallel to the electricity industry, the natural gas business has great interaction with the electricity market in terms of fuel consumption and energy conversion. Given that the transmission and distribution monopolistic activities are very similar to the natural gas transportation through pipelines, economic regulation related to the natural gas network should be coherent with the transmission counterpart. This paper shows the application of the main wheeling charge methods, such as MW/gas-mile, invested related asset cost (IRAC) and Aumman-Shapley allocation, to both transmission and gas network. Stead-state equations are developed to adequate the various pricing methods. Some examples clarify the results, in terms of investments for thermal generation plants and end consumers, when combined pricing methods are used for transmission and gas networks. The paper also shows that the synergies between gas and electricity industry should be adequately considered, otherwise wrong economic signals are sent to the market players. (author)

  20. Modelling emissions from natural gas flaring

    Directory of Open Access Journals (Sweden)

    G. Ezaina Umukoro

    2017-04-01

    Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.

  1. The - compromised? - future of natural gas

    International Nuclear Information System (INIS)

    Rodriguez, Ph.

    2009-01-01

    Will natural gas be the main loser of the January 2009 crisis between Ukraine and Russia? The demonstration is made that the European Union is not free from the risk of a severe supply disruption. This is a bad news considering that the power generation is the growth vector of natural gas. Even if the gas black-out cannot exist, the power black-out still can happen. As soon as the Russian-Ukrainian conflict has occurred, the other energy sources (nuclear and renewable) have been called for help in Europe while coal is in the expectation. Since some time now, gas has to face several trend changes. First, uncertainty is increasing considering its growth prospects. The new version of the gas pluri-annual indicative plan (PIP Gaz) would foresee a stagnation of gas consumption up to 2020 (consequence of the French environmental policy), while the previous plan had foreseen a 2.1% annual growth rate between 2005 and 2015. Second, the direct indexing of gas prices on oil prices can have undesirable effects. Finally, the u-turn of the USA with respect to liquefied natural gas (LNG) may penalize its development. What answers should the European Union give in front of these uncertainties? Have the companies modified their strategy? Is the future of gas still fine? These are the questions debated during a round table organized by the BIP, the French Bulletin of Petroleum Industry. (J.S.)

  2. Marketing of natural gas in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.); Knapp, U [Westfaelische Ferngas-A.G., Dortmund (Germany, F.R.)

    1979-08-01

    The exchange of experience with experts engaged in the US gas supply industry has shown that natural gas can be supplied there at a much lower price than in West Germany and that for this reason the price is not the main incentive to save energy. The low prices, which apply also to other forms of energy although not to the same extent, are a consequence of the energy policy pursued by the US government. The representatives of the gas supply industry are not in favour of this policy and attenpts have been made for some considerable time to effect a change in policy. As long as these attempts are not attended with success, the US gas supply industry is trying to achieve its aim by pointing out that natural gas is a national resource and that additional supplies will become available provided that present users adopt energy saving measures. The gas supply industry cooperates closely with the appliance manufacturers and retailers. Joint efforts have been made to help users reduce their energy bills by employing appliances that require less gas and by acquainting them with methods devised for making proper use of energy. The gas supply industry is further strongly interested in coal as a source of energy for largely substituting SNG for natural Gas.

  3. Natural gas market a dream come true

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Predictions by the U.S. Energy Information Administration to the effect that the unprecedented high gas prices of recent months are here to stay are discussed. The key symptom of the tightening market are the reduced level of storage in both Canada and the United States. In late May gas in U.S. storage facilities stood at 1.2 trillion cubic feet or 25 per cent less than the same time last year, and Canada's storage facilities were only 34 per cent full compared to 45 per cent a year earlier, a strong suggestion that the markets are extremely tight. The combination of limited supply, increasing demand and expanding pipeline connections are considered to be a winning combination to ensure that gas prices will remain high for the foreseeable future. The most significant growth in demand for natural gas is for use in electric power generation. To illustrate the increased penetration of natural gas into the field of power generation, it is noted that 98 per cent of the 243 electricity generating plants announced for construction in the next five years are designed to be fired by natural gas

  4. The natural gas industry in Portugal

    International Nuclear Information System (INIS)

    Kheloufi, S.

    2004-01-01

    This article makes a synthesis of the evolution of the natural gas sector in Portugal since the end of the 1990's. The aim of the energy policy of Portugal was the creation of a liberalized energy market capable to ensure the security of the energy supplies and to encourage the energy efficiency in order to reduce the environmental impact. The success of the introduction of natural gas in Portugal perfectly fulfills these goals. Since 1997, the natural gas consumption has increased significantly. The start-up of the methane terminal of Sines allows the diversification of the supply sources and contributes to the growth of the offer. The opening of the market is under development. It will allow the main consumers to select their supplier among those present on the Portuguese market. GALP company should keep its leader position and its daughter company 'Gas du Portugal' should reach 300 MW of power generation capacities by 2005 with the development of multi-energy services. The creation of an Iberian energy market between Spain and Portugal should speed up in 2004 leading to deep modifications in the energy sector of southern Europe. (J.S.)

  5. Securing growth markets for natural gas

    International Nuclear Information System (INIS)

    Evans, G.

    1999-01-01

    The Industry Development Strategy 2000-2005 (IDS) identifies the major growth markets for natural gas, as the industry readies itself for the challenges of the new millenium. An integral part of this process is to examine the key barriers to market expansion, and to devise strategies that both The Australian Gas Association (AGA) and the wider industry can pursue to underpin improvement in overall gas consumption. This is the task of the IDS which examines the opportunities confronting the industry over the next five year period. The significant growth prospects of the gas industry both in the short term (2000-2005) and long term (2005-2015) are indicated in two comprehensive and independent studies. The first, Australian Energy Market Developments and Projections to 2014-15, was released earlier this year by the Australian Bureau of Agricultural and Resource Economics (the ABARE Energy Report). The second, Natural Gas Consumption in Australia to 2015-Prospects by State, Industry and Sector, was commissioned by the AGA, and was completed by the National Institute of Economic and Industry Research in September 1999 (NIEIR Report). Both reports indicate that in terms of consumption levels, in the period up to 2015 the gas industry is forecast to more than double its current size. Natural gas is also projected to increase its primary energy share ranking from third to second place

  6. Development of natural gas rotary engines

    Science.gov (United States)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  7. Mitchell firmly retrenched in natural gas services

    International Nuclear Information System (INIS)

    Share, J.

    1997-01-01

    The past three years, Mitchell Energy and Development Corp. has undergone a massive restructuring that has changed the face of one of the nation's largest and best-known natural gas/natural gas liquids companies. Facing a rapidly changing industry that frequently has been stung by volatile swings in energy markets, management of the independent company, founded by George Mitchell in 1946, sold off $300 million in non-core assets; reduced its long-term debt by $400 million; instituted a hiring freeze and reduced its workforce by a third, from 2,900 to 1,950, over the last three years. Mitchell negotiated a buyout of its hugely profitable North Texas gas sales contract with Natural Gas Pipeline Company of America as a means of easing its transition to a market-sensitive price environment and reducing its debt. Mitchell also took operational control. Finally, Mitchell has left the real estate business, culminating July 31 with the sale of its real estate subsidiary, The Woodlands Corporation, for $543 million ($460 million net after-tax), further reducing its workforce to 1,100. On Aug. 18, the company said it will use the proceeds to repurchase common stock, retire another $200 million of public debt, make asset niche energy acquisitions and increase capital spending for existing programs. The result is a renewed focus on its exploration and production and gas gathering, processing and marketing businesses

  8. Hyper market of the Natural Gas

    International Nuclear Information System (INIS)

    2002-01-01

    The article tries about the Center of Commercialization of Gas-CCG located in Bogota where experts take charge minute to minute that and that fuel that ECOPETROL sells arrives every day to its final destination. They work 24 hours during 365 days, they receive and they respond in time their clients' record applications, they analyze rates; they sell, they negotiate, they give the prices, but the mainly, they control the key that guarantees that the Colombians receive the supply of natural gas on time. It has the most modern tip technology and a complete system of compute that allows knowing the requirements of the buyers in real time. From there they decide that natural gas will be made every day and they detect quickly where flaws are presented. The CCG sells every month an average of $35.000 millions. Although the thermal plants are the biggest buyers of natural gas in the country, some industrial clients and big companies have begun the conversion of their teams to make use of this fuel, recognized in the world to be more economic and cleaner for the environment

  9. A natural gas country halfway between Slochteren and the future

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    1993-01-01

    Thirty four years ago the natural gas field Slochteren in Groningen, Netherlands made the Netherlands into an outstanding natural gas country. Last summer, exactly half of the original 2680 trillion m 3 of natural gas has been extracted. According to the projections of the Dutch Gasunie the Dutch gas reserves will be about depleted after another thirty four years. To guarantee continuity of the natural gas supply the natural gas will have to become more expensive. Also considerable investments in storage capacity are needed. Comments and opinions of experts regarding the future of the Dutch natural gas market are presented. 2 figs., 14 ills

  10. Canadian natural gas winter 2005-06 outlook

    International Nuclear Information System (INIS)

    2005-11-01

    An outline of the Canadian natural gas commodity market was presented along with an outlook for Canadian natural gas supply and prices for the winter heating season of 2005-2006. In Canada, the level of natural gas production is much higher than domestic consumption. In 2004, Canadian natural gas production was 16.9 billion cubic feet per day (Bcf/d), while domestic consumption was much lower at 8.2 Bcf/d. The United States, whose natural gas consumption is higher than production, imported about 16 per cent of its natural gas supply from Canada and 3 per cent from other countries via liquefied natural gas imports. Canadian natural gas exports to the United States in 2004 was 8.7 Bcf/d, representing 51 per cent of Canada's production. In Canada, the most important natural gas commodity markets that determine natural gas commodity prices include the intra-Alberta market and the market at the Dawn, Ontario natural gas hub. A well connected pipeline infrastructure connects the natural gas commodity markets in Canada and the United States, allowing supply and demand fundamentals to be transferred across all markets. As such, the integrated natural gas markets in both countries influence the demand, supply and price of natural gas. Canadian natural gas production doubled from 7 to 16.6 Bcf/d between 1986 and 2001. However, in the past 3 years, production from western Canada has leveled out despite record high drilling activity. This can be attributed to declining conventional reserves and the need to find new natural gas in smaller and lower-quality reservoirs. The combination of steady demand growth with slow supply growth has resulted in high natural gas prices since the beginning of 2004. In particular, hurricane damage in August 2005 disrupted natural gas production in the Gulf of Mexico's offshore producing region, shutting-in nearly 9 Bcf/d at the height of damage. This paper summarized some of the key factors that influence natural gas market and prices, with

  11. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  12. Natural gas in Norway - Possibilities and limitations

    International Nuclear Information System (INIS)

    Bjoerstad, H.; Eldegard, T.; Reve, T.; Sunnevaag, K.; Aarrestad, J.

    1995-06-01

    Norway is rich in gas resources. In recent years, gas sales from the Norwegian continental shelf have been in the order of 25 to 30 billion Sm 3 /yr and are expected to increase strongly the next 10 to 15 years. However, a scattered population, a difficult topography, long distances between large potential consumers and where the gas is brought ashore, make it difficult to utilize the gas commercially in this country. Moreover, the gas will have to compete with a highly developed hydro-electric network. This report evaluates possibilities and hindrances in the establishment of a home market for natural gas in Norway. The low population density implies that using gas for preheating of water, heating of rooms etc will not become important except, perhaps, locally, where gas may be available for other reasons. As a source of energy and raw material in many industrial processes, natural gas can become important in some coastal areas and in central parts of eastern Norway. Discussions are in progress on gas power stations for electricity production. This has aroused some controversy because of environmental problems, and for political acceptance gas power will have to replace coal power. As a fuel, gas may be of interest for domestic ferries and for busses. A lack of capital under financial risk and gas prices limit the market development. Although tax policy is presently favourable to gas power, the risk taken by private investors in converting to natural gas is increased by their not knowing for how long the gas will be exempt from environmental tax. 74 refs., 8 figs., 27 tabs

  13. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  14. Hydrogen-Enhanced Natural Gas Vehicle Program

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Collier, Kirk

    2009-01-22

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  15. Natural gas in a developing country: the tunisian test

    International Nuclear Information System (INIS)

    Rabah, S.

    1993-01-01

    This paper describes the development of natural gas in Tunisia and its importance in the tunisian economy. Existing natural gas pipelines and other future distribution systems are also studied. 2 figs

  16. Controlling Air Pollution from the Oil and Natural Gas Industry

    Science.gov (United States)

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  17. Oil and Natural Gas Pipelines, North America, 2010, Platts

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Oil and Natural Gas Pipeline geospatial data layer contains gathering, interstate, and intrastate natural gas pipelines, crude and product oil pipelines, and...

  18. Software for natural gas pipeline design and simulation (gaspisim ...

    African Journals Online (AJOL)

    Software for natural gas pipeline design and simulation (gaspisim) ... This paper focuses on the development of software for optimum design and simulation of natural gas pipeline. General ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Natural-gas supply-and-demand problems

    International Nuclear Information System (INIS)

    Hatamian, H.

    1998-01-01

    World natural-gas consumption quadrupled in the 30 years from 1966 to 1996, and natural gas now provides 22% of the total world energy demand. The security of natural-gas supply is paramount and rests with the suppliers and the consumers. This paper gives an overview of world natural-gas supply and demand and examines the main supply problems. The most important nonpredictable variables in natural-gas supply are worldwide gas price and political stability, particularly in regions with high reserves. Other important considerations are the cost of development/processing and the transport of natural gas to market, which can be difficult to maintain if pipelines pass through areas of political instability. Another problem is that many countries lack the infrastructure and capital for effective development of their natural-gas industry. Unlike oil, the cost of transportation of natural gas is very high, and, surprisingly, only approximately 16% of the total world production currently is traded internationally

  20. software for natural gas pipeline design and simulation

    African Journals Online (AJOL)

    Global Journal

    2017-01-17

    Jan 17, 2017 ... investment and operating cost required for natural gas pipeline transmission ... In the early development of the natural gas transmission industry, pressures were low and ..... The software has an error control capability in.

  1. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  2. General Motors natural gas vehicle initiatives

    International Nuclear Information System (INIS)

    Weber, J.; Koplow, M.D.

    1992-01-01

    General Motors (GM) has a number of natural gas vehicle (NGV) programs in progress that address various marketing, technical, and production planning issues that lean on the introduction of NGVs from GM. The initial target is light and medium duty trucks sold in non-attainment air quality regions. GM has also embarked on a longer term program that encompasses vehicle and systems development, gas supply and infrastructure development, and customer and market development. The major long-term issues are gas quality, supplier participation, and infrastructure

  3. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  4. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  5. Pricing natural gas distribution in Mexico

    International Nuclear Information System (INIS)

    Ramirez, Jose Carlos; Rosellon, Juan

    2002-01-01

    We examine regulation of distribution tariffs in the Mexican natural gas industry. Average revenue in each period is constrained not to exceed an upper bound and is calculated as the ratio of total revenue to output in the current period. This regime implies incentives for strategically setting two-part tariffs. The usage charge is typically dropped to its lowest feasible level, while the fixed charge is raised to compensate for the loss of profit. The regime also creates a stochastic effect that implies decreased values of consumer surplus for lower levels of risk aversion and uncertainty

  6. Retrofitting bus fleet for natural gas operation

    International Nuclear Information System (INIS)

    Stella, E.; Foresti, P.

    1992-01-01

    Buses, operating within a Florence (Italy) municipal transportation system, and equipped with Otto cycle engines, were selected for retrofitting taking into account the suitability of each vehicle's specific routing and service requirements. Cost benefit analyses indicated that it wouldn't be economically feasible to retrofit buses equipped with diesel engines. A computerized refuelling system was set up at the fleet's central service station which was hooked up to the natural gas utility's supply line. This paper tables the cost benefit analysis data comparing gasoline and methane operation and reflecting the cost savings which are expected to be accrued through this methanization program over a span of 14 years

  7. The natural gas industry and interest rates

    International Nuclear Information System (INIS)

    Yoon, Y.J.

    1995-01-01

    In discussing the impact of Federal Energy Regulatory Commission (FERC) Order 636, the latest rule on the restructuring and deregulation of the US natural gas industry, the effect of interest rates on the success of the FERC policy is often overlooked. The thesis of this paper is that interest rates play an important role in integrating seasonal gas markets and in stimulating investment in storage infrastructure. We propose a model to analyse the equilibrium condition for an efficient gas market. Also analysed are the implications of pipeline rate design of FERC 636 for gas despatch decisions. (author)

  8. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  9. Fuel tank for liquefied natural gas

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2012-01-01

    A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.

  10. The transport system for natural gas

    International Nuclear Information System (INIS)

    Bjoerndalen, Joergen; Nese, Gjermund

    2003-01-01

    In 2002, the actors on the Norwegian shelf in cooperation with the authorities established a new regime for sale and transport of gas. This article deals with some issues of interest relating to this new regime. The transport system for natural gas shows clear signs of being a natural monopoly, which makes it difficult to use the system efficiently. Two main problems of the current way of organizing are pointed out: (1) lack of price and market signals in capacity allocation and (2) unclear incentive effects. The article indicates a possible solution based on the form of organization that is used in the power market

  11. Natural gas: reserves keep ahead of production

    Energy Technology Data Exchange (ETDEWEB)

    Hough, G V

    1983-08-01

    World production of natural gas in 1982 fell only 1.6% below 1981 levels, while proven recoverable reserves were up by 3.6% for a total of 3.279 quadrillion CF, which is 32.4% higher than had been estimated in 1978. Gas consumption, however, has experienced greater changes, with most of the industrialized countries (except for Japan) reporting declines in gas demand resulting from falling oil prices, reduced energy demand, and a slack world economy. Although gas seems to be holding its own in energy markets, further progress will not be easy to achieve.

  12. 2013 - The Natural Gas Year in Review

    International Nuclear Information System (INIS)

    Lecarpentier, Armelle

    2014-01-01

    Natural gas consumption only rose by 1.3%, down from an average growth of 2.8% per year in the previous decade. Natural gas still suffers in particular from severe competition with coal in the power generation sector. Inside the EU-28, actual consumption was estimated down 1.9% to 460 Billion cubic metres (Bcm). This poor performance brought European consumption to levels not seen in more than 15 years. In the US, rising gas prices compared to 2012 has often made coal more competitive and penalized gas consumption in the power generation sector, causing it to fall by 10.5%. Global growth in natural gas has been increasingly constrained by supply. In 2013, the growth in gas production slowed substantially to 0.8%, bringing the total volume to 3377 Bcm. As before, the gas supply shortfall was due to the decline of mature and conventional fields, and an insufficient renewal of reserves. The lack of upstream investment is especially acute in emerging markets, due to a lack of a favourable regulatory and fiscal climate. The moderation of natural gas supply and investment has also been increasingly driven by geopolitical challenges. Deterioration of security, internal conflicts and resulting damage to infrastructures have caused some production outages and supply disruptions in some countries. In 2013, marketed production fell especially heavily in Africa (Algeria, Nigeria, Libya and Egypt). With the exception of Europe, other regions posted positive production gains. The largest of them were recorded in the CIS (+ 2.7%) and the Middle East (+ 3.4%). International gas trade increased significantly by 2.1% to 1048 Bcm, due to the growing dependence of consumer markets on increasingly distant production sources, sometimes located in economically and politically unstable areas. The rise in the international gas trade was only driven by inter-regional pipeline gas exports from the CIS to Europe (+ 15%) and China (+ 36%). Geopolitical risks are having an ever

  13. Natural gas retailing: writing the last chapter of natural gas deregulation

    International Nuclear Information System (INIS)

    Bjerkelund, T.

    1995-01-01

    Under the A greement on Natural Gas Markets and Prices of October 1985, the Canadian federal government agreed to deregulate the price of natural gas and to allow a competitive gas market to develop. Several beneficial changes that have occurred as a result of the deregulation were described, including the Industrial Gas Users Association's (IGUA) view on the marketing and sale of natural gas by local gas distributor's (LDC) and the sale within the LDC franchise. IGUA's support for the separation between LDC distribution and LDC sales and marketing activities as the last step in deregulation process, was explained. Several arguments for the opposing view were also discussed. Recommendations were made for effective separation of LDC distribution and LDC sales/marketing activities

  14. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  15. Practical Results of Forecasting for the Natural Gas Market

    OpenAIRE

    Potocnik, Primoz; Govekar, Edvard

    2010-01-01

    Natural gas consumption forecasting is required to balance the supply and consumption of natural gas. Companies and natural gas distributors are motivated to forecast their consumption by the economic incentive model that dictates the cash flow rules corresponding to the forecasting accuracy. The rules are quite challenging but enable the company to gain positive cash flow by forecasting accurately their short-term natural gas consumption. In this chapter, some practical forecasting results f...

  16. Exploration of natural gas at sea towards a low point

    International Nuclear Information System (INIS)

    Bakker, P.

    1995-01-01

    Continuing low prices on the world market resulted in a decreased willingness of natural gas producers to invest in offshore projects in spite of improved marginal conditions for the oil and gas companies. Attention is paid to the policy of the Gasunie (Dutch natural gas distribution company) to focus on the exploitation of small natural gas fields to take the burden of the large natural gas field Slochteren in Groningen, Netherlands

  17. The fuel of choice: forecasting natural gas availability and use

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    This article examines predictions set out in the US Energy Information Administration's 'International Energy Outlook 2001' concerning growth in energy consumption, the use of natural gas for electricity generation, and growth in worldwide natural gas consumption in industrialised and developing countries. The reported increase in global natural gas reserves is considered, and regional activity and natural gas reserves in North America, Europe, the former Soviet Union, Central and South America, Asia, the Middle East and Asia are discussed

  18. Key numbered-data of the French natural gas industry

    International Nuclear Information System (INIS)

    1999-01-01

    The third edition of this folder contains the numbered data relative to the activity of the French natural gas industry in 1998 according to the information available in June 15, 1999. Consumption, sales and supplies data are presented for both natural gas and LPG fuel together with a map of the French natural gas transportation network. (J.S.)

  19. Natural gas prices and the end of gradual change

    International Nuclear Information System (INIS)

    Osten, J.A.

    1998-01-01

    Natural gas price predictions for the years 1998, 1999-2001, 2000-2005 are provided. In general, prices are predicted to decrease with increase in storage. Some other factors that will influence the price of natural gas and, therefore, should receive consideration in price predictions, include growth in demand, natural gas production, deliverability, new pipelines, and the Alberta price basis. tabs., figs

  20. 10 CFR 221.11 - Natural gas and ethane.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  1. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  2. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  3. 75 FR 66046 - Capacity Transfers on Intrastate Natural Gas Pipelines

    Science.gov (United States)

    2010-10-27

    ...] Capacity Transfers on Intrastate Natural Gas Pipelines October 21, 2010. AGENCY: Federal Energy Regulatory... comments on whether and how holders of firm capacity on intrastate natural gas pipelines providing interstate transportation and storage services under section 311 of the Natural Gas Policy Act of 1978 and...

  4. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  5. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov (United States)

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on

  6. The prospects of natural gas vehicles in France and Europe

    International Nuclear Information System (INIS)

    Nicolle, J.M.

    2009-01-01

    Given the availability and environmental advantages of natural gas, several countries soon felt that natural gas vehicles (NGVs) were a logical way to respond to transportation needs while meeting up to the standards of sustainable development. Natural gas is now a genuine alternative to petroleum products, and NGVs are capable of using the current engine technology. (author)

  7. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply tank...

  8. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  9. Gasoline and other transportation fuels from natural gas in Canada

    International Nuclear Information System (INIS)

    Symons, E.A.; Miller, A.I.

    1981-03-01

    Ways in which natural gas might displace cude oil as a source of fuels for the Canadian transportation market are reviewed. Three approaches are possible: (1) direct use as compressed natural gas; (2)conversion of natural gas to methanol; and (3) further conversion of methanol to synthetic gasoline. (author)

  10. Papers of the Canadian Institute's forum on natural gas purchasing strategies : critical information for natural gas consumers in a time of diminishing natural gas supplies and higher prices

    International Nuclear Information System (INIS)

    2003-01-01

    This conference provided insight into how to prosper in an increasingly complex natural gas marketplace. The presentations from key industry players offered valuable information on natural gas purchasing strategies that are working in the current volatile price environment. Diminishing natural gas supplies in North America mean that higher prices and volatility will continue. Other market challenges stem from potential cost increases in gas transportation, unbundling of natural gas services, and the changing energy marketing environment. The main factors that will affect prices for the winter of 2004 were outlined along with risk management and the best pricing strategies for businesses. The key strategies for managing the risks associated with natural gas purchase contracts were also reviewed, along with the issue of converging natural gas and electricity markets and the impact on energy consumers. The conference featured 15 presentations, of which 4 have been indexed separately for inclusion in this database. refs., tabs., figs

  11. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Anderson, J.F.; Kodjak, D.

    1997-01-01

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  12. Natural gas markets in the Pacific Rim

    International Nuclear Information System (INIS)

    Hertzmark, D.I.

    1991-01-01

    In the 1980s, Asian energy markets expanded at a rapid rate to meet the surge in demand from Japan, South Korea, and Taiwan. This demand boom coincided with an increase in non-OPEC oil production in the region. As oil production stabilizes, demand appears to be surging again, but this time in the Southeast Asian countries. Natural gas will play a key role in this expansion of energy use and could start to lead rather than follow the oil market. This will be especially true as compressed natural gas and oxygenates start to take significant shares of the transportation fuel markets, while the role of residual fuel oil is increasingly usurped by gas for environmental reasons. Many new gas sources such as Papua New Guinea, Siberia, China, and Canada will fight for market share while domestic demand in Indonesia and Malaysia takes up increasing proportions of those countries' gas production. Extensive regional transportation schemes are likely to direct more of the gas output of Southeast Asia to intra-ASEAN uses. 2 tabs

  13. The Pacific Rim and global natural gas

    International Nuclear Information System (INIS)

    Dreyfus, D.A.

    1993-01-01

    There is a growing interest in natural gas as a part of national or international strategies to moderate the environmental consequences of fuel use. Although the underutilized global gas resource justifies the interest, the future consumption of gas is likely to be constrained by the high capital costs of new transportation facilities to bring remote gas supplies into areas of growing energy demand. The Asian Pacific Rim countries include rapidly growing demand areas as well as significant reserves of gas. The region will continue to play a leading role in the evolution of a world trade in gas. Gas resources within the Asian Pacific region are adequate to serve the foreseeable demands, but historically the region has utilized liquefied natural gas (LNG) imports. Financial constraints upon the gas producing countries of the region and political instability in some of them will probably continue to require the importing of sustantial quantities of gas from the Middle East and possibly from Alaska and the former USSR as the resources indigenous to the region itself are developed more slowly than demand. The financial arrangements and contractual approaches that evolve to meet the needs of the Asia Pacific Rim will shape the future of world LNG markets. (Author)

  14. Nordic cooperation within natural gas research

    International Nuclear Information System (INIS)

    Edna, O.-J.

    1993-01-01

    Nordic cooperation within natural gas research is discussed. A reorganization of this cooperation has recently taken place. It is explained that common Nordic resources are now to be concentrated within 7 areas, one of which is the area of energy/industrial policies, regional policies and agriculture and forestry, all under the common heading of ''Economy''. The plan of activities within this area includes international cooperation within the European Communities, the European Energy Charter, the International Energy Agency and will involve the energy policy situation in eastern Europe and the Baltic countries, the electric power and natural gas markets in the northern countries, energy related environmental questions and Nordic energy research cooperation. Nordic research activities constitute 2% of research resources within the OECD. The basis for Nordic research cooperation (for example a common cultural background) is described, and suggestions are made as to how it should be administrated. The Nordic energy research programme for 1991-1994 embodies bioenergy and the environment, fuel cells, energy and the society, solid fuels, district heating and petroleum technology. The status report for the nordic gas market, which represents the Nordic gas companies' evaluation of the Nordic gas market, is summarized, and Nordic research activities related to gas utilization are shortly commented upon. (AB)

  15. Seismic vulnerability of natural gas pipelines

    International Nuclear Information System (INIS)

    Lanzano, Giovanni; Salzano, Ernesto; Santucci de Magistris, Filippo; Fabbrocino, Giovanni

    2013-01-01

    This work deals with the analysis of the interaction of earthquakes with pipelines transporting and distributing natural gas for industrial and civil use. To this aim, a new large data-set of seismic information classified on the basis of selected seismological, geotechnical and structural parameters is presented and analyzed. Particular attention is devoted to continuous pipelines under strong ground shaking, which is the geotechnical effect due to passage of waves in soil. Results are provided in terms of the likelihood of the loss of containment with respect to Peak Ground Velocity (PGV), a seismic intensity parameter which may be easily retrieved either from local authorities and public databases or from site dependent hazard analysis. Fragility functions and seismic intensity threshold values for the failure and for the loss of containment of gas from pipeline systems are also given. The obtained functions can be easily implemented in existing codes and guidelines for industrial risk assessment, land-use planning, and for the design of public distribution network, with specific reference to Natural—Technological interaction (Na-Tech). -- Highlights: • The seismic vulnerability of natural gas pipelines is analyzed. • A collection of data for pipelines damaged by earthquake is given. • Damage states and risk states for pipelines are defined. • Consequence-based fragility formulations for the loss of containment are given • Seismic threshold values for public authority, risk assessment and gas distribution are shown

  16. Gasoline from natural gas by sulfur processing

    Energy Technology Data Exchange (ETDEWEB)

    Erekson, E.J.; Miao, F.Q. [Institute of Gas Technology, Des Plaines, IL (United States)

    1995-12-31

    The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogen production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.

  17. Tariffs for natural gas, electricity and cogeneration

    International Nuclear Information System (INIS)

    1995-02-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurances, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration, and other tariffs. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, including the alterations in the National Basic Tariff and the Regional Basic Tariff (abbreviated in Dutch LBR, respectively RBT) per January 1, 1995, the compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. 7 figs., 5 tabs., 2 appendices, 7 refs

  18. Marketing activities of a natural gas company

    Energy Technology Data Exchange (ETDEWEB)

    Goldammer, D [Thyssengas G.m.b.H., Duisburg (Germany, F.R.)

    1978-01-01

    The last 10 years have produced an extra ordinary upswing in the gas industry. Natural gas could, in part, satisfy the demands in fields previously reserved for heating oil. However, after these successes it seems necessary to analyze the new initial situation for future marketing activities and to find a new strategy. This investigation is concerned with those tasks. Crucial points are dealt with that represent interesting of activities for gas-supply initiatures, and the author tries to show by what means these efforts can be crowned with success. All important sectors of the market are discussed, new technological developments are dealt with briefly, and finally the special case of opening up new areas for natural gas-supply is examined. It is regarded as an absolute necessity that marketing information for new activities should be appreciably improved by market surveys. The whole article describes the activites that have arisen from the co-operation between Thyssen gas and the gas supply undertakings supplied by Thyssen gas.

  19. Natural gas in the World 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This document summarizes the key findings of the 160-page 2014 edition of CEDIGAZ's flagship survey 'Natural Gas in the World': Worldwide proved natural gas reserves grew by 0.5% (981 bcm) in 2013. On January 1, 2014, reserves were estimated by Cedigaz to stand at 200,576 bcm, compared to 199,595 bcm for the previous year. Out of the seven regions in our regional breakdown, only North America and the C.I.S. have seen an increase in their reserves base in 2013. The strongest gain, both in absolute terms (+739 bcm) and as a percentage (+6.8%), was recorded in North America, reflecting the growth of unconventional gas reserves, both in the U.S. and Canada. The C.I.S. also posted a solid 669 bcm increase, representing a 1% rise. OPEC countries control about half of the world's gas reserves (47%) whereas C.I.S. countries account for almost one-third (33%). Proved unconventional gas reserves are concentrated in North America, especially in the U.S., which held in particular 3.7 tcm of proven shale gas reserves. Outside North America, large coal bed methane (CBM) reserves also exist in Australia and China. Marketed production was up by only 1% from 2012, reaching 3394 bcm, compared to the average growth rate for the last ten years (2.5%/year). This slowdown is partly explained by growing coal-togas competition on the demand side and a gas supply shortfall on the supply side, especially in emerging markets, where the lack of upstream investment is acute. The highest production increases were recorded in the Middle East (+3.1%) and the C.I.S. (+2.6%), which compensated for output losses in Europe (-2.3%) and Africa (-6.6%). In 2013, the two leading regional producing markets, North America and the C.I.S., accounted for 26% and 24% of global production respectively, followed by the Middle East (17%) and Asia Oceania (15%). In 2013, growth in unconventional gas production was driven by North America, China and Australia. North America no longer accounts

  20. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  1. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  2. Natural Gas: Investment Strategies In An Uncertain World

    International Nuclear Information System (INIS)

    Soliman, M.; Darwish, M.

    2004-01-01

    Natural Gas investment projects in developing countries (of which Egypt is a typical example) are one of the key industries in the evolving and continually changing energy market. It seems clear that the natural gas industry today is no longer limited by national boundaries, and that countries as well as organizations need to have an adaptive investment strategy and a global perspective if they are to survive and prosper in this . uncertain world. Many strategies will succeed or fail on the basis of their ability to deal with this dynamic environment. Strategy decisions are by their nature complex, and involve many imponderables. The selection of a course of action depends on the availability and interpretation of information, analysis, intuition, emotion, political awareness and many other factors. Different individuals and groups emphasize different aspects and, in the sense that a strategy decision is an advance into tbe unknown, there is no correct course of action; all that can be done is to interpret the current situation, form expectations about the future, and act according to personal views on risk and the likely course of events. It is usually possible to identify courses of action which are unlikely to be successful, and in that sense the strategy process can have real benefits in helping to avoid disastrous courses of action

  3. The domestic natural gas industry in developing countries

    International Nuclear Information System (INIS)

    Klass, D.L.; Khan, R.A.; Khwaja, S.

    1992-01-01

    The domestic natural gas industry has generally exhibited slow growth in most developing countries that are fortunate enough to have sufficient proved gas reserves to meet energy needs. But supportive government policies that promote the use of indigenous reserves are now beginning to have a positive impact in many parts of the world. Supply and distribution infrastructures are being built or modernized. And natural gas is now or will be available at prices that encourage the displacement of competitive fuels in the larger, energy-intensive industrial and power-generation markets of these countries. It is expected that the domestic gas industry in many developing countries will expand at higher rates than in the past. In the next few decades, the resulting benefits will include reductions in oil consumption per capita, improvements in the balance of payments for oil-importing and exporting developing countries, greater efficiency of energy usage and lower energy consumption per output unit, and improved environmental quality. The national economies and living standards will also undergo significant advancement

  4. 78 FR 35014 - Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, and to Import Liquefied Natural Gas During April 2013 FE Docket Nos. NEXEN ENERGY MARKETING SERVICES NG U.S.A. INC... SOLUTIONS TRANSPORT 13-40-LNG MIECO INC 13-41-NG CASCADE NATURAL GAS CORPORATION 13-43-NG ENCANA MARKETING...

  5. 78 FR 46581 - Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas...

    Science.gov (United States)

    2013-08-01

    ... DEPARTMENT OF ENERGY Orders Granting Authority To Import and Export Natural Gas, and To Import Liquefied Natural Gas During June 2013 FE Docket Nos. CONOCOPHILLIPS COMPANY 13-66-NG CONOCOPHILLIPS COMPANY... June 2013, it issued orders granting authority to import and export natural gas and to import liquefied...

  6. 78 FR 21351 - Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF ENERGY Orders Granting Authority to Import and Export Natural Gas, To Import Liquefied Natural Gas, To Export Liquefied Natural Gas, and Vacating Prior Authority During February 2013 FE... NORTH AMERICA, INC 13-01-NG RESOLUTE FP US INC 13-05-NG GAS NATURAL APROVISIONAMIENTOS SDG, S.A 13-07...

  7. The natural gas futures markets - is it still inefficient?

    International Nuclear Information System (INIS)

    Herbert, J.H.

    1994-01-01

    The natural gas futures market is fundamental to the current natural gas market both as means of price discovery and for price hedging. Thus, the informational efficiency of the futures market is an important issue. This article re-examines the informational efficiency of the natural gas futures market. In this re-examination several cash price series are considered. It is found that the natural gas futures market is informationally efficient for only one of the cash markets. The characteristics of the current natural gas market that might explain the estimated results are also discussed. (author)

  8. Natural Gas Versus Nuclear New Build Versus Life Extension

    International Nuclear Information System (INIS)

    Barron, B.

    2013-01-01

    Proven natural gas reserves and production in the USA have continued to increase in recent years. This is due to the exploration of shale formations and the expanded use of hydraulic fracking technology. Looking forward, we can expect that high crude oil prices will sustain natural gas production at current levels (approximately 25% of natural gas production in the USA is a by-product of crude oil drilling), and the natural gas liquid cuts are priced with crude oil. Continued drilling in the near term for natural gas is required by lease obligations and by commitments to investors

  9. The Impact of Wind Power on European Natural Gas Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    Due to its clean burning properties, low investment costs and flexibility in production, natural gas is often put forward as the ideal partner fuel for wind power and other renewable sources of electricity generation with strongly variable output. This working paper examines three vital questions associated with this premise: 1) Is natural gas indeed the best partner fuel for wind power? 2) If so, to what extent will an increasing market share of wind power in European electricity generation affect demand for natural gas in the power sector? and 3) Considering the existing European natural gas markets, is natural gas capable of fulfilling this role of partner for renewable sources of electricity?.

  10. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  11. Do changes in natural gas futures prices influence changes in natural gas spot prices?

    International Nuclear Information System (INIS)

    Herbert, J.H.

    1993-01-01

    Data on natural gas futures and spot markets are examined to determine if variability in price on futures markets influences variability in price on spot markets. Using econometric techniques, it is found that changes in futures contract prices do not precede changes in spot market prices. (Author)

  12. Integrating climate forecasts and natural gas supply information into a natural gas purchasing decision

    Science.gov (United States)

    Changnon, David; Ritsche, Michael; Elyea, Karen; Shelton, Steve; Schramm, Kevin

    2000-09-01

    This paper illustrates a key lesson related to most uses of long-range climate forecast information, namely that effective weather-related decision-making requires understanding and integration of weather information with other, often complex factors. Northern Illinois University's heating plant manager and staff meteorologist, along with a group of meteorology students, worked together to assess different types of available information that could be used in an autumn natural gas purchasing decision. Weather information assessed included the impact of ENSO events on winters in northern Illinois and the Climate Prediction Center's (CPC) long-range climate outlooks. Non-weather factors, such as the cost and available supplies of natural gas prior to the heating season, contribute to the complexity of the natural gas purchase decision. A decision tree was developed and it incorporated three parts: (a) natural gas supply levels, (b) the CPC long-lead climate outlooks for the region, and (c) an ENSO model developed for DeKalb. The results were used to decide in autumn whether to lock in a price or ride the market each winter. The decision tree was tested for the period 1995-99, and returned a cost-effective decision in three of the four winters.

  13. The efficiency of natural gas futures markets

    International Nuclear Information System (INIS)

    Mazighi, A.E.H.

    2003-01-01

    Recent experience with the emergence of futures markets for natural gas has led to many questions about the drivers and functioning of these markets. Most often, however, studies lack strong statistical support. The objective of this article is to use some classical statistical tests to check whether futures markets for natural gas (NG) are efficient or not. The problem of NG market efficiency is closely linked to the debate on the value of NG. More precisely, if futures markets were really efficient, then: 1) spot prices would reflect the existence of a market assessment, which is proof that speculation and the manipulation of prices are absent; 2) as a consequence, spot prices could give clear signals about the value of NG; and 3) historical series on spot prices could serve as ''clean'' benchmarks in the pricing of NG in long-term contracts. On the whole, since the major share of NG is sold to power producers, the efficiency of futures markets implies that spot prices for NG are driven increasingly by power prices. On the other hand, if futures markets for natural gas fail the efficiency tests, this will reflect: 1) a lack of liquidity in futures markets and/or possibilities of an excess return in the short term; 2) a pass-through of the seasonality of power demand in the gas market; 3) the existence of a transitory process, before spot markets become efficient and give clear signals about the value of NG. Using monthly data on three segments of the futures markets, our findings show that efficiency is almost completely rejected on both the International Petroleum Exchange in London (UK market) and the New York Mercantile Exchange (US market). On the NYMEX, the principle of ''co-movement'' between spot and forward prices seems to be respected. However, the autocorrelation functions of the first differences in the price changes show no randomness of price fluctuations for three segments out of four. Further, both the NYMEX and the IPE fail, with regard to the

  14. Sustainability and energy security : the squeeze on natural gas

    International Nuclear Information System (INIS)

    Hoover, G.; Howatson, A.; Parmenter, R.

    2004-01-01

    This paper outlines the impact of environmental policy on natural gas demand and describes alternative energy sources such as wind, solar, biomass and clean coal that can increase energy supplies. This briefing also establishes the short-, medium-, and long-term consequences of current natural gas realities. It also outlines the driving forces in Canada and the United States behind the demand for natural gas. The impact of policy formation and the phase-out of coal in Ontario are addressed along with natural gas supply prospects and the prospects and obstacles for riskier incremental supplies such as liquefied natural gas, natural gas from coal, and frontier natural gas. It was concluded that strong demand and tight supply are the factors that have driven up natural gas prices. Continued high natural gas prices in the short term will likely motivate conservation strategies at the personal household level as well as in the business and industrial sectors. Although wind power is seen as a clean, competitively prices alternative to natural gas-fired electricity generation, its contribution is not expected to change the supply and demand equilibrium. Initiatives such as the Mackenzie Valley Pipeline, the Alaskan Pipeline and drilling in the Atlantic may help balance natural gas supply and demand in the mid-term. 44 refs., 2 tabs., 7 figs

  15. Natural gas industry and its effects on the environment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Kejeijan, B.

    2008-01-01

    The discoveries of natural gas have increased during the last ten years in Syria, These increases lead to the necessity of knowing the effects of this industry on the environment. Syrian Arabic Republic has been planning to convert most of the current electric of plants to natural gas in addition to future plans to export natural gas to the surrounding countries. In addition, the government is working on the use of LPG gas in automobiles. However, environmentally, the importance of natural gas is due to the followings: 1- Natural gas, when burned, emits lower quantities of greenhouse gases and criteria pollutants per unit of energy produced than to other fossil fuels. This occurs in part because natural gas is more fully combusted, and in part because natural gas contains fewer impurities than any other fossil fuel. 2-The amount of carbon dioxide produced from the combustion of natural gas is less than the amount produced from the combustion of other fossil fuels to produce the same amount of heat. One of the important uses of natural gas is in the transportation since natural gas does not produce during combustion toxic compounds which are usually produced during the combustion of diesel and benzene. therefore natural gas is seen and considered as an important fuel to address environmental concerns. (author)

  16. Trends in high performance compressors for petrochemical and natural gas industry in China

    Science.gov (United States)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  17. Natural gas : a critical component of Ontario's electricity future

    International Nuclear Information System (INIS)

    Pleckaitis, A.

    2004-01-01

    This PowerPoint presentation identified natural gas as part of the electricity solution. It reviewed price implications and policy recommendations. New natural gas supply is not keeping pace with demand. Production is leveling out in traditional basins and industry investment is not adequate. In addition, energy deregulation is creating disconnects. This presentation included a map depicting the abundant natural gas reserves across North America. It was noted that at 2002 levels of domestic production, North America has approximately 80 years of natural gas. The AECO consensus wholesale natural gas price forecast is that natural gas prices in 2010 will be lower than today. The use of natural gas for power generation was outlined with reference to fuel switching, distributed generation, and central generation. It was emphasized that government, regulators and the energy industry must work together to address policy gaps and eliminate barriers to new investment. tabs., figs

  18. Does Increased Extraction of Natural Gas Reduce Carbon Emissions?

    International Nuclear Information System (INIS)

    Aune, F.R.; Golombek, R.; Kittelsen, S.A. C.

    2004-01-01

    Without an international climate agreement, extraction of more natural gas could reduce emissions of CO2 as more 'clean' natural gas may drive out ''dirty'' coal and oil. Using a computable equilibrium model for the Western European electricity and natural gas markets, we examine whether increased extraction of natural gas in Norway reduces global emissions of CO2. We find that both in the short run and in the long run total emissions are reduced if the additional quantity of natural gas is used in gas power production in Norway. If instead the additional quantity is exported directly, total emissions increase both in the short run and in the long run. However, if modest CO2-taxes are imposed, increased extraction of natural gas will reduce CO2 emissions also when the additional natural gas is exported directed

  19. North American natural gas pipeline and supply update

    International Nuclear Information System (INIS)

    Molyneaux, M.

    1999-01-01

    A series of overhead viewgraphs accompanied this presentation which presented an update of North American natural gas supply. Some of the graphs depicted the following: (1) natural gas consumption in the United States, (2) U.S. imports of Canadian natural gas, (3) natural gas prices differential: Henry Hub versus Empress, (4) natural gas production in the U.S., and (5) Baker Hughes active rig count, U.S. gas rigs. First Energy's view of U.S. natural gas supply is that the estimate of 50.0 Bcf/d for U.S. domestic production is looking too high. The first quarter 1999 exit production rates are behind expectations. U.S. domestic natural gas expenditure budgets are still down by more than 40 per cent compared to 1998 levels. The impact that this will have on prices was discussed. 21 figs

  20. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  1. International natural gas and petrochemical opportunities

    International Nuclear Information System (INIS)

    Pierce, R.L.

    1995-01-01

    The approach of NOVA Gas International Ltd. (NGI) to locating international development opportunities was reviewed. NOVA has provided consulting expertise to more than 300 projects in 50 countries during the past 20 years. NGI is focusing its energies on five regions: Canada, the US, Mexico, the southern cone of South America and the Asia-Pacific region. To determine where to offer natural gas services and petrochemicals, the Company utilizes a multi-step analysis process which is designed to identify (1) the perfect customer, (2) the most attractive global regions, (3) the potential pitfalls, and (4) the best projects. NOVA also found out the importance of developing a solid network of local contacts and partners. Project financing must be adequate and flexible, requiring constant communications with partners and interested parties

  2. C.I.S. natural gas-1

    International Nuclear Information System (INIS)

    Carson, M.; Stram, B.

    1993-01-01

    This paper reports that in the countries that make up the Commonwealth of Independent States (C.I.S.), with their vast resources and a considerable existing production base, prospects are good for further growth of the region's exportable gas surplus. Investment fundamentals are stronger for gas than for any other energy resources in the area. But the pipeline infrastructure to move large amounts of gas will need extensive refurbishment to ensure export reliability and growth. Given the potential in terms of production and markets, significant amounts of outside investment in oil, natural gas, and NGL infrastructure will likely increase dramatically in these countries in the near future. These are some of the major conclusions of Enron Corp.'s recent investigations in the C.I.S. and other former Soviet republics

  3. Natural gas in Europe: Development prospects

    International Nuclear Information System (INIS)

    Pasetto, R.

    1992-01-01

    Today, natural gas covers 16% of primary energy demand in Europe. Consumption of this fuel is set at about 380 billion cubic meters to which we can add about 700 billion consumed in the ex-COMECON countries. Europe's consumption alone is forecasted by many to rise to 500 billion cubic meters at the turn of the century and to 600 billion by the year 2010. It is expected that the power plant sector will account for one-third of this rise in consumption. Even if domestic production of this fuel is maximized and foreign suppliers maintain their production trends, the expected demand increases in industriali--ed countries can be sufficiently satisfied only by recourse to new suppliers located in the far reaches of the globe

  4. Wood ethanol and synthetic natural gas pathways

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  5. Natural gas in low energy house Zittau

    International Nuclear Information System (INIS)

    Maertens, L.; Koschack, A.

    1999-01-01

    This paper describes a low-energy house in Zittau, Germany. The house consists of two parts A and B. Part A is heated by means of gas boilers and condensed boilers, while part B is solar heated. Energy for heating and warming of tap water is an important part of the primary energy consumption in Germany. Therefore, one way of reducing the CO2 emissions is to reduce the heat losses of buildings through outer facades and air ventilation, to use regenerative energy sources, to use fuels with low CO2 emissivity like natural gas, and to install efficient heating- and hot water preparation systems. The low-energy house in Zittau is used for energy research

  6. Environmental analysis of natural gas life cycle

    International Nuclear Information System (INIS)

    Riva, A.; D'Angelosante, S.; Trebeschi, C.

    2000-01-01

    Life Cycle Assessment is a method aimed at identifying the environmental effects connected with a given product, process or activity during its whole life cycle. The evaluation of published studies and the application of the method to electricity production with fossil fuels, by using data from published databases and data collected by the gas industry, demonstrate the importance and difficulties to have reliable and updated data required for a significant life cycle assessment. The results show that the environmental advantages of natural gas over the other fossil fuels in the final use stage increase still further if the whole life cycle of the fuels, from production to final consumption, is taken into account [it

  7. SCADA Architecture for Natural Gas plant

    Directory of Open Access Journals (Sweden)

    Turc Traian

    2009-12-01

    Full Text Available The paper describes the Natural Gas Plant SCADA architecture. The main purpose of SCADA system is remote monitoring and controlling of any industrial plant. The SCADA hardware architecture is based on multi-dropping system allowing connecting a large number of different fiels devices. The SCADA Server gathers data from gas plant and stores data to a MtSQL database. The SCADA server is connected to other SCADA client application offers a intuitive and user-friendly HMI. The main benefit of using SCADA is real time displaying of gas plant state. The main contriobution of the authors consists in designing SCADA architecture based on multi-dropping system and Human Machine Interface.

  8. Wood ethanol and synthetic natural gas pathways

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  9. Substitute natural gas from biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tunaa, Per (Lund Inst. of Technology, Lund (SE))

    2008-03-15

    Biomass is by many considered as the only alternative to phase-out the usage of fossil fuels such as natural gas and oil especially for the transportation sector where alternative solutions, such as hydrogen fuel cells and batteries, are not yet fully developed. Thermal gasification or other methods such as pyrolysis of the biomass must be applied in order to produce an intermediate product suitable for further upgrading to either gaseous or liquid products. This thesis will evaluate the possibilities of producing, substitute natural gas, (SNG) from biomass gasification by using computer simulation. Three different gasification techniques were evaluated; entrained-flow, fluidized-bed and indirect gasification coupled with two different desulphurisation systems and two methanation processes. The desulphurisation systems were a zinc oxide bed and a Rectisol wash system. Methanation were performed by a series of adiabatic reactors with gas recycling and by an isothermal reactor. The impact on SNG efficiency from system pressure, isothermal methanation temperature and PSA methane recovery were evaluated as well. The results show that the fluidized-bed and the indirect gasifier have the highest SNG efficiency. Furthermore there are little to no difference between the methanation processes and small differences for the gas cleanup systems. SNG efficiencies in excess of 50 % were possible for all gasifiers. SNG efficiency is defined as the energy in the SNG product divided by the total input to the system from biomass, drying and oxygen. Increasing system pressure has a negative impact on SNG efficiency as well as increasing operating costs due to increased power for compression. Isothermal methanation temperature has no significant impact on SNG efficiency. Recovering as much methane as possible in the PSA is the most important parameter. Recovering methane that has been dissolved in condensed process water increases the SNG efficiency by 2-10% depending on system.

  10. The necessity for storage of natural gas in the Netherlands: In particular the natural gas storage near Langelo, Drenthe, Netherlands

    International Nuclear Information System (INIS)

    1994-11-01

    The natural gas supply in the Netherlands will experience a capacity problem once the pressure of the natural gas field Slochteren in the province Groningen will decrease below a certain level. It is expected that this will already happen in the winter of 1996. Underground storage of natural gas reserves is considered to be the only appropriate solution to accommodate this problem. Four environmental organizations in the Netherlands ordered GASTEC, the Dutch research center for natural gas technology, to study the alternatives for natural gas storage in the Netherlands. 7 figs

  11. Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Lenox, Carol; Kaplan, P. Ozge

    2016-01-01

    With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher. - Highlights: • MARKAL analysis of energy system GHG emissions reduction scenarios. • High methane leakage can eliminate the benefit that natural gas brings over coal. • A robust GHG reduction strategy takes into account upstream emissions for all fuels.

  12. The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru

    International Nuclear Information System (INIS)

    Gonzales Palomino, Raul; Nebra, Silvia A.

    2012-01-01

    In recent years there have been several discussions on a greater use of natural gas nationwide. Moreover, there have been several announcements by the private and public sectors regarding the construction of new pipelines to supply natural gas to the Peruvian southern and central-north markets. This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of the country based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. First, the paper estimates the market potential and characterizes the energy consumption. Then it makes a selection of technological alternatives for the use of natural gas, and it makes an energetic and economic analysis and economic feasibility. Finally, the potential use of natural gas is calculated through nine different scenarios. The natural gas use in cogeneration systems is presented as an alternative to contribute to the installed power capacity of the country. Considering the introduction of the cogeneration in the optimistic–advanced scenario and assuming that all of their conditions would be put into practice, in 2020, the share of the cogeneration in electricity production in Peru would be 9.9%. - Highlights: ► This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of Peru. ► The potential use of natural gas is calculated through nine different scenarios.► The scenarios were based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. ► We estimated the market potential and characterized the energy consumption, and made a selection of technological alternatives for the use of natural gas.

  13. Natural gas supply strategies for European energy market actors

    International Nuclear Information System (INIS)

    Girault, Vincent

    2007-06-01

    The liberalization of the European energy markets leads to the diversification of supplies. Hence, we analyse the natural gas importation problem in a power producer point of view. Upstream and downstream natural gas markets are concentrated. In this oligopoly context, our topic is to focus on strategies which modify natural gas sourcing price. This by studying the surplus sharing on the natural gas chain. A European firm can bundle gas and electricity outputs to increase its market share. Therefore, a bundling strategy of a power producer in competition with a natural gas reseller on the final European energy market increases upstream natural gas price. Bundling also acts as a raising rival cost strategy and reduces the rivals' profit. Profits opportunities incite natural gas producers to enter the final market. Vertical integration between a natural gas producer and a European gas reseller is a way, for producers, to catch end consumer surplus. Vertical integration results in the foreclosure of the power producer on the upstream natural gas market. To be active on the natural gas market, the power producer could supply bundles. But, this strategy reallocates the rent. The integrated firm on natural gas gets the rent of electricity market in expenses of the power producer. Then, a solution for the power producer is to supply gas and electricity as complements. Then, we consider a case where vertical integration is not allowed. Input price discrimination by a monopolist leads to a lower natural gas price for the actor which diversifies its supplying sources. Furthermore, a bundling strategy increases the gap between the price proposed to the firm which also diversify its output and the firm which is fully dependent from the producer to supply natural gas on final market. (author)

  14. Israel-New natural gas producer in the Mediterranean

    International Nuclear Information System (INIS)

    Shaffer, Brenda

    2011-01-01

    In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. - Highlights: → In 2009 and 2010, major natural gas deposits were discovered offshore of Israel's port city of Haifa. → They will satisfy a large portion of Israel's domestic energy consumption needs for a number of decades. → The gas discoveries have created an opportunity to fundamentally change the country's energy policies. → Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil. → Israel could become a supplier of natural gas to neighbors in the Middle East region, such as Jordan.

  15. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  16. Policy Considerations for Commercializing Natural Gas and Biomass CCUS

    Science.gov (United States)

    Abrahams, L.; Clavin, C.

    2017-12-01

    Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in

  17. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  18. Considering the Role of Natural Gas in the Deep Decarbonization of the U.S. Electricity Sector. Natural Gas and the Evolving U.S. Power Sector Monograph Series: Number 2

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beppler, Ross [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-12

    2030, natural gas generation in the technology scenarios is quite similar to that in the reference scenarios, indicating relatively little change in the role of natural gas in the near-to-mid-term due to advancements in those technology areas. The 2050 natural gas generation shows more significant differences, suggesting that technology advancements will likely have substantial impacts on the role of natural gas in the longer-term timeframe. Natural gas generation differences are most strongly driven by alternative natural gas price trajectories--changes in natural gas generation in the Low NG Price and High NG Price scenarios are much larger than in any other scenario in both the 2030 and 2050 timeframes. The only low-carbon technology scenarios that showed any increase in long-term natural gas generation relative to the reference case were the Low CCS cost scenarios. Carbon capture and storage technology costs are currently high, but have the potential to allow fossil fuels to play a larger role in low-carbon grid. This work considers three CCS cost trajectories for natural gas and coal generators: a baseline trajectory and two lower cost trajectories where CO2 capture costs reach $40/metric ton and $10/metric ton, respectively. We find that in the context of the ReEDS model and with these assumed cost trajectories, CCS can increase the long-term natural gas generation under a low carbon target (see Figure 2). Under less stringent carbon targets we do not see ReEDS electing to use CCS as part of its electricity generating portfolio for the scenarios considered in this work.

  19. Natural gas - an alternative. Swedish electric power from Norwegian natural gas

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the possible substitution of electric power by natural gas on the heat source market and how gas can be used for power production. The cost of distribution and means of supply are presented. 1/3 of the electric power produced by nuclear power plants can be replaced by the middle of the nineties. Transport techniques for gas and its total volume as well as transport cost from Norwegian North Sea are discussed

  20. Natural gas market assessment: Price convergence in North American natural gas markets

    International Nuclear Information System (INIS)

    1995-12-01

    The extent to which Canadian and U.S. natural gas markets have become integrated in the post-deregulation era was assessed. This assessment was accomplished through a statistical analysis of the price movements in Canadian and U.S. gas markets. The analysis pointed to three broad conclusions: (1) on the whole, there has been an increasing degree of integration among North American natural gas markets since price deregulation and the introduction of open access, (2) there is somewhat of a split between eastern and western markets, (3) Alberta's links are stronger with the western U.S. natural gas market than with the market in the eastern U.S. Several factors were cited as contributing to the general increase in market integration, including: (1) increased pipeline capacity and additional pipeline interconnections, coupled with the development of market hubs, (2) improved flexibility of access to pipeline transportation services, (3) improved access to market information and greater trading flexibility which has been facilitated by growing use of electronic bulletin boards and electronic trading systems. The increased market integration was claimed to have benefited both consumers and producers, and to have increased competition in both countries.. 28 refs., 14 figs

  1. German natural gas market and the international supply situation. Pt. 1. Supply market for natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, U [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (Germany, F.R.). Abt. Bergbau und Energie

    1978-01-01

    Since the oil crisis the buyers's market started to change to a seller's market as a result of the worldwide rising demand for natural gas. This development will be amplified with the increasing significance and volume of LNG trade. This depends upon the availability of handling and tanker capacities. It is considered that technical solutions are available. The internationalisation of the world natural gas market imposes changes in terms of trade for the Federal Republic of Germany. In the sixties, terms of trade made under sales considerations presented no problems. But gas buyers today are forced to accept sellers' terms looking for the buyer offering the highest prices and other sales advantages. The world gas market has assumed the features of a polypolistic market. The security of supply is not a matter of adequate reserves, but almost entirely that of terms of contract on which the natural gas supply can be ensured. It is thereby decisive, whether it will be possible in future to procure the required amount of gas at such terms that it can be sold on the German energy market at competetive rates.

  2. Landscape consequences of natural gas extraction in Fayette and Lycoming Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Gillenwater, B.H.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Fayette County and Lycoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  3. Landscape consequences of natural gas extraction in Beaver and Butler Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Roig-Silva, Coral M.; Slonecker, E. Terry; Milheim, Lesley E.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Beaver County and Butler County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  4. Landscape consequences of natural gas extraction in Sullivan and Wyoming Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  5. Landscape consequences of natural gas extraction in Lackawanna and Wayne Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Lackawanna County and Wayne County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  6. Landscape consequences of natural gas extraction in Armstrong and Indiana Counties, Pennsylvania, 2004–2010

    Science.gov (United States)

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Armstrong County and Indiana County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  7. Landscape consequences of natural gas extraction in Somerset and Westmoreland Counties, Pennsylvania,2004--2010

    Science.gov (United States)

    Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.

    2013-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Somerset County and Westmoreland County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.

  8. Natural Gas Container Transportation: the Alternative Way to Solve the World’s Energy Transportation Problems

    Directory of Open Access Journals (Sweden)

    A.M. Shendrik

    2014-03-01

    Full Text Available The container gas transportation for low and medium level consumers as an alternative to pipelines is considered. The options for gas supply schemes, based on road and rail transport are given. The advantages and disadvantages of both types of gas transporting are described, the areas of their effective using are separated in the article. Promising implementations of technology in environment of economic crisis and also considering world trends of energy development are presented. The most advanced organization of compressed gas condensate transportation of unprepared gas fields in large diameter universal cylindrical balloons (up to 1000 mm are reasoned. The problem of compressed gas sea transportation are well disclosed, but the alternative ways of gas transportation by land are not investigated enough. Compressed Natural Gas (CNG Technology - is new promising technology for natural gas transportation by specially designed vessels – CNG-vessels. The feature of this technology is that natural gas can be downloaded directly near gas deposits and unloaded - directly into the customer's network. This eliminates significant capital investments in underwater pipelining or gas liquefaction plants. The main objects of investment are CNG-vessels themselves. The most attractive places for implementation of CNG-technology are sea (offshore natural gas deposits. Numerous international experts estimate the natural gas transportation by CNG-vessels in 1.5-2.0 times more cost-beneficial in comparison with offshore pipelines transportation, or in comparison with LNG (Liquefied Natural Gas shipping with natural gas transportation volume between 0.5 and 4.0 billion cubic meters per year on the route from 250 to 2,500 sea miles. This technology makes possible to provide gas supplement to the mountain and abounding in water areas, remote and weakly gasified regions. Described technology deserves special attention in the case of depleted and low-power oil and

  9. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  10. Asian natural gas--For a brighter '90s

    International Nuclear Information System (INIS)

    Klass, D.L.; Ohashi, Tadahiko

    1991-01-01

    The seminar was designed to focus on the business aspects of developing Asian natural gas resources by inclusion of papers on natural gas markets, the role of banks, and financial case histories of existing projects, and papers on commercial and industrial natural gas utilization. The utilization of natural gas was addressed by papers that targeted small-scale, industrial and utility usage of natural gas in electric power production, and by papers on air conditioning and other applications. Each of these topics is important to the development of the Asian natural gas industry. Together, they formed a balanced program when combined with the opening keynote addresses from Tokyo Gas Company, Ltd., and PETRONAS and a panel discussion on gas pricing. All papers have been processed separately for inclusion on the data base

  11. The crude petroleum and natural gas industry, 1995

    International Nuclear Information System (INIS)

    1996-01-01

    A compilation of data regarding the crude petroleum and natural gas industry was presented. This industry includes establishments engaged in exploration for, or production of petroleum or natural gas from wells or tar sands. Data presented in this publication include: the supply and disposition of crude oil and natural gas, operating and capital expenditures of approximately 500 companies of the oil and natural gas industry, drilling completions, and crude oil and natural gas reserves. Data about the oil sands industry is reported in another volume. Much of the data was obtained from the Canadian Association of Petroleum Producers. Overall, in 1995 Canadian natural gas production rose 6.7%; exports of crude oil rose 7.7%. 8 tabs., 2 figs

  12. Decision support models for natural gas dispatch

    International Nuclear Information System (INIS)

    Chin, L.; Vollmann, T.E.

    1992-01-01

    A decision support model is presented which will give utilities the support tools to manage the purchasing of natural gas supplies in the most cost effective manner without reducing winter safety stocks to below minimum levels. In Business As Usual (BAU) purchasing quantities vary with the daily forecasts. With Material Requirements Planning (MRP) and Linear Programming (LP), two types of factors are used: seasonal weather and decision rule. Under current practices, BAU simulation uses the least expensive gas source first, then adding successively more expensive sources. Material Requirements Planning is a production planning technique which uses a parent item master production schedule to determine time phased requirements for component points. Where the MPS is the aggregate gas demand forecasts for the contract year. This satisfies daily demand with least expensive gas and uses more expensive when necessary with automatic computation of available-to-promise (ATP) gas a dispacher knows daily when extra gas supplies may be ATP. Linear Programming is a mathematical algorithm used to determine optimal allocations of scarce resources to achieve a desired result. The LP model determines optimal daily gas purchase decisions with respect to supply cost minimization. Using these models, it appears possible to raise gross income margins 6 to 10% with minimal additions of customers and no new gas supply

  13. Natural gas and its consumption in Switzerland

    International Nuclear Information System (INIS)

    Baniriah, N.

    1991-01-01

    In this report the worldwide position of natural gas as an important energy of the coming decades and its modest current standing in the Swiss energy balance are highlighted. The relative role and importance of the principal fossil fuels in the energy supply, the average energy prices and taxes, particularly those of gas and fuel oil in the residential sector and the overall statistically related inter-fuel substitution in Switzerland are examined. The role of governments in energy supply in general and with gas utilization in particular is examined. The international trade in gas and its supply infrastructure are reviewed and the advantageous situation of Switzerland in Western Europe and the latter in the World, with respect to present and future gas supplies, are underlined. Considering the current level of gas consumption in Switzerland and its past and projected rates of market penetration, in comparison to other OECD countries, it would appear that Switzerland is not taking full advantage of the situation. The implicit message, even if diffidently conveyed, is intervention by prescription and by proscription. In the absence of such measures, and with the virtual demise of nuclear energy or its expansion, the disproportionate and dominant position of fuel oil in the energy mix, will endure whereas the share of gas grows very slowly remaining at much lower levels than in the neighbouring countries. (author) figs., tabs., refs

  14. Decision support models for natural gas dispatch

    Energy Technology Data Exchange (ETDEWEB)

    Chin, L. (Bentley College, Waltham, MA (United States)); Vollmann, T.E. (International Inst. for Management Development, Lausanne (Switzerland))

    A decision support model is presented which will give utilities the support tools to manage the purchasing of natural gas supplies in the most cost effective manner without reducing winter safety stocks to below minimum levels. In Business As Usual (BAU) purchasing quantities vary with the daily forecasts. With Material Requirements Planning (MRP) and Linear Programming (LP), two types of factors are used: seasonal weather and decision rule. Under current practices, BAU simulation uses the least expensive gas source first, then adding successively more expensive sources. Material Requirements Planning is a production planning technique which uses a parent item master production schedule to determine time phased requirements for component points. Where the MPS is the aggregate gas demand forecasts for the contract year. This satisfies daily demand with least expensive gas and uses more expensive when necessary with automatic computation of available-to-promise (ATP) gas a dispacher knows daily when extra gas supplies may be ATP. Linear Programming is a mathematical algorithm used to determine optimal allocations of scarce resources to achieve a desired result. The LP model determines optimal daily gas purchase decisions with respect to supply cost minimization. Using these models, it appears possible to raise gross income margins 6 to 10% with minimal additions of customers and no new gas supply.

  15. Natural gas reserve growth in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Woronuk, R. [Canadian Gas Potential Committee, Calgary, AB (Canada)]|[GasEnergy Strategies Inc., Calgary, AB (Canada)

    2003-07-01

    An appreciation study of a natural gas reservoir is a component of assessing its ultimate reserve potential. The Canadian Gas Potential Committee (CGPC) defines appreciation as the change in a reserve estimate from a previously booked pool or basin. Basins cannot appreciate through the addition of new pools. Ultimate potential includes all of the following: cumulative production; remaining discovered reserves; adjustments to remaining discovered reserves; and, full appreciated undiscovered reserves. This presentation outlined the procedures used by the CGPC in its appreciation studies. It also reviewed data supplier issues, regulatory practices, and booking issues. A series of graphs were also included depicting pools discovered in 1993 and the average pool gas in place. Reservoir loss from 1993 to 1998 was attributed to the fact that enhanced recovery technology cannot keep pace with the degradation in pool quality. It was noted that beyond 1998, significant increases in gas prices should increase recovery factors. Special studies by the Alberta Energy and Utilities Board have included the depreciation of unconnected gas pools and the appreciation of sheet sands. The challenge of tracking pool appreciation was discussed with reference to estimating new pool discoveries in established fields. 2 tabs., 6 figs.

  16. [Natural gas rate design and transportation issues

    International Nuclear Information System (INIS)

    Howard, G.S.

    1992-01-01

    This paper is presented from an industrial user viewpoint with regards to natural gas distribution and pricing. The author reviews the problems with rate structures at local distributing companies and gas utility companies which resort to charging high prices to industrial users while subsidizing residential users. He goes on then to discuss the lack of innovation amount LDCs to meet the needs of the industrial sector. Secondly it analyses the regulation and price structure of the pipeline industry which drastically affects all gas prices. The paper specifically discusses 'equivalent margin rates' which are being used by many states to control transportation rates. The author feels that these margin rates are inappropriate in that it transfers much of the LDC's exploration and development costs to the pipeline company which transfers it on to the consumer. He feels that the transportation rates should exclude all costs that are clearly not incurred by an LDC to provide transportation service. The paper concludes with recommendations to regulators regarding the need for regulatory reform of deregulation of the gas industry with regards to profit-taking and the transportation industry with regards to developing capacity assignment programs

  17. Natural gas pricing policies in Southeast Asia

    International Nuclear Information System (INIS)

    Pacudan, R.B.

    1998-01-01

    The very dynamic economies of Southeast Asia have recently been experiencing a rapid increase in energy demand. Parallel to this development, there has been an increase in the utilization of indigenous natural gas resources. This article reviews gas-pricing policies in the region, which partly explain the rise in gas utilization. Although diverse, energy pricing policies in Southeast Asia address the common objective of enhancing domestic gas production and utilization. The article concludes that a more rational gas-pricing policy framework is emerging in the region. In global terms, gas pricing in the region tends to converge in a market-related framework, despite the many different pricing objectives of individual countries, and the predominance of non-economic pricing objectives in certain countries (especially gas-rich nations). Specifically, governments have been flexible enough to follow global trends and initiate changes in contractual agreements (pricing and profit-sharing), giving oil companies more favourable terms, and encouraging continued private investment in gas development. At the same time, promotional pricing has also been used to increase utilization of gas, through set prices and adjusted taxes achieving a lower price level compared to substitute fuels. For an efficient gas-pricing mechanism, refinements in the pricing framework should be undertaken, as demand for gas approaches existing and/or forecast production capacities. (author)

  18. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  19. Gas supplies of interstate natural gas pipeline companies 1990

    International Nuclear Information System (INIS)

    1992-01-01

    This publication provides information on the interstate pipeline companies' supply of natural gas in the United States during calendar year 1990, for use by the Federal Energy Regulatory Commission for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years

  20. Natural Gas in China: Market evolution and strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    In 2007, Chinas natural gas consumption increased by 23.8% and attained 69.5 billion cubic metres (bcm) (NBS 2008). Thanks to this rapid increase, China became one of the world's top 10 countries in terms of natural gas consumption. Moreover, according to the IEA's World Energy Outlook 2008, China will become the top natural gas consuming country in the Asia-Pacific region, overtaking Japan by 2015.

  1. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  2. Economic balance sheet of a natural gas vehicle fleet

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Natural gas fuels for vehicles bear an important and variable additional cost which corresponds to the cost for compression. This short paper gives a cost-benefit comparative estimation of the m 3 of natural gas cost when the FUELMAKER and the CIRRUS compressors are used, respectively. A comparative economic estimation between petrol and natural gas for vehicles is given for two Renault vehicles. (J.S.)

  3. The natural gas storage in France and in Europe

    International Nuclear Information System (INIS)

    2006-02-01

    The natural gas storages play a great role in the gas supplying security. They allow to compensate for the variations of the supply and demand. This document presents the different natural gas storage technic: in the phreatic cave, in salt hollows, in abandoned deposits and the natural liquefied gas. It includes also a map of the natural gas storage situation in France. (A.L.B.)

  4. Land based use of natural gas - distribution solutions

    International Nuclear Information System (INIS)

    Jordanger, Einar; Moelnvik, Mona J.; Owren, Geir; Einang, Per Magne; Grinden, Bjoern; Tangen, Grethe

    2002-05-01

    The report presents results from the project ''Landbasert bruk av naturgass - distribusjonsloesninger'' (Land based use of natural gas - distribution solutions). It describes the aims of the project, the political external conditions for the use of natural gas, some environmental profits by changing from petroleum and coal to natural gas, the Norwegian infrastructure, the optimisation of energy transport, strategic consequences of the introduction of LNG and the practical consequences of the Enova strategy

  5. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  6. Natural gas for public and private transportation: Present situation and prospects

    International Nuclear Information System (INIS)

    Gambino, M.; Iannaccone, S.; Unich, A.

    1992-01-01

    In recent years, the use of natural gas as an automotive fuel for private and public vehicles has grown due to its interesting chemical-physical properties which make it an efficient fuel and more environmentally compatible than conventional fuels. This promising consumption trend has led to increased R ampersand D investments in attempts to enhance the fuel's automotive performance and exhaust emission characteristics. This paper reviews the advances in these directions which have been made thus far by research teams around the world and assesses commercialization prospects for natural gas automotive fuels in light of the more stringent air pollution regulations being proposed by the European Communities

  7. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  8. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  9. Conference Reports: New developments affecting natural gas sales contracts

    International Nuclear Information System (INIS)

    1999-01-01

    Papers presented at a conference examining and reviewing recent trends in natural gas sales contracts are contained in this volume. Conference participants heard 14 presentations, with topics including pricing provisions in gas contracts, security of supply, cross-border issues, legislative reform of electronic data interchange, digital signatures, new developments in managing contracts in a competitive environment, the changing role of natural gas aggregators, drafting 'force majeure' clauses in natural gas purchase/sale contracts and the consequences and remedies for breach of natural gas contracts. The volume also includes biographical notes, and current addresses of the speakers

  10. A state regulator's perspective on the natural gas industry

    International Nuclear Information System (INIS)

    Heintz, F.O.

    1992-01-01

    This paper reviews the history of the natural gas distribution industry and the role of state regulation in controlling pricing and supply. The paper discusses the results of national policies such as the Fuel Use Act and the subsequent Natural Gas Policy Act. It then discusses the resulting market and prices resulting from both regulation and deregulation of the natural gas industry. The paper goes on to discuss the market potential for natural gas and the reliability of this fuel source for future demand

  11. Natural gas and Brazilian energetic matrix; Gas natural no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Ricardo Luchese de [White Martins S.A., Rio de Janeiro, RJ (Brazil)

    1997-07-01

    Recent projection of the market in global scale shows a tendency in natural gas using replacing mostly the fuel oil. Its market share well increase from 21.1% in 1994 to 24.0% in 2010. The annual energetic use will reach 29.23 x 10{sup 9} Gcal in 2010 (8990 million Nm{sup 3} natural gas/day) versus 18.90 x 10{sup 9} Gcal in 1994 (5810 million Nm{sup 3} natural gas/day). For Brazil, its consumption will increase from 8.7 million Nm{sup 3} natural gas/day in 1994 to 35.9 million Nm{sup 3} natural gas/day in 2010. Projects like Brazil-Bolivia natural gas pipeline, will supply 18 million Nm{sup 3} natural gas/day, which expected to start-up before the year 2000. This projects will supply the Brazilian southern regions, that do not consume natural gas at the current moment. Although there are many different kind of natural gas consumption in the industry this paper presents the technical and economical estimate of the injection in the blast furnace operating with coke or charcoal. The process simulation is done assisted by math modeling developed by White Martins/Praxair Inc. (author)

  12. The determining factors of natural gas demand in domestic sector

    International Nuclear Information System (INIS)

    Cadoret, I.

    1992-01-01

    Natural gas plays an important role in domestic sector. For example, in France, Italy, Germany and United-Kingdom the natural gas share in energy demand of domestic sector is respectively 26%, 44%, 34% and 63%. A study of energy policies, natural gas industry structure and tarification system of this four countries indicates that gas development is linked to the government and petroleum companies policy. Econometric models estimation show by another way that when natural gas is introduced in domestic sector, the demand follows the distribution network. When the market is saturated, the demand changes with energy price and household income. 8 refs., 2 tabs., 5 figs

  13. Improving efficiency and effectiveness in natural gas regulation : discussion paper

    International Nuclear Information System (INIS)

    Rounding, M.C.

    2004-11-01

    Energy market liberalization is a world trend that has prompted the deregulation of natural gas and electricity over the past twenty years in North America. The Ontario Energy Board and the National Energy Board are conducting public hearings on natural gas regulation in response to the request by Canadian energy industries for better regulatory streamlining. The following 5 issues regarding natural gas regulation in Canada have been examined: (1) system gas in a regulated market, (2) natural gas infrastructure investments and capital renewal, (3) improving efficiency in gas regulation, (4) expectations of performance-based regulation (PBR) in the natural gas industry, and (5) the debate whether further deregulation of the natural gas industry is beneficial. This paper discusses the impact that natural gas regulation has had on the efficiency and competitiveness of the industry and its affect on customers and other stakeholders. It focuses on the efficiency of the regulatory process and examines regulatory objectives, best practices and performance indicators. The factors that determine the efficiency of natural gas regulation include alternative regulatory models, structure of the regulatory agency, regulatory framework approaches, and outcomes for the natural gas industry. The relationship between the government and the regulator was also examined in terms of their abilities to implement policy. A comparative evaluation between energy regulators in Canada, the United States, Australia and the United Kingdom was presented. The balancing of short-term and long-term objectives for gas supply and planning issues was also addressed. 17 refs

  14. Debunking the myths: Natural gas and SO2 allowance solutions

    International Nuclear Information System (INIS)

    Roberts, G.D. Jr.

    1993-01-01

    During the decade of the 1990's and beyond, natural gas is expected to be the fuel of choice for a significant portion of new generation capacity. Natural gas already enjoys a greater than 50% market share as a fuel source in the non-regulated cogeneration and Independent Power Producer market. With the new administration in Washington, increased environmental focus will likely increase the attractiveness of natural gas based capacity expansions. While these various issues may appear to contribute to making this decade, the decade for natural gas, there are a number of challenges that must be met if the natural gas and power generation industries are going to satisfy the ever increasing needs of the marketplace. These challenges include: (1) myths of natural gas supply availability, (2) transportation and operational coordination issues, (3) uncertainty of price and reliability, and (4) natural gas for NO x and SO 2 compliance. The author believes that these challenges are actively being met and that there are existing solutions already being offered and incorporated into contracts by natural gas suppliers. The focus of this paper is how electric utilities need to become comfortable with the new natural gas industry and how services can be structured to meet these challenges of serving the electric market requirements

  15. Reliability and competitiveness of Canadian natural gas supply - discussion paper

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    A summary of market evolution for the Canadian natural gas industry was provided. Canada's undisputed position as an important supplier of natural gas to domestic and United States consumers was reaffirmed. The industry has marketable potential of 582 trillion cubic feet of conventional natural gas, of which 254 trillion cubic feet is found in the Western Canada Sedimentary Basin. The role of the Free Trade Agreement of 1988, and the recent deregulation of the Canadian natural gas industry in allowing the gas market to evolve into a competitive, continental market were noted. The end result to consumers is a choice of suppliers, competitive prices, reliability and confidence. 7 refs., 2 tabs., 8 figs

  16. Hydrogen generation from natural gas for the fuel cell systems of tomorrow

    Science.gov (United States)

    Dicks, Andrew L.

    In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.

  17. The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL

    International Nuclear Information System (INIS)

    Jiang Binbin; Wenying, Chen; Yu Yuefeng; Zeng Lemin; Victor, David

    2008-01-01

    Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO 2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use

  18. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  19. World statistics on natural gas reserves, production and utilization

    International Nuclear Information System (INIS)

    Raikaslehto, S.

    2001-01-01

    By reviewing the statistics of BP Amoco on natural gas reserves, production and usage, it is easy to see that Russia and USA, both being large natural gas producers, differ significantly from each other. The natural gas reserves of USA are 6th largest in the world, simultaneously the natural gas consumption and import are largest in the world. About one third of the known natural gas reserves of the world are in Russia. The known natural gas reserves of both USA and Canada have decreases, but they have potential gas reserves left. Known natural gas reserves of the USA have been calculated to be sufficient for 9 years consumption at present usage and those of Canada for 11 years. The reserves of Algeria correspond to the usage of 55 years, and the Russian reserves for are about 83 years. Annual production figures of both Russia and the USA are nearly the same. Russia is the largest exporter (125.5 billion m 3 ) of natural gas and the USA the largest importer (96 billion m 3 ). The natural gas reserves of the largest European producers, the Netherlands and Norway have been estimated to be sufficient for use of about 20 years, but those of Great Britain only for about 10 years. The annual production of Russia has varied in the 1990s between nearly 600 billion m 3 and present 550 billion m 3 , the minimum being in 1997 only about 532 billion m 3 . Ten largest natural gas consumers use 67% of the natural gas consumed annually in the world. USA consumes about 27% of the total natural gas produced in the world, the amount of Russia being 364 billion m 3 (16%). Other large natural gas consumers are Great Britain, Germany, Japan, Ukraine, Canada, Italy, Iran and Uzbekistan. The share of these countries of the total consumption varied in between 2-4%. Only Japan has no natural gas production of its own. The foreign trade between Japan and Indonesia is trade on LNG. On the other hand the natural gas consumption of the world's 10th largest producer Norway is nearly zero, so

  20. Natural Gas in the World 2012

    International Nuclear Information System (INIS)

    2012-01-01

    On 1 January 2012, proved natural gas reserves grew by 1.7% over revised reserves of 2011 and were estimated at 199.6 trillion cubic meters (bcm), according to CEDIGAZ. The Commonwealth of Independent states (CIS) made the largest contribution to this growth, essentially as a result of reserves additions/re-evaluation by Russia. The Middle East also showed a significant increase (+ 565 bcm), led by Iran and Saudi Arabia. In North America, shale gas reserves continue to post a sustained growth. Whereas 72% of oil reserves are held by OPEC members, the bulk of gas reserves are distributed between OPEC countries, with 47.6% of the world total, and in the C.I.S. with 32.4%. These two economic blocks thus share responsibility for closing the future world gas balance. World production increased significantly in 2011 to adapt to the expansion of gas demand in a large number of markets, with the exception of Europe, where demand collapsed. World gross production increased 2% in 2011 to 4127 bcm, of which 449.5 bcm was reinjected, 126.5 bcm was flared and 253 bcm was lost through shrinkage. World marketed production climbed 2.8% to reach a new record level of 3299 bcm in 2011. This growth corresponds to the average recorded in the past-ten years. The Middle East recorded the strongest production growth in volume terms (+ 44 bcm), overtaking Asia Oceania to become the third largest producing regional market. North America and the CIS bolstered their standing as the leading producing regions, accounting for 25.6% and 24.9% of global output respectively. For the second consecutive year, the large majority of the volumetric growth in gas supply was led by three countries: the US, Qatar and Russia. In addition, China and Iran improved their rankings. Production of shale gas in the US pursued an exponential growth in 2011, under the impetus of the Haynesville and Marcellus fields. Shale gas represent 30% of the country's gas output today. The interest for unconventional resources