WorldWideScience

Sample records for advanced multi-modality radiation

  1. Development of Advanced Multi-Modality Radiation Treatment Planning Software for Neutron Radiotherapy and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D; Wessol, D; Wemple, C; Harkin, G; Hartmann-Siantar, C

    2002-08-20

    The Idaho National Engineering and Environmental Laboratory (INEEL) has long been active in development of advanced Monte-Carlo based computational dosimetry and treatment planning methods and software for advanced radiotherapy, with a particular focus on Neutron Capture Therapy (NCT) and, to a somewhat lesser extent, Fast-Neutron Therapy. The most recent INEEL software system of this type is known as SERA, Simulation Environment for Radiotherapy Applications. As a logical next step in the development of modern radiotherapy planning tools to support the most advanced research, INEEL and Lawrence Livermore National Laboratory (LLNL), the developers of the PEREGRTNE computational engine for radiotherapy treatment planning applications, have recently launched a new project to collaborate in the development of a ''next-generation'' multi-modality treatment planning software system that will be useful for all modern forms of radiotherapy.

  2. MINERVA - A Multi-Modal Radiation Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Wessol; C. A. Wemple; D. W. Nigg; J. J. Cogliati; M. L. Milvich; C. Frederickson; M. Perkins; G. A. Harkin

    2004-10-01

    Recently, research efforts have begun to examine the combination of BNCT with external beam photon radiotherapy (Barth et al. 2004). In order to properly prepare treatment plans for patients being treated with combinations of radiation modalities, appropriate planning tools must be available. To facilitiate this, researchers at the Idaho National Engineering and Environmental Laboratory (INEEL)and Montana State University (MSU) have undertaken development of a fully multi-modal radiation treatment planning system.

  3. Multi-Modality Phantom Development

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  4. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, B; Kanal, K; Dickinson, R; Zamora, D [University Washington, Seattle, WA (United States)

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structured Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides

  5. Multi-modality management for loco-regionally advanced laryngeal and hypopharyngeal cancer: balancing the benefit of efficacy and functional preservation.

    Science.gov (United States)

    Qian, Wei; Zhu, Guopei; Wang, Yulong; Wang, Xiaoshen; Ji, Qinghai; Wang, Yu; Dou, Shengjin

    2014-09-01

    The 5-year overall survival (OS) of loco-regionally advanced laryngeal and hypopharyngeal carcinoma (LA-LHC) has declined over the past two decades following the wide application of non-surgical approaches. We aimed to define the new role of open surgery combined with adjuvant chemoradiotherapy in the treatment of LA-LHC for improving survival while maintaining a functional larynx. In the current study, 90 LA-LHC patients treated with open surgery followed by postoperative RT/CRT in our institute from May 2005 to December 2012 were retrospectively analyzed. OS, disease-free survival (DFS), loco-regional failure-free survival (LRFFS) and distant metastasis-free survival (DMFS) were calculated, and prognostic factors were analyzed. Functional larynx preservation results were evaluated according to the head and neck quality of life (QoL) Scale. With a median follow-up period of 37 months, the 3- and 5-year OS, DFS, LRFFS and DMFS were 71.3, 63.7, 85.9, 73.7 and 55.9, 53.0, 81.6, 71.9 %, respectively. Vascular embolism and extracapsular extension (ECE) of the lymph nodes were prognostic factors for poorer OS (p = 0.045 and 0.046, respectively). Vascular embolism was the only prognostic factor for poorer DMFS (p = 0.005). Patients who underwent a conservative partial laryngectomy (CPL) experienced a higher QoL in the domains of speech, swallowing and emotion. Functional larynx preservation was achieved in 36/45 patients (80 %) who received CPL. The results of our study demonstrated that CPL followed by adequate adjuvant therapy could achieve superior oncological results compared with non-surgical approaches in LA-LHC patients while also maintaining satisfactory functional larynx in a majority of patients.

  6. Multi-Modal Interaction for Robotic Mules

    Science.gov (United States)

    2014-02-26

    Multi-Modal Interaction for Robotic Mules Glenn Taylor, Mike Quist , Matt Lanting, Cory Dunham, Patrick Theisen, Paul Muench Abstract...Taylor, Mike Quist , Matt Lanting, Cory Dunham, and Patrick Theisen are with Soar Technology, Inc. (corresponding author: 734-887- 7620; email: glenn...soartech.com; quist @soartech.com; matt.lanting@soartech.com; dunham@soartech.com; patrick.theisen@soartech.com Paul Muench is with US Army TARDEC

  7. Multi modal child-to-child interaction

    DEFF Research Database (Denmark)

    Fisker, Tine Basse

    In this presentation the interaction and relation of three boys is analyzed using multi modal analysis. The analysis clearly, and surprisingly demonstrates that the boys interact via different modes and that they are able to handle several interaction partners at the same time. They co-construct ......-construct interaction in rather complex and unexpected ways using verbal as well as non-verbal modes in interaction....

  8. Ultrasmall Biocompatible WO3- x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers.

    Science.gov (United States)

    Wen, Ling; Chen, Ling; Zheng, Shimin; Zeng, Jianfeng; Duan, Guangxin; Wang, Yong; Wang, Guanglin; Chai, Zhifang; Li, Zhen; Gao, Mingyuan

    2016-07-01

    Ultrasmall biocompatible WO3 - x nanodots with an outstanding X-ray radiation sensitization effect are prepared, and demonstrated to be applicable for multi-modality tumor imaging through computed tomography and photoacoustic imaging (PAI), and effective cancer treatment combining both photothermal therapy and radiation therapy.

  9. Multi-modality molecular imaging for gastric cancer research

    Science.gov (United States)

    Liang, Jimin; Chen, Xueli; Liu, Junting; Hu, Hao; Qu, Xiaochao; Wang, Fu; Nie, Yongzhan

    2011-12-01

    Because of the ability of integrating the strengths of different modalities and providing fully integrated information, multi-modality molecular imaging techniques provide an excellent solution to detecting and diagnosing earlier cancer, which remains difficult to achieve by using the existing techniques. In this paper, we present an overview of our research efforts on the development of the optical imaging-centric multi-modality molecular imaging platform, including the development of the imaging system, reconstruction algorithms and preclinical biomedical applications. Primary biomedical results show that the developed optical imaging-centric multi-modality molecular imaging platform may provide great potential in the preclinical biomedical applications and future clinical translation.

  10. Reference resolution in multi-modal interaction: Preliminary observations

    NARCIS (Netherlands)

    Nijholt, A.; González González, G.R.

    2002-01-01

    In this paper we present our research on multimodal interaction in and with virtual environments. The aim of this presentation is to emphasize the necessity to spend more research on reference resolution in multimodal contexts. In multi-modal interaction the human conversational partner can apply mo

  11. MULTI MODAL ONTOLOGY SEARCH FOR SEMANTIC IMAGE RETRIEVAL

    Directory of Open Access Journals (Sweden)

    R.I. Minu

    2012-08-01

    Full Text Available In this world of fast computing, automation plays an important role. In image retrieval technique automation is a great quest. Giving an image as a query and retrieving relevant images is a challenging research area. In this paper we are proposing a research of using Multi-Modality Ontology integration for image retrieval concept. The core strategy in multimodal information retrieval is the combination or fusion of different data modalities to expand and complement information. Here we use both visual and textual ontology contents to provide search functionalities. Both images and texts are complimentary information units as the human perspective will be different. So, the computational linguistic of images will lead to disambiguate text meaning when it is not quite clear in right sense of several words. That’s why the Multi-Modal information retrieval may lead to an improved operation of information retrieval system. If we go for automation we are in need of a fuzzy technique to predicate the result. So in this paper we using Support Vector Machine classifier to classify the image automatically by using the general feature such as color, texture and texton of an image , then by using this result we can create both feature and domain ontology for an particular image. Using this Multi-Modality Ontology we can refine our image searching system.

  12. Multi-modal intervention improved oral intake in hospitalized patients

    DEFF Research Database (Denmark)

    Holst, M; Beermann, T; Mortensen, M N

    2015-01-01

    BACKGROUND: Good nutritional practice (GNP) includes screening, nutrition plan and monitoring, and is mandatory for targeted treatment of malnourished patients in hospital. AIMS: To optimize energy- and protein-intake in patients at nutritional risk and to improve GNP in a hospital setting. METHODS......: A 12-months observational multi-modal intervention study was done, using the top-down and bottom-up principle. All hospitalized patients (>3 days) were included. Setting: A university hospital with 758 beds and all specialities. Measurements: Record audit of GNP, energy- and protein-intake by 24-h...

  13. Coercive Region-level Registration for Multi-modal Images

    CERN Document Server

    Chen, Yu-Hui; Newstadt, Gregory; Simmons, Jeffrey; hero, Alfred

    2015-01-01

    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.

  14. Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.

    Science.gov (United States)

    Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B

    2015-02-01

    Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal component analysis (PCA) or independent component analysis (ICA). These dimensionality reduction techniques, however, consist of contributions from every region in the brain and are therefore difficult to interpret. Recent advances in sparse dimensionality reduction have enabled construction of a set of image regions that explain the variance of the images while still maintaining anatomical interpretability. The projections of the original data on the sparse eigenvectors, however, are highly collinear and therefore difficult to incorporate into multi-modal image analysis pipelines. We propose here a method for clustering sparse eigenvectors and selecting a subset of the eigenvectors to make interpretable predictions from a multi-modal dataset. Evaluation on a publicly available dataset shows that the proposed method outperforms PCA and ICA-based regressions while still maintaining anatomical meaning. To facilitate reproducibility, the complete dataset used and all source code is publicly available.

  15. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  16. A multi-modal parcellation of human cerebral cortex.

    Science.gov (United States)

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.

  17. The origin of human multi-modal communication.

    Science.gov (United States)

    Levinson, Stephen C; Holler, Judith

    2014-09-19

    One reason for the apparent gulf between animal and human communication systems is that the focus has been on the presence or the absence of language as a complex expressive system built on speech. But language normally occurs embedded within an interactional exchange of multi-modal signals. If this larger perspective takes central focus, then it becomes apparent that human communication has a layered structure, where the layers may be plausibly assigned different phylogenetic and evolutionary origins--especially in the light of recent thoughts on the emergence of voluntary breathing and spoken language. This perspective helps us to appreciate the different roles that the different modalities play in human communication, as well as how they function as one integrated system despite their different roles and origins. It also offers possibilities for reconciling the 'gesture-first hypothesis' with that of gesture and speech having evolved together, hand in hand--or hand in mouth, rather--as one system.

  18. Multi-modal cockpit interface for improved airport surface operations

    Science.gov (United States)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  19. Game of Objects: vicarious causation and multi-modal media

    Directory of Open Access Journals (Sweden)

    Aaron Pedinotti

    2013-09-01

    Full Text Available This paper applies philosopher Graham Harman's object-oriented theory of "vicarious causation" to an analysis of the multi-modal media phenomenon known as "Game of Thrones." Examining the manner in which George R.R. Martin's best-selling series of fantasy novels has been adapted into a board game, a video game, and a hit HBO television series, it uses the changes entailed by these processes to trace the contours of vicariously generative relations. In the course of the resulting analysis, it provides new suggestions concerning the eidetic dimensions of Harman's causal model, particularly with regard to causation in linear networks and in differing types of game systems.

  20. Discovering Knowledge from Multi-modal Lecture Recordings

    CERN Document Server

    Kannan, Rajkumar

    2010-01-01

    Educational media mining is the process of converting raw media data from educational systems to useful information that can be used to design learning systems, answer research questions and allow personalized learning experiences. Knowledge discovery encompasses a wide range of techniques ranging from database queries to more recent developments in machine learning and language technology. Educational media mining techniques are now being used in IT Services research worldwide. Multi-modal Lecture Recordings is one of the important types of educational media and this paper explores the research challenges for mining lecture recordings for the efficient personalized learning experiences. Keywords: Educational Media Mining; Lecture Recordings, Multimodal Information System, Personalized Learning; Online Course Ware; Skills and Competences;

  1. Exploring Multi-Modal Distributions with Nested Sampling

    CERN Document Server

    Feroz, F

    2013-01-01

    In performing a Bayesian analysis, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multi-modal or exhibit pronounced (curving) degeneracies. Secondly, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive using existing methods such as thermodynamic integration. Nested Sampling is a Monte Carlo method targeted at the efficient calculation of the evidence, but also produces posterior inferences as a by-product and therefore provides means to carry out parameter estimation as well as model selection. The main challenge in implementing Nested Sampling is to sample from a constrained probability distribution. One possible solution to this problem is provided by the Galilean Monte Carlo (GMC) algorithm. We show results of applying Nested Sampling with GMC to some problems which have proven very difficult for standard Markov Chain Monte Carlo (MC...

  2. A multi-modal approach to perceptual tone mapping

    Directory of Open Access Journals (Sweden)

    Vicent Caselles

    2013-06-01

    Full Text Available We present an improvement of TSTM, a recently proposed tone mapping operator for High Dynamic Range (HDR images, based on a multi-modal analysis. One of the key features of TSTM is a suitable implementation of the Naka-Rushton equation that mimics the visual adaptation performed by the human visual system coherently with Weber-Fechner's law of contrast perception. In the present paper we use the Gaussian Mixture Model (GMM in order to detect the modes of the log-scale luminance histogram of a given HDR image and then we use the information provided by GMM to properly devise a Naka-Rushton equation for each mode. Finally, we properly select the parameters in order to merge those equations into a continuous function. Tests and comparisons to show how this new method is capable of improving the performances of TSTM are provided and commented, as well as comparisons with state of the art methods.

  3. Automatic quantification of multi-modal rigid registration accuracy using feature detectors

    Science.gov (United States)

    Hauler, F.; Furtado, H.; Jurisic, M.; Polanec, S. H.; Spick, C.; Laprie, A.; Nestle, U.; Sabatini, U.; Birkfellner, W.

    2016-07-01

    In radiotherapy, the use of multi-modal images can improve tumor and target volume delineation. Images acquired at different times by different modalities need to be aligned into a single coordinate system by 3D/3D registration. State of the art methods for validation of registration are visual inspection by experts and fiducial-based evaluation. Visual inspection is a qualitative, subjective measure, while fiducial markers sometimes suffer from limited clinical acceptance. In this paper we present an automatic, non-invasive method for assessing the quality of intensity-based multi-modal rigid registration using feature detectors. After registration, interest points are identified on both image data sets using either speeded-up robust features or Harris feature detectors. The quality of the registration is defined by the mean Euclidean distance between matching interest point pairs. The method was evaluated on three multi-modal datasets: an ex vivo porcine skull (CT, CBCT, MR), seven in vivo brain cases (CT, MR) and 25 in vivo lung cases (CT, CBCT). Both a qualitative (visual inspection by radiation oncologist) and a quantitative (mean target registration error—mTRE—based on selected markers) method were employed. In the porcine skull dataset, the manual and Harris detectors give comparable results but both overestimated the gold standard mTRE based on fiducial markers. For instance, for CT-MR-T1 registration, the mTREman (based on manually annotated landmarks) was 2.2 mm whereas mTREHarris (based on landmarks found by the Harris detector) was 4.1 mm, and mTRESURF (based on landmarks found by the SURF detector) was 8 mm. In lung cases, the difference between mTREman and mTREHarris was less than 1 mm, while the difference between mTREman and mTRESURF was up to 3 mm. The Harris detector performed better than the SURF detector with a resulting estimated registration error close to the gold standard. Therefore the Harris detector was shown to be the more suitable

  4. Multi-Modal Inference in Animacy Perception for Artificial Object

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2011-10-01

    Full Text Available Sometimes we feel animacy for artificial objects and their motion. Animals usually interact with environments through multiple sensory modalities. Here we investigated how the sensory responsiveness of artificial objects to the environment would contribute to animacy judgment for them. In a 90-s trial, observers freely viewed four objects moving in a virtual 3D space. The objects, whose position and motion were determined following Perlin-noise series, kept drifting independently in the space. Visual flashes, auditory bursts, or synchronous flashes and bursts appeared with 1–2 s intervals. The first object abruptly accelerated their motion just after visual flashes, giving an impression of responding to the flash. The second object responded to bursts. The third object responded to synchronous flashes and bursts. The forth object accelerated at a random timing independent of flashes and bursts. The observers rated how strongly they felt animacy for each object. The results showed that the object responding to the auditory bursts was rated as having weaker animacy compared to the other objects. This implies that sensory modality through which an object interacts with the environment may be a factor for animacy perception in the object and may serve as the basis of multi-modal and cross-modal inference of animacy.

  5. Deformable registration of multi-modal data including rigid structures

    Energy Technology Data Exchange (ETDEWEB)

    Huesman, Ronald H.; Klein, Gregory J.; Kimdon, Joey A.; Kuo, Chaincy; Majumdar, Sharmila

    2003-05-02

    Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin platespline(TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result

  6. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  7. Multi-modal Virtual Scenario Enhances Neurofeedback Learning

    Directory of Open Access Journals (Sweden)

    Avihay Cohen

    2016-08-01

    Full Text Available In the past decade neurofeedback has become the focus of a growing body of research. With real-time fMRI enabling on-line monitoring of emotion related areas such as the amygdala, many have begun testing its therapeutic benefits. However most existing neurofeedback procedures still use monotonic uni-modal interfaces, thus possibly limiting user engagement and weakening learning efficiency. The current study tested a novel multi-sensory neurofeedback animated scenario aimed at enhancing user experience and improving learning. We examined whether relative to a simple uni-modal 2D interface, learning via an interface of complex multi-modal 3D scenario will result in improved neurofeedback learning. As a neural-probe, we used the recently developed fMRI-inspired EEG model of amygdala activity (amygdala-EEG finger print; amygdala-EFP, enabling low-cost and mobile limbic neurofeedback training. Amygdala-EFP was reflected in the animated scenario by the unrest level of a hospital waiting-room in which virtual characters become impatient, approach the admission-desk and complain loudly. Successful down-regulation was reflected as an ease in the room unrest-level. We tested whether relative to a standard uni-modal 2D graphic thermometer interface, this animated scenario could facilitate more effective learning and improve the training experience. Thirty participants underwent two separated neurofeedback sessions (one-week apart practicing down-regulation of the amygdala-EFP signal. In the first session, half trained via the animated scenario and half via a thermometer interface. Learning efficiency was tested by three parameters: (a effect-size of the change in amygdala-EFP following training, (b sustainability of the learned down-regulation in the absence of online feedback, and (c transferability to an unfamiliar context. Comparing amygdala-EFP signal amplitude between the last and the first neurofeedback trials revealed that the animated scenario

  8. Multi-modality image reconstruction for dual-head small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chang-Han; Chou, Cheng-Ying [National Taiwan University, Taipei, Taiwan (China)

    2015-05-18

    The hybrid positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI) has become routine practice in clinics. The applications of multi-modality imaging can also benefit research advances. Consequently, dedicated small-imaging system like dual-head small-animal PET (DHAPET) that possesses the advantages of high detection sensitivity and high resolution can exploit the structural information from CT or MRI. It should be noted that the special detector arrangement in DHAPET leads to severe data truncation, thereby degrading the image quality. We proposed to take advantage of anatomical priors and total variation (TV) minimization methods to reconstruct PET activity distribution form incomplete measurement data. The objective is to solve the penalized least-squares function consisted of data fidelity term, TV norm and medium root priors. In this work, we employed the splitting-based fast iterative shrinkage/thresholding algorithm to split smooth and non-smooth functions in the convex optimization problems. Our simulations studies validated that the images reconstructed by use of the proposed method can outperform those obtained by use of conventional expectation maximization algorithms or that without considering the anatomical prior information. Additionally, the convergence rate is also accelerated.

  9. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  10. Making Faces - State-Space Models Applied to Multi-Modal Signal Processing

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2005-01-01

    The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore......, the Markov Chain Monte Carlo (MCMC) approach to filtering is examined and a scheme for MCMC to be used in on-line applications is proposed. In estimating parameters, it is shown that the EM-algorithm exhibits slow convergence especially in the low noise limit. It is demonstrated how a general gradient...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...

  11. Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-05-01

    A novel multi-modal parameter estimation algorithm is introduced. Parameter estimation is an ill-posed inverse problem that might admit many different solutions. This is attributed to the limited amount of measured data used to constrain the inverse problem. The proposed multi-modal model calibration algorithm uses an iterative stochastic ensemble method (ISEM) for parameter estimation. ISEM employs an ensemble of directional derivatives within a Gauss-Newton iteration for nonlinear parameter estimation. ISEM is augmented with a clustering step based on k-means algorithm to form sub-ensembles. These sub-ensembles are used to explore different parts of the search space. Clusters are updated at regular intervals of the algorithm to allow merging of close clusters approaching the same local minima. Numerical testing demonstrates the potential of the proposed algorithm in dealing with multi-modal nonlinear parameter estimation for subsurface flow models. © 2013 Elsevier B.V.

  12. Common and uncommon vascular rings and slings: a multi-modality review

    Energy Technology Data Exchange (ETDEWEB)

    Dillman, Jonathan R.; Agarwal, Prachi P.; Hernandez, Ramiro J.; Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Attili, Anil K. [University of Kentucky College of Medicine, Department of Radiology, Lexington, KY (United States); Dorfman, Adam L. [University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, C.S. Mott Children' s Hospital, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States)

    2011-11-15

    Vascular rings and pulmonary slings are congenital anomalies of the aortic arch/great vessels and pulmonary arteries, respectively, that commonly present early during infancy and childhood with respiratory and/or feeding difficulties. The diagnosis of these conditions frequently utilizes a multi-modality radiological approach, commonly utilizing some combination of radiography, esophagography, CT angiography and MR angiography. The purpose of this pictorial review is to illustrate the radiological findings of common and uncommon vascular rings and pulmonary slings in children using a state-of-the-art multi-modality imaging approach. (orig.)

  13. Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Sutherland, Brad A; Fordsmann, Jonas C; Martin, Chris;

    2016-01-01

    how neurovascular coupling is affected hyperacutely during cerebral ischaemia and reperfusion. We have developed a remote middle cerebral artery occlusion model in the rat, which enables multi-modal assessment of neurovascular coupling immediately prior to, during and immediately following reperfusion....... Male Wistar rats were subjected to remote middle cerebral artery occlusion, where a long filament was advanced intraluminally through a guide cannula in the common carotid artery. Transcallosal stimulation evoked increases in blood flow, tissue oxygenation and neuronal activity, which were diminished...... by middle cerebral artery occlusion and partially restored during reperfusion. These evoked responses were not affected by administration of the thrombolytic alteplase at clinically used doses. Evoked cerebral blood flow responses were fully restored at 24 h post-middle cerebral artery occlusion indicating...

  14. Multi-Modal, Multi-Touch Interaction with Maps in Disaster Management Applications

    Directory of Open Access Journals (Sweden)

    V. Paelke

    2012-07-01

    Full Text Available Multi-touch interaction has become popular in recent years and impressive advances in technology have been demonstrated, with the presentation of digital maps as a common presentation scenario. However, most existing systems are really technology demonstrators and have not been designed with real applications in mind. A critical factor in the management of disaster situations is the access to current and reliable data. New sensors and data acquisition platforms (e.g. satellites, UAVs, mobile sensor networks have improved the supply of spatial data tremendously. However, in many cases this data is not well integrated into current crisis management systems and the capabilities to analyze and use it lag behind sensor capabilities. Therefore, it is essential to develop techniques that allow the effective organization, use and management of heterogeneous data from a wide variety of data sources. Standard user interfaces are not well suited to provide this information to crisis managers. Especially in dynamic situations conventional cartographic displays and mouse based interaction techniques fail to address the need to review a situation rapidly and act on it as a team. The development of novel interaction techniques like multi-touch and tangible interaction in combination with large displays provides a promising base technology to provide crisis managers with an adequate overview of the situation and to share relevant information with other stakeholders in a collaborative setting. However, design expertise on the use of such techniques in interfaces for real-world applications is still very sparse. In this paper we report on interdisciplinary research with a user and application centric focus to establish real-world requirements, to design new multi-modal mapping interfaces, and to validate them in disaster management applications. Initial results show that tangible and pen-based interaction are well suited to provide an intuitive and visible way to

  15. Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks

    Science.gov (United States)

    2010-08-19

    Distributed Network Control for Mobile Multi-Modal Wireless Sensor Networks Doina Bein , Yicheng Wen, Shashi Phoha1, Bharat B. Madan, and Asok Ray The...Journal of High Perfor- mance Computing Applications, Special Issue on Sensor Networks 16 (3) (2002) 235–241. [30] Y. Wen, D. Bein , S. Phoha

  16. Multi-modal affect induction for affective brain-computer interfaces

    NARCIS (Netherlands)

    Mühl, C.; Broek, E.L. van den; Brouwer, A.M.; Nijboer, F.; Wouwe, N.C. van; Heylen, D.

    2011-01-01

    Reliable applications of affective brain-computer interfaces (aBCI) in realistic, multi-modal environments require a detailed understanding of the processes involved in emotions. To explore the modalityspecific nature of affective responses, we studied neurophysiological responses (i.e., EEG) of 24

  17. Multi-criteria appraisal of multi-modal urban public transport systems

    NARCIS (Netherlands)

    Keyvan Ekbatani, M.; Cats, O.

    2015-01-01

    This study proposes a multi-criteria decision making (MCDM) modelling framework for the appraisal of multi-modal urban public transportation services. MCDM is commonly used to obtain choice alternatives that satisfy a range of performance indicators. The framework embraces both compensatory and non-

  18. Predicting the Attitude Flow in Dialogue Based on Multi-Modal Speech Cues

    DEFF Research Database (Denmark)

    Juel Henrichsen, Peter; Allwood, Jens

    2013-01-01

    We present our experiments on attitude detection based on annotated multi-modal dialogue data1. Our long-term goal is to establish a computational model able to predict the attitudinal patterns in humanhuman dialogue. We believe, such prediction algorithms are useful tools in the pursuit...

  19. Multi-modal Discourse Analysis of Peng Liyuan’s Dress

    Institute of Scientific and Technical Information of China (English)

    顾伟红

    2016-01-01

    Traditional discourse analysis basically focuses on language rather than non-linguistic symbol resources in terms of meaning construction. The latter emerging multi-modal discourse analysis breaks this limitation into a large extent. This paper analyzed Peng Liyuan’s dress with semiotics of Saussure and visual grammar of Kress and Van Ixeuwen as theoretical framework.

  20. A Multi-Modal Active Learning Experience for Teaching Social Categorization

    Science.gov (United States)

    Schwarzmueller, April

    2011-01-01

    This article details a multi-modal active learning experience to help students understand elements of social categorization. Each student in a group dynamics course observed two groups in conflict and identified examples of in-group bias, double-standard thinking, out-group homogeneity bias, law of small numbers, group attribution error, ultimate…

  1. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  2. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  3. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  4. NASA Advanced Radiator Technology Development

    Science.gov (United States)

    Koester, J. Kent; Juhasz, Albert J.

    1994-07-01

    A practical implementation of the two-phase working fluid of lithium and NaK has been developed experimentally for pumped loop radiator designs. The benefits of the high heat capacity and low mass of lithium have been integrated with the shutdown capability enabled by the low freezing temperature of NaK by mixing these liquid metals directly. The stable and reliable start up and shutdown of a lithium/NaK pumped loop has been demonstrated through the development of a novel lithium freeze-separation technique within the flowing header ducts. The results of a highly instrumented liquid metal test loop are presented in which both lithium fraction as well as loop gravitational effects were varied over a wide range of values. Diagnostics based on dual electric probes are presented in which the convective behavior of the lithium component is directly measured during loop operation. The uniform distribution of the lithium after a freeze separation is verified by neutron radiography. The operating regime for reliable freeze/thaw flow behavior is described in terms of correlations based on dimensional analysis.

  5. Distributed Detection in Sensor Networks with Limited Range Multi-Modal Sensors

    CERN Document Server

    Ermis, E

    2008-01-01

    We consider a multi-object detection problem over a sensor network (SNET) with limited range multi-modal sensors. Limited range sensing environment arises in a sensing field prone to signal attenuation and path losses. The general problem complements the widely considered decentralized detection problem where all sensors observe the same object. In this paper we develop a distributed detection approach based on recent development of the false discovery rate (FDR) and the associated BH test procedure. The BH procedure is based on rank ordering of scalar test statistics. We first develop scalar test statistics for multidimensional data to handle multi-modal sensor observations and establish its optimality in terms of the BH procedure. We then propose a distributed algorithm in the ideal case of infinite attenuation for identification of sensors that are in the immediate vicinity of an object. We demonstrate communication message scalability to large SNETs by showing that the upper bound on the communication mes...

  6. A computer vision integration model for a multi-modal cognitive system

    OpenAIRE

    Vrecko A.; Skocaj D.; Hawes N.; Leonardis A.

    2009-01-01

    We present a general method for integrating visual components into a multi-modal cognitive system. The integration is very generic and can combine an arbitrary set of modalities. We illustrate our integration approach with a specific instantiation of the architecture schema that focuses on integration of vision and language: a cognitive system able to collaborate with a human, learn and display some understanding of its surroundings. As examples of cross-modal interaction we describe mechanis...

  7. Spatio-temporal multi-modality ontology for indexing and retrieving satellite images

    OpenAIRE

    MESSOUDI, Wassim; FARAH, Imed Riadh; SAHEB ETTABAA, Karim; Ben Ghezala, Henda; SOLAIMAN, Basel

    2009-01-01

    International audience; This paper presents spatio-temporal multi-modality ontology for indexing and retrieving satellite images in the high level to improve the quality of the system retrieval and to perform semantic in the retrieval process.Our approach is based on three modules: (1) regions and features extraction, (2) ontological indexing and (3) semantic image retrieval. The first module allows extracting regions from the satellite image using the fuzzy c-means FCM) segmentation algorith...

  8. Multi-modal gesture recognition using integrated model of motion, audio and video

    Science.gov (United States)

    Goutsu, Yusuke; Kobayashi, Takaki; Obara, Junya; Kusajima, Ikuo; Takeichi, Kazunari; Takano, Wataru; Nakamura, Yoshihiko

    2015-07-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  9. Adaptive Multi-Modal Data Mining and Fusion for Autonomous Intelligence Discovery

    Science.gov (United States)

    2009-03-01

    Final DATES COVERED (From To) From 15-12-2006 to 15-12-2007 4. TITLE AND SUBTITLE Adaptive Multi-Modal Data Mining and Fusion For Autonomous...well as geospatial mapping of documents and images. 15. SUBJECT TERMS automated data mining , streaming data, geospatial Internet localization, Arabic...streaming text data mining . 1.1 Mixed Language Text Database Search A particularly useful component that was under development was on a mixed language

  10. Multi-modal Gesture Recognition using Integrated Model of Motion, Audio and Video

    Institute of Scientific and Technical Information of China (English)

    GOUTSU Yusuke; KOBAYASHI Takaki; OBARA Junya; KUSAJIMAIkuo; TAKEICHI Kazunari; TAKANO Wataru; NAKAMURA Yoshihiko

    2015-01-01

    Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.

  11. Discriminative multi-task feature selection for multi-modality classification of Alzheimer's disease.

    Science.gov (United States)

    Ye, Tingting; Zu, Chen; Jie, Biao; Shen, Dinggang; Zhang, Daoqiang

    2016-09-01

    Recently, multi-task based feature selection methods have been used in multi-modality based classification of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, in traditional multi-task feature selection methods, some useful discriminative information among subjects is usually not well mined for further improving the subsequent classification performance. Accordingly, in this paper, we propose a discriminative multi-task feature selection method to select the most discriminative features for multi-modality based classification of AD/MCI. Specifically, for each modality, we train a linear regression model using the corresponding modality of data, and further enforce the group-sparsity regularization on weights of those regression models for joint selection of common features across multiple modalities. Furthermore, we propose a discriminative regularization term based on the intra-class and inter-class Laplacian matrices to better use the discriminative information among subjects. To evaluate our proposed method, we perform extensive experiments on 202 subjects, including 51 AD patients, 99 MCI patients, and 52 healthy controls (HC), from the baseline MRI and FDG-PET image data of the Alzheimer's Disease Neuroimaging Initiative (ADNI). The experimental results show that our proposed method not only improves the classification performance, but also has potential to discover the disease-related biomarkers useful for diagnosis of disease, along with the comparison to several state-of-the-art methods for multi-modality based AD/MCI classification.

  12. A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.

    Science.gov (United States)

    Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua

    2015-12-01

    In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.

  13. EVolution: an edge-based variational method for non-rigid multi-modal image registration

    Science.gov (United States)

    de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.

    2016-10-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  14. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  15. Radiation oncology: physics advances that minimize morbidity.

    Science.gov (United States)

    Allison, Ron R; Patel, Rajen M; McLawhorn, Robert A

    2014-12-01

    Radiation therapy has become an ever more successful treatment for many cancer patients. This is due in large part from advances in physics including the expanded use of imaging protocols combined with ever more precise therapy devices such as linear and particle beam accelerators, all contributing to treatments with far fewer side effects. This paper will review current state-of-the-art physics maneuvers that minimize morbidity, such as intensity-modulated radiation therapy, volummetric arc therapy, image-guided radiation, radiosurgery and particle beam treatment. We will also highlight future physics enhancements on the horizon such as MRI during treatment and intensity-modulated hadron therapy, all with the continued goal of improved clinical outcomes.

  16. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives.

    Science.gov (United States)

    Park, J Y; Chang, Y; Lee, G H

    2015-01-01

    Biomedical imaging is an essential tool for diagnosis and therapy of diseases such as cancers. It is likely true that medicine has developed with biomedical imaging methods. Sensitivity and resolution of biomedical imaging methods can be improved with imaging agents. Furthermore, it will be ideal if imaging agents could be also used as therapeutic agents. Therefore, one dose can be used for both diagnosis and therapy of diseases (i.e., theragnosis). This will simplify medical treatment of diseases, and will be also a benefit to patients. Mixed (Ln(1x)Ln(2y)O3, x + y = 2) or unmixed (Ln2O3) lanthanide (Ln) oxide nanoparticles (Ln = Eu, Gd, Dy, Tb, Ho, Er) are potential multi-modal imaging and cancer therapeutic agents. The lanthanides have a variety of magnetic and optical properties, useful for magnetic resonance imaging (MRI) and fluorescent imaging (FI), respectively. They also highly attenuate X-ray beam, useful for X-ray computed tomography (CT). In addition gadolinium-157 ((157)Gd) has the highest thermal neutron capture cross section among stable radionuclides, useful for gadolinium neutron capture therapy (GdNCT). Therefore, mixed or unmixed lanthanide oxide nanoparticles can be used for multi-modal imaging methods (i.e., MRI-FI, MRI-CT, CT-FI, and MRICT- FI) and cancer therapy (i.e., GdNCT). Since mixed or unmixed lanthanide oxide nanoparticles are single-phase and solid-state, they can be easily synthesized, and are compact and robust, which will be beneficial to biomedical applications. In this review physical properties of the lanthanides, synthesis, characterizations, multi-modal imagings, and cancer therapy of mixed and unmixed lanthanide oxide nanoparticles are discussed.

  17. Multi-modal 2D-3D non-rigid registration

    Science.gov (United States)

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  18. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-03-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multi-modality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement.

  19. Sustainable Multi-Modal Sensing by a Single Sensor Utilizing the Passivity of an Elastic Actuator

    Directory of Open Access Journals (Sweden)

    Takashi Takuma

    2014-05-01

    Full Text Available When a robot equipped with compliant joints driven by elastic actuators contacts an object and its joints are deformed, multi-modal information, including the magnitude and direction of the applied force and the deformation of the joint, is used to enhance the performance of the robot such as dexterous manipulation. In conventional approaches, some types of sensors used to obtain the multi-modal information are attached to the point of contact where the force is applied and at the joint. However, this approach is not sustainable for daily use in robots, i.e., not durable or robust, because the sensors can undergo damage due to the application of excessive force and wear due to repeated contacts. Further, multiple types of sensors are required to measure such physical values, which add to the complexity of the device system of the robot. In our approach, a single type of sensor is used and it is located at a point distant from the contact point and the joint, and the information is obtained indirectly by the measurement of certain physical parameters that are influenced by the applied force and the joint deformation. In this study, we employ the McKibben pneumatic actuator whose inner pressure changes passively when a force is applied to the actuator. We derive the relationships between information and the pressures of a two-degrees-of-freedom (2-DoF joint mechanism driven by four pneumatic actuators. Experimental results show that the multi-modal information can be obtained by using the set of pressures measured before and after the force is applied. Further, we apply our principle to obtain the stiffness values of certain contacting objects that can subsequently be categorized by using the aforementioned relationships.

  20. Advanced optic fabrication using ultrafast laser radiation

    Science.gov (United States)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  1. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    Science.gov (United States)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  2. Research on Satellite Fault Diagnosis and Prediction Using Multi-modal Reasoning

    Institute of Scientific and Technical Information of China (English)

    YangTianshe; SunYanhong; CaoYuping

    2004-01-01

    Diagnosis and prediction of satellite fault are more difficult than that of other equipment due to the complex structure of satellites and the presence of muhi-excite sources of satellite faults. Generally, one kind of reasoning model can only diagnose and predict one kind of satellite faults. In this paper the author introduces an application of a new method using multi-modal reasoning to diagnose and predict satellite faults. The method has been used in the development of knowledge-based satellite fault diagnosis and recovery system (KSFDRS) successfully. It is shown that the method is effective.

  3. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

    Science.gov (United States)

    Altini, Marco; Del Din, Silvia; Patel, Shyamal; Schachter, Steven; Penders, Julien; Bonato, Paolo

    2011-01-01

    Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

  4. Multi-Modal Imaging with a Toolbox of Influenza AReporter Viruses

    Directory of Open Access Journals (Sweden)

    Vy Tran

    2015-10-01

    Full Text Available Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.

  5. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  6. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    Directory of Open Access Journals (Sweden)

    Bishnu P. Joshi

    2010-06-01

    Full Text Available Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.

  7. Online multi-modal robust non-negative dictionary learning for visual tracking.

    Science.gov (United States)

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  8. Online multi-modal robust non-negative dictionary learning for visual tracking.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  9. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  10. An arbitrary boundary triangle mesh generation method for multi-modality imaging

    Science.gov (United States)

    Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming

    2012-03-01

    Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.

  11. Multi-modal face parts fusion based on Gabor feature for face recognition

    Institute of Scientific and Technical Information of China (English)

    Xiang Yan; Su Guangda; Shang Yan; Li Congcong

    2009-01-01

    A novel face recognition method, which is a fusion of multi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations.

  12. An Evaluation of the Pedestrian Classification in a Multi-Domain Multi-Modality Setup

    Directory of Open Access Journals (Sweden)

    Alina Miron

    2015-06-01

    Full Text Available The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR and modalities (intensity, depth and motion. In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1 we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2 we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS, local binary patterns (LBP, local gradient patterns (LGP and histogram of oriented gradients (HOG, computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.

  13. 高级英语课程活动多模态设计的案例分析--依托 Blackboard 教学平台%Case Analysis of Teaching Activities of Multi-modal Design in Advanced English-Based on Blackboard Teaching Platform

    Institute of Scientific and Technical Information of China (English)

    单慧芳; 芦建顺; 韩俊瑞

    2015-01-01

    通过多模态语言学习环境,设计多种教学活动提高学生的主观能动性,使教师真正作到与学生深度互动,从而提高学生类似母语学习者的能力。介绍了高级英语课程教学活动的主要类型,并分析了各种教学活动的设计理念、原则、教学目标、内容及组织形式等方面存在的问题。教学活动使平时成绩管理更具科学性,更有助于教师为每个学生建立课程档案。%In the multimodal language learning environment,a variety of teaching activities improve students'subjective initiative and make teachers have the deep interaction with students,which improve the students’abilities similar to native language learners’capabilities.The paper mainly introduces the main types of teaching activities in Advanced English and analyzes design ideas,principles,teaching goals,con-tent,and organizational forms etc.of each type.Teaching activities make the management of everyday eval-uation more scientific,and furthermore help teachers form the course file of each student.

  14. Radiation Hard Electronics for Advanced Communication Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced reconfigurable/reprogrammable communication systems will require use of commercial sub 100 nm electronics. Legacy radiation tolerant circuits fail to...

  15. Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sándor; Wolf, Peter

    2012-01-01

    The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy...... of the seizure from the patient showed that the simulated seizures were visually similar to the epileptic one. The multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short detection latency and low false detection rate. The results showed superiority of the multi- modal detection...... system compared to the uni-modal one. The presented system has a promising potential for seizure detection based on multi-modal data....

  16. A Multi-Modal Control Using a Hybrid Pole-Placement-Integral Resonant Controller (PPIR) with Experimental Investigations

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Basu, Biswajit

    2011-01-01

    Control of multi-modal structural vibrations has been an important and challenging problem in flexible structural systems. This paper proposes a new vibration control algorithm for multi-modal structural control. The proposed algorithm combines a pole-placement controller with an integral resonant...... controller. The pole-placement controller is used to achieve a target equivalent modal viscous damping in the system and helps in the suppression of higher modes, which contribute to the vibration response of flexible structures. The integral resonant controller successfully reduces the low frequency...... vibrations e.g. caused by broad-band turbulent wind excitations. Hence, the proposed hybrid controller can effectively suppress complex multi-modal vibrations in flexible systems. Both numerical and experimental studies have been carried out to demonstrate the effectiveness of the proposed algorithm using...

  17. Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    Science.gov (United States)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    The following reports are presented on this project:A first year progress report on: Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; A second year progress report on: Development of a Dynamically Configurable, Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation; An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design; Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration; and Improving the Aircraft Design Process Using Web-based Modeling and Simulation.

  18. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  19. Creating multi-modal logistics centers: Prospect for development in Central Asia

    Directory of Open Access Journals (Sweden)

    Nodir Jumaniyazov

    2010-10-01

    Full Text Available All we have witnessed several summits of the so-called G-20 to overcome the crisis and attempt to delineate the ”look” of new rules of the emerging new world economic system. However, according to many experts, these rules will not be able to radically change the current system of economic relations, which is based on the processes of globalization and economic interpenetration of the world. One can list the many elements of the system. Among them, as a manifestation of a growing specialization of production, and deepening of cooperative relations in the world the special role is played by multi-modal logistics centers (MLC, of both regional and global concern. If stock and commodity exchanges are the link in the global economy, meanwhile a multimodal logistics centers serve as their practical and technical support.

  20. Multi-modal human-machine interface of a telerobotic system for remote arc welding

    Institute of Scientific and Technical Information of China (English)

    Li Haichao; Gao Hongming; Wu Lin; Zhang Guangjun

    2008-01-01

    In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efftciency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding.

  1. Incidental acquisition of foreign language vocabulary through brief multi-modal exposure.

    Science.gov (United States)

    Bisson, Marie-Josée; van Heuven, Walter J B; Conklin, Kathy; Tunney, Richard J

    2013-01-01

    First language acquisition requires relatively little effort compared to foreign language acquisition and happens more naturally through informal learning. Informal exposure can also benefit foreign language learning, although evidence for this has been limited to speech perception and production. An important question is whether informal exposure to spoken foreign language also leads to vocabulary learning through the creation of form-meaning links. Here we tested the impact of exposure to foreign language words presented with pictures in an incidental learning phase on subsequent explicit foreign language learning. In the explicit learning phase, we asked adults to learn translation equivalents of foreign language words, some of which had appeared in the incidental learning phase. Results revealed rapid learning of the foreign language words in the incidental learning phase showing that informal exposure to multi-modal foreign language leads to foreign language vocabulary acquisition. The creation of form-meaning links during the incidental learning phase is discussed.

  2. Incidental acquisition of foreign language vocabulary through brief multi-modal exposure.

    Directory of Open Access Journals (Sweden)

    Marie-Josée Bisson

    Full Text Available First language acquisition requires relatively little effort compared to foreign language acquisition and happens more naturally through informal learning. Informal exposure can also benefit foreign language learning, although evidence for this has been limited to speech perception and production. An important question is whether informal exposure to spoken foreign language also leads to vocabulary learning through the creation of form-meaning links. Here we tested the impact of exposure to foreign language words presented with pictures in an incidental learning phase on subsequent explicit foreign language learning. In the explicit learning phase, we asked adults to learn translation equivalents of foreign language words, some of which had appeared in the incidental learning phase. Results revealed rapid learning of the foreign language words in the incidental learning phase showing that informal exposure to multi-modal foreign language leads to foreign language vocabulary acquisition. The creation of form-meaning links during the incidental learning phase is discussed.

  3. A Distance Measure Comparison to Improve Crowding in Multi-Modal Problems.

    Energy Technology Data Exchange (ETDEWEB)

    D. Todd VOllmer; Terence Soule; Milos Manic

    2010-08-01

    Solving multi-modal optimization problems are of interest to researchers solving real world problems in areas such as control systems and power engineering tasks. Extensions of simple Genetic Algorithms, particularly types of crowding, have been developed to help solve these types of problems. This paper examines the performance of two distance measures, Mahalanobis and Euclidean, exercised in the processing of two different crowding type implementations against five minimization functions. Within the context of the experiments, empirical evidence shows that the statistical based Mahalanobis distance measure when used in Deterministic Crowding produces equivalent results to a Euclidean measure. In the case of Restricted Tournament selection, use of Mahalanobis found on average 40% more of the global optimum, maintained a 35% higher peak count and produced an average final best fitness value that is 3 times better.

  4. Using Multi-Modal 3D Contours and Their Relations for Vision and Robotics

    DEFF Research Database (Denmark)

    Baseski, Emre; Pugeault, Nicolas; Kalkan, Sinan;

    2010-01-01

    In this work, we make use of 3D contours and relations between them (namely, coplanarity, cocolority, distance and angle) for four different applications in the area of computer vision and vision-based robotics. Our multi-modal contour representation covers both geometric and appearance information....... We show the potential of reasoning with global entities in the context of visual scene analysis for driver assistance, depth prediction, robotic grasping and grasp learning. We argue that, such 3D global reasoning processes complement widely-used 2D local approaches such as bag-of-features since 3D...... relations are invariant under camera transformations and 3D information can be directly linked to actions. We therefore stress the necessity of including both global and local features with different spatial dimensions within a representation. We also discuss the importance of an efficient use...

  5. Multi-Modal Ultra-Widefield Imaging Features in Waardenburg Syndrome

    Science.gov (United States)

    Choudhry, Netan; Rao, Rajesh C.

    2015-01-01

    Background Waardenburg syndrome is characterized by a group of features including; telecanthus, a broad nasal root, synophrys of the eyebrows, piedbaldism, heterochromia irides, and deaf-mutism. Hypopigmentation of the choroid is a unique feature of this condition examined with multi-modal Ultra-Widefield Imaging in this report. Material/Methods Report of a single case. Results Bilateral symmetric choroidal hypopigmentation was observed with hypoautofluorescence in the region of hypopigmentation. Fluorescein angiography revealed a normal vasculature, however a thickened choroid was seen on Enhanced-Depth Imaging Spectral-Domain OCT (EDI SD-OCT). Conclusion(s) Choroidal hypopigmentation is a unique feature of Waardenburg syndrome, which can be visualized with ultra-widefield fundus autofluorescence. The choroid may also be thickened in this condition and its thickness measured with EDI SD-OCT. PMID:26114849

  6. The evolution of gadolinium based contrast agents: from single-modality to multi-modality

    Science.gov (United States)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.

    2016-05-01

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  7. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  8. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    Science.gov (United States)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  9. Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation

    Science.gov (United States)

    Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.

    2016-02-01

    We propose a multi-modal vibration energy harvesting approach based on arrays of coupled levitated magnets. The equations of motion which include the magnetic nonlinearity and the electromagnetic damping are solved using the harmonic balance method coupled with the asymptotic numerical method. A multi-objective optimization procedure is introduced and performed using a non-dominated sorting genetic algorithm for the cases of small magnet arrays in order to select the optimal solutions in term of performances by bringing the eigenmodes close to each other in terms of frequencies and amplitudes. Thanks to the nonlinear coupling and the modal interactions even for only three coupled magnets, the proposed method enable harvesting the vibration energy in the operating frequency range of 4.6-14.5 Hz, with a bandwidth of 190% and a normalized power of 20.2 {mW} {{cm}}-3 {{{g}}}-2.

  10. Multi-Modal Reasoning Medical Diagnosis System Integrated With Probabilistic Reasoning

    Institute of Scientific and Technical Information of China (English)

    Jia Tian; Xun Chen; Sheng-Ping Dong

    2005-01-01

    In this paper, a Multi Modal Reasoning (MMR) method integrated with probabilistic reasoning is proposed for the diagnosis support module of the open eHealth platform. MMR is based on both Rule Based Reasoning (RBR) and Case Based Reasoning (CBR). It is not only applied to the identification of diseases and syndromes based on medical guidelines,but also deals with exceptional cases and individual therapies in order to improve diagnostic accuracy. Moreover, a new rule expression frame is introduced to deal with uncertainty, which can represent and process vague, imprecise, and incomplete information. Furthermore, this system is capable of updating the attributes of rules and inducing rules with a small data sample.

  11. The evolution of gadolinium based contrast agents: from single-modality to multi-modality.

    Science.gov (United States)

    Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K

    2016-05-19

    Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.

  12. Multi-modal Person Localization And Emergency Detection Using The Kinect

    Directory of Open Access Journals (Sweden)

    Georgios Galatas

    2013-01-01

    Full Text Available Person localization is of paramount importance in an ambient intelligence environment since it is the first step towards context-awareness. In this work, we present the development of a novel system for multi-modal person localization and emergency detection in an assistive ambient intelligence environment for the elderly. Our system is based on the depth sensor and microphone array of 2 Kinect devices. We use skeletal tracking conducted on the depth images and sound source localization conducted on the captured audio signal to estimate the location of a person. In conjunction with the location information, automatic speech recognition is used as a natural and intuitive means of communication in order to detect emergencies and accidents, such as falls. Our system attained high accuracy for both the localization and speech recognition tasks, verifying its effectiveness.

  13. Panel labels extraction from multi-panel figures for facilitating multi-modal information retrieval

    Science.gov (United States)

    Ali, Mushtaq; Dong, Le; Liang, Yan; He, Ling; Feng, Ning

    2015-07-01

    The association of subfigures in the multi-panel figure with related text in the accompanying caption and research article is necessary for the implementation of multi-modal information retrieval system. The panel labels in the multipanel figure are used as a source for making this kind of association. In this paper, we propose a novel method for the detection of panel labels in the multi-panel figures. The proposed method uses segmentation of multi-panel figure and its accompanying caption into subfigures and sub captions, respectively, as a preprocessing step. Next, the features of panel label, i.e., area and its distance from the borders in the upper left most subfigure of the multi panel figure are computed. These features are then used for detecting panel labels located in the rest of subfigures of the same multi-panel figure. Experiments on multi-panel figures selected from imageCLEF2013 dataset show promising results.

  14. Exploiting Higher Order and Multi-modal Features for 3D Object Detection

    DEFF Research Database (Denmark)

    Kiforenko, Lilita

    2017-01-01

    . The initial work introduces a feature descriptor that uses edge categorisation in combination with a local multi-modal histogram descriptor in order to detect objects with little or no texture or surface variation. The comparison is performed with a state-of-the-art method, which is outperformed...... by the presented edge descriptor. The second work presents an approach for robust detection of multiple objects by combining feature descriptors that capture both surface and edge information. This work presents quantitative results, where the performance of the developed feature descriptor combination is compared......-of-the-art descriptor and to this date, constant improvements of it are presented. The evaluation of PPFs is performed on seven publicly available datasets and it presents not only the performance comparison towards other popularly used methods, but also investigations of the space of possible point pair relations...

  15. Development of internal solitary waves in various thermocline regimes - a multi-modal approach

    Directory of Open Access Journals (Sweden)

    T. Gerkema

    2003-01-01

    Full Text Available A numerical analysis is made on the appearance of oceanic internal solitary waves in a multi-modal setting. This is done for observed profiles of stratification from the Sulu Sea and the Bay of Biscay, in which thermocline motion is dominated by the first and third mode, respectively. The results show that persistent solitary waves occur only in the former case, in accordance with the observations. In the Bay of Biscay much energy is transferred from the third mode to lower modes, implying that a uni-modal approach would not have been appropriate. To elaborate on these results in a systematic way, a simple model for the stratification is used; an interpretation is given in terms of regimes of thermocline strength.

  16. Architecture of the Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet)

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R.J.; Carlson, R.A.; Foster, I.T. [and others

    1997-01-01

    The research and education (R&E) community requires persistent and scaleable network infrastructure to concurrently support production and research applications as well as network research. In the past, the R&E community has relied on supporting parallel network and end-node infrastructures, which can be very expensive and inefficient for network service managers and application programmers. The grand challenge in networking is to provide support for multiple, concurrent, multi-layer views of the network for the applications and the network researchers, and to satisfy the sometimes conflicting requirements of both while ensuring one type of traffic does not adversely affect the other. Internet and telecommunications service providers will also benefit from a multi-modal infrastructure, which can provide smoother transitions to new technologies and allow for testing of these technologies with real user traffic while they are still in the pre-production mode. The authors proposed approach requires the use of as much of the same network and end system infrastructure as possible to reduce the costs needed to support both classes of activities (i.e., production and research). Breaking the infrastructure into segments and objects (e.g., routers, switches, multiplexors, circuits, paths, etc.) gives the capability to dynamically construct and configure the virtual active networks to address these requirements. These capabilities must be supported at the campus, regional, and wide-area network levels to allow for collaboration by geographically dispersed groups. The Multi-Modal Organizational Research and Production Heterogeneous Network (MORPHnet) described in this report is an initial architecture and framework designed to identify and support the capabilities needed for the proposed combined infrastructure and to address related research issues.

  17. Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor

    Institute of Scientific and Technical Information of China (English)

    Jian Chen; Jie Tian

    2009-01-01

    The purpose of image registration is to spatially align two or more single-modality images taken at different times,or several images acquired by multiple imaging modalities.Intensity-based registration usually requires optimization of the similarity metric between the images.However,global optimization techniques are too time-consuming,and local optimization techniques frequently fail to search the global transformation space because of the large initial misalignment of the two images.Moreover,for large non-overlapping area registration,the similarity metric cannot reach its optimum value when the two images are properly registered.In order to solve these problems,we propose a novel Symmetric Scale Invariant Feature Transform (symmetric-SIFT) descriptor and develop a fast multi-modal image registration technique.The proposed technique automatically generates a lot of highly distinctive symmetric-SIFT descriptors for two images,and the registration is performed by matching the corresponding descriptors over two images.These descriptors are invariant to image scale and rotation,and are partially invariant to affine transformation.Moreover,these descriptors are symmetric to contrast,which makes it suitable for multi-modal image registration.The proposed technique abandons the optimization and similarity metric strategy.It works with near real-time performance,and can deal with the large non-overlapping and large initial misalignment situations.Test cases involving scale change,large non-overlapping,and large initial misalignment on computed tomography (CT) and magnetic resonance (MR) datasets show that it needs much less runtime and achieves better accuracy when compared to other algorithms.(C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  18. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis.

    Science.gov (United States)

    Eshaghi, Arman; Riyahi-Alam, Sadjad; Saeedi, Roghayyeh; Roostaei, Tina; Nazeri, Arash; Aghsaei, Aida; Doosti, Rozita; Ganjgahi, Habib; Bodini, Benedetta; Shakourirad, Ali; Pakravan, Manijeh; Ghana'ati, Hossein; Firouznia, Kavous; Zarei, Mojtaba; Azimi, Amir Reza; Sahraian, Mohammad Ali

    2015-01-01

    Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.

  19. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Arman Eshaghi

    2015-01-01

    Full Text Available Neuromyelitis optica (NMO exhibits substantial similarities to multiple sclerosis (MS in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI and resting-state functional MRI (fMRI. In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis

  20. Feasibility Study for a Structurally Efficient, Multi-Modal Shelter Concept Utilizing Advanced Technology Production Techniques

    Science.gov (United States)

    1974-02-01

    II I~ x p:1 ns ion P roc cuurc Longitudin:-11 Section, Container Mod·c Configuration r Ex p :m s i on Pro c c d u r e Longitudinal Section...No . I II. I I I. IV. v. VI. VII. VIII. IX. X . XI. XII. XIII. XIV. XV . XVI. XVII . XVIII . XIX. XX. XXI. XXII . XXI II. XXIV...mat e rial s and examples from these categories . Glass Fibers Glass Mi c r os pheres As bestos Carbon Graphite Ce llulose Cotton Jute Rayo n

  1. DIAGNOSIS-GUIDED METHOD FOR IDENTIFYING MULTI-MODALITY NEUROIMAGING BIOMARKERS ASSOCIATED WITH GENETIC RISK FACTORS IN ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Hao, Xiaoke; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L; Saykin, Andrew J; Zhang, Daoqiang; Shen, Li

    2016-01-01

    Many recent imaging genetic studies focus on detecting the associations between genetic markers such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist a large number of generalized multivariate regression analysis methods, few of them have used diagnosis information in subjects to enhance the analysis performance. In addition, few of models have investigated the identification of multi-modality phenotypic patterns associated with interesting genotype groups in traditional methods. To reveal disease-relevant imaging genetic associations, we propose a novel diagnosis-guided multi-modality (DGMM) framework to discover multi-modality imaging QTs that are associated with both Alzheimer's disease (AD) and its top genetic risk factor (i.e., APOE SNP rs429358). The strength of our proposed method is that it explicitly models the priori diagnosis information among subjects in the objective function for selecting the disease-relevant and robust multi-modality QTs associated with the SNP. We evaluate our method on two modalities of imaging phenotypes, i.e., those extracted from structural magnetic resonance imaging (MRI) data and fluorodeoxyglucose positron emission tomography (FDG-PET) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The experimental results demonstrate that our proposed method not only achieves better performances under the metrics of root mean squared error and correlation coefficient but also can identify common informative regions of interests (ROIs) across multiple modalities to guide the disease-induced biological interpretation, compared with other reference methods.

  2. Sex in the Curriculum: The Effect of a Multi-Modal Sexual History-Taking Module on Medical Student Skills

    Science.gov (United States)

    Lindau, Stacy Tessler; Goodrich, Katie G.; Leitsch, Sara A.; Cook, Sandy

    2008-01-01

    Purpose: The objective of this study was to determine the effect of a multi-modal curricular intervention designed to teach sexual history-taking skills to medical students. The Association of Professors of Gynecology and Obstetrics, the National Board of Medical Examiners, and others, have identified sexual history-taking as a learning objective…

  3. Risk factors for insufficient perioperative oral nutrition after hip fracture surgery within a multi-modal rehabilitation programme

    DEFF Research Database (Denmark)

    Foss, Nicolai B; Jensen, Pia S; Kehlet, Henrik

    2007-01-01

    To examine oral nutritional intake in the perioperative phase in elderly hip fracture patients treated according to a well-defined multi-modal rehabilitation program, including unselected oral nutritional supplementation, and to identify independent risk factors for insufficient nutritional intake....

  4. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    Science.gov (United States)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  5. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    Key words: Cerebrovascular Acute Radiation Syndrome (Cv ARS), Radiation Neurotoxins (RNT), Neurotransmitters, Radiation Countermeasures, Antiradiation Vaccine (ArV), Antiradiation Blocking Antibodies, Antiradiation Antidote. Psychoneuroimmunology, Neurotoxicity. ABSTRACT: To review the role of Radiation Neurotoxins in triggering, developing of radiation induced central nervous system injury. Radiation Neurotoxins - rapidly acting blood toxic lethal agent, which activated after irradiation and concentrated, circulated in interstitial fluid, lymph, blood with interactions with cell membranes, receptors and cell compartments. Radiation Neurotoxins - biological molecules with high enzymatic activity and/or specific lipids and activated or modified after irradiation. The Radiation Neurotoxins induce increased permeability of blood vessels, disruption of the blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier and developing severe disorder of blood macro- and micro-circulation. Principles of Radiation Psychoneuro-immunology and Psychoneuro-allergology were applied for determination of pathological processes developed after irradiation or selective administration of Radiation Neurotoxins to radiation naïve mammals. Effects of radiation and exposure to radiation can develop severe irreversible abnormalities of Central Nervous System, brain structures and functions. Antiradiation Vaccine - most effective, advanced methods of protection, prevention, mitigation and treatment and was used for of Acute Radiation Syndromes and elaboration of new technology for immune-prophylaxis and immune-protection against ϒ, Heavy Ion, Neutron irradiation. Results of experiments suggested that blocking, antitoxic, antiradiation antibodies can significantly reduce toxicity of Radiation Toxins. New advanced technology include active immune-prophylaxis with Antiradiation Vaccine and Antiradiation therapy that included specific blocking antibodies to Radiation Neurotoxins

  6. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    Science.gov (United States)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  7. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    Science.gov (United States)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    Deep space missions must contend with a harsh radiation environment Impacts to crew and electronics. Need to invest in multifunctionality for spacecraft optimization. MMOD shield. Goals: Increase radiation mitigation potential. Retain overall MMOD shielding performance.

  8. Holographic Raman tweezers controlled by multi-modal natural user interface

    Science.gov (United States)

    Tomori, Zoltán; Keša, Peter; Nikorovič, Matej; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Valušová, Eva; Antalík, Marián; Zemánek, Pavel

    2016-01-01

    Holographic optical tweezers provide a contactless way to trap and manipulate several microobjects independently in space using focused laser beams. Although the methods of fast and efficient generation of optical traps are well developed, their user friendly control still lags behind. Even though several attempts have appeared recently to exploit touch tablets, 2D cameras, or Kinect game consoles, they have not yet reached the level of natural human interface. Here we demonstrate a multi-modal ‘natural user interface’ approach that combines finger and gaze tracking with gesture and speech recognition. This allows us to select objects with an operator’s gaze and voice, to trap the objects and control their positions via tracking of finger movement in space and to run semi-automatic procedures such as acquisition of Raman spectra from preselected objects. This approach takes advantage of the power of human processing of images together with smooth control of human fingertips and downscales these skills to control remotely the motion of microobjects at microscale in a natural way for the human operator.

  9. Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI.

    Science.gov (United States)

    Zhuang, Xiahai; Shen, Juan

    2016-07-01

    A whole heart segmentation (WHS) method is presented for cardiac MRI. This segmentation method employs multi-modality atlases from MRI and CT and adopts a new label fusion algorithm which is based on the proposed multi-scale patch (MSP) strategy and a new global atlas ranking scheme. MSP, developed from the scale-space theory, uses the information of multi-scale images and provides different levels of the structural information of images for multi-level local atlas ranking. Both the local and global atlas ranking steps use the information theoretic measures to compute the similarity between the target image and the atlases from multiple modalities. The proposed segmentation scheme was evaluated on a set of data involving 20 cardiac MRI and 20 CT images. Our proposed algorithm demonstrated a promising performance, yielding a mean WHS Dice score of 0.899 ± 0.0340, Jaccard index of 0.818 ± 0.0549, and surface distance error of 1.09 ± 1.11 mm for the 20 MRI data. The average runtime for the proposed label fusion was 12.58 min.

  10. MINC 2.0: A Flexible Format for Multi-Modal Images

    Science.gov (United States)

    Vincent, Robert D.; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L.; Fonov, Vladimir S.; Robbins, Steven M.; Baghdadi, Leila; Lerch, Jason; Sled, John G.; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P.; Collins, D. Louis; Evans, Alan C.

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  11. Analysis of Predictive Values Based on Individual Risk Factors in Multi-Modality Trials.

    Science.gov (United States)

    Lange, Katharina; Brunner, Edgar

    2013-03-15

    The accuracy of diagnostic tests with binary end-points is most frequently measured by sensitivity and specificity. However, from the clinical perspective, the main purpose of a diagnostic agent is to assess the probability of a patient actually being diseased and hence predictive values are more suitable here. As predictive values depend on the pre-test probability of disease, we provide a method to take risk factors influencing the patient's prior probability of disease into account, when calculating predictive values. Furthermore, approaches to assess confidence intervals and a methodology to compare predictive values by statistical tests are presented. Hereby the methods can be used to analyze predictive values of factorial diagnostic trials, such as multi-modality, multi-reader-trials. We further performed a simulation study assessing length and coverage probability for different types of confidence intervals, and we present the R-Package facROC that can be used to analyze predictive values in factorial diagnostic trials in particular. The methods are applied to a study evaluating CT-angiography as a noninvasive alternative to coronary angiography for diagnosing coronary artery disease. Hereby the patients' symptoms are considered as risk factors influencing the respective predictive values.

  12. Anticipation by multi-modal association through an artificial mental imagery process

    Science.gov (United States)

    Gaona, Wilmer; Escobar, Esaú; Hermosillo, Jorge; Lara, Bruno

    2015-01-01

    Mental imagery has become a central issue in research laboratories seeking to emulate basic cognitive abilities in artificial agents. In this work, we propose a computational model to produce an anticipatory behaviour by means of a multi-modal off-line hebbian association. Unlike the current state of the art, we propose to apply hebbian learning during an internal sensorimotor simulation, emulating a process of mental imagery. We associate visual and tactile stimuli re-enacted by a long-term predictive simulation chain motivated by covert actions. As a result, we obtain a neural network which provides a robot with a mechanism to produce a visually conditioned obstacle avoidance behaviour. We developed our system in a physical Pioneer 3-DX robot and realised two experiments. In the first experiment we test our model on one individual navigating in two different mazes. In the second experiment we assess the robustness of the model by testing in a single environment five individuals trained under different conditions. We believe that our work offers an underpinning mechanism in cognitive robotics for the study of motor control strategies based on internal simulations. These strategies can be seen analogous to the mental imagery process known in humans, opening thus interesting pathways to the construction of upper-level grounded cognitive abilities.

  13. Multi-modal target detection for autonomous wide area search and surveillance

    Science.gov (United States)

    Breckon, Toby P.; Gaszczak, Anna; Han, Jiwan; Eichner, Marcin L.; Barnes, Stuart E.

    2013-10-01

    Generalised wide are search and surveillance is a common-place tasking for multi-sensory equipped autonomous systems. Here we present on a key supporting topic to this task - the automatic interpretation, fusion and detected target reporting from multi-modal sensor information received from multiple autonomous platforms deployed for wide-area environment search. We detail the realization of a real-time methodology for the automated detection of people and vehicles using combined visible-band (EO), thermal-band (IR) and radar sensing from a deployed network of multiple autonomous platforms (ground and aerial). This facilities real-time target detection, reported with varying levels of confidence, using information from both multiple sensors and multiple sensor platforms to provide environment-wide situational awareness. A range of automatic classification approaches are proposed, driven by underlying machine learning techniques, that facilitate the automatic detection of either target type with cross-modal target confirmation. Extended results are presented that show both the detection of people and vehicles under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance evaluation is presented at an episodic level with individual classifiers optimized for maximal each object of interest (vehicle/person) detection over a given search path/pattern of the environment, across all sensors and modalities, rather than on a per sensor sample basis. Episodic target detection, evaluated over a number of wide-area environment search and reporting tasks, generally exceeds 90%+ for the targets considered here.

  14. Multi-modal Patient Cohort Identification from EEG Report and Signal Data

    Science.gov (United States)

    Goodwin, Travis R.; Harabagiu, Sanda M.

    2016-01-01

    Clinical electroencephalography (EEG) is the most important investigation in the diagnosis and management of epilepsies. An EEG records the electrical activity along the scalp and measures spontaneous electrical activity of the brain. Because the EEG signal is complex, its interpretation is known to produce moderate inter-observer agreement among neurologists. This problem can be addressed by providing clinical experts with the ability to automatically retrieve similar EEG signals and EEG reports through a patient cohort retrieval system operating on a vast archive of EEG data. In this paper, we present a multi-modal EEG patient cohort retrieval system called MERCuRY which leverages the heterogeneous nature of EEG data by processing both the clinical narratives from EEG reports as well as the raw electrode potentials derived from the recorded EEG signal data. At the core of MERCuRY is a novel multimodal clinical indexing scheme which relies on EEG data representations obtained through deep learning. The index is used by two clinical relevance models that we have generated for identifying patient cohorts satisfying the inclusion and exclusion criteria expressed in natural language queries. Evaluations of the MERCuRY system measured the relevance of the patient cohorts, obtaining MAP scores of 69.87% and a NDCG of 83.21%. PMID:28269938

  15. Multi-modal, ultrasensitive detection of trace explosives using MEMS devices with quantum cascade lasers

    Science.gov (United States)

    Zandieh, Omid; Kim, Seonghwan

    2016-05-01

    Multi-modal chemical sensors based on microelectromechanical systems (MEMS) have been developed with an electrical readout. Opto-calorimetric infrared (IR) spectroscopy, capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules, has been realized with a microthermometer/microheater device using a widely tunable quantum cascade laser. A microthermometer/microheater device responds to the heat generated by nonradiative decay process when the adsorbed explosive molecules are resonantly excited with IR light. Monitoring the variation in microthermometer signal as a function of illuminating IR wavelength corresponds to the conventional IR absorption spectrum of the adsorbed molecules. Moreover, the mass of the adsorbed molecules is determined by measuring the resonance frequency shift of the cantilever shape microthermometer for the quantitative opto-calorimetric IR spectroscopy. In addition, micro-differential thermal analysis, which can be used to differentiate exothermic or endothermic reaction of heated molecules, has been performed with the same device to provide additional orthogonal signal for trace explosive detection and sensor surface regeneration. In summary, we have designed, fabricated and tested microcantilever shape devices integrated with a microthermometer/microheater which can provide electrical responses used to acquire both opto-calorimetric IR spectra and microcalorimetric thermal responses. We have demonstrated the successful detection, differentiation, and quantification of trace amounts of explosive molecules and their mixtures (cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) using three orthogonal sensing signals which improve chemical selectivity.

  16. Analysis of Predictive Values Based on Individual Risk Factors in Multi-Modality Trials

    Directory of Open Access Journals (Sweden)

    Katharina Lange

    2013-03-01

    Full Text Available The accuracy of diagnostic tests with binary end-points is most frequently measured by sensitivity and specificity. However, from the clinical perspective, the main purpose of a diagnostic agent is to assess the probability of a patient actually being diseased and hence predictive values are more suitable here. As predictive values depend on the pre-test probability of disease, we provide a method to take risk factors influencing the patient’s prior probability of disease into account, when calculating predictive values. Furthermore, approaches to assess confidence intervals and a methodology to compare predictive values by statistical tests are presented. Hereby the methods can be used to analyze predictive values of factorial diagnostic trials, such as multi-modality, multi-reader-trials. We further performed a simulation study assessing length and coverage probability for different types of confidence intervals, and we present the R-Package facROC that can be used to analyze predictive values in factorial diagnostic trials in particular. The methods are applied to a study evaluating CT-angiography as a noninvasive alternative to coronary angiography for diagnosing coronary artery disease. Hereby the patients’ symptoms are considered as risk factors influencing the respective predictive values.

  17. A multi-modal treatment approach for the shoulder: A 4 patient case series

    Directory of Open Access Journals (Sweden)

    Pollard Henry

    2005-09-01

    Full Text Available Abstract Background This paper describes the clinical management of four cases of shoulder impingement syndrome using a conservative multimodal treatment approach. Clinical Features Four patients presented to a chiropractic clinic with chronic shoulder pain, tenderness in the shoulder region and a limited range of motion with pain and catching. After physical and orthopaedic examination a clinical diagnosis of shoulder impingement syndrome was reached. The four patients were admitted to a multi-modal treatment protocol including soft tissue therapy (ischaemic pressure and cross-friction massage, 7 minutes of phonophoresis (driving of medication into tissue with ultrasound with 1% cortisone cream, diversified spinal and peripheral joint manipulation and rotator cuff and shoulder girdle muscle exercises. The outcome measures for the study were subjective/objective visual analogue pain scales (VAS, range of motion (goniometer and return to normal daily, work and sporting activities. All four subjects at the end of the treatment protocol were symptom free with all outcome measures being normal. At 1 month follow up all patients continued to be symptom free with full range of motion and complete return to normal daily activities. Conclusion This case series demonstrates the potential benefit of a multimodal chiropractic protocol in resolving symptoms associated with a suspected clinical diagnosis of shoulder impingement syndrome.

  18. Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model%Calculation of Prompt Fission Neutron from 233U(n, f) Reaction by Multi-Modal Los Alamos Model

    Institute of Scientific and Technical Information of China (English)

    郑娜; 钟春来; 樊铁栓

    2012-01-01

    An attempt is made to improve the evaluation of the prompt fission neutron emis- sion from 233U(n, f) reaction for incident neutron energies below 6 MeV. The multi-modal fission approach is applied to the improved version of Los Alamos model and the point by point model. The prompt fission neutron spectra and the prompt fission neutron as a function of fragment mass (usually named "sawtooth" data) v(A) are calculated independently for the three most dominant fission modes (standard I, standard II and superlong), and the total spectra and v(A) are syn- thesized. The multi-modal parameters are determined on the basis of experimental data of fission fragment mass distributions. The present calculation results can describe the experimental data very well, and the proposed treatment is thus a useful tool for prompt fission neutron emission prediction.

  19. Advanced Radiation Protection (ARP): Thick GCR Shield Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Radiation Project to date has focused on SEP events.  For long duration missions outside Earth’s geomagnetic field, the galactic cosmic ray...

  20. Cytogenetic Biodosimetry for Radiation Disasters: Recent Advances

    Science.gov (United States)

    2005-01-01

    Radiation exposure induces many types of chromosomal aberrations in the exposed individual’s peripheral blood lymphocytes. The presence of dicentrics , a... chromosomal structural aberration, in an individual’s pe- ripheral blood lymphocytes indicates radiation exposure. Dicentrics are considered relatively...method. This cytogenetic chromosome aberration bioassay is a thoroughly investigated biodosimetry method. The dicentric assay is conventionally

  1. Comparison of Sleep-Wake Classification using Electroencephalogram and Wrist-worn Multi-modal Sensor Data

    OpenAIRE

    Sano, Akane; Picard, Rosalind W.

    2014-01-01

    This paper presents the comparison of sleep-wake classification using electroencephalogram (EEG) and multi-modal data from a wrist wearable sensor. We collected physiological data while participants were in bed: EEG, skin conductance (SC), skin temperature (ST), and acceleration (ACC) data, from 15 college students, computed the features and compared the intra-/inter-subject classification results. As results, EEG features showed 83% while features from a wrist wearable sensor showed 74% and ...

  2. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  3. Embedded security system for multi-modal surveillance in a railway carriage

    Science.gov (United States)

    Zouaoui, Rhalem; Audigier, Romaric; Ambellouis, Sébastien; Capman, François; Benhadda, Hamid; Joudrier, Stéphanie; Sodoyer, David; Lamarque, Thierry

    2015-10-01

    Public transport security is one of the main priorities of the public authorities when fighting against crime and terrorism. In this context, there is a great demand for autonomous systems able to detect abnormal events such as violent acts aboard passenger cars and intrusions when the train is parked at the depot. To this end, we present an innovative approach which aims at providing efficient automatic event detection by fusing video and audio analytics and reducing the false alarm rate compared to classical stand-alone video detection. The multi-modal system is composed of two microphones and one camera and integrates onboard video and audio analytics and fusion capabilities. On the one hand, for detecting intrusion, the system relies on the fusion of "unusual" audio events detection with intrusion detections from video processing. The audio analysis consists in modeling the normal ambience and detecting deviation from the trained models during testing. This unsupervised approach is based on clustering of automatically extracted segments of acoustic features and statistical Gaussian Mixture Model (GMM) modeling of each cluster. The intrusion detection is based on the three-dimensional (3D) detection and tracking of individuals in the videos. On the other hand, for violent events detection, the system fuses unsupervised and supervised audio algorithms with video event detection. The supervised audio technique detects specific events such as shouts. A GMM is used to catch the formant structure of a shout signal. Video analytics use an original approach for detecting aggressive motion by focusing on erratic motion patterns specific to violent events. As data with violent events is not easily available, a normality model with structured motions from non-violent videos is learned for one-class classification. A fusion algorithm based on Dempster-Shafer's theory analyses the asynchronous detection outputs and computes the degree of belief of each probable event.

  4. Multi-Source Learning for Joint Analysis of Incomplete Multi-Modality Neuroimaging Data.

    Science.gov (United States)

    Yuan, Lei; Wang, Yalin; Thompson, Paul M; Narayan, Vaibhav A; Ye, Jieping

    2012-01-01

    Incomplete data present serious problems when integrating largescale brain imaging data sets from different imaging modalities. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), for example, over half of the subjects lack cerebrospinal fluid (CSF) measurements; an independent half of the subjects do not have fluorodeoxyglucose positron emission tomography (FDG-PET) scans; many lack proteomics measurements. Traditionally, subjects with missing measures are discarded, resulting in a severe loss of available information. We address this problem by proposing two novel learning methods where all the samples (with at least one available data source) can be used. In the first method, we divide our samples according to the availability of data sources, and we learn shared sets of features with state-of-the-art sparse learning methods. Our second method learns a base classifier for each data source independently, based on which we represent each source using a single column of prediction scores; we then estimate the missing prediction scores, which, combined with the existing prediction scores, are used to build a multi-source fusion model. To illustrate the proposed approaches, we classify patients from the ADNI study into groups with Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal controls, based on the multi-modality data. At baseline, ADNI's 780 participants (172 AD, 397 MCI, 211 Normal), have at least one of four data types: magnetic resonance imaging (MRI), FDG-PET, CSF and proteomics. These data are used to test our algorithms. Comprehensive experiments show that our proposed methods yield stable and promising results.

  5. Cancer and Radiation Therapy: Current Advances and Future Directions

    Directory of Open Access Journals (Sweden)

    Rajamanickam Baskar, Kuo Ann Lee, Richard Yeo, Kheng-Wei Yeoh

    2012-01-01

    Full Text Available In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed.

  6. Advances in radiation oncology in new millennium in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seung Jae [College of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of); Park, Charn Il [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-06-01

    The objective of recent radiation therapy is to improve the quality of treatment and the after treatment quality of life. In Korea, sharing the same objective, significant advancement was made due to the gradual increase of patient number and rapid increase of treatment facilities. The advancement includes generalization of three-dimensional conformal radiotherapy (3D-CRT), application of linac-based stereotactic radiosurgery (SRS), and furthermore, the introduction of intensity modulated radiation therapy (IMRT). Authors in this paper prospectively review the followings: the advancement of radiation oncology in Korea, the recent status of four-dimensional radiation therapy. IMRT, the concept of the treatment with biological conformity, the trend of combined chemoradiotherapy, the importance of internet and radiation oncology information management system as influenced by the revolution of information technology, and finally the global trend of telemedicine in radiation oncology. Additionally, we suggest the methods to improve radiotherapy treatment, which include improvement of quality assurance (QA) measures by developing Koreanized QA protocol and system, regional study about clinical protocol development for phase three clinical trial, suggestion of unified treatment protocol and guideline by academic or research societies, domestic generation of treatment equipment's or system, establishment of nationwide data base of radiation-oncology-related information, and finally pattems-of-care study about major cancers.

  7. Effect of ionizing radiation on advanced life support medications

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-06-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs.

  8. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  9. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Directory of Open Access Journals (Sweden)

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  10. Optimizing boundary detection via Simulated Search with applications to multi-modal heart segmentation.

    Science.gov (United States)

    Peters, J; Ecabert, O; Meyer, C; Kneser, R; Weese, J

    2010-02-01

    Segmentation of medical images can be achieved with the help of model-based algorithms. Reliable boundary detection is a crucial component to obtain robust and accurate segmentation results and to enable full automation. This is especially important if the anatomy being segmented is too variable to initialize a mean shape model such that all surface regions are close to the desired contours. Several boundary detection algorithms are widely used in the literature. Most use some trained image appearance model to characterize and detect the desired boundaries. Although parameters of the boundary detection can vary over the model surface and are trained on images, their performance (i.e., accuracy and reliability of boundary detection) can only be assessed as an integral part of the entire segmentation algorithm. In particular, assessment of boundary detection cannot be done locally and independently on model parameterization and internal energies controlling geometric model properties. In this paper, we propose a new method for the local assessment of boundary detection called Simulated Search. This method takes any boundary detection function and evaluates its performance for a single model landmark in terms of an estimated geometric boundary detection error. In consequence, boundary detection can be optimized per landmark during model training. We demonstrate the success of the method for cardiac image segmentation. In particular we show that the Simulated Search improves the capture range and the accuracy of the boundary detection compared to a traditional training scheme. We also illustrate how the Simulated Search can be used to identify suitable classes of features when addressing a new segmentation task. Finally, we show that the Simulated Search enables multi-modal heart segmentation using a single algorithmic framework. On computed tomography and magnetic resonance images, average segmentation errors (surface-to-surface distances) for the four chambers and

  11. Advances in space radiation shielding codes

    Science.gov (United States)

    Wilson, John W.; Tripathi, Ram K.; Qualls, Garry D.; Cucinotta, Francis A.; Prael, Richard E.; Norbury, John W.; Heinbockel, John H.; Tweed, John; De Angelis, Giovanni

    2002-01-01

    Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary concept to the final design. For the last few decades, we have pursued deterministic solutions of the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design methods. A single ray trace in such geometry requires 14 milliseconds and limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given.

  12. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  13. Malignant and borderline phyllodes tumor of breast treated with a multi-modality approach in a tertiary cancer care centre in North India

    Directory of Open Access Journals (Sweden)

    Supriya Mallick

    2016-01-01

    Full Text Available Background: Phyllodes tumor (PT of the breast can be categorized into benign, borderline and malignant subgroups depending on various histopathological factors. Although malignant PTs may be indolent and controlled by local excision, they frequently show local and distant relapses. Literature reveals local recurrence to be the predominant pattern of failure and thus emphasizes the importance of adjuvant radiation in these tumors. The role of systemic chemotherapy has remained doubtful. Materials and Methods: We have analyzed details of all patients of PT (n = 33 treated with adjuvant multi-modality approach in our institute since 1994–2009. The demographic data, treatment details, recurrence patterns and salvage treatment options were documented. Results: All patients received adjuvant radiation. Seven patients received adjuvant chemotherapy. The mean survival of the entire cohort was 150.618 months. There was a trend for better overall survival with borderline grade (193.6 vs. 160.2 months; P = 0.08, log rank. The disease free survival (DFS favored borderline grade (193.6 months vs. 82.9 months for high grade; P = 0.02, log rank. The DFS was significantly better in tumors having negative margins on postoperative histopathological examination (DFS rate at 5 years being 100% vs. 69.2% for positive or close margins; P = 0.015. The mode of surgery did not have any impact on survival. Conclusion: Adjuvant Radiation should be discussed taking into account surgical margins, size and various pathological factors of the primary. Adjuvant radiation may be utilized in high risk patients to enhance loco-regional control. Systemic chemotherapy is an option, worth exploring, in cases of systemic failure.

  14. The Advanced Light Source (ALS) Radiation Safety System. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A.L.; Oldfather, D.E.; Lindner, A.F.

    1993-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory (LBL) is a 1.5 Gev synchrotron light source facility consisting of a 120 kev electron gun, 50 Mev linear accelerator, 1.5 Gev booster synchrotron, 200 meter circumference electron storage ring, and many photon beamline transport systems for research. Figure 1. ALS floor plan. Pairs of neutron and gamma radiation monitors are shown as dots numbered from 1 to 12. The Radiation Safety System for the ALS has been designed and built with a primary goal of providing protection against inadvertent personnel exposure to gamma and neutron radiation and, secondarily, to enhance the electrical safety of select magnet power supplies.

  15. Multi-modal calculations of prompt fission neutrons from 238U(n, f) at low induced energy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHONG Chun-Lai; FAN Tie-Shuan

    2011-01-01

    Properties of prompt fission neutrons from 238U(n,f) are calculated for incident neutron energies below 6 MeV using the multi-modal model,including the prompt fission neutron spectrum,the average prompt fission neutron multiplicity,and the prompt fission neutron multiplicity as a function of the fission fragment mass v(A) (usually named “sawtooth” data) The three most dominant fission modes are taken into account.The model parameters are determined on the basis of experimental fission fragment data.The predicted results are in good agreement with the experimental data.

  16. Comparison of sleep-wake classification using electroencephalogram and wrist-worn multi-modal sensor data.

    Science.gov (United States)

    Sano, Akane; Picard, Rosalind W

    2014-01-01

    This paper presents the comparison of sleep-wake classification using electroencephalogram (EEG) and multi-modal data from a wrist wearable sensor. We collected physiological data while participants were in bed: EEG, skin conductance (SC), skin temperature (ST), and acceleration (ACC) data, from 15 college students, computed the features and compared the intra-/inter-subject classification results. As results, EEG features showed 83% while features from a wrist wearable sensor showed 74% and the combination of ACC and ST played more important roles in sleep/wake classification.

  17. Development and calibration of a microfluidic biofilm growth cell with flow-templating and multi-modal characterization.

    Science.gov (United States)

    Paquet-Mercier, Francois; Karas, Adnane; Safdar, Muhammad; Aznaveh, Nahid Babaei; Zarabadi, Mirpouyan; Greener, Jesse

    2014-01-01

    We report the development of a microfluidic flow-templating platform with multi-modal characterization for studies of biofilms and their precursor materials. A key feature is a special three inlet flow-template compartment, which confines and controls the location of biofilm growth against a template wall. Characterization compartments include Raman imaging to study the localization of the nutrient solutions, optical microscopy to quantify biofilm biomass and localization, and cyclic voltammetry for flow velocity measurements. Each compartment is tested and then utilized to make preliminary measurements.

  18. Results from the commissioning of a multi-modal endoscope for ultrasound and time of flight PET

    Energy Technology Data Exchange (ETDEWEB)

    Bugalho, Ricardo [LIP, Lisbon, (Portugal)

    2015-07-01

    The EndoTOFPET-US collaboration has developed a multi-modal imaging system combining Ultrasound with Time-of-Flight Positron Emission Tomography into an endoscopic imaging device. The objective of the project is to obtain a coincidence time resolution of about 200 ps FWHM and to achieve about 1 mm spatial resolution of the PET system, while integrating all the components in a very compact detector suitable for endoscopic use. This scanner aims to be exploited for diagnostic and surgical oncology, as well as being instrumental in the clinical test of new biomarkers especially targeted for prostate and pancreatic cancer. (authors)

  19. Advances in Radiation Therapy in Pediatric Neuro-oncology.

    Science.gov (United States)

    Bindra, Ranjit S; Wolden, Suzanne L

    2016-03-01

    Radiation therapy remains a highly effective therapy for many pediatric central nervous system tumors. With more children achieving long-term survival after treatment for brain tumors, late-effects of radiation have become an important concern. In response to this problem, treatment protocols for a variety of pediatric central nervous system tumors have evolved to reduce radiation fields and doses when possible. Recent advances in radiation technology such as image guidance and proton therapy have led to a new era of precision treatment with significantly less exposure to healthy tissues. These developments along with the promise of molecular classification of tumors and targeted therapies point to an optimistic future for pediatric neuro-oncology.

  20. Differences in Multi-Modal Ultrasound Imaging between Triple Negative and Non-Triple Negative Breast Cancer.

    Science.gov (United States)

    Li, Ziyao; Tian, Jiawei; Wang, Xiaowei; Wang, Ying; Wang, Zhenzhen; Zhang, Lei; Jing, Hui; Wu, Tong

    2016-04-01

    The objective of this study was to identify multi-modal ultrasound imaging parameters that could potentially help to differentiate between triple negative breast cancer (TNBC) and non-TNBC. Conventional ultrasonography, ultrasound strain elastography and 3-D ultrasound (3-D-US) findings from 50 TNBC and 179 non-TNBC patients were retrospectively reviewed. Immunohistochemical examination was used as the reference gold standard for cancer subtyping. Different ultrasound modalities were initially analyzed to define TNBC-related features. Subsequently, logistic regression analysis was applied to TNBC-related features to establish models for predicting TNBC. TNBCs often presented as micro-lobulated, markedly hypo-echoic masses with an abrupt interface (p = 0.015, 0.0015 and 0.004, compared with non-TNBCs, respectively) on conventional ultrasound, and showed a diminished retraction pattern phenomenon in the coronal plane (p = 0.035) on 3-D-US. Our findings suggest that B-mode ultrasound and 3-D-US in multi-modality ultrasonography could be a useful non-invasive technique for differentiating TNBCs from non-TNBCs.

  1. Recent advances in the management of radiation colitis

    Institute of Scientific and Technical Information of China (English)

    Jannis Kountouras; Christos Zavos

    2008-01-01

    Radiation colitis,an insidious,progressive disease of increasing frequency,develops 6 mo to 5 years after regional radiotherapy for malignancy,owing to the deleterious effects of the latter on the colon and the small intestine.When dealing with radiation colitis and its complications,the most conservative modality should be employed because the areas of intestinal injury do not tend to heal.Acute radiation colitis is mostly selflimited,and usually,only supportive management is required.Chronic radiation colitis,a poorly predictable progressive disease,is considered as a precancerous lesion;radiation-associated malignancy has a tendency to be diagnosed at an advanced stage and to bear a dismal prognosis.Therefore,management of chronic radiation colitis remains a major challenge owing to the progressive evolution of the disease,including development of fibrosis,endarteritis,edema,fragility,perforation,partial obstruction,and cancer.Patients are commonly managed conservatively.Surgical intervention is difficult to perform because of the extension of fibrosis and alterations in the gut and mesentery,and should be reserved for intestinal obstruction,perforation,fistulas,and severe bleeding.Owing to the difficulty in managing the complications of acute and chronic radiation colitis,particular attention should be focused onto the prevention strategies.Uncovering the fibrosis mechanisms and the molecular events underlying radiation bowel disease could lead to the introduction of new therapeutic and/or preventive approaches.A variety of novel,mostly experimental,agents have been used mainly as a prophylaxis,and improvements have been made in radiotherapy delivery,including techniques to reduce the amount of exposed intestine in the radiation field,as a critical strategy for prevention.

  2. AREAL test facility for advanced accelerator and radiation source concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Amatuni, G.A.; Amirkhanyan, Z.G.; Aslyan, L.V.; Avagyan, V.Sh.; Danielyan, V.A.; Davtyan, H.D.; Dekhtiarov, V.S.; Gevorgyan, K.L.; Ghazaryan, N.G.; Grigoryan, B.A.; Grigoryan, A.H.; Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutiunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Ivanyan, M.I.; Khachatryan, V.G.; Laziev, E.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Manukyan, P.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Margaryan, I.N.; Markosyan, T.M. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); and others

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  3. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  4. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J.; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  5. Radiation-induced erectile dysfunction: Recent advances and future directions

    Directory of Open Access Journals (Sweden)

    Javed Mahmood, PhD

    2016-07-01

    Full Text Available Prostate cancer is one of the most prevalent cancers and the second leading cause of cancer-related deaths in men in the United States. A large number of patients undergo radiation therapy (RT as a standard care of treatment; however, RT causes erectile dysfunction (radiation-induced erectile dysfunction; RiED because of late side effects after RT that significantly affects quality of life of prostate cancer patients. Within 5 years of RT, approximately 50% of patients could develop RiED. Based on the past and current research findings and number of publications from our group, the precise mechanism of RiED is under exploration in detail. Recent investigations have shown prostate RT induces significant morphologic arterial damage with aberrant alterations in internal pudendal arterial tone. Prostatic RT also reduces motor function in the cavernous nerve which may attribute to axonal degeneration may contributing to RiED. Furthermore, the advances in radiogenomics such as radiation induced somatic mutation identification, copy number variation and genome-wide association studies has significantly facilitated identification of biomarkers that could be used to monitoring radiation-induced late toxicity and damage to the nerves; thus, genomic- and proteomic-based biomarkers could greatly improve treatment and minimize arterial tissue and nerve damage. Further, advanced technologies such as proton beam therapy that precisely target tumor and significantly reduce off-target damage to vital organs and healthy tissues. In this review, we summarize recent advances in RiED research and novel treatment modalities for RiED. We also discuss the possible molecular mechanism involved in the development of RiED in prostate cancer patients. Further, we discuss various readily available methods as well as novel strategies such as stem cell therapies, shockwave therapy, nerve grafting with tissue engineering, and nutritional supplementations might be used to

  6. Bayesian vector autoregressive model for multi-subject effective connectivity inference using multi-modal neuroimaging data.

    Science.gov (United States)

    Chiang, Sharon; Guindani, Michele; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M; Vannucci, Marina

    2017-03-01

    In this article a multi-subject vector autoregressive (VAR) modeling approach was proposed for inference on effective connectivity based on resting-state functional MRI data. Their framework uses a Bayesian variable selection approach to allow for simultaneous inference on effective connectivity at both the subject- and group-level. Furthermore, it accounts for multi-modal data by integrating structural imaging information into the prior model, encouraging effective connectivity between structurally connected regions. They demonstrated through simulation studies that their approach resulted in improved inference on effective connectivity at both the subject- and group-level, compared with currently used methods. It was concluded by illustrating the method on temporal lobe epilepsy data, where resting-state functional MRI and structural MRI were used. Hum Brain Mapp 38:1311-1332, 2017. © 2016 Wiley Periodicals, Inc.

  7. Techniques for efficient, real-time, 3D visualization of multi-modality cardiac data using consumer graphics hardware.

    Science.gov (United States)

    Levin, David; Aladl, Usaf; Germano, Guido; Slomka, Piotr

    2005-09-01

    We exploit consumer graphics hardware to perform real-time processing and visualization of high-resolution, 4D cardiac data. We have implemented real-time, realistic volume rendering, interactive 4D motion segmentation of cardiac data, visualization of multi-modality cardiac data and 3D display of multiple series cardiac MRI. We show that an ATI Radeon 9700 Pro can render a 512x512x128 cardiac Computed Tomography (CT) study at 0.9 to 60 frames per second (fps) depending on rendering parameters and that 4D motion based segmentation can be performed in real-time. We conclude that real-time rendering and processing of cardiac data can be implemented on consumer graphics cards.

  8. Multi-Modal presentation of Works of Art in Virtual Reality with Simulation of Multi-Mirror Reflections

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    The use of different media such as photography and virtual reality combined with different presentation modalities may provide a user with an extraordinary tool for exploration and appreciation of real work of art. This is especially important in case of time-spatial works-of-art where the problem...... of functionalities presentation becomes much more demanding. The possibility offered by latest graphics machines has attracted the interest of researchers to investigate this new area. The goal of the presented work is the creation of a multi-modal presentation of a piece of contemporary art, tightening the relation...... between computer graphics and arts. The focus is on an application that it is capable to cope in real-time with simulation of mirror reflections including multi reflections. The results were very encouraging which led to optimistic conclusions with a wide range of options for future works....

  9. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  10. Histopathology in 3D: From three-dimensional reconstruction to multi-stain and multi-modal analysis.

    Science.gov (United States)

    Magee, Derek; Song, Yi; Gilbert, Stephen; Roberts, Nicholas; Wijayathunga, Nagitha; Wilcox, Ruth; Bulpitt, Andrew; Treanor, Darren

    2015-01-01

    Light microscopy applied to the domain of histopathology has traditionally been a two-dimensional imaging modality. Several authors, including the authors of this work, have extended the use of digital microscopy to three dimensions by stacking digital images of serial sections using image-based registration. In this paper, we give an overview of our approach, and of extensions to the approach to register multi-modal data sets such as sets of interleaved histopathology sections with different stains, and sets of histopathology images to radiology volumes with very different appearance. Our approach involves transforming dissimilar images into a multi-channel representation derived from co-occurrence statistics between roughly aligned images.

  11. Histopathology in 3D: From three-dimensional reconstruction to multi-stain and multi-modal analysis

    Directory of Open Access Journals (Sweden)

    Derek Magee

    2015-01-01

    Full Text Available Light microscopy applied to the domain of histopathology has traditionally been a two-dimensional imaging modality. Several authors, including the authors of this work, have extended the use of digital microscopy to three dimensions by stacking digital images of serial sections using image-based registration. In this paper, we give an overview of our approach, and of extensions to the approach to register multi-modal data sets such as sets of interleaved histopathology sections with different stains, and sets of histopathology images to radiology volumes with very different appearance. Our approach involves transforming dissimilar images into a multi-channel representation derived from co-occurrence statistics between roughly aligned images.

  12. A weakly nonlinear model for multi-modal evolution of wind-generated long internal waves in a closed basin

    Directory of Open Access Journals (Sweden)

    T. Sakai

    2009-07-01

    Full Text Available A weakly nonlinear evolution model that accounts for multi-modal interaction in a small, continuously stratified lake of variable depth is derived. In particular, an evolution model for the first two vertical modes in a lake that is subject to wind stress forcing is numerically simulated. Defining modal energies, energy transfer between the first and the second vertical modes is calculated for several different forms of the density stratification. Modal energy transfer mainly occurs during reflection of mode-one waves at the vertical end walls, and it is shown that the amount of energy transfer from the first to the second mode is greatly dependent on the shape of the stratification profile. Also, the initial modal energy partition at the wind setup is shown to depend significantly on the penetration depth of the internal shear stress induced by the wind stress, especially if the stress distribution extends into the upper levels of the metalimnion.

  13. ASRM radiation and flowfield prediction status. [Advanced Solid Rocket Motor plume radiation prediction

    Science.gov (United States)

    Reardon, J. E.; Everson, J.; Smith, S. D.; Sulyma, P. R.

    1991-01-01

    Existing and proposed methods for the prediction of plume radiation are discussed in terms of their application to the NASA Advanced Solid Rocket Motor (ASRM) and Space Shuttle Main Engine (SSME) projects. Extrapolations of the Solid Rocket Motor (SRM) are discussed with respect to preliminary predictions of the primary and secondary radiation environments. The methodology for radiation and initial plume property predictions are set forth, including a new code for scattering media and independent secondary source models based on flight data. The Monte Carlo code employs a reverse-evaluation approach which traces rays back to their point of absorption in the plume. The SRM sea-level plume model is modified to account for the increased radiation in the ASRM plume due to the ASRM's propellant chemistry. The ASRM cycle-1 environment predictions are shown to identify a potential reason for the shutdown spike identified with pre-SRM staging.

  14. A step-wise approach to define binding mechanisms of surrogate viral particles to multi-modal anion exchange resin in a single solute system.

    Science.gov (United States)

    Brown, Matthew R; Johnson, Sarah A; Brorson, Kurt A; Lute, Scott C; Roush, David J

    2017-01-21

    Multi-modal anion exchange resins combine properties of both anion exchange and hydrophobic interaction chromatography for commercial protein polishing and may provide some viral clearance as well. From a regulatory viral clearance claim standpoint, it is unclear if multi-modal resins are truly orthogonal to either single-mode anion exchange or hydrophobic interaction columns. To answer this, a strategy of solute surface assays and High Throughput Screening of resin in concert with a scale-down model of large scale chromatography purification was employed to determine the predominant binding mechanisms of a panel of bacteriophage (i.e., PR772, PP7, and ϕX174) to multi-modal and single mode resins under various buffer conditions. The buffer conditions were restricted to buffer environments suggested by the manufacturer for the multi-modal resin. Each phage was examined for estimated net charge expression and relative hydrophobicity using chromatographic based methods. Overall, PP7 and PR772 bound to the multimodal resin via both anionic and hydrophobic moieties, while ϕX174 bound predominantly by the anionic moiety. Biotechnol. Bioeng. 2017;9999: 1-8. © 2017 Wiley Periodicals, Inc.

  15. Thin film design for advanced thermochromic smart radiator devices

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Dong; Wang Zhi-Min; Ma Ya-Li; Zhang Fu-Jia

    2007-01-01

    This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of 3RD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.

  16. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  17. A queuing model for designing multi-modality buried target detection systems: preliminary results

    Science.gov (United States)

    Malof, Jordan M.; Morton, Kenneth D.; Collins, Leslie M.; Torrione, Peter A.

    2015-05-01

    Many remote sensing modalities have been developed for buried target detection, each one offering its own relative advantages over the others. As a result there has been interest in combining several modalities into a single detection platform that benefits from the advantages of each constituent sensor, without suffering from their weaknesses. Traditionally this involves collecting data continuously on all sensors and then performing data, feature, or decision level fusion. While this is effective for lowering false alarm rates, this strategy neglects the potential benefits of a more general system-level fusion architecture. Such an architecture can involve dynamically changing which modalities are in operation. For example, a large standoff modality such as a forward-looking infrared (FLIR) camera can be employed until an alarm is encountered, at which point a high performance (but short standoff) sensor, such as ground penetrating radar (GPR), is employed. Because the system is dynamically changing its rate of advance and sensors, it becomes difficult to evaluate the expected false alarm rate and advance rate. In this work, a probabilistic model is proposed that can be used to estimate these quantities based on a provided operating policy. In this model the system consists of a set of states (e.g., sensors employed) and conditions encountered (e.g., alarm locations). The predictive accuracy of the model is evaluated using a collection of collocated FLIR and GPR data and the results indicate that the model is effective at predicting the desired system metrics.

  18. Design of multi-modal obstruction to control tonal fan noise using modulation principles

    Science.gov (United States)

    Gérard, Anthony; Moreau, Stéphane; Berry, Alain; Masson, Patrice

    2015-11-01

    The approach presented in this paper uses a combination of obstructions in the upstream flow of subsonic axial fans with B blades to destructively interfere with the primary tonal noise at the blade passage frequency. The first step of the proposed experimental method consists in identifying the independent radiation of B - 1 and B lobed obstructions at the control microphones. During this identification step, rotating obstructions allow for the frequencies of primary and secondary tonal noise to be slightly shifted in the spectrum due to modulation principles. The magnitude of the secondary tonal noise generated by each obstruction can be adjusted by varying the size of the lobes of the obstruction, and the phase of the secondary tonal noise is related to the angular position of the obstruction. The control obstructions are then optimized by combining the B - 1 and B lobed obstructions to significantly reduce the acoustic power at blade passage frequency.

  19. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Nkomo, Vuyisile T; Badano, Luigi P;

    2013-01-01

    recognized only in the early 1970s, the heart is regarded in the current era as one of the most critical dose-limiting organs in radiotherapy. Several clinical studies have identified adverse clinical consequences of radiation-induced heart disease (RIHD) on the outcome of long-term cancer survivors......Cardiac toxicity is one of the most concerning side effects of anti-cancer therapy. The gain in life expectancy obtained with anti-cancer therapy can be compromised by increased morbidity and mortality associated with its cardiac complications. While radiosensitivity of the heart was initially....... A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications...

  20. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract

    Institute of Scientific and Technical Information of China (English)

    Subramaniyan Ramanathan; Devendra Kumar; Maneesh Khanna; Mahmoud Al Heidous; Adnan Sheikh; Vivek Virmani; Yegu Palaniappan

    2016-01-01

    Congenital abnormalities of the kidney and urinary tract(CAKUT) include a wide range of abnormalities ranging from asymptomatic ectopic kidneys to life threatening renal agenesis(bilateral). Many of them are detected in the antenatal or immediate postnatal with a significant proportion identified in the adult population with varying degree of severity. CAKUT can be classified on embryological basis in to abnormalities in the renal parenchymal development, aberrant embryonic migration and abnormalities of the collecting system. Renal parenchymal abnormalities include multi cystic dysplastic kidneys, renal hypoplasia, number(agenesis or supernumerary), shape and cystic renal diseases. Aberrant embryonic migration encompasses abnormal location and fusion anomalies. Collecting system abnormalities include duplex kidneys and Pelvi ureteric junction obstruction. Ultrasonography(US) is typically the first imaging performed as it is easily available, noninvasive and radiation free used both antenatally and postnatally. Computed tomography(CT) and magnetic resonance imaging(MRI) are useful to confirm the ultrasound detected abnormality, detection of complex malformations, demonstration of collecting system and vascular anatomy and more importantly for early detection of complications like renal calculi, infection and malignancies. As CAKUT are one of the leading causes of end stage renal disease, it is important for the radiologists to be familiar with the varying imaging appearances of CAKUT on US, CT and MRI, thereby helping in prompt diagnosis and optimal management.

  1. Multi-modality imaging of tumor phenotype and response to therapy

    Science.gov (United States)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  2. Multi-Modal Treatment Of Calciphylaxis With Sodium-Thiosulfate, Cinacalcet And Sevelamer Including Long-Term Data

    Directory of Open Access Journals (Sweden)

    Hermann Salmhofer

    2013-09-01

    Full Text Available Background: Calciphylaxis is a rare, yet life-threatening disease mainly occurring in dialysis patients. Traditional options of treatment remain unsatisfactory. Methods: Here we present a novel, combined approach, treating calciphylaxis with IV sodium thiosulfate, cinacalcet and sevelamer. In a case series five hemodialysis patients, have been successfully treated with this regimen. Treatment and survival data were analyzed using descriptive statistics. Results: In all patients, a rapid decrease in pain, improvement of general condition and wound healing within six months occurred. Side effects were low. Drug dosages: IV sodium thiosulfate initial dose 119.4 +/- 84.9 g/m2/week, maintenance dose 40.6 +/- 9 g/m2/week; cinacalcet: maintenance dose 36 +/- 32.9 mg/d and sevelamer maintenance dose 3320 +/-1671 mg/d. One and two year survivals were 100 % and 80 %, respectively. We also report on long-term application of IV sodium thiosulfate of up to 52 months. Patient survival after diagnosis was 52, 84, 21, 36 and 30 months, respectively. Survival since initiation of hemodialysis was 76, 136, 89, 36 and 35 months, respectively. Conclusion: This novel combined approach, a multi-modal treatment of calciphylaxis with persistent hyperparathyroidism, using IV sodium thiosulfate, cinacalcet and sevelamer seems to improve the outcome of this devastating disease.

  3. An Empiric Evaluation of a Real-Time Robot Dancing Framework based on Multi-Modal Events

    Directory of Open Access Journals (Sweden)

    Luis Paulo Reis

    2012-12-01

    Full Text Available Musical robots have already inspired the creation of worldwide robotic dancing contests, as RoboCup-Junior's Dance, where school teams, formed by children aged eight to eighteen, put their robots in action, performing dance to music in a display that emphasizes creativity of costumes and movement. This paper describes and assesses a framework for robot dancing edutainment applications. The proposed architecture enables the definition of choreographic compositions, which result on a conjunction of reactive dancing motions in real-time response to multi-modal inputs. These inputs are shaped by three rhythmic events (representing soft, medium, and strong musical note-onsets, different dance floor colors, and the awareness of the surrounding obstacles. This layout was applied to a Lego-NXT humanoid robot, built with two Lego-NXT kits, and running on a hand-made dance stage. We report on an empirical evaluation over the overall robot dancing performance made to a group of students after a set of live demonstrations. This evaluation validated the framework's potential application in edutainment and its ability to sustain the interest of the general audience by offering a reasonable compromise between musical-synchrony, animacy and dance performance’s variability.

  4. Expanding neurochemical investigations with multi-modal recording: simultaneous fast-scan cyclic voltammetry, iontophoresis, and patch clamp measurements.

    Science.gov (United States)

    Kirkpatrick, D C; McKinney, C J; Manis, P B; Wightman, R M

    2016-08-02

    Multi-modal recording describes the simultaneous collection of information across distinct domains. Compared to isolated measurements, such studies can more easily determine relationships between varieties of phenomena. This is useful for neurochemical investigations which examine cellular activity in response to changes in the local chemical environment. In this study, we demonstrate a method to perform simultaneous patch clamp measurements with fast-scan cyclic voltammetry (FSCV) using optically isolated instrumentation. A model circuit simulating concurrent measurements was used to predict the electrical interference between instruments. No significant impact was anticipated between methods, and predictions were largely confirmed experimentally. One exception was due to capacitive coupling of the FSCV potential waveform into the patch clamp amplifier. However, capacitive transients measured in whole-cell current clamp recordings were well below the level of biological signals, which allowed the activity of cells to be easily determined. Next, the activity of medium spiny neurons (MSNs) was examined in the presence of an FSCV electrode to determine how the exogenous potential impacted nearby cells. The activities of both resting and active MSNs were unaffected by the FSCV waveform. Additionally, application of an iontophoretic current, used to locally deliver drugs and other neurochemicals, did not affect neighboring cells. Finally, MSN activity was monitored during iontophoretic delivery of glutamate, an excitatory neurotransmitter. Membrane depolarization and cell firing were observed concurrently with chemical changes around the cell resulting from delivery. In all, we show how combined electrophysiological and electrochemical measurements can relate information between domains and increase the power of neurochemical investigations.

  5. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy.

    Science.gov (United States)

    Kemp, Jessica A; Shim, Min Suk; Heo, Chan Yeong; Kwon, Young Jik

    2016-03-01

    The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.

  6. Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting.

    Science.gov (United States)

    Salas, Matthias; Drexler, Wolfgang; Levecq, Xavier; Lamory, Barbara; Ritter, Markus; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael

    2016-05-01

    We present a new compact multi-modal imaging prototype that combines an adaptive optics (AO) fundus camera with AO-optical coherence tomography (OCT) in a single instrument. The prototype allows acquiring AO fundus images with a field of view of 4°x4° and with a frame rate of 10fps. The exposure time of a single image is 10 ms. The short exposure time results in nearly motion artifact-free high resolution images of the retina. The AO-OCT mode allows acquiring volumetric data of the retina at 200kHz A-scan rate with a transverse resolution of ~4 µm and an axial resolution of ~5 µm. OCT imaging is acquired within a field of view of 2°x2° located at the central part of the AO fundus image. Recording of OCT volume data takes 0.8 seconds. The performance of the new system is tested in healthy volunteers and patients with retinal diseases.

  7. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator

    Science.gov (United States)

    Li, Shengquan; Li, Juan; Mo, Yueping; Zhao, Rong

    2014-01-01

    A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations.

  8. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm

    Science.gov (United States)

    Yang, Don-Ho; Shin, Ji-Hwan; Lee, HyunWook; Kim, Seoug-Ki; Kwak, Moon K.

    2017-03-01

    In this study, an Active Mass Damper (AMD) consisting of an AC servo motor, a movable mass connected to the AC servo motor by a ball-screw mechanism, and an accelerometer as a sensor for vibration measurement were considered. Considering the capability of the AC servo motor which can follow the desired displacement accurately, the Negative Acceleration Feedback (NAF) control algorithm which uses the acceleration signal directly and produces the desired displacement for the active mass was proposed. The effectiveness of the NAF control was proved theoretically using a single-degree-of-freedom (SDOF) system. It was found that the stability condition for the NAF control is static and it can effectively increase the damping of the target natural mode without causing instability in the low frequency region. Based on the theoretical results of the SDOF system, the Multi-Modal NAF (MMNAF) control is proposed to suppress the many natural modes of multi-degree-of-freedom (MDOF) systems using a single AMD. It was proved both theoretically and experimentally that the MMNAF control can suppress vibrations of the MDOF system.

  9. An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract.

    Science.gov (United States)

    Liu, Zhen; Liu, Jianhua; Wang, Rui; Du, Yingda; Ren, Jinsong; Qu, Xiaogang

    2015-07-01

    Since understanding the healthy status of gastrointestinal tract (GI tract) is of vital importance, clinical implementation for GI tract-related disease have attracted much more attention along with the rapid development of modern medicine. Here, a multifunctional theranostic system combining X-rays/CT/photothermal/photoacoustic mapping of GI tract and imaging-guided photothermal anti-bacterial treatment is designed and constructed. PEGylated W18O49 nanosheets (PEG-W18O49) are created via a facile solvothermal method and an in situ probe-sonication approach. In terms of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of PEG-W18O49, we demonstrate the first example of high-performance four-modal imaging of GI tract by using these nanosheets as contrast agents. More importantly, due to their intrinsic absorption of NIR light, glutaraldehyde-modified PEG-W18O49 are successfully applied as fault-free targeted photothermal agents for imaging-guided killing of bacteria on a mouse infection model. Critical to pre-clinical and clinical prospects, long-term toxicity is further investigated after oral administration of these theranostic agents. These kinds of tungsten-based nanomaterials exhibit great potential as multi-modal contrast agents for directed visualization of GI tract and anti-bacterial agents for phothothermal sterilization.

  10. Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed,which is called the immune genetic algorithm with the elitism (IGAE).In IGAE,the new methods for computing antibody similarity,expected reproduction probability,and clonal selection probability were given.IGAE has three features.The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage,which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively.The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem.The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter β,which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly.Two different complex multi-modal functions were selected to test the validity of IGAE.The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly.The experimental results also confirm that IGAE is of better performance in convergence speed,solution variation behavior,and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism.

  11. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  12. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11-01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  13. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    estimation of advanced regional association metrics at the voxel level.

  14. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    Science.gov (United States)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  15. Radiation-Hardened Electronics for Advanced Communications Systems

    Science.gov (United States)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  16. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

    Science.gov (United States)

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang

    2016-01-01

    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106

  17. 多模态教学在商务英语实训中的运用%Multi-modality Application in Business English Practical Training

    Institute of Scientific and Technical Information of China (English)

    刘国明

    2012-01-01

    Applying Multi-modality teaching method in Business English Practical Training can help teachers create real business scenarios and stimulate students' various modalities that students can practice effectively all the skills needed in work,eventually achieve practical training aims.%运用多模态教学,创造真实的商务场景,刺激学生的多种模态,可以提高教学效果。

  18. Evaluation of a multi-modal grounded theory approach to explore patients’ daily coping with breathlessness due to chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Bastrup, Lene; Dahl, Ronald; Pedersen, Preben Ulrich;

    2013-01-01

    the participants’ ability to remember and narrate how they cope with breathlessness; capture the multidimensional aspects involved in coping with breathlessness; encompass tools for collecting both qualitative and quantitative data, providing the opportunity to generate, synchronize, and combine data...... the multi-modal GT approach, which encompasses videos of daily life activity, interviews, medical history, demographics, self-rated sensation of breathlessness, and physiological measurements. A formative evaluation was conducted according to the criteria that the data collection should strengthen...

  19. Benefits of multi-session balance and gait training with multi-modal biofeedback in healthy older adults.

    Science.gov (United States)

    Lim, Shannon B; Horslen, Brian C; Davis, Justin R; Allum, John H J; Carpenter, Mark G

    2016-06-01

    Real-time balance-relevant biofeedback from a wearable sensor can improve balance in many patient populations, however, it is unknown if balance training with biofeedback has lasting benefits for healthy older adults once training is completed and biofeedback removed. This study was designed to determine if multi-session balance training with and without biofeedback leads to changes in balance performance in healthy older adults; and if changes persist after training. 36 participants (age 60-88) were randomly divided into two groups. Both groups trained on seven stance and gait tasks for 2 consecutive weeks (3×/week) while trunk angular sway and task duration were monitored. One group received real-time multi-modal biofeedback of trunk sway and a control group trained without biofeedback. Training effects were assessed at the last training session, with biofeedback available to the feedback group. Post-training effects (without biofeedback) were assessed immediately after, 1-week, and 1-month post-training. Both groups demonstrated training effects; participants swayed less when standing on foam with eyes closed (EC), maintained tandem-stance EC longer, and completed 8 tandem-steps EC faster and with less sway at the last training session. Changes in sway and duration, indicative of faster walking, were also observed after training for other gait tasks. While changes in walking speed persisted post-training, few other post-training effects were observed. These data suggest there is little added benefit to balance training with biofeedback, beyond training without, in healthy older adults. However, transient use of wearable balance biofeedback systems as balance aides remains beneficial for challenging balance situations and some clinical populations.

  20. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    Science.gov (United States)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  1. DataViewer3D: An open-source, cross-platform multi-modal neuroimaging data visualization tool

    Directory of Open Access Journals (Sweden)

    Andre D Gouws

    2009-03-01

    Full Text Available Integration and display of results from multiple neuroimaging modalities (e.g. MRI, MEG, EEG relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK for 2D and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay. Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additonal format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data.

  2. Effective Beginning Handwriting Instruction: Multi-modal, Consistent Format for 2 Years, and Linked to Spelling and Composing.

    Science.gov (United States)

    Wolf, Beverly; Abbott, Robert D; Berninger, Virginia W

    2017-02-01

    In Study 1, the treatment group (N = 33 first graders, M = 6 years 10 months, 16 girls) received Slingerland multi-modal (auditory, visual, tactile, motor through hand, and motor through mouth) manuscript (unjoined) handwriting instruction embedded in systematic spelling, reading, and composing lessons; and the control group (N =16 first graders, M = 7 years 1 month, 7 girls) received manuscript handwriting instruction not systematically related to the other literacy activities. ANOVA showed both groups improved on automatic alphabet writing from memory; but ANCOVA with the automatic alphabet writing task as covariate showed that the treatment group improved significantly more than control group from the second to ninth month of first grade on dictated spelling and recognition of word-specific spellings among phonological foils. In Study 2 new groups received either a second year of manuscript (N = 29, M = 7 years 8 months, 16 girls) or introduction to cursive (joined) instruction in second grade (N = 24, M = 8 years 0 months, 11 girls) embedded in the Slingerland literacy program. ANCOVA with automatic alphabet writing as covariate showed that those who received a second year of manuscript handwriting instruction improved more on sustained handwriting over 30, 60, and 90 seconds than those who had had only one year of manuscript instruction; both groups improved in spelling and composing from the second to ninth month of second grade. Results are discussed in reference to mastering one handwriting format before introducing another format at a higher grade level and always embedding handwriting instruction in writing and reading instruction aimed at all levels of language.

  3. Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study

    Directory of Open Access Journals (Sweden)

    Qingbao Yu

    2016-09-01

    Full Text Available The topological architecture of brain connectivity has been well characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO and eyes closed (EC resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA. EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma. EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics.

  4. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    Science.gov (United States)

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  5. Multi-modal Bio-metrics Evaluation for Non-destructive Age States Determination of Tomato Plants (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Muhammad Makky

    2016-06-01

    Full Text Available Every plant has unique morphological features, and can be used for its characteristics identity, such as age. When the plants grow, their morphological features may change, observable visually or by optical equipment. These various morphology transformations were categorized as multi-modal Bio-metrics. In this study, tomatoes from local cultivar were grown in a net house, in west Sumatra. The growth medium comprised of soil, husk, and manures with the composition of 1: 1: 1 respectively. For best growth, plants were watered regularly, and protect from pests and weeds. The observations were performed on 21st, 42nd, and 63rd day after sowing (DAS. The samples were the leaflets of the primary compound leaves of the plants. The leaflets were cut and digitized using a high-resolution colour scanner. The imaging performed at 300 dpi resolution, and the recorded image subsequently processed by the image processing software. Image segmentation performed to remove background from the object. Furthermore, the greenish of leaf object in the image were measured in RGB colour space. The leaf dimensions and area were quantified by the software, as well as the length of the leaflet main vein at central axis.  Two secondary leaflet’s blades were selected manually, and the angle formed between the blades and the main vein was measured. A Statistical engineering program was used to identify the principal morphology characteristics of the leaf, by means of Principal component analysis (PCA. Mathematical models were developed based on the principal component values and leaflets position to determine the plants age and state. Results showed all model have coefficient of correlation higher than 0.99 indicating acceptable accuracy.

  6. Multi-modal homing in sea turtles: modeling dual use of geomagnetic and chemical cues in island-finding

    Directory of Open Access Journals (Sweden)

    Courtney S Endres

    2016-02-01

    Full Text Available Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1 initiate a search strategy; or (2 follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.

  7. WE-D-9A-04: Improving Multi-Modality Image Registration Using Edge-Based Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Tyagi, N; Veeraraghavan, H; Deasy, J [Medical Physics Department, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Multi-modality deformable image registration (DIR) for head and neck (HN) radiotherapy is difficult, particularly when matching computed tomography (CT) scans with magnetic resonance imaging (MRI) scans. We hypothesized that the ‘shared information’ between images of different modalities was to be found in some form of edge-based transformation, and that novel edge-based DIR methods might outperform standard DIR methods. Methods: We propose a novel method that combines gray-scale edge-based morphology and mutual information (MI) in two stages. In the first step, we applied a modification of a previously published mathematical morphology method as an efficient gray scale edge estimator, with denoising function. The results were fed into a MI-based solver (plastimatch). The method was tested on 5 HN patients with pretreatment CT and MR datasets and associated follow-up weekly MR scans. The followup MRs showed significant regression in tumor and normal structure volumes as compared to the pretreatment MRs. The MR images used in this study were obtained using fast spin echo based T2w images with a 1 mm isotropic resolution and FOV matching the CT scan. Results: In all cases, the novel edge-based registration method provided better registration quality than MI-based DIR using the original CT and MRI images. For example, the mismatch in carotid arteries was reduced from 3–5 mm to within 2 mm. The novel edge-based method with different registration regulation parameters did not show any distorted deformations as compared to the non-realistic deformations resulting from MI on the original images. Processing time was 1.3 to 2 times shorter (edge vs. non-edge). In general, we observed quality improvement and significant calculation time reduction with the new method. Conclusion: Transforming images to an ‘edge-space,’ if designed appropriately, greatly increases the speed and accuracy of DIR.

  8. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    Directory of Open Access Journals (Sweden)

    Zhou J

    2015-07-01

    Full Text Available Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. Keywords: catheter technologies, catheter reconstruction, electromagnetic tracking, hypofractionated high dose rate treatment, accelerated partial breast irradiation

  9. Reducing the Human Burden of Breast Cancer: Advanced Radiation Therapy Yields Improved Treatment Outcomes.

    Science.gov (United States)

    Currey, Adam D; Bergom, Carmen; Kelly, Tracy R; Wilson, J Frank

    2015-01-01

    Radiation therapy is an important modality in the treatment of patients with breast cancer. While its efficacy in the treatment of breast cancer was known shortly after the discovery of x-rays, significant advances in radiation delivery over the past 20 years have resulted in improved patient outcomes. With the development of improved systemic therapy, optimizing local control has become increasingly important and has been shown to improve survival. Better understanding of the magnitude of treatment benefit, as well as patient and biological factors that confer an increased recurrence risk, have allowed radiation oncologists to better tailor treatment decisions to individual patients. Furthermore, significant technological advances have occurred that have reduced the acute and long-term toxicity of radiation treatment. These advances continue to reduce the human burden of breast cancer. It is important for radiation oncologists and nonradiation oncologists to understand these advances, so that patients are appropriately educated about the risks and benefits of this important treatment modality.

  10. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  11. Overview of multi-modal imaging technology and its development%多模式成像技术概述以及研究进展

    Institute of Scientific and Technical Information of China (English)

    王鑫; 刘飞; 李明泽; 刘欣; 白净

    2010-01-01

    Over the past several decades, medical imaging technology has developed rapidly and got wide applications. However, there is no one single imaging model suitable for all the clinical applications in the existing imaging technologies, such as X-CT, PET, SPECT, MRI, ultrasound, optical imaging and so on. Each one of them has its advantage and they can complement others, which brings on the development of the multi-modal imaging technology. This review gives introduction of the development of multi-modal imaging technology. Then,developments of systems, details of techniques and clinical applications are introduced in different terms including PET/CT, SPECT/CT, PET/MRI and so on. In the end, issues which should be considered, as well as the prospect of multi-modal imaging technology, are discussed.%在过去的几十年里,医学成像技术得到了迅速的发展以及广泛的应用.但目前存在的成像技术,如X-CT、PET、SPECT、MRI、超声以及光学成像等,没有一种成像方式能适用于所有方面的临床应用.不同成像技术各有所长,互相补充,这为多模式成像技术的发展提供了契机.首先介绍了多模式成像的历史和现状,然后介绍了PET/CT、SPECT/CT以及PET/MRI等系统的发展情况、技术细节以及临床应用,最后讨论了多模式成像过程中需要注意的问题,并展望了多模式成像技术的前景.

  12. Association between Gene Polymorphisms and Pain Sensitivity Assessed in a Multi-Modal Multi-Tissue Human Experimental Model - An Explorative Study

    DEFF Research Database (Denmark)

    Nielsen, Lecia Møller; Olesen, Anne Estrup; Sato, Hiroe;

    2016-01-01

    The genetic influence on sensitivity to noxious stimuli (pain sensitivity) remains controversial and needs further investigation. In the present study, the possible influence of polymorphisms in three opioid receptor (OPRM, OPRD and OPRK) genes and the catechol-O-methyltransferase (COMT) gene...... on pain sensitivity in healthy participants was investigated. Catechol-O-methyltransferase has an indirect effect on the mu opioid receptor by changing its activity through an altered endogenous ligand effect. Blood samples for genetic analysis were withdrawn in a multi-modal and multi-tissue experimental...

  13. Advances in the use of radiation for gynecologic cancers.

    Science.gov (United States)

    Viswanathan, Akila N

    2012-02-01

    Radiation plays an integral role in the management of gynecologic cancers. The specific regimen must be carefully coordinated based on the details of a patient's personal history and pathologic findings. An integrated multidisciplinary approach that merges pathology, radiology, medical oncology, gynecologic oncology, and radiation oncology results in a greater understanding and, ideally, better outcomes for women suffering from gynecologic cancer.

  14. Radiation Protection in Medical Physics : Proceedings of the NATO Advanced Study Institute on Radiation Protection in Medical Physics Activities

    CERN Document Server

    Lemoigne, Yves

    2011-01-01

    This book introduces the fundamental aspects of Radiation Protection in Medical Physics and covers three main themes: General Radiation Protection Principles; Radiobiology Principles; Radiation Protection in Hospital Medical Physics. Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advances in the field. Some issues specific to the individual techniques are also treated, e.g. calculation of patient dose as well as that of workers in hospital, optimisation of equipment used, shielding design of radiation facilities, radiation in oncology such as use of brachytherapy in gynecology or interventional procedures. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehensive introduction to the field as well as a reliable overview of the most recent developments.

  15. Radiation Mitigation Methods for Advanced Readout Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in the development of advanced instruments and instrument components for planetary science missions. Specifically, an area of importance in...

  16. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  17. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  18. Advanced Design Heat PumpRadiator for EVA Suits

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  19. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  20. Advanced Structural Nanomaterials for Astronaut Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Zyvex in cooperation with Prairie View A&M (CARR) and Boeing will develop a space radiation shielding multi-functional material that will provide high energy...

  1. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  2. ADVANCED RADIATION THEORY SUPPORT ANNUAL REPORT 2002, FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    J. DAVIS; J. APRUZESE; , Y. CHONG; R. CLARK; A. DASGUPTA; J. GIULIANI; P. KEPPLE; R. TERRY; J. THORNHILL; A. VELIKOVICH

    2003-05-01

    Z-PINCH PHYSICS RADIATION FROM WIRE ARRAYS. This report describes the theory support of DTRA's Plasma Radiation Source (PRS) program carried out by NRL's Radiation Hydrodynamics Branch (Code 6720) in FY 2002. Included is work called for in DTRA MIPR 02-2045M - ''Plasma Radiation Theory Support'' and in DOE's Interagency Agreement DE-AI03-02SF22562 - ''Spectroscopic and Plasma Theory Support for Sandia National Laboratories High Energy Density Physics Campaign''. Some of this year's work was presented at the Dense Z-Pinches 5th International Conference held June 23-28 in Albuquerque, New Mexico. A common theme of many of these presentations was a demonstration of the importance of correctly treating the radiation physics for simulating Plasma Radiation Source (PRS) load behavior and diagnosing load properties, e.g, stagnation temperatures and densities. These presentations are published in the AIP Conference Proceedings and, for reference, they are included in Section 1 of this report. Rather than describe each of these papers in the Executive Summary, they refer to the abstracts that accompany each paper. As a testament to the level of involvement and expertise that the Branch brings to DTRA as well as the general Z-Pinch community, eight first-authored presentations were contributed at this conference as well as a Plenary and an Invited Talk. The remaining four sections of this report discuss subjects either not presented at the conference or requiring more space than allotted in the Proceedings.

  3. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  4. Advancements in internationally accepted standards for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, H. IV; Derr, D.D. (Department of Agriculture, Washington, DC (United States)); Vehar, D.W. (Sandia National Labs., Albuquerque, NM (United States))

    Subcommittees of the American Society for Testing and Materials (ASTM) are developing standards on various aspects of radiation processing. Nine standards on how to select and calibrate dosimeters, where to put them, how many to use, and how to use individual types of dosimeter systems have been published. The group is also developing standards on how to use gamma, electron beam, and X-ray facilities for radiation processing, and a standard on how to treat dose uncertainties. Efforts are underway to promote inclusion of these standards into procedures now being developed by government agencies and by international groups such as the United Nations' International Consultative Group on Food Irradiation (ICGFI) in order to harmonize regulations and help avoid trade barriers. Standards on good irradiation practices for meat and poultry and for fresh fruits, and for the irradiation of seafood and spices have been developed. These food-related standards are based on practices previously published by ICGFI. Standards for determining doses for radiation hardness testing of electronics have been developed. Standards on the Fricke and TLD dosimetry systems are equally useful in other radiation processing applications. (Author).

  5. 基于移动平台的多重生物识别系统%MULTI-MODAL BIOMETRIC AUTHENTICATION SYSTEM BASED ON MOBILE PLATFORM

    Institute of Scientific and Technical Information of China (English)

    黄轩; 范京晔

    2015-01-01

    随着智能手机在人们日常生活中的广泛使用,移动端的信息安全问题已经不容忽视. 提出一套基于移动端的多重生物特征识别系统,定义多重安全等级,并使用输入习惯识别、脸部识别、说话人身份识别三种生物识别技术取代传统的密码技术来识别手机用户的身份. 实验表明该系统在面对低安全需求时可以提供方便快捷的识别服务;而在高安全等级时,可以实现良好的安全性(最高安全等级错误接受率为0.014%). 相比传统的移动识别模式,该系统不仅更加智能,而且提高了移动身份识别的安全性和实用性.%With the extensive use of smartphones in people's daily life, the information security problem in mobile terminals should no lon-ger be overlooked.This paper presents a mobile terminals-based multi-modal biometric authentication system, it defines multi-level security grade and uses three kinds of biometric recognition technologies, the typing behaviour recognition, the face recognition and the speaker identity recognition, to replace traditional cryptography to authenticate the identity of mobile phone users.Experiments show that the multi-modal authentication system is able to provide convenient and rapid authentication services at low security level.While the security level is high, the system can realise good security performance (with highest security grade of false acceptance rate 0.014%).Compared with tradi-tional mobile authentication model, the proposed multi-modal system is more intelligent, and raises the security and practicability of mobile identity authentication.

  6. Establishment of Research Infrastructure for National Advanced Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Il Hiun; Byun, Myung Woo; Jeong, Il Yun; and others

    2007-07-15

    Construction of fundamental analysis system for RT/RFT advancement and pilot scale laboratory/facility for industry support and Assembly/installation of 30 MeV cyclotron for RI production and research utilizing positron beam, and construction of /distribution system for industrial and medical purpose were carried out for fast settlement for research environment of ARTI (a Jeongeup branch of KAERI)

  7. Reducing Toxicity of Radiation Treatment of Advanced Prostate Cancer

    Science.gov (United States)

    2015-10-01

    and Aggarwal, B.B. 2006. A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic... inhibiting recruitment of myeloid cells obviates radiation protection of normal tissues by RTA 408. Others described that effects on myeloid cells also...underlie tumor growth inhibition by synthetic triterpenoids. This circumstance raises the interesting perspective of a potential ‘convergent’ phenotype

  8. Multi-regional local anesthetic infiltration during laparoscopic cholecystectomy in patients receiving prophylactic multi-modal analgesia: a randomized, double-blinded, placebo-controlled study

    DEFF Research Database (Denmark)

    Bisgaard, T; Klarskov, B; Kristiansen, V B;

    1999-01-01

    Pain is the dominant complaint after laparoscopic cholecystectomy. No study has examined the combined effects of a somato-visceral blockade during laparoscopic cholecystectomy. Therefore, we investigated the effects of a somato-visceral local anesthetic blockade on pain and nausea in patients...... undergoing elective laparoscopic cholecystectomy. In addition, all patients received multi-modal prophylactic analgesic treatment. Fifty-eight patients were randomized to receive a total of 286 mg (66 mL) ropivacaine or 66 mL saline via periportal and intraperitoneal infiltration. During the first 3...... postoperative h, the use of morphine and antiemetics was registered, and pain and nausea were rated hourly. Daily pain intensity, pain localization, and supplemental analgesic consumption were registered the first postoperative week. Ropivacaine reduced overall pain the first two hours and incisional pain...

  9. Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Kenichi eOishi

    2011-08-01

    Full Text Available Background: Alterations of the gray and white matter have been identified in Alzheimer’s disease (AD by structural MRI and diffusion tensor imaging (DTI. However, whether the combination of these modalities could increase the diagnostic performance is unknown.Methods: Participants included 19 AD patients, 22 amnestic mild cognitive impairment (aMCI patients, and 22 cognitively normal elderly (NC. The aMCI group was further divided into an aMCI-converter group (converted to AD dementia within three years, and an aMCI-stable group who did not convert in this time period. A T1-weighted image, a T2 map, and a DTI of each participant were normalized, and voxel-based comparisons between AD and NC groups were performed. Regions-of-interest, which defined the areas with significant differences between AD and NC, were created for each modality and named disease-specific spatial filters (DSF. Linear discriminant analysis was used to optimize the combination of multiple MRI measurements extracted by DSF to effectively differentiate AD from NC. The resultant DSF and the discriminant function were applied to the aMCI group to investigate the power to differentiate the aMCI-converters from the aMCI-stable patients. Results: The multi-modal approach with AD-specific filters led to a predictive model with an area under the receiver operating characteristic curve (AUC of 0.93, in differentiating aMCI-converters from aMCI-stable patients. This AUC was better than that of a single-contrast-based approach, such as T1-based morphometry or diffusion anisotropy analysis. Conclusion: The multi-modal approach has the potential to increase the value of MRI in predicting conversion from aMCI to AD.

  10. Greater default-mode network abnormalities compared to high order visual processing systems in amnestic mild cognitive impairment: an integrated multi-modal MRI study.

    Science.gov (United States)

    Sala-Llonch, Roser; Bosch, Beatriz; Arenaza-Urquijo, Eider M; Rami, Lorena; Bargalló, Núria; Junqué, Carme; Molinuevo, José-Luis; Bartrés-Faz, David

    2010-01-01

    We conducted an integrated multi-modal magnetic resonance imaging (MRI) study based on functional MRI (fMRI) data during a complex but cognitively preserved visual task in 15 amnestic mild cognitive impairment (a-MCI) patients and 15 Healthy Elders (HE). Independent Component Analysis of fMRI data identified a functional network containing an Activation Task Related Pattern (ATRP), including regions of the dorsal and ventral visual stream, and a Deactivation Task Related Pattern network (DTRP), with high spatial correspondence with the default-mode network (DMN). Gray matter (GM) volumes of the underlying ATRP and DTRP cortical areas were measured, and probabilistic tractography (based on diffusion MRI) identified fiber pathways within each functional network. For the ATRP network, a-MCI patients exhibited increased fMRI responses in inferior-ventral visual areas, possibly reflecting compensatory activations for more compromised dorsal regions. However, no significant GM or white matter group differences were observed within the ATRP network. For the DTRP/DMN, a-MCI showed deactivation deficits and reduced GM volumes in the posterior cingulate/precuneus, excessive deactivations in the inferior parietal lobe, and less fiber tract integrity in the cingulate bundles. Task performance correlated with DTRP-functionality in the HE group. Besides allowing the identification of functional reorganizations in the cortical network directly processing the task-stimuli, these findings highlight the importance of conducting integrated multi-modal MRI studies in MCI based on spared cognitive domains in order to identify functional abnormalities in critical areas of the DMN and their precise anatomical substrates. These latter findings may reflect early neuroimaging biomarkers in dementia.

  11. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Busca, P., E-mail: busca@elet.polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Fiorini, C., E-mail: carlo.fiorini@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Butt, A.D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Nemeth, G.; Major, P. [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Erlandsson, K. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Hutton, B.F. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2014-01-11

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity. -- Highlights: • We introduce INSERT, a new multi-modality SPECT/MRI instrument. • We propose two possible photodetectors (SDD, SiPM) for the scintillators readout. • We show possible results for INSERT, based on simulations.

  12. Study protocol: a randomised controlled trial of the effects of a multi-modal exercise program on cognition and physical functioning in older women

    Directory of Open Access Journals (Sweden)

    Vaughan Sue

    2012-09-01

    Full Text Available Abstract Background Intervention studies testing the efficacy of cardiorespiratory exercise have shown some promise in terms of improving cognitive function in later life. Recent developments suggest that a multi-modal exercise intervention that includes motor as well as physical training and requires sustained attention and concentration, may better elicit the actual potency of exercise to enhance cognitive performance. This study will test the effect of a multi-modal exercise program, for older women, on cognitive and physical functioning. Methods/design This randomised controlled trial involves community dwelling women, without cognitive impairment, aged 65–75 years. Participants are randomised to exercise intervention or non-exercise control groups, for 16 weeks. The intervention consists of twice weekly, 60 minute, exercise classes incorporating aerobic, strength, balance, flexibility, co-ordination and agility training. Primary outcomes are measures of cognitive function and secondary outcomes include physical functioning and a neurocognitive biomarker (brain derived neurotrophic factor. Measures are taken at baseline and 16 weeks later and qualitative data related to the experience and acceptability of the program are collected from a sub-sample of the intervention group. Discussion If this randomised controlled trial demonstrates that multimodal exercise (that includes motor fitness training can improve cognitive performance in later life, the benefits will be two-fold. First, an inexpensive, effective strategy will have been developed that could ameliorate the increased prevalence of age-related cognitive impairment predicted to accompany population ageing. Second, more robust evidence will have been provided about the mechanisms that link exercise to cognitive improvement allowing future research to be better focused and potentially more productive. Trial registration Australian and New Zealand Clinical Trial Registration Number

  13. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  14. Advanced Computational Methods for Thermal Radiative Heat Transfer.

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  15. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    Science.gov (United States)

    Fleischman, G. L.; Tanzer, H. J.

    1985-08-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  16. Advanced Computational Methods for Thermal Radiative Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.,

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  17. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices

    Science.gov (United States)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang

    2016-12-01

    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  18. Review of advanced catheter technologies in radiation oncology brachytherapy procedures.

    Science.gov (United States)

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented.

  19. Conceptualisation of the characteristics of advanced practitioners in the medical radiation professions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tony [University of Newcastle Department of Rural Health, Taree, New South Wales (Australia); Harris, Jillian [Crown Princess Mary Cancer Centre, Westmead, Sydney, New South Wales (Australia); Woznitza, Nick [Homerton University Hospital and School of Allied Health Professions, Canterbury Christ Church University, Canterbury (Australia); Maresse, Sharon [Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia (Australia); Sale, Charlotte [School of Medical Science, RMIT University, Melbourne, Victoria (Australia); University of Newcastle Department of Rural Health, Taree, New South Wales (Australia)

    2015-09-15

    Professions grapple with defining advanced practice and the characteristics of advanced practitioners. In nursing and allied health, advanced practice has been defined as ‘a state of professional maturity in which the individual demonstrates a level of integrated knowledge, skill and competence that challenges the accepted boundaries of practice and pioneers new developments in health care’. Evolution of advanced practice in Australia has been slower than in the United Kingdom, mainly due to differences in demography, the health system and industrial relations. This article describes a conceptual model of advanced practitioner characteristics in the medical radiation professions, taking into account experiences in other countries and professions. Using the CanMEDS framework, the model includes foundation characteristics of communication, collaboration and professionalism, which are fundamental to advanced clinical practice. Gateway characteristics are: clinical expertise, with high level competency in a particular area of clinical practice; scholarship and teaching, including a masters qualification and knowledge dissemination through educating others; and evidence-based practice, with judgements made on the basis of research findings, including research by the advanced practitioner. The pinnacle of advanced practice is clinical leadership, where the practitioner has a central role in the health care team, with the capacity to influence decision making and advocate for others, including patients. The proposed conceptual model is robust yet adaptable in defining generic characteristics of advanced practitioners, no matter their clinical specialty. The advanced practice roles that evolve to meet future health service demand must focus on the needs of patients, local populations and communities.

  20. Radiative properties of advanced spacecraft heat shield materials

    Science.gov (United States)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  1. Supportive care in early rehabilitation for advanced-stage radiated head and neck cancer patients

    NARCIS (Netherlands)

    Leeuw, J.A.M. de; Berg, M.G. van den; Achterberg, T. van; Merkx, M.A.W.

    2013-01-01

    Objective To investigate the health-related quality of life (HRQoL) and supportive follow-up care needs 1 month posttreatment for patients with advanced-stage (stage III or IV) radiated head and neck cancer (HNC) who were treated with curative intent. Study Design An exploratory, descriptive analysi

  2. The Radiation Belt Storm Probes Mission: Advancing Our Understanding of the Earth's Radiation Belts

    Science.gov (United States)

    Sibeck, David; Kanekal, Shrikanth; Kessel, Ramona; Fox, Nicola; Mauk, Barry

    2012-01-01

    We describe NASA's Radiation Belt Storm Probe (RBSP) mission, whose primary science objective is to understand, ideally to the point of predictability, the dynamics of relativistic electrons and penetrating ions in the Earth's radiation belts resulting from variable solar activity. The overarching scientific questions addressed include: 1. the physical processes that produce radiation belt enhancement events, 2. the dominant mechanisms for relativistic electron loss, and 3. how the ring current and other geomagnetic processes affect radiation belt behavior. The RBSP mission comprises two spacecraft which will be launched during Fall 2012 into low inclination lapping equatorial orbits. The orbit periods are about 9 hours, with perigee altitudes and apogee radial distances of 600 km and 5.8 RE respectively. During the two-year primary mission, the spacecraft orbits precess once around the Earth and lap each other twice in each local time quadrant. The spacecraft are each equipped with identical comprehensive instrumentation packages to measure, electrons, ions and wave electric and magnetic fields. We provide an overview of the RBSP mission, onboard instrumentation and science prospects and invite scientific collaboration.

  3. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jonathan [University of Hawaii, John A. Burns School of Medicine, Honolulu, Hawaii (United States); Xu, Beibei [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Yeung, Heidi N.; Roeland, Eric J. [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Division of Palliative Medicine, Department of Internal Medicine, University of California San Diego, La Jolla, California (United States); Martinez, Maria Elena [Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mell, Loren K. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States); Murphy, James D., E-mail: j2murphy@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States); Moores Cancer Center, University of California San Diego, La Jolla, California (United States)

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  4. NSAID enteropathy: appearance at CT and MR enterography in the age of multi-modality imaging and treatment.

    Science.gov (United States)

    Frye, Judson M; Hansel, Stephanie L; Dolan, Steven G; Fidler, Jeff L; Song, Louis M Wong Kee; Barlow, John M; Smyrk, Tom C; Flicek, Kristina T; Hara, Amy K; Bruining, David H; Fletcher, Joel G

    2015-06-01

    CT and MR enterography and capsule endoscopy are increasingly used as routine diagnostic tests for patients with potential small bowel disorders and obscure gastrointestinal bleeding. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used drugs that disrupt prostaglandin synthesis and result in a variety of localized complications within the small bowel ranging from ulcer formation to characteristic circumferential strictures, or diaphragms. NSAID enteropathy encompasses this spectrum of acute and chronic inflammatory sequelae, and is associated with typical findings at capsule endoscopy and surgery. Herein we review the typical clinical presentation of NSAID enteropathy, in addition to its endoscopic appearances, focusing on imaging findings at cross-sectional enterography. Multiple, short-segment strictures are the hallmarks of imaging diagnosis. Strictures may have minimal hyperenhancement or wall thickening, but these findings are typically symmetric and circumferential with respect to the bowel lumen. Multifocal Crohn's strictures, and occasionally radiation-induced strictures or adhesions, will mimic NSAID diaphragms. Multi-phase or multi-sequence imaging at CT and MR enterography increase diagnostic confidence in stricture presence. Strategies for subsequent workup and therapy after enterography are also discussed. Given the frequent use of NSAIDs and typical appearance of these strictures, knowledge of characteristic imaging findings can be particularly useful when evaluating patients with anemia and recurrent small bowel obstruction.

  5. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.

    Science.gov (United States)

    Park, Yong Il; Lee, Kang Taek; Suh, Yung Doug; Hyeon, Taeghwan

    2015-03-21

    Lanthanide-doped upconverting nanoparticles (UCNPs) have recently attracted enormous attention in the field of biological imaging owing to their unique optical properties: (1) efficient upconversion photoluminescence, which is intense enough to be detected at the single-particle level with a (nonscanning) wide-field microscope setup equipped with a continuous wave (CW) near-infrared (NIR) laser (980 nm), and (2) resistance to photoblinking and photobleaching. Moreover, the use of NIR excitation minimizes adverse photoinduced effects such as cellular photodamage and the autofluorescence background. Finally, the cytotoxicity of UCNPs is much lower than that of other nanoparticle systems. All these advantages can be exploited simultaneously without any conflicts, which enables the establishment of a novel UCNP-based platform for wide-field two-photon microscopy. UCNPs are also useful for multimodal in vivo imaging because simple variations in the composition of the lattice atoms and dopant ions integrated into the particles can be easily implemented, yielding various distinct biomedical activities relevant to magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). These multiple functions embedded in a single type of UCNPs play a crucial role in precise disease diagnosis. The application of UCNPs is extended to therapeutic fields such as photodynamic and photothermal cancer therapies through advanced surface conjugation schemes.

  6. Does Radiation Have a Role in Advanced Stage Hodgkin's or Non-Hodgkin Lymphoma?

    DEFF Research Database (Denmark)

    Specht, Lena

    2016-01-01

    OPINION STATEMENT: Radiation therapy (RT) is one of the most effective agents available in the treatment of lymphomas. However, it is a local treatment, and today, with systemic treatments assuming a primary role for induction of response, RT is primarily used for consolidation. For advanced stage...... lymphomas, the indications for the use of RT have been questioned and debated, and proper randomized evidence is sparse. RT has significant long-term side effects, and the very extended RT fields of the past yielded unacceptable toxicity in many patients. Modern advanced imaging and conformal RT techniques....... In advanced Hodgkin lymphoma (HL), RT to residual disease and/or initial bulk benefits some patients, depending on the chemotherapy regimen used. The more intensive the chemotherapy regimen, the fewer patients benefit from RT. In advanced aggressive non-Hodgkin lymphoma (NHL), most of the evidence comes from...

  7. A fully automated multi-modal computer aided diagnosis approach to coronary calcium scoring of MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-03-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  8. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  9. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    Energy Technology Data Exchange (ETDEWEB)

    Iacono, Michael J. [Atmospheric and Environmental Research, Lexington, MA (United States)

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  10. Advanced Multifluid and Collisional-Radiative Models for Laser-Plasma Interaction (Briefing Charts)

    Science.gov (United States)

    2014-12-01

    direct control of computational cost in particle methods • Future Work: Test merge in non - Maxwellian laser plasma test case Control Merge & Split...shocks Current focus: Develop advanced multiscale  algorithms for plasma M&S  in highly  non ‐equilibrium  condition and with  collisional‐radiative kinetics...Radiative (CR) model • Non -equilibrium modeling of the atomic state distribution function (ASDF) – Detailed state-to-state model of atomic

  11. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Science.gov (United States)

    Busca, P.; Fiorini, C.; Butt, A. D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P.; Nemeth, G.; Major, P.; Erlandsson, K.; Hutton, B. F.

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity.

  12. Final report for LDRD project 11-0029 : high-interest event detection in large-scale multi-modal data sets : proof of concept.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson

    2011-09-01

    Events of interest to data analysts are sometimes difficult to characterize in detail. Rather, they consist of anomalies, events that are unpredicted, unusual, or otherwise incongruent. The purpose of this LDRD was to test the hypothesis that a biologically-inspired anomaly detection algorithm could be used to detect contextual, multi-modal anomalies. There currently is no other solution to this problem, but the existence of a solution would have a great national security impact. The technical focus of this research was the application of a brain-emulating cognition and control architecture (BECCA) to the problem of anomaly detection. One aspect of BECCA in particular was discovered to be critical to improved anomaly detection capabilities: it's feature creator. During the course of this project the feature creator was developed and tested against multiple data types. Development direction was drawn from psychological and neurophysiological measurements. Major technical achievements include the creation of hierarchical feature sets created from both audio and imagery data.

  13. Evidence-based development and first usability testing of a social serious game based multi-modal system for early screening for atypical socio-cognitive development.

    Science.gov (United States)

    Gyori, Miklos; Borsos, Zsófia; Stefanik, Krisztina

    2015-01-01

    At current, screening for, and diagnosis of, autism spectrum disorders (ASD) are based on purely behavioral data; established screening tools rely on human observation and ratings of relevant behaviors. The research and development project in the focus of this paper is aimed at designing, creating and evaluating a social serious game based multi-modal, interactive software system for screening for high functioning cases of ASD at kindergarten age. The aims of this paper are (1) to summarize the evidence-based design process and (2) to present results from the first usability test of the system. Game topic, candidate responses, and candidate game contents were identified via an iterative literature review. On this basis, the 1st partial prototype of the fully playable game has been created, with complete data recording functionality but without the decision making component. A first usability test was carried out on this prototype (n=13). Overall results were unambiguously promising. Although sporadic difficulties in, and slightly negative attitudes towards, using the game occasionally arose, these were confined to non-target-group children only. The next steps of development include (1) completing the game design; (2) carrying out first large-n field test; (3) creating the first prototype of the decision making component.

  14. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  15. Multi-modal assessment of on-road demand of voice and manual phone calling and voice navigation entry across two embedded vehicle systems.

    Science.gov (United States)

    Mehler, Bruce; Kidd, David; Reimer, Bryan; Reagan, Ian; Dobres, Jonathan; McCartt, Anne

    2016-03-01

    One purpose of integrating voice interfaces into embedded vehicle systems is to reduce drivers' visual and manual distractions with 'infotainment' technologies. However, there is scant research on actual benefits in production vehicles or how different interface designs affect attentional demands. Driving performance, visual engagement, and indices of workload (heart rate, skin conductance, subjective ratings) were assessed in 80 drivers randomly assigned to drive a 2013 Chevrolet Equinox or Volvo XC60. The Chevrolet MyLink system allowed completing tasks with one voice command, while the Volvo Sensus required multiple commands to navigate the menu structure. When calling a phone contact, both voice systems reduced visual demand relative to the visual-manual interfaces, with reductions for drivers in the Equinox being greater. The Equinox 'one-shot' voice command showed advantages during contact calling but had significantly higher error rates than Sensus during destination address entry. For both secondary tasks, neither voice interface entirely eliminated visual demand. Practitioner Summary: The findings reinforce the observation that most, if not all, automotive auditory-vocal interfaces are multi-modal interfaces in which the full range of potential demands (auditory, vocal, visual, manipulative, cognitive, tactile, etc.) need to be considered in developing optimal implementations and evaluating drivers' interaction with the systems. Social Media: In-vehicle voice-interfaces can reduce visual demand but do not eliminate it and all types of demand need to be taken into account in a comprehensive evaluation.

  16. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation

    Science.gov (United States)

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-01

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  17. Synthesis of advanced aluminide intermetallic coatings by low-energy Al-ion radiation.

    Science.gov (United States)

    Shen, Mingli; Gu, Yan; Zhao, Panpan; Zhu, Shenglong; Wang, Fuhui

    2016-05-19

    Metals that work at high temperatures (for instance, superalloys in gas-turbines) depend on thermally grown oxide (TGO, commonly alumina) to withstand corrosion attack. Nickel Aluminide (NiAl) as one superior alumina TGO former plays an important role in protective coatings for turbine blades in gas-turbine engines used for aircraft propulsion and power generation. Lowering TGO growth rate is essentially favored for offering sustainable protection, especially in thermal barrier coatings (TBC). However, it can only be achieved currently by a strategy of adding the third element (Pt or reactive elements) into NiAl during traditional diffusion- or deposition-based synthesis of the coating. Here we present a highly flexible Al-ion radiation-based synthesis of advanced NiAl coatings, achieving low TGO growth rate without relying on the third element addition. Our results expand the strategy for lowering TGO growth rate and demonstrate potentials for ion radiation in advancing materials synthesis.

  18. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    Science.gov (United States)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  19. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States); Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 26504 (Greece); McNutt, Todd R. [Department of Radiation Oncology and Molecular Radiation Science, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Mutic, Sasa [Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri 63110 (United States)

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  20. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  1. 基于多模态话语分析的英语写作教学模式研究%Research on English Writing Teaching Model based Multi-modal Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    张萍; 吴利琴

    2014-01-01

    Multi-modal discourses, such as pictures, sounds, are widely applied in modern society. How to interpret and utilize the multi-modal discourses in various ifelds has come into focus. This paper ifrstly introduces the origin and development of multi-modal discourse theory, and then describes its application in English writing teaching class in an attempt to improve students’ writing skill.%在传统写作中,教师更多注重培养学生的文章组织结构及语言表达能力,而随着社会信息化水平的不断提高,多模态话语逐渐被现代社会的人们有效应用。首先介绍多模态话语分析理论的内容与研究现状,接着描述其在英语写作课堂教学中的应用,以期改善英语写作课堂效果。

  2. Soft, fortified ice-cream for head and neck cancer patients: a useful first step in nutritional and swallowing difficulties associated with multi-modal management.

    Science.gov (United States)

    Trinidade, Aaron; Martinelli, Katrina; Andreou, Zenon; Kothari, Prasad

    2012-04-01

    Patients with head and neck cancer have complex swallowing and nutritional concerns. Most patients are malnourished, and treatment modalities within the aerodigestive tract have profound effects on future swallowing and nutrition. The objective of this study is to investigate whether the introduction of fortified soft ice-cream to post-operative head and neck cancer patients would increase compliance with oral-feeding regimes. Using a questionnaire study, an ice-cream machine that produces fortified soft ice-cream was introduced onto our ward, and 30 patients were asked to fill out questionnaires based on their experience in addition to their oral-feeding regime. Results indicate that overall patient satisfaction and compliance with oral-feeding regimes increased: 77% felt that the taste was excellent and also felt that it was easy to eat; 60% felt that it eased the symptoms associated with their symptoms, in particular its cold temperature. We conclude from the results that the inability of patients undergoing multi-modal treatment for upper aerodigestive tract cancer to enjoy normal foods and its effects on their quality of life is underestimated. Providing a food to that is palatable, familiar and acceptable as it is safe and nutritionally sound can increase compliance with oral-feeding regimes. The ice-cream was safe to use in the early post-operative period, especially soothing in patients undergoing upper aerodigestive radiotherapy and high in protein and calorific content. Our practice may have wider benefits, including patients with oral and oropharyngeal infections, the elderly and patients with neurological dysphagia resulting from stroke.

  3. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification.

    Science.gov (United States)

    Liu, Feng; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2014-01-01

    Previous studies have demonstrated that the use of integrated information from multi-modalities could significantly improve diagnosis of Alzheimer's Disease (AD). However, feature selection, which is one of the most important steps in classification, is typically performed separately for each modality, which ignores the potentially strong inter-modality relationship within each subject. Recent emergence of multi-task learning approach makes the joint feature selection from different modalities possible. However, joint feature selection may unfortunately overlook different yet complementary information conveyed by different modalities. We propose a novel multi-task feature selection method to preserve the complementary inter-modality information. Specifically, we treat feature selection from each modality as a separate task and further impose a constraint for preserving the inter-modality relationship, besides separately enforcing the sparseness of the selected features from each modality. After feature selection, a multi-kernel support vector machine (SVM) is further used to integrate the selected features from each modality for classification. Our method is evaluated using the baseline PET and MRI images of subjects obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our method achieves a good performance, with an accuracy of 94.37% and an area under the ROC curve (AUC) of 0.9724 for AD identification, and also an accuracy of 78.80% and an AUC of 0.8284 for mild cognitive impairment (MCI) identification. Moreover, the proposed method achieves an accuracy of 67.83% and an AUC of 0.6957 for separating between MCI converters and MCI non-converters (to AD). These performances demonstrate the superiority of the proposed method over the state-of-the-art classification methods.

  4. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation

    Directory of Open Access Journals (Sweden)

    Danny Eytan

    2016-01-01

    Full Text Available Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory, and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage

  5. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  6. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Science.gov (United States)

    Pacak, Christina A; Hammer, Peter E; MacKay, Allison A; Dowd, Rory P; Wang, Kai-Roy; Masuzawa, Akihiro; Sill, Bjoern; McCully, James D; Cowan, Douglas B

    2014-01-01

    The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  7. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yosep; Choi, Junhyun [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of); Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Kim, Hyunjung, E-mail: kshjkim@jbnu.ac.kr [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of)

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despite the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.

  8. The Influence of Mid-Event Deception on Psychophysiological Status and Pacing Can Persist across Consecutive Disciplines and Enhance Self-paced Multi-modal Endurance Performance

    Science.gov (United States)

    Taylor, Daniel; Smith, Mark F.

    2017-01-01

    Purpose: To examine the effects of deceptively aggressive bike pacing on performance, pacing, and associated physiological and perceptual responses during simulated sprint-distance triathlon. Methods: Ten non-elite, competitive male triathletes completed three simulated sprint-distance triathlons (0.75 km swim, 500 kJ bike, 5 km run), the first of which established personal best “baseline” performance (BL). During the remaining two trials athletes maintained a cycling power output 5% greater than BL, before completing the run as quickly as possible. However, participants were informed of this aggressive cycling strategy before and during only one of the two trials (HON). Prior to the alternate trial (DEC), participants were misinformed that cycling power output would equal that of BL, with on-screen feedback manipulated to reinforce this deception. Results: Compared to BL, a significantly faster run performance was observed following DEC cycling (p triathlon performance to be quicker during DEC (4339 ± 395 s) compared to HON (4356 ± 384 s), the only significant and almost certainly meaningful differences were between each of these trials and BL (4465 ± 420 s; p triathlon run. Conclusions: The present study is the first to show that mid-event pace deception can have a practically meaningful effect on multi-modal endurance performance, though the relative importance of different psychophysiological and emotional responses remains unclear. Whilst our findings support the view that some form of anticipatory “template” may be used by athletes to interpret levels of psychophysiological and emotional strain, and regulate exercise intensity accordingly, they would also suggest that individual constructs such as RPE and affect may be more loosely tied with pacing than previously suggested. PMID:28174540

  9. Intensity modulated radiation therapy and chemotherapy for locally advanced pancreatic cancer: Results of feasibility study

    Institute of Scientific and Technical Information of China (English)

    Yong-Rui Bai; Guo-Hua Wu; Wei-Jian Guo; Xu-Dong Wu; Yuan Yao; Yin Chen; Ren-Hua Zhou; Dong-Qin Lu

    2003-01-01

    AIM: To explore whether intensity modulated radiation therapy (IMRT) in combination with chemotherapy could increase radiation dose to gross tumor volume without severe acute radiation related toxicity by decreasing the dose to the surrounding normal tissue in patients with locally advanced pancreatic cancer.METHODS: Twenty-one patients with locally advanced pancreatic cancer were evaluated in this clinical trial,Patients would receive the dose of IMRT from 21Gy to 30Gy in 7 to 10 fractions within two weeks after conventional radiotherapy of 30Gy in 15 fractions over 3 weeks. The total escalation tumor dose would be 51, 54,57, 60Gy, respectively. 5-fluororacil (5-FU) or gemcitabine was given concurrently with radiotherapy during the treatment course.RESULTS: Sixteen patients who had completed the radiotherapy plan with doses of 51Gy (3 cases), 54Gy (3 cases), 57Gy (3 cases) and 60Gy (7 cases) were included for evaluation. The median levels of CA19-9 prior to and after radiotherapy were 716 U/ml and 255 U/ml respectively (P<0.001) in 13 patients who demonstrated high levels of CA19-9 before radiotherapy. Fourteen patients who suffered from pain could reduce at least 1/3-1/2 amount of analgesic intake and 5 among these patients got complete relief of pain. Ten patients improved in Kamofsky performance status (KPS). The median follow-up period was 8 months and one-year survival rate was 35 %. No patient suffered more than grade Ⅲ acute toxicities induced by radiotherapy.CONCLUSION: Sixty Gy in 25 fractions over 5 weeks with late course IMRT technique combined with concurrent 5-FU chemotherapy can provide a definitely palliative benefit with tolerable acute radiation related toxicity for patients with advanced pancreatic cancer.

  10. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    Energy Technology Data Exchange (ETDEWEB)

    Thorek, Daniel L.J., E-mail: dthorek1@jhmi.edu [Division of Nuclear Medicine, The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins School of Medicine, Baltimore, MD (United States); Kramer, Robin M. [Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center (MSKCC), Weill Cornell Medical College, The Rockefeller University, New York, NY (United States); Chen, Qing; Jeong, Jeho; Lupu, Mihaela E. [Department of Medical Physics, MSKCC, New York, NY (United States); Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve [Department of Medicine, MSKCC, New York, NY (United States); Ulmert, David [Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY (United States); Department of Surgery (Urology), Skåne University Hospital, Malmö (Sweden); Zanzonico, Pat; Deasy, Joseph O.; Humm, John L. [Department of Medical Physics, MSKCC, New York, NY (United States); Russell, James, E-mail: russellj@mskcc.org [Department of Medical Physics, MSKCC, New York, NY (United States)

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  11. A meta-analysis of neoadjuvant chemotherapy plus radiation in the treatment of locally advanced nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Xun He

    2015-01-01

    Conclusion: Neoadjuvant chemotherapy followed by radiation can decrease the risk of recurrence and metastasis but not improve the 5 years overall survival and 5 years disease free survival compared to radiotherapy alone in the patients with locally advanced nasopharyngeal carcinoma.

  12. Multi-Modalities Sensor Science

    Science.gov (United States)

    2015-02-28

    portable and high efficiency Raman testing system was developed to distinguish different types of avian influenza viruses. Figure1. SEM of Gold...Current Simultaneously,Physical Review Letters, Volume 113, Issue 20 6). Huilin Zhu, Yuebo Fan , Huan Guo, Dan Huang, and Sailing He, Reduced...enhancement with transformation optics (invited paper)," Progress In Electromagnetics Research, Vol. 146, 187-194, 2014. 8) H.Zhu, Y. Fan , H. Guo, D

  13. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  14. Advances in Studies of Cloud Overlap and Its Radiative Transfer in Climate Models

    Institute of Scientific and Technical Information of China (English)

    张华; 荆现文

    2016-01-01

    The latest advances in studies on the treatment of cloud overlap and its radiative transfer in global climate models are summarized. Developments with respect to this internationally challenging problem are described from aspects such as the design of cloud overlap assumptions, the realization of cloud overlap assumptions within climate models, and the data and methods used to obtain consistent observations of cloud overlap structure and radiative transfer in overlapping clouds. To date, there has been an appreciable level of achievement in studies on cloud overlap in climate models, demonstrated by the development of scientific assumptions (e.g., e-folding overlap) to describe cloud overlap, the invention and broad application of the fast radiative transfer method for overlapped clouds (Monte Carlo Independent Column Approximation), and the emergence of continuous 3D cloud satellite observation (e.g., CloudSat/CALIPSO) and cloud-resolving models, which provide numerous data valuable for the exact description of cloud overlap structure in climate models. However, present treatments of cloud overlap and its radiative transfer process are far from complete, and there remain many unsettled problems that need to be explored in the future.

  15. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    Science.gov (United States)

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  16. 机器海豚多模态游动CPG控制%CPG-based Multi-modal Swimming Control for Robotic Dolphin

    Institute of Scientific and Technical Information of China (English)

    汪明; 喻俊志; 谭民; 王会东; 李成栋

    2014-01-01

    Inspired by the extraordinary swimming skills of dolphins in the nature, robotic dolphin, which has potentially wide applications in military and civil domains, has attracted increased attention recently. However, it must have a special locomotion controller for a robotic dolphin to achieve abundant swimming modes. To solve this problem, a central pattern generation (CPG)-based locomotion controller has been proposed in this paper. The CPG locomotion model was set up by modeling weakly coupled oscillators, which well match between the CPGs and the joint configuration of the robotic dolphin. In addition, the development of a robotic prototype, the controller design, as well as the aquatic tests are detailed. The multi-modal control experiments, such as swimming forward, turning, and heaving, verify the effectiveness and practicality of the proposed CPG-based locomotion control method for the multi-joint robotic dolphin.%受自然界海豚超凡的水中游动技能启发,机器海豚在军事和民用上具有潜在的广泛应用前景,因此受到研究人员的极大关注。然而,要实现机器海豚在水中自如地机动游动,必须为机器海豚设计一个具有丰富游动技能的多模态控制器。为此,通过振荡器建模与分析、中枢模式发生器(Central pattern generation, CPG)与机器海豚关节配对、CPG 单元间耦合等环节建立了机器海豚的链式弱耦合CPG 运动控制模型,提出一种基于CPG 激发产生多模态振荡波形控制机器海豚运动的方法。详细阐述了机器海豚样机研制、控制器设计、运动控制实现与实验测试等内容。向前直游、转弯、浮潜等游动实验结果验证了所提出的机器海豚CPG运动控制方法的有效性和实用性。

  17. Multi-modal analysis of functional connectivity and cerebral blood flow reveals shared and unique effects of propofol in large-scale brain networks.

    Science.gov (United States)

    Qiu, Maolin; Scheinost, Dustin; Ramani, Ramachandran; Constable, R Todd

    2017-03-01

    Anesthesia-induced changes in functional connectivity and cerebral blow flow (CBF) in large-scale brain networks have emerged as key markers of reduced consciousness. However, studies of functional connectivity disagree on which large-scale networks are altered or preserved during anesthesia, making it difficult to find a consensus amount studies. Additionally, pharmacological alterations in CBF could amplify or occlude changes in connectivity due to the shared variance between CBF and connectivity. Here, we used data-driven connectivity methods and multi-modal imaging to investigate shared and unique neural correlates of reduced consciousness for connectivity in large-scale brain networks. Rs-fMRI and CBF data were collected from the same subjects during an awake and deep sedation condition induced by propofol. We measured whole-brain connectivity using the intrinsic connectivity distribution (ICD), a method not reliant on pre-defined seed regions, networks of interest, or connectivity thresholds. The shared and unique variance between connectivity and CBF were investigated. Finally, to account for shared variance, we present a novel extension to ICD that incorporates cerebral blood flow (CBF) as a scaling factor in the calculation of global connectivity, labeled CBF-adjusted ICD). We observed altered connectivity in multiple large-scale brain networks including the default mode (DMN), salience, visual, and motor networks and reduced CBF in the DMN, frontoparietal network, and thalamus. Regional connectivity and CBF were significantly correlated during both the awake and propofol condition. Nevertheless changes in connectivity and CBF between the awake and deep sedation condition were only significantly correlated in a subsystem of the DMN, suggesting that, while there is significant shared variance between the modalities, changes due to propofol are relatively unique. Similar, but less significant, results were observed in the CBF-adjusted ICD analysis, providing

  18. 基于免疫量子遗传算法的多峰函数寻优%Multi-modal function optimization based on immune quantum genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    徐雪松; 王四春

    2012-01-01

    针对多峰函数优化中的全局及局部寻优问题,提出了一种结合免疫克隆算子的量子遗传算法,给出了实现流程.该方法针对量子遗传算法在复杂连续函数优化中收敛速度慢、易陷入局部极值等缺点,采用免疫克隆操作及交叉策略提高抗体成熟力及亲和性,增强抗体群分布的多样性及稳定性,有效克服了量子遗传算法容易陷于局部最优及计算缓慢的不足.通过对多峰函数的全局寻优仿真实验,并与基本遗传算法、量子遗传算法的计算结果进行比较,结果表明在相同条件下,所提算法所需循环代数少,并且其鲁棒性高于普通量子遗传算法和遗传算法.%In order to balance the global optimization and local optimization in multi-modal function, an improved quantum genetic algorithm with immune operator was introduced. This algorithm included the idea of immune clonal, operation and cross strategy. Through this operator, the diversity of antibody and affinity maturation rate got enhanced. It not only overcame the flaw of the common quantum genetic algorithm which relapsed into local optimum result but also avoided the flaw of the common immune clone algorithm which calculated slowly. Having done the global optimization experiment on the multimodal function in the same condition, the result indicates that this algorithm can settle the problem of searching the global optimization result with less iteration, and is of more robust stability compared to common genetic algorithm and common quantum genetic algorithm.

  19. Treatment of advanced head and neck cancer: multiple daily dose fractionated radiation therapy and sequential multimodal treatment approach.

    Science.gov (United States)

    Nissenbaum, M; Browde, S; Bezwoda, W R; de Moor, N G; Derman, D P

    1984-01-01

    Fifty-eight patients with advanced head and neck cancer were entered into a randomised trial comparing chemotherapy (DDP + bleomycin) alone, multiple daily fractionated radiation therapy, and multimodality therapy consisting of chemotherapy plus multiple fractionated radiation therapy. Multimodal therapy gave a significantly higher response rate (69%) than either single-treatment modality. The use of a multiple daily dose fractionation allowed radiation therapy to be completed over 10 treatment days, and the addition of chemotherapy to the radiation treatment did not significantly increase toxicity. Patients receiving multimodal therapy also survived significantly longer (median 50 weeks) than those receiving single-modality therapy (median 24 weeks).

  20. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L [Stanford University, Stanford, CA (United States); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Li, R [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gated VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.

  1. Is interferon-α and retinoic acid combination along with radiation superior to chemo-radiation in the treatment of advanced carcinoma of cervix?

    Directory of Open Access Journals (Sweden)

    Basu Partha

    2006-01-01

    Full Text Available Locally advanced cervical cancers comprise a large majority of the gynecologic cancers in India and other developing countries. Concurrent chemo-radiation has improved the survival of high risk stage I and stage II cervical cancers. There is no evidence that the same survival benefit has been achieved with chemo-radiation in stage III and stage IV disease. Interferon-a and Retinoic acid have synergistic anti-proliferative activity. In combination with radiation, they substantially enhance the sensitivity of the squamous carcinoma cells to radiation. Based on these observations from the in vitro studies, a few clinical trials have evaluated the combination of interferon-a and Retinoic acid, concomitant with radiation, to treat cervical cancers. The results from these early trials were encouraging and the combination had minimal toxicities. However, till date, no phase III randomized controlled trial has been done to evaluate this therapeutic modality.

  2. Application of Multi-modal Transportation in U.S.Military Delivery-based Logistics%美军配送式物流中应用多式联运的研究

    Institute of Scientific and Technical Information of China (English)

    齐玉梅

    2012-01-01

    The paper first analyzes the application of multi-modal transportation in the distribution system of the U.S. army and then discusses the experience accumulated by the U.S. army in this practice from five aspects.%美军作为配送式后勤的先行者,在多式联运方面积累了丰富经验.首先分析了多式联运在美军配送体系中的作用,接着从5个方面论述了美军运用多式联运的实践经验.

  3. The Study of Multi-modal Transportation in the Light of“One Belt and One Road”%“一带一路”背景下我国海陆联运建设与发展

    Institute of Scientific and Technical Information of China (English)

    张滨; 黄波; 樊娉

    2015-01-01

    “一带一路”背景下,要实现互联互通,交通运输行业实际上起着基础和支撑作用,而将陆上丝绸之路和海上丝绸之路有效衔接的交通运输方式——海陆联运的建设与发展,必将成为“一带一路”战略的重要一环。目前,我国海陆联运在建设与发展过程中仍存在诸多问题,如码头基础设施与技术装备落后,海陆运输衔接困难,交通运输能力不足等。因此,应积极发展现代港口物流,规范多式联运市场,继续完善水陆交通网络,加快信息技术应用,完善相关法律法规,为“一带一路”战略的全面实施提供有力保障。%In the light of“One Belt and One Road”,the transportation industry should play the fundamental and supporting role in realizing the connectivity;and the construction and development of multi-modal transportation,which links the Overland Silk Road and Maritime Silk Road,will definitely become one of the important links in the strategy of“One Belt and One Road”. At present,there are still some problems with the construction and development of multi-modal transportation,such as the lagged behind dock infrastructure and technology and equipment,the difficult linkage in multi-modal transportation,and the insufficient capability of transportation. So,we should develop modern port logistics,standardize the market of multi-modal transportation,improve the water and land transportation network,speed up the application of information technology,perfect related laws and policies,and provide the powerful safeguard for the realization of“One Belt and One Road”.

  4. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    Science.gov (United States)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  5. Recent advances in stimulated radiation studies during radiowave heating the near earth space environment

    Science.gov (United States)

    Scales, W. A.

    2016-02-01

    Investigation of stimulated radiation, commonly known as stimulated electromagnetic emissions (SEE), produced by the interaction of high-power, high-frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980s. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE which exists in a frequency band of ±100 kHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Recent upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities in Alaska and Norway have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. An overview of several important new results associated with NSEE are discussed as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.

  6. Semiconductor Disk Lasers: Recent Advances in Generation of Yellow-Orange and Mid-IR Radiation

    Directory of Open Access Journals (Sweden)

    Mircea Guina

    2012-01-01

    Full Text Available We review the recent advances in the development of semiconductor disk lasers (SDLs producing yellow-orange and mid-IR radiation. In particular, we focus on presenting the fabrication challenges and characteristics of high-power GaInNAs- and GaSb-based gain mirrors. These two material systems have recently sparked a new wave of interest in developing SDLs for high-impact applications in medicine, spectroscopy, or astronomy. The dilute nitride (GaInNAs gain mirrors enable emission of more than 11 W of output power at a wavelength range of 1180–1200 nm and subsequent intracavity frequency doubling to generate yellow-orange radiation with power exceeding 7 W. The GaSb gain mirrors have been used to leverage the advantages offered by SDLs to the 2–3 μm wavelength range. Most recently, GaSb-based SDLs incorporating semiconductor saturable absorber mirrors were used to generate optical pulses as short as 384 fs at 2 μm, the shortest pulses obtained from a semiconductor laser at this wavelength range.

  7. Advances in commercial application of gamma radiation in tropical fruits at Brazil

    Science.gov (United States)

    Sabato, S. F.; Silva, J. M.; Cruz, J. N.; Broisler, P. O.; Rela, P. R.; Salmieri, S.; Lacroix, M.

    2009-07-01

    All regions of Brazil are potential areas for growing tropical fruits. As this country is already a great producer and exporter of tropical fruits, ionizing radiation has been the subject of studies in many commodities. An important project has been carried out to increase the commercial use of gamma radiation in our country. Instituto de Pesquisas Energeticas e Nucleares (IPEN)-CNEN/SP together with field producers in northeast region and partners like International Atomic Energy Agency (IAEA), CIC, Empresa Brasileira Pesquisa na Agricultura (EMBRAPA) joined to demonstrate this technology, its application and commercial feasibility. The objective of this study is to show advances in feasibility demonstrate the quality of the irradiated fruits in an international consignment from Brazil to Canada. In this work, Tommy Atkins mangoes harvested in northeast region of Brazil were sent to Canada. The fruits were treated in a gamma irradiation facility at doses 0.4 and 1.0 kGy. The control group was submitted to hydrothermal treatment (46 °C for 110 min). The fruits were stored at 11 °C for 10 days until the international transportation and kept at an environmental condition (22 °C) for 12 days, where their physical-chemical and sensorial properties were evaluated. The financial part of the feasibility study covers the scope of the investment, including the net working capital and production costs.

  8. New Advanced Source Identification Algorithm (ASIA-NEW) for radiation monitors with plastic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stavrov, Andrei; Yamamoto, Eugene [Rapiscan Systems, Inc., 14000 Mead Street, Longmont, CO, 80504 (United States)

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well

  9. Post-operative radiation therapy for advanced-stage oropharyngeal cancer.

    Science.gov (United States)

    Hansen, Eric; Panwala, Kathryn; Holland, John

    2002-11-01

    Between 1985 and 1999, 43 patients with locally-advanced, resectable oropharyngeal cancer were treated with combined surgery and post-operative radiation therapy (RT) at Oregon Health and Science University. Five patients (12 per cent) had Stage III disease and 38 patients (88 per cent) had Stage IV disease. All patients had gross total resections of the primary tumour. Thirty-seven patients had neck dissections for regional disease. RT consisted of a mean tumour-bed dose of 63.0 Gy delivered in 1.8-2.0 Gy fractions over a mean of 49 days. At three- and five-years, the actuarial local control was 96 per cent and the actuarial local/regional control was 80 per cent. The three- and five-year actuarial rates of distant metastases were 41 per cent and 46 per cent, respectively. The actuarial overall survival at three- and five-years was 41 per cent and 34 per cent, respectively. The actuarial rates of progression-free survival were 49 per cent at three-years and 45 per cent at five years. Combined surgery and post-operative RT for advanced-stage oropharyngeal cancer results in excellent local/regional control. This particular group of patients experienced a high-rate of developing distant metastases.

  10. Higher radiation dose with a shorter treatment duration improves outcome for locally advanced carcinoma of anal canal

    Institute of Scientific and Technical Information of China (English)

    Kim Huang; Daphne Haas-Kogan; Vivian Weinberg; Richard Krieg

    2007-01-01

    AIM: To assess whether radiation dose and duration of treatment influence local control and survival of patients with locally advanced anal cancer treated with definitive chemoradiation.METHODS: Twenty-eight consecutive patients who were treated with definitive radiation therapy for bulky anal cancers(> 5 cm in size) were reviewed. Nineteen patients had T3 lesions, 8 patients had T4 lesions, and 15 patients had lymph node involvement. The median tumor size was 7.5 cm. All but one patient received concurrent chemoradiation. The median radiation dose was 54 Gy. The median duration of treatment was 58 d.RESULTS: With a median follow-up of 2.5 years in all patients and 7.8 years in living patients, the 2-year local recurrence-free probability was 57% and overall survival rate was 67%. Neither radiation dose nor duration of treatment alone was predictive of either time to local failure or overall survival. However, longer treatment breaks can potentially mask an advantage over higher radiation doses. Therefore, we examined those patients who received ≥ 54 Gy within 60 d, comparing them to the rest of the patients. Of patients who received ≥ 54 Gy within 60 d, local progression-free probability was 89% versus 42% for the rest of the group (P = 0.01).CONCLUSION: Local failure is a significant problem in locally advanced carcinomas of the anal canal. Higher radiation doses with limited treatment breaks may offer an increase in local control and survival.

  11. Preoperative chemoradiation for locally advanced rectal cancer: comparison of three radiation dose and fractionation schedules

    Energy Technology Data Exchange (ETDEWEB)

    Park, Shin Hyung; Kim, Jae Chul [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-06-15

    The standard radiation dose for patients with locally rectal cancer treated with preoperative chemoradiotherapy is 45–50 Gy in 25–28 fractions. We aimed to assess whether a difference exists within this dose fractionation range. A retrospective analysis was performed to compare three dose fractionation schedules. Patients received 50 Gy in 25 fractions (group A), 50.4 Gy in 28 fractions (group B), or 45 Gy in 25 fractions (group C) to the whole pelvis, as well as concurrent 5-fluorouracil. Radical resection was scheduled for 8 weeks after concurrent chemoradiotherapy. Between September 2010 and August 2013, 175 patients were treated with preoperative chemoradiotherapy at our institution. Among those patients, 154 were eligible for analysis (55, 50, and 49 patients in groups A, B, and C, respectively). After the median follow-up period of 29 months (range, 5 to 48 months), no differences were found between the 3 groups regarding pathologic complete remission rate, tumor regression grade, treatment-related toxicity, 2-year locoregional recurrence-free survival, distant metastasis-free survival, disease-free survival, or overall survival. The circumferential resection margin width was a prognostic factor for 2-year locoregional recurrence-free survival, whereas ypN category was associated with distant metastasis-free survival, disease-free survival, and overall survival. High tumor regression grading score was correlated with 2-year distant metastasis-free survival and disease-free survival in univariate analysis. Three different radiation dose fractionation schedules, within the dose range recommended by the National Comprehensive Cancer Network, had no impact on pathologic tumor regression and early clinical outcome for locally advanced rectal cancer.

  12. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Gordic, Sonja; Husarik, Daniela B.; Alkadhi, Hatem [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Desbiolles, Lotus; Leschka, Sebastian [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland); Sedlmair, Martin; Schmidt, Bernhard [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Manka, Robert [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University Hospital Zurich, University of Zurich, Clinic of Cardiology, Zurich (Switzerland); University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Plass, Andre; Maisano, Francesco [University Hospital Zurich, University of Zurich, Clinic for Cardiovascular Surgery, Zurich (Switzerland); Wildermuth, Simon [Kantonsspital, Divison of Radiology and Nuclear Medicine, St. Gallen (Switzerland)

    2016-02-15

    To evaluate the potential of advanced modeled iterative reconstruction (ADMIRE) for optimizing radiation dose of high-pitch coronary CT angiography (CCTA). High-pitch 192-slice dual-source CCTA was performed in 25 patients (group 1) according to standard settings (ref. 100 kVp, ref. 270 mAs/rot). Images were reconstructed with filtered back projection (FBP) and ADMIRE (strength levels 1-5). In another 25 patients (group 2), high-pitch CCTA protocol parameters were adapted according to results from group 1 (ref. 160 mAs/rot), and images were reconstructed with ADMIRE level 4. In ten patients of group 1, vessel sharpness using full width at half maximum (FWHM) analysis was determined. Image quality was assessed by two independent, blinded readers. Interobserver agreements for attenuation and noise were excellent (r = 0.88/0.85, p < 0.01). In group 1, ADMIRE level 4 images were most often selected (84 %, 21/25) as preferred data set; at this level noise reduction was 40 % compared to FBP. Vessel borders showed increasing sharpness (FWHM) at increasing ADMIRE levels (p < 0.05). Image quality in group 2 was similar to that of group 1 at ADMIRE levels 2-3. Radiation dose in group 2 (0.3 ± 0.1 mSv) was significantly lower than in group 1 (0.5 ± 0.3 mSv; p < 0.05). In a selected population, ADMIRE can be used for optimizing high-pitch CCTA to an effective dose of 0.3 mSv. (orig.)

  13. Planned preoperative cisplatin and radiation therapy for locally advanced bladder cancer.

    Science.gov (United States)

    Herr, H W; Yagoda, A; Batata, M; Sogani, P C; Whitmore, W F

    1983-12-15

    Cisplatin (DDP) is an active agent in the treatment of disseminated bladder cancer. In addition to its direct tumor cytotoxicity, recent animal and clinical data suggest synergism with radiation therapy (RT). Since improved survival with preoperative RT is largely restricted to bladder cancer patients in whom radiation-induced downstaging (P less than T) may be recognized, the authors administered DDP + RT preoperatively to patients with locally advanced (T3, T4) bladder tumors selected for cystectomy. The aim was to evaluate the feasibility of such a combination in relation to surgical and hematologic complications, the immediate effect on tumor downstaging, disease progression, and survival. Two thousand rad (400 rad X 5 days) was delivered to the whole pelvis, followed by cystectomy in 2 days. DDP (70 mg/m2) was given intravenously on day 2 of the RT. Twenty-four patients received preoperative DDP + RT and underwent attempted cystectomy; however, six patients were nonresectable owing to extensive pelvic disease, and an additional five patients had resectable pelvic lymph node metastases. Pelvic complications developed in 3 of 24 (12%) patients, but none required reoperation. No patient had a wound dehiscence. Transient myelosuppression was similar to that induced by 2000 rad preoperative RT alone. Tumor downstaging (P less than T) was seen in 9 of 24 (38%) patients, and in 5 (21%) patients, no tumor was found in the surgical specimen (P0). Distant metastases alone have been detected in 4 of 18 (22%) patients who had a cystectomy (all 4 had nodal metastases). Disease-free survival at a median follow-up of 22 months (range, 12-34 months) is 60% (14/24) for all patients (89% for P less than T and 40% for P greater than or equal to T patients) and 78% (14/18) for the resected patients. Combined preoperative DDP + RT proved to be a safe and feasible regimen which resulted in a possibly greater recognition of radioresponsive bladder tumors, and after cystectomy, an

  14. Research on Multi-Modal Data based Event Model in Cyber-Physical Systems%信息物理融合系统中基于多模态数据的事件模型研究

    Institute of Scientific and Technical Information of China (English)

    高静; 李建中

    2015-01-01

    在信息物理融合系统中,通过部署在系统区域内的传感器节点来获得物理世界的信息。信息物理融合系统通常包含若干个异构的无线传感器网络。这些异构网络包含不同类型的传感器节点,这些节点具有不同的感知、计算和通信能力。将异构的传感器节点获得的不同类型的感知数据融合是一个十分重要并亟待解决的问题。在本文中,提出了基于多模态数据的事件模型,以事件为载体将多种不同模态的数据融合计算。文中描述并定义了信息物理融合系统中的事件,给出了基本事件和复合事件的定义,并提出了事件的合成规则。%In Cyber-Physical Systems( CPS),the information about physical world is obtained by sensors deployed in the system area. Generally,a CPS is composed by several heterogeneous wireless sensor networks. Heterogeneous sensor nodes in these networks have different capabilities in terms of sensing,computing and communication. Jointly processing the multi-modal data generated by heterogeneous sensors is an important problem. This paper proposes multi-modal event model, which interstates multi-modal data by events. The definitions and descriptions of atomic event and complex event,the composition rules of the event are proposed in this paper.

  15. Study on the recommendations of multi-modal and multi-level resources in social media%社会媒体多模态、多层次资源推荐技术研究

    Institute of Scientific and Technical Information of China (English)

    王大玲; 冯时; 张一飞; 于戈

    2014-01-01

    社会媒体中多模态和多层次的信息资源和基于各种关系构建的用户社群为推荐系统提供了更广阔的分析和选择空间,同时也带来了更多的问题与挑战。分析了当前社会媒体中用户与资源的关系以及社会媒体资源推荐的特点,分别从社会媒体资源推荐策略和相关支撑技术两方面综述了相关工作,将其概括为“社会媒体中用户角色的变化构成了更加复杂的用户关系”、“社会媒体资源表示形式呈现多模态特点”以及“社会媒体资源推荐应该满足多层次的用户需求”,并从多模态、多层次资源推荐方面提出进一步的研究方向。%The multi-modal and multi-level information resources and user communities based on various relation-ships in social media provide a broader space for recommenders to analyze and select the resources , but at the same time more problems and challenges develop .In this paper , the relationships between users and resources , and the characteristics of resource recommendations in current social media are analyzed .Related work is surveyed from so-cial media resource recommendations as well as its corresponding support techniques , which can be summarized as follows:more complex relationships among users formed by changes of user roles , multi-modal social media re-source expressions , and social media resource recommendations that satisfy the requirements of multi -level users . Finally, further research directions in multi-modal and multi-level resource recommendations are proposed .

  16. Sequential induction chemotherapy followed by radical chemo-radiation in the treatment of locoregionally advanced head-and-neck cancer

    OpenAIRE

    Bhide, S A; M. Ahmed; Barbachano, Y; K Newbold; Harrington, K J; Nutting, C M

    2008-01-01

    We describe a retrospective series of patients with advanced head-and-neck cancer who were treated with induction chemotherapy followed by radical chemo-radiation. Patients treated with two cycles of induction chemotherapy followed by definitive chemo-radiation for squamous cell carcinoma of the head-and-neck region, from 2001 – 2006 at the Royal Marsden Hospital, formed the basis of this study. Cisplatin (75 mg m−2) on day 1 and 5-FU (1000 mg m−2) day 1 – 4 was the standard regimen used for ...

  17. Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure.

    Science.gov (United States)

    Groves, Adrian R; Smith, Stephen M; Fjell, Anders M; Tamnes, Christian K; Walhovd, Kristine B; Douaud, Gwenaëlle; Woolrich, Mark W; Westlye, Lars T

    2012-10-15

    Neuroimaging studies have become increasingly multimodal in recent years, with researchers typically acquiring several different types of MRI data and processing them along separate pipelines that provide a set of complementary windows into each subject's brain. However, few attempts have been made to integrate the various modalities in the same analysis. Linked ICA is a robust data fusion model that takes multi-modal data and characterizes inter-subject variability in terms of a set of multi-modal components. This paper examines the types of components found when running Linked ICA on a large magnetic resonance imaging (MRI) morphometric and diffusion tensor imaging (DTI) data set comprising 484 healthy subjects ranging from 8 to 85 years of age. We find several strong global features related to age, sex, and intracranial volume; in particular, one component predicts age to a high accuracy (r=0.95). Most of the remaining components describe spatially localized modes of variability in white or gray matter, with many components including both tissue types. The multimodal components tend to be located in anatomically-related brain areas, suggesting a morphological and possibly functional relationship. The local components show relationships between surface-based cortical thickness and arealization, voxel-based morphometry (VBM), and between three different DTI measures. Further, we report components related to artifacts (e.g. scanner software upgrades) which would be expected in a dataset of this size. Most of the 100 extracted components showed interpretable spatial patterns and were found to be reliable using split-half validation. This work provides novel information about normal inter-subject variability in brain structure, and demonstrates the potential of Linked ICA as a feature-extracting data fusion approach across modalities. This exploratory approach automatically generates models to explain structure in the data, and may prove especially powerful for large

  18. Advanced Nongray Radiation Module in the LOCI Framework for Combustion CFD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this STTR, an innovative, efficient and high fidelity computational tool to predict radiative heat transfer will be implemented in the LOCI framework. Radiative...

  19. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    Science.gov (United States)

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  20. Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Kyu; Noh, Sang Hoon; Kang, Suk Hoon; Park, Jin Ju; Jin, Hyun Ju; Lee, Min Ku; Jang, Jin Sugn; Rhee, Chang Kyu [Nuclear Materials Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    As one of the Gen-IV nuclear energy systems, a sodium-cooled fast reactor (SFR) is being developed at the Korea Atomic Energy Research Institute. As a long-term national research project, advanced radiation resistant oxide dispersion strengthened steel (ARROS) is being developed as an in-core fuel cladding tube material for a SFR in the future. In this paper, the current status of ARROS development is reviewed and its future prospective is discussed.

  1. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  2. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Aytug, Tolga [ORNL; Paranthaman, Mariappan Parans [ORNL; Kidder, Michelle [ORNL; Polyzos, Georgios [ORNL; Leonard, Keith J [ORNL

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  3. How gamma radiation processing systems are benefiting from the latest advances in information technology

    Science.gov (United States)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  4. Long-term results of intraoperative electron beam radiation therapy for nonmetastatic locally advanced pancreatic cancer

    Science.gov (United States)

    Chen, Yingtai; Che, Xu; Zhang, Jianwei; Huang, Huang; Zhao, Dongbing; Tian, Yantao; Li, Yexiong; Feng, Qinfu; Zhang, Zhihui; Jiang, Qinglong; Zhang, Shuisheng; Tang, Xiaolong; Huang, Xianghui; Chu, Yunmian; Zhang, Jianghu; Sun, Yuemin; Zhang, Yawei; Wang, Chengfeng

    2016-01-01

    Abstract To assess prognostic benefits of intraoperative electron beam radiation therapy (IOERT) in patients with nonmetastatic locally advanced pancreatic cancer (LAPC) and evaluate optimal adjuvant treatment after IOERT. A retrospective cohort study using prospectively collected data was conducted at the Cancer Hospital of the Chinese Academy of Medical Sciences, China National Cancer Center. Two hundred forty-seven consecutive patients with nonmetastatic LAPC who underwent IOERT between January 2008 and May 2015 were identified and included in the study. Overall survival (OS) was calculated from the day of IOERT. Prognostic factors were examined using Cox proportional hazards models. The 1-, 2-, and 3-year actuarial survival rates were 40%, 14%, and 7.2%, respectively, with a median OS of 9.0 months. On multivariate analysis, an IOERT applicator diameter < 6 cm (hazards ratio [HR], 0.67; 95% confidence interval [CI], 0.47–0.97), no intraoperative interstitial sustained-release 5-fluorouracil chemotherapy (HR, 0.46; 95% CI, 0.32–0.66), and receipt of postoperative chemoradiotherapy followed by chemotherapy (HR, 0.11; 95% CI, 0.04–0.25) were significantly associated with improved OS. Pain relief after IOERT was achieved in 111 of the 117 patients, with complete remission in 74 and partial remission in 37. Postoperative complications rate and mortality were 14.0% and 0.4%, respectively. Nonmetastatic LAPC patients with smaller size tumors could achieve positive long-term survival outcomes with a treatment strategy incorporating IOERT and postoperative adjuvant treatment. Chemoradiotherapy followed by chemotherapy might be a recommended adjuvant treatment strategy for well-selected cases. Intraoperative interstitial sustained-release 5-fluorouracil chemotherapy should not be recommended for patients with nonmetastatic LAPC. PMID:27661028

  5. Advanced Simulator Power Flow Technology/Advanced Radiation Simulation Volume 2: MHD Modeling of POS and Power Flow

    Science.gov (United States)

    1999-09-01

    calorie (thermochemical) joule (J) 4.184 000 calorie (thermochemical)/g joule per kilogram (J/kg)* 4.184 000 xE+3 curies gig becquerel (Gbq)+ 3.700 000...ionizing radiation to a mass and corresponds to one joule/kilogram. + The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/s. VI...in volts VQ is the cathode voltage 0 is the flux LI in the device L is the time-varying inductance in Henries 1 is the current through the PRS in

  6. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  7. A Multicenter Phase II Trial of S-1 With Concurrent Radiation Therapy for Locally Advanced Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Masafumi, E-mail: masikeda@east.ncc.go.jp [Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Chiba (Japan); Ioka, Tatsuya [Department of Hepatobiliary and Pancreatic Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ito, Yoshinori [Department of Radiation Oncology, National Cancer Center Hospital, Tokyo (Japan); Yonemoto, Naohiro [Department of Epidemiology and Biostatistics, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo (Japan); Nagase, Michitaka [Department of Clinical Oncology, Jichi Medical University, Tochigi (Japan); Yamao, Kenji [Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya (Japan); Miyakawa, Hiroyuki [Department of Gastroenterology, Sapporo Kosei General Hospital, Sapporo (Japan); Ishii, Hiroshi [Hepatobiliary and Pancreatic Division, Cancer Institute Hospital, Tokyo (Japan); Furuse, Junji [Department of Internal Medicine, Medical Oncology School of Medicine, Kyorin University, Tokyo (Japan); Sato, Keiko [Kyoto Unit Center, Japan Environment and Children' s Study, Kyoto University Graduate School of Medicine, Kyoto (Japan); Sato, Tosiya [Department of Biostatistics, Kyoto University School of Public Health, Kyoto (Japan); Okusaka, Takuji [Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo (Japan)

    2013-01-01

    Purpose: The aim of this trial was to evaluate the efficacy and toxicity of S-1 and concurrent radiation therapy for locally advanced pancreatic cancer (PC). Methods and Materials: Locally advanced PC patients with histologically or cytologically confirmed adenocarcinoma or adenosquamous carcinoma, who had no previous therapy were enrolled. Radiation therapy was delivered through 3 or more fields at a total dose of 50.4 Gy in 28 fractions over 5.5 weeks. S-1 was administered orally at a dose of 80 mg/m{sup 2} twice daily on the day of irradiation during radiation therapy. After a 2- to 8-week break, patients received a maintenance dose of S-1 (80 mg/m{sup 2}/day for 28 consecutive days, followed by a 14-day rest period) was then administered until the appearance of disease progression or unacceptable toxicity. The primary efficacy endpoint was survival, and the secondary efficacy endpoints were progression-free survival, response rate, and serum carbohydrate antigen 19-9 (CA19-9) response; the safety endpoint was toxicity. Results: Of the 60 evaluable patients, 16 patients achieved a partial response (27%; 95% confidence interval [CI], 16%-40%). The median progression-free survival period, overall survival period, and 1-year survival rate of the evaluable patients were 9.7 months (95% CI, 6.9-11.6 months), 16.2 months (95% CI, 13.5-21.3 months), and 72% (95%CI, 59%-82%), respectively. Of the 42 patients with a pretreatment serum CA19-9 level of {>=}100 U/ml, 34 (81%) patients showed a decrease of greater than 50%. Leukopenia (6 patients, 10%) and anorexia (4 patients, 7%) were the major grade 3-4 toxicities with chemoradiation therapy. Conclusions: The effect of S-1 with concurrent radiation therapy in patients with locally advanced PC was found to be very favorable, with only mild toxicity.

  8. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Directory of Open Access Journals (Sweden)

    Yu Y

    2016-01-01

    Full Text Available Yang Yu,1 Hui Guan,1 Yuanli Dong,1 Ligang Xing,2 Xiaolin Li2 1School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, University of Jinan, Jinan, 2Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong Province, People’s Republic of China Objective: To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis.Methods: We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems.Results: Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy. The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity.Conclusion: Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. Keywords: lung cancer, esophagitis, radiation injuries, predictors

  9. Preliminary clinical evaluation of continuous infusion of 5-FU and low dose cisplatin (LFP) combined with radiation therapy for the treatment of advanced or recurrent esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Satoshi; Morita, Soujiro; Hisa, Nobuaki; Tsuji, Akihito; Takamatsu, Masahiro; Takasaki, Motohiro; Horimi, Tadashi [Kochi Municipal Central Hospital (Japan)

    2000-11-01

    We evaluated the LFP combined with radiation therapy for the treatment of advanced or recurrent esophageal cancer. The patients consisted of 4 inoperable cases, 4 cases in combination with operation, and 5 cases with recurrent tumor. The response rate was 80% (CR2, PR6, NC1 and PD1). We conclude that the LFP combined with radiation therapy was effective and useful for the treatment of advanced or recurrent esophageal cancer. (author)

  10. Advances in radiation modeling in ALEGRA :a final report for LDRD-67120, efficient implicit mulitgroup radiation calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Mehlhorn, Thomas Alan; Kurecka, Christopher J. (University of Michigan, Ann Arbor, MI); McClarren, Ryan (University of Michigan, Ann Arbor, MI); Brunner, Thomas A.; Holloway, James Paul (University of Michigan, Ann Arbor, MI)

    2005-11-01

    The original LDRD proposal was to use a nonlinear diffusion solver to compute estimates for the material temperature that could then be used in a Implicit Monte Carlo (IMC) calculation. At the end of the first year of the project, it was determined that this was not going to be effective, partially due to the concept, and partially due to the fact that the radiation diffusion package was not as efficient as it could be. The second, and final year, of the project focused on improving the robustness and computational efficiency of the radiation diffusion package in ALEGRA. To this end, several new multigroup diffusion methods have been developed and implemented in ALEGRA. While these methods have been implemented, their effectiveness of reducing overall simulation run time has not been fully tested. Additionally a comprehensive suite of verification problems has been developed for the diffusion package to ensure that it has been implemented correctly. This process took considerable time, but exposed significant bugs in both the previous and new diffusion packages, the linear solve packages, and even the NEVADA Framework's parser. In order to manage this large suite of problem, a new tool called Tampa has been developed. It is a general tool for automating the process of running and analyzing many simulations. Ryan McClarren, at the University of Michigan has been developing a Spherical Harmonics capability for unstructured meshes. While still in the early phases of development, this promises to bridge the gap in accuracy between a full transport solution using IMC and the diffusion approximation.

  11. Osteo-cise: Strong Bones for Life: Protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures

    Directory of Open Access Journals (Sweden)

    Gianoudis Jenny

    2012-05-01

    Full Text Available Abstract Background Osteoporosis affects over 220 million people worldwide, and currently there is no ‘cure’ for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods/design The Osteo-cise: Strong Bones for Life study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged ≥60 years will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month ‘research to practise’ translational phase. Participants will be randomly assigned to either the Osteo-cise intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test. Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back

  12. [Advances in influence of UV-B radiation on medicinal plant secondary metabolism].

    Science.gov (United States)

    Wu, Yang; Fang, Minfeng; Yue, Ming; Chai, Yongfu; Wang, Hui; Li, Yifei

    2012-08-01

    Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 nm) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression, enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.

  13. NATO Advanced Research Workshop on Nuclear Radiation Nanosensors and Nanosensory Systems

    CERN Document Server

    Yannakopoulos, Panayotis

    2016-01-01

    This collection of selected review papers focuses on topics such as digital radiation sensors and nanosensory systems for nanotechnology applications and integrated X-ray/PET/CT detectors; nanophosphors and nanocrystal quantum dots as X-ray radiation sensors; the luminescence efficiency of CdSe/ZnS QD and UV-induced luminescence efficiency distribution; investigations devoted to the quantum and multi-parametrical nature of disasters and the modeling thereof using quantum search and quantum query algorithms; sum-frequency-generation, IR fourier and raman spectroscopy methods; as well as investigations into the vibrational modes of viruses and other pathogenic microorganisms aimed at creating optical biosensory systems. This is followed by a review of radiation resistant semiconductor sensors and magnetic measurement instrumentation for magnetic diagnostics of high-tech fission and fusion set-ups and accelerators; the evaluation of the use of neutron-radiation, 10B-enriched semiconducting materials as thin-fi...

  14. Advanced Nongray Radiation Module in the LOCI Framework for Combustion CFD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiative heat fluxes are important in the design of launch vehicles for Project Constellation. In this Phase II STTR, CFDRC and its partner Mississippi State...

  15. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  16. Advances in dosimetry and biological predictors of radiation-induced esophagitis

    Science.gov (United States)

    Yu, Yang; Guan, Hui; Dong, Yuanli; Xing, Ligang; Li, Xiaolin

    2016-01-01

    Objective To summarize the research progress about the dosimetry and biological predictors of radiation-induced esophagitis. Methods We performed a systematic literature review addressing radiation esophagitis in the treatment of lung cancer published between January 2009 and May 2015 in the PubMed full-text database index systems. Results Twenty-eight eligible documents were included in the final analysis. Many clinical factors were related to the risk of radiation esophagitis, such as elder patients, concurrent chemoradiotherapy, and the intense radiotherapy regimen (hyperfractionated radiotherapy or stereotactic body radiotherapy). The parameters including Dmax, Dmean, V20, V30, V50, and V55 may be valuable in predicting the occurrence of radiation esophagitis in patients receiving concurrent chemoradiotherapy. Genetic variants in inflammation-related genes are also associated with radiation-induced toxicity. Conclusion Dosimetry and biological factors of radiation-induced esophagitis provide clinical information to decrease its occurrence and grade during radiotherapy. More prospective studies are warranted to confirm their prediction efficacy. PMID:26869804

  17. Study on Production of Useful Metabolites by Development of Advanced Cell Culture Techniques Using Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, J. H.; Lee, S. S.; Shyamkumar, B.; An, B. C.; Moon, Y. R.; Lee, E. M.; Lee, M. H.

    2009-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Establishment of a tissue culture system (Rubus sp., Lithospermum erythrorhizon, and Rhodiola rosea); characterization of radiation activated gene expression from cultivated bokbunja (Rubus sp.) and Synechocystis sp., identification of gamma-ray induced color change in plants; identification of sensitivity to gamma-ray from Omija (Schisandra chinensis) extract; identification of the response of thylakoid proteins to gamma-ray in spinach and Arabidopsis; identification of gamma-ray induced gene relating to pigment metabolism; characterization of different NPQ changes to gamma-irradiated plants; verification of the effects of rare earth element including anti-bacterial and anti-fungal properties and as a growth enhancer; identification of changes in the growth of gamma-irradiated Synechocystis; and investigation of liquid cell culture conditions from Rhodiola rosea

  18. The Modern Role of Radiation Therapy in Treating Advanced-Stage Retinoblastoma: Long-Term Outcomes and Racial Differences

    Energy Technology Data Exchange (ETDEWEB)

    Orman, Amber [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Koru-Sengul, Tulay [Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida (United States); Miao, Feng [Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida (United States); Markoe, Arnold [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States); Panoff, Joseph E., E-mail: jpanoff@med.miami.edu [Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida (United States)

    2014-12-01

    Purpose/Objective(s): To evaluate the effects of various patient characteristics and radiation therapy treatment variables on outcomes in advanced-stage retinoblastoma. Methods and Materials: This was a retrospective review of 41 eyes of 30 patients treated with external beam radiation therapy between June 1, 1992, and March 31, 2012, with a median follow-up time of 133 months (11 years). Outcome measures included overall survival, progression-free survival, local control, eye preservation rate, and toxicity. Results: Over 90% of the eyes were stage V. Definitive external beam radiation therapy (EBRT) was delivered in 43.9% of eyes, adjuvant EBRT in 22% of eyes, and second-line/salvage EBRT in 34.1% of eyes. A relative lens sparing (RLS) technique was used in 68.3% of eyes and modified lens sparing (MLS) in 24.4% of eyes. Three eyes were treated with other techniques. Doses ≥45 Gy were used in 68.3% of eyes. Chemotherapy was a component of treatment in 53.7% of eyes. The 10-year overall survival was 87.7%, progression-free survival was 80.5%, and local control was 87.8%. White patients had significantly better overall survival than did African-American patients in univariate analysis (hazard ratio 0.09; 95% confidence interval 0.01-0.84; P=.035). Toxicity was seen in 68.3% of eyes, including 24.3% with isolated acute dermatitis. Conclusions: External beam radiation therapy continues to be an effective treatment modality for advanced retinoblastoma, achieving excellent long-term local control and survival with low rates of treatment-related toxicity and secondary malignancy.

  19. A case of radiation induced pleuritis and pericarditis three and a half years chemotherapy for advanced esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yasuo; Sakai, Kunio; Sugita, Tohru; Tsuchida, Emiko; Sasamoto, Ryota [Niigata Univ. (Japan). School of Medicine; Sueyama, Hiroo

    1998-12-01

    A 67-year-old man who had been treated three and a half years ago with chemoradiotherapy using concurrent low-dose 5-FU continuous infusion for advanced esophageal cancer (T4N1M0) developed massive unilateral pleural effusion and pericardial effusion with no evidence of tumor recurrence. The pleural fluid was a serohemorrhagic exudate without malignant cells and bacterial infection. The pleural and pericardial effusion were remarkably improved after chest tube drainage and pleurodesis. Radiation-induced pleuritis and pericarditis were considered to be the possible cause of massive pleural and pericardial effusion. (author)

  20. Locally advanced breast implant associated anaplastic large cell lymphoma: A case report of successful treatment with radiation and chemotherapy

    Directory of Open Access Journals (Sweden)

    Christopher Fleighton Estes

    2015-02-01

    Full Text Available The development of breast implant associated anaplastic large cell lymphoma (ALCL is a rare phenomenon. A typical presentation is an effusion associated with a breast implant. Less commonly, disease can become more advanced locoregionally or distantly. The optimal treatment schema is a topic of debate: localized ALCL can potentially be cured with implant removal alone, while other cases in the literature, including those that are more advanced, have been treated with varying combinations of surgery, chemotherapy, and external beam radiotherapy. This is a case report of breast implant ALCL with pathologically proven lymph node involvement, the fifth such patient reported. Our patient experienced a favorable outcome with radiation therapy and chemotherapy.

  1. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance

    KAUST Repository

    Bhandari, Nidhi

    2015-06-01

    A new approach, based on a combination of salt and hard templating for producing multi-modal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (∼22 nm), and in some cases borderline-macropores (∼64 nm), resulting in high pore volume (∼3.9 cm3/g) while the salt template, zinc chloride, generates borderline-mesopores (∼2 nm), thus imparting high surface area (∼2100 m2/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-clay embedded (∼27% clay content), high surface area (∼1527 m2/g) bimodal carbons (∼2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (∼2, 12 and 28 nm pores), (iii) low temperature (450 °C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (∼87% capacitance retention at current density of 40 A/g) as compared to those without (∼54% capacitance retention). © 2015 Elsevier Ltd. All rights reserved.

  2. Influence of English Video's Multi Modal Features on College English Listening Teaching%英文影视多模态特征对大学英语听力教学的影响研究

    Institute of Scientific and Technical Information of China (English)

    代启英

    2012-01-01

    One of the key steps on arousing students' interest in learning English listening and improving their disposable decoding ability is by multi-modal English video teaching, which encourages playfulness in learning, decreases the affective filter to the lowest. In this way, students can construct listening knowledge by themselves based on their knowledge and experience.%听力的教与学一直以来是教师和学生难以逾越的鸿沟,如何激发学生的听力学习兴趣来提高学生的一次性解码能力,关键之一就是通过多模态的英语影视教学,寓学于乐,将情感过滤降至最低点,学生可以在自己已有的知识和经验的基础上自主地建构听力知识。

  3. Multi-modal Framework Construction and Empirical Study of English Teaching in Vocational Colleges%高职多模态英语写作教学框架构建与实证研究

    Institute of Scientific and Technical Information of China (English)

    李颖

    2016-01-01

    With insufficient writing skill and ability, students in vocational college are not interested in writing. At the same time, English teachers, with high pressure, are low efficient. Surveys from home and abroad show that combining multi-media and internet in writing, multi-modal discourse meaning expression can help interpret the teaching content and enhance learning effect. After 2 semesters teaching practice, the experimental group made a great improvement in academic achievement,skill, thinking, methods and evaluation.%当前高职英语写作面临的问题有二:高职学生写作能力不足,写作意愿不高;高职英语教师工作量大,耗时低效。国内外研究表明:写作中结合多媒体与互联网,利用多通道话语意义表达方式来解读教学内容、完成教学任务,能提高英语写作学习效果。经过两个学期的教学实践后,实验组学生的写作成绩、思路、方法和评价都有显著提升。

  4. 专业英语写作课堂的多模态话语媒体系统分析%Media system analysis of multi-modal discourse in writing class of English major

    Institute of Scientific and Technical Information of China (English)

    窦琳

    2014-01-01

    英语专业写作课程通常采用语言和文字为主要教学方式,辅以PPT、图片、声音、视频等多种手段和符号。文章首先分析影响模态选择的主导因素,进而从纯语言和伴语言等语言角度及肢体语言和非肢体语言等非语言角度出发,对英语专业写作课堂进行多模态话语媒体系统分析,从而得出对专业英语写作课堂的教学启示。%Writing course of English major usually uses language and words as the basic teaching methods, with many other methods and symbols like PPT, pictures, sounds and videos as subsidiary methods. By analyzing the leading factors which influence modal choices, this paper aims to analyze multi-modal discourse media system of writing course of English major from the verbal angle of pure language and accompanying language, and the non-verbal angle of body language and non-body language, and then raises some teaching enlightenments for writing course of English major.

  5. Radiation Resistance of XLPE Nano-dielectrics for Advanced Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Polyzos, Georgios [ORNL; Paranthaman, Mariappan Parans [ORNL; Aytug, Tolga [ORNL; Leonard, Keith J [ORNL; Sauers, Isidor [ORNL

    2014-01-01

    Recently there has been renewed interest in nuclear reactor safety, particularly as commercial reactors are approaching 40 years service and lifetime extensions are considered, as well as for new reactor building projects around the world. The materials that are currently used in cabling for instrumentation, reactor control, and communications include cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR), polyvinyl chloride (PVC), neoprene, and chlorosulfonated polyethylene. While these materials show suitable radiation tolerance in laboratory tests, failures before their useful lifetime occur due to the combined environmental effects of radiation, temperature and moisture, or operation under abnormal conditions. In addition, the extended use of commercial reactors beyond their original service life places a greater demand on insulating materials to perform beyond their current ratings in these nuclear environments. Nanocomposite materials that are based on XLPE and other epoxy resins incorporating TiO2, MgO, SiO2, and Al2O3 nanoparticles are being fabricated using a novel in-situ method established at ORNL to demonstrate materials with increased resistance to radiation. As novel nanocomposite dielectric materials are developed, characterization of the non-irradiated and irradiated nanodielectrics will lead to a knowledge base that allow for dielectric materials to be engineered with specific nanoparticle additions for maximum benefit to wide-variety of radiation environments found in nuclear reactors. This paper presents the initial findings on the development of XLPE-based SiO2 nano-composite dielectrics in the context of electrical performance and radiation degradation.

  6. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jin Hong; Lee, Seung Sik; Kim, Jae Sung; An, Byung Chull; Moon, Yu Ran; Lee, Eun Mi; Lee, Min Hee; Lee, Jae Tack [KAERI, Daejeon (Korea, Republic of)

    2010-02-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H{sub 2}O{sub 2} in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  7. Radiation/Temperature Hardened Advanced Readout Array with Dynamic Power Modes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has an interest in the development of advanced instruments and components for Lunar and planetary science missions. Instrumentation is needed for the...

  8. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    Science.gov (United States)

    Toth, Arnold; Kovacs, Noemi; Perlaki, Gabor; Orsi, Gergely; Aradi, Mihaly; Komaromy, Hedvig; Ezer, Erzsebet; Bukovics, Peter; Farkas, Orsolya; Janszky, Jozsef; Doczi, Tamas; Buki, Andras; Schwarcz, Attila

    2013-01-01

    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI.

  9. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ajemian, R.C. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1995-12-31

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  10. 肿瘤放射治疗技术进展%Advances of technology in radiation oncology

    Institute of Scientific and Technical Information of China (English)

    田源; 张红志

    2016-01-01

    20世纪90年代以来,随着放射物理技术、计算机技术和医学影像技术的迅猛发展,放射治疗技术已取得了长足进展。三维适形放疗、调强放疗、容积旋转调强放疗和螺旋断层放疗等先进放射治疗技术层出不穷,大幅提高了肿瘤靶区的物理适形度和治疗效率。但在肿瘤的放射治疗临床实践中仍然存在若干急需解决的问题。近年来,以生物引导放射治疗、图像引导放射治疗、剂量引导放射治疗和放射影像组学为代表的新技术,推动着放射治疗向以“精确定位”、“精确计划”和“精确治疗”为终极目标的“三精放疗”时代迈进。%Since the 1990s, with the rapid development of radiation physics, computer technology and medical imaging technology, radiotherapy techniques have made considerable progress. New technologies, such as three-dimensional conformal radiotherapy (3D-CRT), intensity modulated radiation therapy (IMRT), volumetric modulated radiation therapy (VMAT) and tomo therapy substantially increase physical conformalty of tumor target and treatment efficiency. But in clinical practice of radiation oncology, there are still a number of urgent problems. In recent years, advances in radiotherapy technology, for example, biology guided radiation therapy, imaging guided radiation therapy, dose guided radiation therapy and radiomics, improve the accuracy of positioning, planning, delivery and prognosis.

  11. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    DEFF Research Database (Denmark)

    Appelt, A. L.; Ploen, J.; Vogelius, I. R.

    2013-01-01

    estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination...... of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D-50,D-i, and the normalized dose-response gradient, gamma(50,i). Results: A highly...... significant dose-response relationship was found (P=.002). For complete response (TRG1), the dose-response parameters were D-50,D-TRG1 = 92.0 Gy (95% confidence interval [CI] 79.3-144.9 Gy), gamma(50,TRG1) = 0.982 (CI 0.533-1.429), and for major response (TRG1-2) D-50,D-TRG1&2 = 72.1 Gy (CI 65.3-94.0 Gy...

  12. Neutron radiation therapy: application of advanced technology to the treatment of cancer

    CERN Document Server

    Maughan, R L; Kota, C; Burmeister, J; Porter, A T; Forman, J D; Blosser, H G; Blosser, E; Blosser, G

    1999-01-01

    The design and construction of a unique superconducting cyclotron for use in fast neutron radiation therapy is described. The clinical results obtained in the treatment of adenocarcinoma of the prostate with this accelerator are presented. Future use of the boron neutron capture reaction as a means of enhancing fast neutron therapy in the treatment of patients with brain tumors (glioblastoma multiforme) is also discussed.

  13. Advanced data readout technique for Multianode Position Sensitive Photomultiplier Tube applicable in radiation imaging detectors

    Science.gov (United States)

    Popov, V.

    2011-01-01

    Most of the best performing PSPMT tubes from Hamamatsu and Burle are designed with a pad-matrix anode layout. However, for obtaining a high resolution, a small-sized anode photomultiplier tubes are preferable; these tubes may have 64, 256 or 1024 anodes per tube. If the tubes are used in array to get a larger area detector, the number of analog channels may range from hundreds to thousands. Multichannel analog readout requires special electronics ICs, ASICs etc., which are attached to multichannel DAQ system. As a result, the data file and data processing time will be increased. Therefore, this readout could not be performed in a small project. Usually, most of radiation imaging applications allow the use of analog data processing in front-end electronics, significantly reducing the number of the detector's output lines to data acquisition without reducing the image quality. The idea of pad-matrix decoupling circuit with gain correction was invented and intensively tested in JLab. Several versions of PSPMT readout electronics were produced and studied. All developments were done and optimized specifically for radiation imaging projects. They covered high resolution SPECT, high speed PET, fast neutron imaging, and single tube and multi tube array systems. This paper presents and discusses the summary of the observed results in readout electronics evaluation with different PSPMTs and radiation imaging systems, as well as the advantages and limitations of the developed approach to radiation imaging detectors readout.

  14. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhongli [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhang, Wencheng [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Zhou, Yuling; Yu, Dianke; Chen, Xiabin; Chang, Jiang; Qiao, Yan; Zhang, Meng; Huang, Ying; Wu, Chen [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Xiao, Zefen, E-mail: xiaozefen@sina.com [Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Tan, Wen, E-mail: tanwen@cicams.ac.cn [State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); and others

    2015-09-01

    Purpose: To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. Methods and Materials: Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. Results: We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. Conclusion: These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.

  15. Sequential induction chemotherapy followed by radical chemo-radiation in the treatment of locoregionally advanced head-and-neck cancer.

    Science.gov (United States)

    Bhide, S A; Ahmed, M; Barbachano, Y; Newbold, K; Harrington, K J; Nutting, C M

    2008-07-08

    We describe a retrospective series of patients with advanced head-and-neck cancer who were treated with induction chemotherapy followed by radical chemo-radiation. Patients treated with two cycles of induction chemotherapy followed by definitive chemo-radiation for squamous cell carcinoma of the head-and-neck region, from 2001 - 2006 at the Royal Marsden Hospital, formed the basis of this study. Cisplatin (75 mg m(-2)) on day 1 and 5-FU (1000 mg m(-2)) day 1 - 4 was the standard regimen used for induction treatment. Cisplatin (100 mg m(-2)) on day 1 and day 29 was used for concomitant treatment. The radiation was delivered using conformal technique. Tissues containing macroscopic and microscopic disease were treated to doses of 65 Gray (Gy) in 30 fractions and 50 Gy in 25 fractions, respectively. Data on patterns of relapse and acute toxicity (NCICTCv.3.0) were collected. A total of 129 patients were included, median age was 58 (range: 27 - 78). The site of tumour was: oropharynx 70 (54%), larynx 30 (23%), hypopharynx 24 (19%) and other 5 (4%). The median follow-up was 19 months (range: 4 - 58). Local control, disease-specific survival and overall survival at 2 years were 71%, 68% and 63%, respectively. The distant recurrence rate at 2 years was 9%. Ten patients required dose reduction during induction chemotherapy due to toxicity. The dose of 5-FU was reduced in six patients and that of cisplatin in four patients. The incidence of grade 3/4 toxicity was: neutropenia 5%, thrombocytopenia 1%, nausea and vomiting 3%. One cycle of concurrent cisplatin was omitted in 23 patients due to toxicity. Full-dose radiotherapy was administered to 98% of patients. The incidence of grade 3/4 toxicity was: skin 20%, dysphagia 65%, mucositis 60%, neutropenia 3%, anaemia 1%, nausea and vomiting 4%, nephrotoxicity 1%. Induction chemotherapy followed by radical chemo-radiation is a safe and tolerable regimen in the treatment of advanced head-and-neck cancer. Distant recurrence rates

  16. Stereotactic body radiation therapy (SBRT) for adrenal metastases. A feasibility study of advanced techniques with modulated photons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca [Istituto Clinico Humanitas, Rozzano-Milan (Italy). Dept. of Radiation Oncology; Fogliata, Antonella; Cozzi, Luca [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland). Medical Physics Unit; Scorsetti, Marta

    2011-04-15

    Purpose: To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Materials and Methods: Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V{sub 95%} = 100%) and to keep the maximum dose below 107% of the prescribed dose (V{sub 107%} = 0%). Planning objective for planning target volume (PTV) was V{sub 95%} > 80%. For kidneys, the general planning objective was V{sub 15Gy} < 35% and for liver V{sub 15Gy} < (liver volume-700 cm{sup 3}). Results: All techniques achieved the minimum and maximum dose objective for CTV and PTV, D{sub 5-95%} ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V{sub 10Gy} and integral dose) after protons and the best conformality together with IMRT. Conclusions: Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment. (orig.)

  17. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm3+, Er3+, and Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  18. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    Science.gov (United States)

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  19. SKIRT: an Advanced Dust Radiative Transfer Code with a User-Friendly Architecture

    CERN Document Server

    Camps, Peter

    2014-01-01

    We discuss the architecture and design principles that underpin the latest version of SKIRT, a state-of-the-art open source code for simulating continuum radiation transfer in dusty astrophysical systems, such as spiral galaxies and accretion disks. SKIRT employs the Monte Carlo technique to emulate the relevant physical processes including scattering, absorption and emission by the dust. The code features a wealth of built-in geometries, radiation source spectra, dust characterizations, dust grids, and detectors, in addition to various mechanisms for importing snapshots generated by hydrodynamical simulations. The configuration for a particular simulation is defined at run-time through a user-friendly interface suitable for both occasional and power users. These capabilities are enabled by careful C++ code design. The programming interfaces between components are well defined and narrow. Adding a new feature is usually as simple as adding another class; the user interface automatically adjusts to allow confi...

  20. Advanced colonic cancer associated with radiation colitis, report of a case

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Tomohiko; Sato, Tomoo; Iwai, Keiichirou; Yao, Takashi; Mibu, Ryuichi; Iida, Mitsuo [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences; Matsumoto, Takayuki [Kyushu Univ., Fukuoka (Japan). Hospital

    2002-07-01

    A 68-year-old woman with a history of irradiation for uterine cervical cancer was admitted to our institute, because of abdominal distension. Barium enema examination and total colonoscopy revealed narrowing, irregular mucosa and an ulcerating tumor in the sigmoid colon and a flat elevation in the transverse colon. Biopsy specimens from these tumors contained adenocarcinoma. Histological examination of the resected colon revealed the tumor in the sigmoid colon to be a well-differentiated adenocarcinoma invading the subserosa and that in the transverse colon to be an intramucosal adenocarcinoma. There were also areas of low or high grade dysplasia in the sigmoid colon. Histological findings compatible with radiation colitis were found in the sigmoid colon. These clinicopathologic features suggested a diagnosis of colonic cancer associated with radiation colitis. (author)

  1. Advances in 4D Radiation Therapy for Managing Respiration: Part I – 4D Imaging

    Science.gov (United States)

    Hugo, Geoffrey D.; Rosu, Mihaela

    2014-01-01

    Techniques for managing respiration during imaging and planning of radiation therapy are reviewed, concentrating on free-breathing (4D) approaches. First, we focus on detailing the historical development and basic operational principles of currently-available “first generation” 4D imaging modalities: 4D computed tomography, 4D cone beam computed tomography, 4D magnetic resonance imaging, and 4D positron emission tomography. Features and limitations of these first generation systems are described, including necessity of breathing surrogates for 4D image reconstruction, assumptions made in acquisition and reconstruction about the breathing pattern, and commonly-observed artifacts. Both established and developmental methods to deal with these limitations are detailed. Finally, strategies to construct 4D targets and images and, alternatively, to compress 4D information into static targets and images for radiation therapy planning are described. PMID:22784929

  2. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  3. Recent advancements in the development of radiation hard semiconductor detectors for S-LHC

    CERN Document Server

    Fretwurst, E; Al-Ajili, A A; Alfieri, G; Allport, P P; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Barcz, A; Bates, R; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Bruzzi, M; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Charron, S; Chilingarov, A G; Chren, D; Cindro, V; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, L; Dalla Betta, G F; Dawson, I; de Boer, Wim; De Palma, M; Demina, R; Dervan, P; Dittongo, S; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; García, C; García-Navarro, J E; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; González-Sevilla, S; Gorelov,I; Goss, J; Gouldwell-Bates, A; Grégoire, G; Gregori, P; Grigoriev, E; Grillo, A A; Groza, A; Guskov, J; Haddad, L; Härkönen, J; Hauler, F; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Johansen, K M H; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Koski, M; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Lazanu, I; Lazanu, S; Lebedev, A; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Linhart, V; Litovchenko, P G; Litovchenko, A P; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Makarenko, L F; Mandic, I; Manfredotti, C; Manna, N; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Messineo, A; Metcalfe, J; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Naoumov, D; Nossarzhevska, E; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A; Populea, J; Pospísil, S; Pozza, A; Radicci, V; Rafí, J M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Ruzin, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidela, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Sopko, V; Spencer, N; Stahl, J; Stolze, D; Stone, R; Storasta, J; Strokan, N; Sudzius, M; Surma, B; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Velthuis, J; Verbitskaya, E; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Yiuri, Y; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N

    2005-01-01

    The proposed luminosity upgrade of the Large Hadron Collider (S-LHC) at CERN will demand the innermost layers of the vertex detectors to sustain fluences of about 1016 hadrons/cm2. Due to the high multiplicity of tracks, the required spatial resolution and the extremely harsh radiation field new detector concepts and semiconductor materials have to be explored for a possible solution of this challenge. The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” has started in 2002 an R&D program for the development of detector technologies that will fulfill the requirements of the S-LHC. Different strategies are followed by RD50 to improve the radiation tolerance. These include the development of defect engineered silicon like Czochralski, epitaxial and oxygen-enriched silicon and of other semiconductor materials like SiC and GaN as well as extensive studies of the microscopic defects responsible for the degradation of irradiated sensors. Furthe...

  4. Advances in 4D Radiation Therapy for Managing Respiration: Part II – 4D Treatment Planning

    Science.gov (United States)

    Rosu, Mihaela; Hugo, Geoffrey D.

    2014-01-01

    The development of 4D CT imaging technology made possible the creation of patient models that are reflective of respiration-induced anatomical changes by adding a temporal dimension to the conventional 3D, spatial-only, patient description. This had opened a new venue for treatment planning and radiation delivery, aimed at creating a comprehensive 4D radiation therapy process for moving targets. Unlike other breathing motion compensation strategies (e.g. breath-hold and gating techniques), 4D radiotherapy assumes treatment delivery over the entire respiratory cycle – an added bonus for both patient comfort and treatment time efficiency. The time-dependent positional and volumetric information holds the promise for optimal, highly conformal, radiotherapy for targets experiencing movements caused by respiration, with potentially elevated dose prescriptions and therefore higher cure rates, while avoiding the uninvolved nearby structures. In this paper, the current state of the 4D treatment planning is reviewed, from theory to the established practical routine. While the fundamental principles of 4D radiotherapy are well defined, the development of a complete, robust and clinically feasible process still remains a challenge, imposed by limitations in the available treatment planning and radiation delivery systems. PMID:22796324

  5. Nanosatellites in LEO and beyond: Advanced Radiation protection techniques for COTS-based spacecraft

    Science.gov (United States)

    Selčan, David; Kirbiš, Gregor; Kramberger, Iztok

    2017-02-01

    This paper presents an approach for implementing radiation protection FDIR (Fault Detection, Isolation and Recovery) techniques designed especially for nanosatellites, capable of ensuring reliable operation in harsh orbits using COTS (Commercial off the Shelf) components. The radiation environment, as encountered by nanosatellites utilizing Flash-based FPGAs in orbits higher than Low Earth Orbit, is analyzed, primarily focusing on SEE (Single Event Effects). In order to assure reliable operation, the FDIR policy is split into two levels: the Low Level FDIR which ensures that no permanent damage occurs to the satellite's electronics, which then allows the use of a High Level FDIR tasked with maintaining high availability. A hierarchical approach, consisting of three types of current limiters in combination with watchdog timers and fault tolerant logic implemented inside a flash-based FPGA is proposed for the Low Level FDIR. The impacts of various radiation-induced faults are analyzed with respect to how the FDIR techniques mitigate them. The proposed current limiters and watchdog timers have been implemented and evaluated for suitability of use with the hierarchical FDIR policy. In order to decrease the impacts on the size and weight footprints, the current limiters were implemented as stacked 3D modules.

  6. Advanced ceramics sintering using high-power millimeter-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setsuhara, Y.; Kamai, M.; Kinoshita, S.; Abe, N.; Miyake, S. [Osaka Univ. (Japan). Welding Research Inst.; Saji, T. [Fujidempa Kogyo Co., Ltd., Ibaraki (Japan)

    1996-12-31

    The results of ceramics sintering experiments using high-power millimeter-wave radiation are reported. Sintering of silicon nitride with 5% Al{sub 2}O{sub 3} and 5% Y{sub 2}O{sub 3} was performed in a multi-mode applicator using a 10-kW 28-GHz gyrotron in CW operation. It was found that the silicon nitride samples sintered with 28 GHz radiation at 1,650 C for 30 min reached to as high as theoretical density (TD), while the conventionally sintered samples at 1700 C for 60 min resulted in the density as low as 90% TD. Focusing experiments of millimeter-wave radiation from the high-power pulsed 60-GHz gyrotron have been performed using a quasi-optical antenna system (two-dimensional ellipso-parabolic focusing antenna system) to demonstrate the feasibility of the power density of as high as 100 kW/cm{sup 2}. Typical heating characteristics using the focused beam were made clear for this system. It was found that the densification of yttria-stabilized zirconia (ZrO{sub 2}-8mol%Y{sub 2}O{sub 3}) samples to as high as 97% TD was obtained from the sintering with focused 60 GHz beam in pulse operation with a 10-ms pulse duration at a 0.5Hz repetition. The densification temperature for the zirconia could be lowered by 200 C than that expected conventionally.

  7. Radiation dosimetry

    CERN Document Server

    Hine, Gerald J; Hine, Gerald J

    1956-01-01

    Radiation Dosimetry focuses on the advancements, processes, technologies, techniques, and principles involved in radiation dosimetry, including counters and calibration and standardization techniques. The selection first offers information on radiation units and the theory of ionization dosimetry and interaction of radiation with matter. Topics include quantities derivable from roentgens, determination of dose in roentgens, ionization dosimetry of high-energy photons and corpuscular radiations, and heavy charged particles. The text then examines the biological and medical effects of radiation,

  8. 轻度认知障碍患者多模态磁共振特征%Multi-modality magnetic resonance imaging features of cognitive function in mild cognitive impairment

    Institute of Scientific and Technical Information of China (English)

    王华丽; 袁慧书; 苏敏莹; 朱玥; 廖晶; 张关燕; 李涛; 于欣

    2010-01-01

    目的 探讨轻度认知损害者(MCI)和阿尔茨海默病(AD)患者多模态磁共振成像特征与认知功能的关系.方法 共纳入9例遗忘型MCI,15例轻度AD及11例正常对照,以简明精神状况检查(MMSE)和认知功能筛查测验(CASI)评估总体认知功能,对高分辨率结构像进行基于体素形态学分析(VBM),测量扩散张量成像(DTI)图像、各脑区白质各向异性比值(FA)和平均表观弥散系数(ADC),分析脑结构萎缩及白质DTI指标与认知评分的相关性.结果 MMSE和CASI评分与颞、额、顶、扣带回、海马旁回等结构灰质体积改变呈正相关(P<0.001),MMSE和CASI总分与颞、顶叶以及海马旁回的FA值呈正相关,与ADC值呈负相关(P<0.05).结论 MCI和AD患者认知功能与颞、顶、海马旁回等脑区萎缩及白质微观结构损伤密切相关,多模态影像技术可作为认知损害脑机制研究的重要技术手段.%Objective To investigate the association of multi-modality neuroimaging features and cognitive function in mild cognitive impairment (MCI) and Alzheimer's disease (AD).Methods Nine individuals with amnestic MCI (aMCI), fifteen patients with mild probable AD, and eleven age-controlled cognitively normal controls (NC) were recruited.All participants were administered with mini-mental status examination (MMSE) and Cognitive assessment screening instrument (CASI) to assess general cognitive function.Optimized voxel-based morphometry ( VBM ) was used for the analysis with 3-D high resolution anatomical images.Values of fractional anisotropy (FA) and mean apparent diffusivity coefficient (ADC) were measured from different brain regions on diffusion-tensor images ( DTI) .The relationship between structural atrophy and DTI-based measurements in the selected brain regions was examined.Results The scores of MMSE and CASI were correlated with the volumetric changes in such areas as temporal, frontal and parietal lobes, and cingulate gyrus and hippocampal

  9. A Multi-modality Study on PPT in College English Teaching%关于高校英语教学中PPT课件的多模态性研究

    Institute of Scientific and Technical Information of China (English)

    叶砾

    2016-01-01

    在现代教育技术发达的背景下,数字化英语教学,尤其是PPT在教学中的应用,为促进大学生英语学习的目的提供了可能。多模态性作为PPT辅助教学的主要特点,是指在教学中将文字、图片、声音和视频动画等进行有机结合,从而制作成PPT进行教学的模式。文中通过对数字化教学在英语教学中作用的分析,帮助教师认识到PPT等多模态教学手段在英语教学中的重要性,增加教师教学过程的灵活性,进而促进高校英语教学质量的提高。%With the rapid development of modern education technology, the application of digital English instruction, PPT in particular, provides possibilities both in promoting English learning efficiency and interests among college students. Multimodality, as the main characteristics of PPT auxiliary teaching, refers to the teaching mode that PPT is made with an organic combination of text, images, sound and video animation in teaching. This paper analyzes the ef-fect of digital education in college English teaching, aiming to help teachers to realize the the importance of multi-modal teaching techniques such as PPT in English teaching, to increase the flexibility of the teaching process, and thus improve the quality of college English teaching.

  10. The importance of combined radiation and endocrine therapy in locally advanced prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Phillip J Gray; William U Shipley

    2012-01-01

    The management of all stages of prostate cancer has become an increasingly complex task as new treatment paradigms are tested and the results of large randomized studies become available.Despite these advances,prostate cancer remains the second leading cause of eancer death and the seventh overall cause of death in men in the United States.1 The advent of prostate-specific antigen (PSA) testing in the 1980s resulted in a significant downward stage migration such that many men now present with the earliest and most curable form of the disease.2,3 Despite this fact,high-risk locally advanced prostate cancer remains a common and complex problem facing clinicians across the world.

  11. Neoadjuvant irinotecan, cisplatin, and concurrent radiation therapy with celecoxib for patients with locally advanced esophageal cancer

    OpenAIRE

    Cleary, James M.; Mamon, Harvey J.; Szymonifka, Jackie; Bueno, Raphael; Choi, Noah; Donahue, Dean M.; Fidias, Panos M.; Gaissert, Henning A.; Jaklitsch, Michael T.; Kulke, Matthew H.; Lynch, Thomas P.; Mentzer, Steven J.; Meyerhardt, Jeffrey A.; Swanson, Richard S.; Wain, John

    2016-01-01

    Background: Patients with locally advanced esophageal cancer who are treated with trimodality therapy have a high recurrence rate. Preclinical evidence suggests that inhibition of cyclooxygenase 2 (COX2) increases the effectiveness of chemoradiation, and observational studies in humans suggest that COX-2 inhibition may reduce esophageal cancer risk. This trial tested the safety and efficacy of combining a COX2 inhibitor, celecoxib, with neoadjuvant irinotecan/cisplatin chemoradiation. Methods...

  12. Advanced monitoring in mixed radiation area - AMIRA; Fortschrittliche Messmethode in gemischten Strahlenfeldern - AMIRA

    Energy Technology Data Exchange (ETDEWEB)

    Buerkin, W.; Dielmann, R. [Saphymo GmbH, Frankfurt am Main (Germany)

    2009-07-01

    AMIRA is the result of a research project in cooperation with the Radiobiological Institute of the University of Munich, a workgroup of the Saarland University as well as Saphymo GmbH. An active, universally applicable dosimeter for use in radiation protection was developed which allows precise measurement of neutrons and photons in unknown mixed radiation areas. AMIRA uses a miniaturized tissue-equivalent proportional counter (TEPC) which simulates a tissue volume of 1{mu}m diameter. Use of a microdosimetric detector has the advantage that to each event of the energy deposition not only the portion for the dose but also the lineal energy, the microdosimetric analogon of the LET, can be determined. In this way each event can be allocated with the correct quality factor for the determination of the equivalent dose. The sensitivity of conventional measuring techniques often varies by a factor of 10. Measurement results of PTB, Braunschweig, and IRSN, Cadarache, France, verify an exceptionally high energy response over the entire measurement range. Although a separate detection for example of neutrons and photons is possible with this concept it is actually not necessary for radiation protection purposes. The now extended development of the measurement device is based on reduced size and weight, disposes of an economized MCA with more than four decades dynamic measurement range, suppresses microphonic effects. The software saves the LET spectrum, calculates and saves the total dose according to ICRP60 as well as the neutron/photon dose by LET separation. Due to the small, compact construction it could be achieved for the first time to make use of the TEPC technology for applications everywhere where there is occupational exposition. Examples are in aircrew dosimetry or in the complete spectrum of the nuclear fuel cycle for the determination of the personal dose and dose rate. (orig.)

  13. Advanced Treatment of Wastewater from UASB Reactor by Microfiltration Membrane Associated With Disinfection by Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André Aguiar Battistelli

    2016-03-01

    Full Text Available The low efficiency of UASB bioreactors, regarding the removal of nutrient, organic matter and pathogens, makes it necessary to carry out a post treatment, in order to improve the quality of the effluent. Accordingly, this research has examined the use of microfiltration associated to the disinfection by the ultraviolet radiation, as an option to this post treatment. For so, were collected samples of UASB reactors’ effluent, in order to carry out some tests on a pilot microfiltration system, using in one of the samples pre-coagulation with vegetable tannin. After, all the microfiltrated samples were inserted in a UV reactor, applying different radiation doses, ranging from 43.8 to 194.9 mWs.cm-2, to simulate the disinfection. The system used showed good results in terms of turbidity removal, apparent color, true color, phosphorus, nitrogen, total solids, total suspended solids and COD, reaching in the best operating condition, the following values: 1.90 uT, 15 uC, 10 uC, 0.94 mg/L, 17.64 mg/L, 123 mg/L, 0 mg/L and 10 mg/L, respectively, which represent the following removal percentages: 91.3%, 93.6%, 82.0%, 55.1%, 26.3%, 35% and 86.1%. The inactivation obtained for E. coli, total coliforms, colifagos and Clostridium perfrigens was satisfactory, achieving a higher inactivation than the detection limit of the method used, when submitted to the highests tested radiation doses. The average permeate flux ranged from 55.2 to 133.6 L.m-2.h-1.

  14. Multi-Modal Treatment of Nocturnal Enuresis.

    Science.gov (United States)

    Mohr, Caroline; Sharpley, Christopher F.

    1988-01-01

    The article reports a multimodal treatment of nocturnal enuresis and anxious behavior in a mildly mentally retarded woman. Behavioral treatment and removal of caffeine from the subject's diet eliminated both nocturnal enuresis and anxious behavior. (Author/DB)

  15. Multi-modal aggression detection in trains

    NARCIS (Netherlands)

    Yang, Z.

    2009-01-01

    In many public places multiple sensing devices, such as cameras, are installed to help prevent unwanted situations such as aggression and violence. At the moment, the best solution to reach a safe environment requires human operators to monitor the camera images and take appropriate actions when nec

  16. Multi-modal human aggression detection

    NARCIS (Netherlands)

    Kooij, J. F. P.; Liem, M. C.; Krijnders, J. D.; Andringa, T. C.; Gavrila, D. M.

    2016-01-01

    This paper presents a smart surveillance system named CASSANDRA, aimed at detecting instances of aggressive human behavior in public environments. A distinguishing aspect of CASSANDRA is the exploitation of complementary audio and video cues to disambiguate scene activity in real-life environments.

  17. Instrumentation challenges in multi-modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, D., E-mail: david.brasse@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Boisson, F. [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2016-02-11

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  18. SKIRT: An advanced dust radiative transfer code with a user-friendly architecture

    Science.gov (United States)

    Camps, P.; Baes, M.

    2015-03-01

    We discuss the architecture and design principles that underpin the latest version of SKIRT, a state-of-the-art open source code for simulating continuum radiation transfer in dusty astrophysical systems, such as spiral galaxies and accretion disks. SKIRT employs the Monte Carlo technique to emulate the relevant physical processes including scattering, absorption and emission by the dust. The code features a wealth of built-in geometries, radiation source spectra, dust characterizations, dust grids, and detectors, in addition to various mechanisms for importing snapshots generated by hydrodynamical simulations. The configuration for a particular simulation is defined at run-time through a user-friendly interface suitable for both occasional and power users. These capabilities are enabled by careful C++ code design. The programming interfaces between components are well defined and narrow. Adding a new feature is usually as simple as adding another class; the user interface automatically adjusts to allow configuring the new options. We argue that many scientific codes, like SKIRT, can benefit from careful object-oriented design and from a friendly user interface, even if it is not a graphical user interface.

  19. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ali Nickheslat

    2013-01-01

    Full Text Available Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm. The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal.

  20. Mitomycin C, 5-fluorouracil and radiation in advanced, locally recurrent rectal cancer.

    Science.gov (United States)

    Dobrowsky, W

    1992-02-01

    15 patients with inoperable presacral recurrent rectal cancer following surgery were treated with combined radiation and chemotherapy. Treatment consisted of split-course radiotherapy with 50 Gy in 25 fractions over 5 weeks and, after 4 weeks, an additional 20 Gy in 10 fractions over 2 weeks. At the start of treatment and following the split course, chemotherapy was administered. Mitomycin C was given on Day 1 (dose: 15 mg/m2 i.v. bolus) and 5-fluorouracil from Day 1 to Day 5 (dose: 750 mg/m2/24 h, continuous i.v. infusion). Owing to considerable, predominantly haematological and gastrointestinal toxicity, only six out of 15 patients received treatment according to the protocol. The symptomatic relief of symptoms was good. Pain was controlled in seven of eight symptomatic patients. Seven of the patients showed response according to computed tomography, but in none of these cases was a complete remission seen. After a follow-up of at least 30 months, only three patients are alive. The 1-, 2- and 3-year survival rates are 9/15, 6/15 and 3/12, respectively. The median survival is 14 months (range 4-60+ months). In comparison with historical data from the same institution, combined radio-chemotherapy did not show any prolongation of survival or increased response rate, but increased toxicity excessively, when compared with radiation alone.

  1. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    Science.gov (United States)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  2. National Cancer Data Base Analysis of Radiation Therapy Consolidation Modality for Cervical Cancer: The Impact of New Technological Advancements

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Beant S. [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Lin, Jeff F. [Department of Gynecologic Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Krivak, Thomas C. [Department of Gynecologic Oncology, Western Pennsylvania Hospital, Pittsburgh, Pennsylvania (United States); Sukumvanich, Paniti; Laskey, Robin A.; Ross, Malcolm S.; Lesnock, Jamie L. [Department of Gynecologic Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2014-12-01

    Purpose: To utilize the National Cancer Data Base to evaluate trends in brachytherapy and alternative radiation therapy utilization in the treatment of cervical cancer, to identify associations with outcomes between the various radiation therapy modalities. Methods and Materials: Patients with International Federation of Gynecology and Obstetrics stage IIB-IVA cervical cancer in the National Cancer Data Base who received treatment from January 2004 to December 2011 were analyzed. Overall survival was estimated by the Kaplan-Meier method. Univariate and multivariable analyses were performed to identify factors associated with type of boost radiation modality used and its impact on survival. Results: A total of 7654 patients had information regarding boost modality. A predominant proportion of patients were Caucasian (76.2%), had stage IIIB (48.9%) disease with squamous (82.0%) histology, were treated at academic/research centers (47.7%) in the South (34.8%), and lived 0 to 5 miles (27.9%) from the treating facility. A majority received brachytherapy (90.3%). From 2004 to 2011, brachytherapy use decreased from 96.7% to 86.1%, whereas intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use increased from 3.3% to 13.9% in the same period (P<.01). Factors associated with decreased brachytherapy utilization included older age, stage IVA disease, smaller tumor size, later year of diagnosis, lower-volume treatment centers, and facility type. After controlling for significant factors from survival analyses, IMRT or SBRT boost resulted in inferior overall survival (hazard ratio, 1.86; 95% confidence interval, 1.35-2.55; P<.01) as compared with brachytherapy. In fact, the survival detriment associated with IMRT or SBRT boost was stronger than that associated with excluding chemotherapy (hazard ratio, 1.61′ 95% confidence interval, 1.27-2.04′ P<.01). Conclusions: Consolidation brachytherapy is a critical treatment component for

  3. Intensity-modulated radiation therapy with concurrent chemotherapy for locally advanced cervical and upper thoracic esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Shu-Lian Wang; Zhongxing Liao; Helen Liu; Jaffer Ajani; Stephen Swisher; James D Cox; Ritsuko Komaki

    2006-01-01

    AIM: To evaluate the dosimetry, efficacy and toxicity of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with locally advanced cervical and upper thoracic esophageal cancer.METHODS: A retrospective study was performed on 7 patients who were definitively treated with IMRT and concurrent chemotherapy. Patients who did not receive IMRT radiation and concurrent chemotherapy were not included in this analysis. IMRT plans were evaluated to assess the tumor coverage and normal tissue avoidance. Treatment response was evaluated and toxicities were assessed.RESULTS: Five- to nine-beam IMRT were used to deliver a total dose of 59.4-66 Gy (median: 64.8 Gy) to the primary tumor with 6-MV photons. The minimum dose received by the planning tumor volume (PTV) of the gross tumor volume boost was 91.2%-98.2% of the prescription dose (standard deviation [SD]: 3.7%-5.7%).tumor volume was 93.8%-104.8% (SD: 4.3%-11.1%)of the prescribed dose. With a median follow-up of 15 mo (range: 3-21 mo), all 6 evaluable patients achieved complete response. Of them, 2 developed local recurrences and 2 had distant metastases, 3 survived with no evidence of disease. After treatment, 2 patients developed esophageal stricture requiring frequent dilation and 1 patient developed tracheal-esophageal fistula.CONCLUSION: Concurrent IMRT and chemotherapy resulted in an excellent early response in patients with locally advanced cervical and upper thoracic esophageal cancer. However, local and distant recurrence and toxicity remain to be a problem. Innovative approaches are needed to improve the outcome.

  4. Survival benefit of adding chemotherapy to intensity modulated radiation in patients with locoregionally advanced nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xuemei Ji

    Full Text Available BACKGROUND: To evaluate the contribution of chemotherapy for patients with locoregionally advanced nasopharyngeal carcinoma (NPC treated by intensity modulated radiotherapy (IMRT and to identify the optimal combination treatment strategy. PATIENTS AND METHODS: Between 2006 and 2010, 276 patients with stage II-IVb NPC were treated by IMRT alone or IMRT plus chemotherapy. Cisplatin-based chemotherapy included neoadjuvant or concurrent, or neoadjuvant plus concurrent protocols. The IMRT alone and chemoradiotherapy groups were well-matched for prognostic factors, except N stage, with more advanced NPC in the chemoradiotherapy arm. RESULTS: With a mean follow-up of 33.8 months, the 3-year actuarial rates of overall survival (OS, metastasis-free survival (MFS, relapse-free survival (RFS, and disease-free survival (DFS were 90.3%, 84.2%, 80.3%, and 69.2% for all of the patients, respectively. Compared with the IMRT alone arm, patients treated by concurrent chemoradiotherapy had a significantly better DFS (HR = 2.64; 95% CI, 1.12-6.22; P = 0.03, patients with neoadjuvant-concurrent chemoradiotherapy had a significant improvement in RFS and DFS (HR = 4.03; 95% CI, 1.35-12.05; P = 0.01 and HR = 2.43; 95% CI, 1.09-5.44; P = 0.03, neoadjuvant chemoradiotherapy provided no significant benefit in OS, MFS, RFS, and DFS. Stage group and alcohol consumption were prognostic factors for OS and N stage was a significant predictor for DFS. CONCLUSIONS: Addition of concurrent or neoadjuvant-concurrent chemotherapy to IMRT is available to prolong RFS or DFS for locoregionally advanced NPC. Such work could be helpful to guide effective individualized therapy.

  5. Disinfection of an advanced primary effluent using peracetic acid or ultraviolet radiation for its reuse in public services.

    Science.gov (United States)

    Julio, Flores R; Hilario, Terres-Peña; Mabel, Vaca M; Raymundo, López C; Arturo, Lizardi-Ramos; Ma Neftalí, Rojas-Valencia

    2015-03-01

    The disinfection of a continuous flow of an effluent from an advanced primary treatment (coagulation-flocculation-sedimentation) with or without posterior filtration, using either peracetic acid (PAA) or ultraviolet (UV) radiation was studied. We aimed to obtain bacteriological quality to comply with the microbiological standard established in the Mexican regulations for treated wastewater reuse (NOM-003-SEMARNAT-1997), i.e., less than 240 MPN (most probable number) FC/100 mL. The concentrations of PAA were 10, 15, and 20 mg/L, with contact times of 10, and 15 min. Fecal coliforms (FC) inactivation ranged from 0.93 up to 6.4 log units, and in all cases it reached the limits set by the mentioned regulation. Water quality influenced the PAA disinfection effectiveness. An efficiency of 91% was achieved for the unfiltered effluent, as compared to 99% when wastewater was filtered. UV radiation was applied to wastewater flows of 21, 30 and 39 L/min, with dosages from 1 to 6 mJ/cm². This treatment did not achieve the bacteriological quality required for treated wastewater reuse, since the best inactivation of FC was 1.62 log units, for a flow of 21 L/min of filtered wastewater and a UV dosage of 5.6 mJ/cm².

  6. Management of advanced esophageal carcinoma potentially infiltrating to the adjacent organs. Usefulness of preoperative concurrent chemo-radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsujinaka, Toshimasa; Shiozaki, Hitoshi; Murata, Atsuo; Nishijima, Junichi; Inoue, Masatoshi; Tamura, Shigeyuki; Monden, Morito [Osaka Univ. (Japan). Faculty of Medicine

    1995-06-01

    A retrospective analysis was conducted to evaluate the prognostic benefit of various treatments for advanced esophageal carcinoma potentially infiltrating to the adjacent organs. In 77 enrolled patients, primary resection (11 cases, median survival time, MST: 281 days) and concurrent chemo (5FU CDDP)-radiation (FPRT) (23 cases, MST: 238 days) had prognostic advantages in comparison with palliative treatment (11 cases, MST: 94 days), but radiation therapy with daily rectal futraful administration (5 FURT) had no benefit (11 cases, MST: 169 days). In the primary resected cases, sufficient postoperative adjuvant therapies were feasible in 52%, and local and/or nodal recurrence was found in 61%. In FPRT cases, the local response rate was 79%, whereas the general response rate was 66% due to the association of distant metastasis in 5 cases. The resection rate after FPRT was 52%. Operative curability was superior in cases preceded by FPRT to those undergoing primary resection, and two year survival rates were 33% and 12%, respectively. FPRT is useful as a neoadjuvant therapy and subsequent curative resection may increase the chance for a long-term survival. (author).

  7. Preoperative Intensity Modulated Radiation Therapy and Chemotherapy for Locally Advanced Vulvar Carcinoma: Analysis of Pattern of Relapse

    Energy Technology Data Exchange (ETDEWEB)

    Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Shukla, Gaurav; Shinde, Ashwin; Heron, Dwight E. [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Edwards, Robert P.; Sukumvanich, Paniti; Richards, Scott; Olawaiye, Alexander B.; Krivak, Thomas C. [Division of Gynecologic Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States)

    2013-04-01

    Purpose: To examine clinical outcomes and relapse patterns in locally advanced vulvar carcinoma treated using preoperative chemotherapy and intensity modulated radiation therapy (IMRT). Methods and Materials: Forty-two patients with stage I-IV{sub A} (stage I, n=3; stage II, n=13; stage III, n=23; stage IV{sub A}, n=3) vulvar cancer were treated with chemotherapy and IMRT via a modified Gynecological Oncology Group schema using 5-fluorouracil and cisplatin with twice-daily IMRT during the first and last weeks of treatment or weekly cisplatin with daily radiation therapy. Median dose of radiation was 46.4 Gy. Results: Thirty-three patients (78.6%) had surgery for resection of vulva; 13 of these patients also had inguinal lymph node dissection. Complete pathologic response was seen in 48.5% (n=16) of these patients. Of these, 15 had no recurrence at a median time of 26.5 months. Of the 17 patients with partial pathological response, 8 (47.1%) developed recurrence in the vulvar surgical site within a median of 8 (range, 5-34) months. No patient had grade ≥3 chronic gastrointestinal/genitourinary toxicity. Of those having surgery, 8 (24.2%) developed wound infections requiring debridement. Conclusions: Preoperative chemotherapy/IMRT was well tolerated, with good pathologic response and clinical outcome. The most common pattern of recurrence was local in patients with partial response, and strategies to increase pathologic response rate with increasing dose or adding different chemotherapy need to be explored to help further improve outcomes.

  8. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  9. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  10. Radiation behavior of high-entropy alloys for advanced reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter K. [Univ. of Tennessee, Knoxville, TN (United States); Egami, Takeshi [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Chuan [CompuTherm, LLC, Madison, WI (United States); Zhang, Fan [CompuTherm, LLC, Madison, WI (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-30

    In the first task, we have demonstrated the radiation damage and the recrystallization behaviors in multicomponent alloys through molecular-dynamics simulations. It is found that by alloying with atoms of different sizes, the atomic-level strain increases, and the propensity of the radiation-induced crystalline to amorphous transition increases as the defects cluster in the cascade body. Recrystallization of the radiation induced supercooled or glass regions show that by tuning the composition and the equilibrium temperature, the multicomponent alloys can be healed. The crystalline-amorphous-crystalline transitions predict the potential high radiation resistance in multicomponent alloys. In the second task, three types of high-entropy alloys (HEAs) were fabricated from AlCoCrFeNi and AlCuCrFeNi quinary alloys. Hardness and reduced contact modulus were measured using nanoindentation tests. Heavy ion irradiation were performed using 10 MeV gold and 5 MeV nickel to study radiation effects. Al0.5CrCuFeNi2 shows phase separation upon the presence of copper. Both hardness and contact modulus exhibit the same trend as increasing the applied load, and it indicates that excessive free volume may alter the growth rate of the plastic zone. The as-cast Al0.1CoCrFeNi specimen undergone the hot isostatic pressing (HIP) process and steady cooling rate which mitigate the quenching effect. The swelling behavior was characterized by the atomic force microscopy (AFM), and the swelling rate is approximately 0.02% dpa. Selected area diffraction (SAD) patters show irradiation-induced amorphization throughout the ion projected range. Within the peak damage region, an amorpous ring is observed, and a mixture of amorphous/ crystalline structure at deeper depth is found. The Al0.3CoCrFeNi HEAs shows good radiation resistance up to 60 peak dpa. No voids or dislocations are observed. The crystal structures remain face-centered-cubic (FCC) before and

  11. HPV Genotypes Predict Survival Benefits From Concurrent Chemotherapy and Radiation Therapy in Advanced Squamous Cell Carcinoma of the Cervix

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Chieh [Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, School of Medicine, Taoyuan, Taiwan (China); Lai, Chyong-Huey [Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Huang, Yi-Ting [Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chao, Angel; Chou, Hung-Hsueh [Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Hong, Ji-Hong, E-mail: jihong@adm.cgmh.org.tw [Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, School of Medicine, Taoyuan, Taiwan (China)

    2012-11-15

    Purpose: To study the prognostic value of human papillomavirus (HPV) genotypes in patients with advanced cervical cancer treated with radiation therapy (RT) alone or concurrent chemoradiation therapy (CCRT). Methods and Materials: Between August 1993 and May 2000, 327 patients with advanced squamous cell carcinoma of the cervix (International Federation of Gynecology and Obstetrics stage III/IVA or stage IIB with positive lymph nodes) were eligible for this study. HPV genotypes were determined using the Easychip Registered-Sign HPV genechip. Outcomes were analyzed using Kaplan-Meier survival analysis and the Cox proportional hazards model. Results: We detected 22 HPV genotypes in 323 (98.8%) patients. The leading 4 types were HPV16, 58, 18, and 33. The 5-year overall and disease-specific survival estimates for the entire cohort were 41.9% and 51.4%, respectively. CCRT improved the 5-year disease-specific survival by an absolute 9.8%, but this was not statistically significant (P=.089). There was a significant improvement in disease-specific survival in the CCRT group for HPV18-positive (60.9% vs 30.4%, P=.019) and HPV58-positive (69.3% vs 48.9%, P=.026) patients compared with the RT alone group. In contrast, the differences in survival with CCRT compared with RT alone in the HPV16-positive and HPV-33 positive subgroups were not statistically significant (P=.86 and P=.53, respectively). An improved disease-specific survival was observed for CCRT treated patients infected with both HPV16 and HPV18, but these differenced also were not statistically significant. Conclusions: The HPV genotype may be a useful predictive factor for the effect of CCRT in patients with advanced squamous cell carcinoma of the cervix. Verifying these results in prospective trials could have an impact on tailoring future treatment based on HPV genotype.

  12. Advanced photoelectric effect experiment beamline at Elettra: A surface science laboratory coupled with Synchrotron Radiation.

    Science.gov (United States)

    Panaccione, G; Vobornik, I; Fujii, J; Krizmancic, D; Annese, E; Giovanelli, L; Maccherozzi, F; Salvador, F; De Luisa, A; Benedetti, D; Gruden, A; Bertoch, P; Polack, F; Cocco, D; Sostero, G; Diviacco, B; Hochstrasser, M; Maier, U; Pescia, D; Back, C H; Greber, T; Osterwalder, J; Galaktionov, M; Sancrotti, M; Rossi, G

    2009-04-01

    We report the main characteristics of the advanced photoelectric effect experiments beamline, operational at Elettra storage ring, featuring a fully independent double branch scheme obtained by the use of chicane undulators and able to keep polarization control in both linear and circular mode. The paper describes the novel technical solutions adopted, namely, (a) the design of a quasiperiodic undulator resulting in optimized suppression of higher harmonics over a large photon energy range (10-100 eV), (b) the thermal stability of optics under high heat load via cryocoolers, and (c) the end station interconnected setup allowing full access to off-beam and on-beam facilities and, at the same time, the integration of users' specialized sample growth chambers or modules.

  13. Age dependent prognosis in concurrent chemo-radiation of locally advanced NSCLC

    DEFF Research Database (Denmark)

    Hansen, Olfred; Schytte, Tine; Nielsen, Morten;

    2015-01-01

    , the results might be due to selection bias, thus reports from a cohort of consecutively treated patients are warranted. The current single institution study reports on the influence of age on survival of locally advanced NSCLC patients treated with radiotherapy combined with or without concurrent chemotherapy....... Material and methods. Altogether, 478 patients completed radical radiotherapy in doses of 60-66 Gy/30-33 fractions from 1995 to June 2012; 137 of the patients had concurrent chemotherapy. The data was analyzed in age groups ... specific survival the hazard ratio was related to the use of concurrent chemotherapy was 0.49 (95% CI 0.29; 0.82), 0.68 (95% CI 0.48; 0.98) and 1.01 (95% CI 0.67; 1.51) for the age groups

  14. Performance of advanced photocatalytic detoxification of municipal wastewater under solar radiation - A mini review

    Directory of Open Access Journals (Sweden)

    Chandan Singh, Rubina Chaudhary, Rajendra Singh Thakur

    2011-03-01

    Full Text Available During the last few years, there has been a plethora of research and development in the area of solar photocatalysis. The aim is to understand the fundamental processes and enhance photocatalytic efficiencies especially for air, soil and water pollution control. Municipal waste water is limited by continual organic water pollutants and micro-organisms that are not removed by conventional mechanical and biological treatment. In this overview of the most recent paper, studies focused on the treatment of municipal wastewater (containing organic compounds by photocatalysis and the effects of various parameters such as pH, light intensity, Advance oxidation method etc. have been studied It can be concluded that the photocatalysis process is suitable for the treatment of drinking water, municipal and industrial wastewater. Some studies on the economic analysis of photocatalytic systems are also included.

  15. Transcatheter arterial chemoembolization and radiation therapy for treatment-naive patients with locally advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won [Dept. of Radiation Oncology, Yeungnam University Medical Center, Daegu (Korea, Republic of); Oh, Dong Ryul; Park, Hee Chul; Lim, Do Hoon; Shin, Sung Wook; Cho, Sung Ki; Gwak, Geum Youn; Choi, Moon Seok; Paik, Yong Han; Paik, Seung Woon [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2013-12-15

    To evaluate the safety and efficacy of transcatheter arterial chemoembolization (TACE) followed by radiotherapy (RT) in treatment-naive patients with locally advanced hepatocellular carcinoma (HCC). Eligibility criteria were as follows: newly diagnosed with HCC, the Barcelona Clinic Liver Cancer stage C, Child-Pugh class A or B, and no prior treatment for HCC. Patients with extrahepatic spread were excluded. A total of 59 patients were retrospectively enrolled. All patients were treated with TACE followed by RT. The time interval between TACE and RT was 2 weeks as per protocol. A median RT dose was 47.25 Gy10 as the biologically effective dose using the α/β = 10 (range, 39 to 65.25 Gy10). At 1 month, complete response was obtained in 3 patients (5%), partial response in 27 patients (46%), stable disease in 13 patients (22%), and progressive disease in 16 patients (27%). The actuarial one- and two-year OS rates were 60.1% and 47.2%, respectively. The median OS was 17 months (95% confidence interval, 5.6 to 28.4 months). The median time to progression was 4 months (range, 1 to 35 months). Grade 3 or greater liver enzyme elevation occurred in only two patients (3%) after RT. Grade 3 gastroduodenal toxicity developed in two patients (3%). The combination treatment of TACE followed by RT with two-week interval was safe and it showed favorable outcomes in treatment-naive patients with locally advanced HCC. A prospective randomized trial is needed to validate these results.

  16. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  17. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    Science.gov (United States)

    Tobiska, W. Kent

    smart phone apps. ARMAS provides the “weather” of the radiation environment to improve air-crew and passenger safety. Many of the data products from MAPS, LAPS, and ARMAS are available on the SpaceWx smartphone app for iPhone, iPad, iPod, and Android professional users and public space weather education. We describe recent forecasting advances for moving the space weather information from these automated systems into operational, derivative products for communications, aviation, and satellite operations uses.

  18. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  19. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory; Offermann, D T [Los Alamos National Laboratory; Cobble, J A [Los Alamos National Laboratory; Schmitt, M J [Los Alamos National Laboratory; Gautier, D C [Los Alamos National Laboratory; Kwan, T J T [Los Alamos National Laboratory; Montgomery, D S [Los Alamos National Laboratory; Kluge, Thomas [FZD-GERMANY; Bussmann, Micheal [FZD-GERMANY; Bartal, T [UCSD; Beg, F N [UCSD; Gall, B [UNIV OF MISSOURI; Geissel, M [SNL; Korgan, G [NANOLABZ; Kovaleski, S [UNIV OF MISSOURI; Lockard, T [UNIV OF NEVADA; Malekos, S [NANOLABZ; Schollmeier, M [SNL; Sentoku, Y [UNIV OF NEVADA; Cowan, T E [FZD-GERMANY

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  20. New advances in protection against solar ultraviolet radiation in textiles for summer clothing.

    Science.gov (United States)

    Aguilera, José; de Gálvez, María Victoria; Sánchez-Roldán, Cristina; Herrera-Ceballos, Enrique

    2014-01-01

    Clothing is considered one of the most important tools for photoprotection against harmful solar ultraviolet radiation (UVR). The standard for sun-protective clothing is based on erythema despite other biological effects of UVR on the skin. We analyzed the potential protection against UVR in fabrics destined for summer clothing based on several action spectra. We examined 50 garments classified by type of fabric composition, structure of the fiber yarn and color. The ultraviolet protection factor was calculated based on fabric ultraviolet transmittance corrected for erythema according to the EU standard E-13758 as well as the UVA transmittance of fabrics. UVR protection was also analyzed in base of different action spectra as for previtamin D3, nonmelanoma skin cancer, photoimmunosuppression and photoaging. Most knitted fabrics used for sports T-shirts offered excellent ratings for ultraviolet protection while normal shirts showed very low ratings, particularly against photoaging. The cover is the most influential variable in fabric photoprotection, having an exponential relationship with the UPF. The relation between cover and UVA protection was linearly negative. Information about ultraviolet protection in textiles used for summer clothing should be included in labeling as some types of fabrics, especially those used for shirts, offer very low UVR protection.

  1. Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology

    Science.gov (United States)

    Flippo, K. A.; Gaillard, S. A.; Kluge, T.; Bussmann, M.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Bartal, T.; Beg, F. N.; Cowan, T. E.; Gall, B.; Gautier, D. C.; Geissel, M.; Kwan, T. J.; Korgan, G.; Kovaleski, S.; Lockard, T.; Malekos, S.; Montgomery, D. S.; Schollmeier, M.; Sentoku, Y.

    2010-11-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity [1] and energy of the Nova Petawatt laser [2]. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  2. Common genomic signaling among initial DNA damage and radiation-induced apoptosis in peripheral blood lymphocytes from locally advanced breast cancer patients

    DEFF Research Database (Denmark)

    Henríquez-Hernández, Luis Alberto; Pinar, Beatriz; Carmona-Vigo, Ruth

    2013-01-01

    suffering from locally advanced breast cancer and treated with high-dose hyperfractionated radiotherapy were recruited. Initial DNA damage was measured by pulsed-field gel electrophoresis and radiation-induced apoptosis was measured by flow cytometry. Gene expression was assessed by DNA microarray. RESULTS...

  3. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Pawlik, Timothy M. [Department of Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States); Ford, Eric [Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA (United States); Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, 401N. Broadway, Weinberg Suite 1440, Baltimore, MD 21231 (United States)

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  4. Computer-based image analysis in radiological diagnostics and image-guided therapy 3D-Reconstruction, contrast medium dynamics, surface analysis, radiation therapy and multi-modal image fusion

    CERN Document Server

    Beier, J

    2001-01-01

    This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For a multitude of purposes the developed methods and procedures can directly be transferred to other non-pulmonary applications. The work presented here is structured in 14 chapters, each describing a selected complex of research. The chapter order reflects the sequence of the processing steps starting from artefact reduction, segmentation, visualization, analysis, therapy planning and image fusion up to multimedia archiving. In particular, this includes virtual endoscopy with three different scene viewers (Chap. 6), visualizations of the lung disease bronchiectasis (Chap. 7), surface structure analysis of pulmonary tumors (Chap. 8), quantification of contrast medium dynamics from temporal 2D and 3D image sequences (Chap. 9) as well as multimodality image fusion of arbitrary tomographical data using several visualization techniques (Chap. 12). Thus, the softw...

  5. 多式综合公交系统线网布局优化模型及仿真%Network layout optimization model of multi-modal comprehensive public transit system and simulation

    Institute of Scientific and Technical Information of China (English)

    周高卫; 罗霞

    2013-01-01

    结合综合公交中各式公交的适应性和服务阈值,兼顾出行者不同出行目的时间价值敏感性,建立了综合公交系统线网布局双层优化模型,上层是O-1数学规划模型,下层是用户平衡分配模型.同时,基于改进的IOA进行优化求解,克服了传统单式线网优化层次化不显著的缺陷,提高了布局优化过程求解效率.算例仿真结果表明:综合公交系统需求多样性在客观上决定综合公交系统线网的多元性和层次性,线网布局优化需考虑不同出行目的的时间价值特性,以提升系统速度和能力的连续性.同时,基于改进的IOA在多式综合公交系统线网布局优化的巨大搜索空间中可靠便捷地找到近似最优解,提高了计算效率.%In combination of the different transit mode' s adaptability and service threshold of the multi-modal comprehensive public transit system,this paper established the layout bi-level optimization model of comprehensive transit system, giving attention to the time value sensitivity of different trip purposes. The upper model was 0-1 mathematics programming model, while the lower model was the user equilibrium assignment model. Besides, this paper proposed solving algorithm based on the improved IOA, it adopted above algorithm to find solution of model which overcame the defects of lack of significant hierarchy and the consubstantial trend of traditional single mode network optimization and it improved the solving effect as well. Example simulation result shows that the diversity of comprehensive transit system demand objectively determines its network hierarchy and pluralism and the network layout optimization should consider different time value to improve the system speed and capacity continuity. The improved IOA can find the approximate best result in the huge search space of optimization, while greatly increases the computational efficiency.

  6. Small-animal PET imaging of amyloid-beta plaques with [11C]PiB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    André Manook

    Full Text Available In vivo imaging and quantification of amyloid-β plaque (Aβ burden in small-animal models of Alzheimer's disease (AD is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [(11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [(11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months showed the highest uptake followed by old hemizygous (23 months and young homozygous mice (9 months. In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [(11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a

  7. 一步浸渍合成具有多重孔隙的铸型炭体%Synthesis of carbon monoliths with a multi-modal pore system bya one step impregnation technique

    Institute of Scientific and Technical Information of China (English)

    陆安慧; Jan-Henrik Sm(a)tt; Mika Lindén; Ferdi Schüth

    2003-01-01

    以多孔块状硅体为模板,通过一步浸渍、炭化、酸处理工艺,制备出结构可控、孔隙联通且具有多重孔隙的铸型炭体.分别采用氮吸附技术、高分辨透射电镜和扫描电镜对模板硅、硅碳复合物及相应炭体进行了结构表征.从微米尺度分析,该炭体是由高度联接的枝状结构单元为骨架构筑而成.与模板硅相比较,此炭体是硅体的正复本.从纳米尺度分析,这种炭体枝状骨架是由分布均匀且相互连接的中孔构成,此中孔及其孔壁对应于模板硅的孔壁及中孔,是多孔硅的负复本.此外构成中孔的炭骨架本体又含有大量炭化过程产生的微孔.因此该法合成的铸型炭具有孔隙高度发达和结构层层嵌套的特点.%Carbon monoliths with a multi-modal hierarchical porosity have been prepared by a nanocasting method with silica monoliths as the scaffold, in which volume and surface templating has been successfully combined in a one-step impregnation approach, and the smaller pores in the silica template are impregnated in a straightforward way. The monoliths obtained at different stages of the process were characterized by N2-adsorption, scanning electron microscopy and transmission electron microscopy. It is shown that the carbon monoliths represent a positive replica of the starting silica monoliths on the micrometer scale. The surface templated mesopores can be regarded as a positive replica, while the volume templated mesopores are a negative replica of the silica scaffold.

  8. Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.

    Science.gov (United States)

    Barden, Phillip; Grimaldi, David A

    2016-02-22

    Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession."

  9. Phase 2 Study of Combined Sorafenib and Radiation Therapy in Patients With Advanced Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shang-Wen, E-mail: sjfchiou@gmail.com [Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, China Medical University, Taichung, Taiwan (China); Lin, Li-Ching [Department of Radiation Oncology, Chi-Mei Hospital, Tainan, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Kuo, Yu-Cheng [Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan (China); Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (China); Liang, Ji-An [Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan (China); School of Medicine, China Medical University, Taichung, Taiwan (China); Kuo, Chia-Chun [Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Chiou, Jeng-Fong [Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-04-01

    Purpose: This phase 2 study evaluated the efficacy of radiation therapy (RT) with concurrent and sequential sorafenib therapy in patients with unresectable hepatocellular carcinoma (HCC). Methods and Materials: Forty patients with unresectable HCC unfit for transarterial chemoembolization were treated with RT with concurrent and sequential sorafenib. Sorafenib was administered from the commencement of RT at a dose of 400 mg twice daily and continued to clinical or radiologic progression, unacceptable adverse events, or death. All patients had underlying Child-Pugh A cirrhosis. The maximal tumor diameter ranged from 3.0 cm to 15.5 cm. Coexisting portal vein thrombosis was found in 24 patients and was irradiated simultaneously. The cumulative RT dose ranged from 40 Gy to 60 Gy (median, 50 Gy). Image studies were done 1 month after RT and then every 3 months thereafter. Results: Thirty-three (83%) completed the allocated RT. During RT, the incidence of hand-foot skin reactions ≥ grade 2 and diarrhea were 37.5% and 25%, respectively, and 35% of patients had hepatic toxicities grade ≥2. Twenty-two (55.0%) patients achieved complete or partial remission at the initial assessment, and 18 (45%) had stable or progressive disease. The 2-year overall survival and infield progression-free survival (IFPS) were 32% and 39%, respectively. A Cancer of the Liver Italian Program (CLIP) score ≥2 was associated with an inferior outcome in overall survival. Six patients (15%) developed treatment-related hepatic toxicity grade ≥3 during the sequential phase, and 3 of them were fatal. Conclusions: When RT and sorafenib therapy were combined in patients with unresectable HCC, the initial complete or partial response rate was 55% with a 2-year IFPS of 39%. A CLIP score ≥2 was associated with an inferior outcome in overall survival. Hepatic toxicities are a major determinant of the safety; the combination should be used with caution and needs further investigation.

  10. EDITORIAL Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment Complexity of advanced radiation therapy necessitates multidisciplinary inquiry into dose reconstruction and risk assessment

    Science.gov (United States)

    Newhauser, Wayne

    2010-07-01

    The availability of low-cost, high-performance computing is rapidly transforming the landscape of cancer research. Computational techniques are playing an increasingly important role and have become the third major method of scientific inquiry, supplementing traditional methods of observation and theory. This evolution began in the 1940s when high-performance computing techniques were developed for military applications, including radiation transport calculations. These same basic methods are still widely utilized in a broad spectrum of computational problems in medicine, including radiation cancer therapy (Rogers 2006, Spezi 2010) and radiologic diagnostic imaging (Doi 2006, Kalender 2006). Supercomputing is also now being used to study the genetics and genomics of cancer (Geurts van Kessel 2010), with application to gene sequencing (Mardis 2008), genome-wide association studies (Pearson and Manolio 2008), biomolecular dynamics (Sanbonmatsu and Tung 2007) and systems biology (Wolkenhauer et al 2010). The extensive and growing body of literature is evidence of a remarkable expansion of activity and enormous boost to cancer research from the application of high-performance computing. Early successes were facilitated by inexpensive computing resources and advances in modeling algorithms. Many contemporary models require extensive approximations and phenomenological approaches. In fact, many critical problems remain computationally intractable; the underlying physical and biological processes are simply too complex to model with contemporary theory and computing capacity. In the future, a vast stream of new insights will flow from studies that use increasingly exact models and first-principles approaches. Hence, in the war on cancer the present status of computational research could be summarized as the beginning of the beginning. For these reasons, there is a vital need for scientists and clinicians to periodically discuss progress and future plans regarding

  11. Preoperative radiation with concurrent 5-fluorouracil for locally advanced T4-primary rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Roedel, C.; Grabenbauer, G.G.; Sauer, R. [Erlangen-Nuernberg Univ., Erlangen (Germany). Dept. of Radiation Oncology; Schick, C.; Hohenberger, W. [Erlangen-Nuernberg Univ., Erlangen (Germany). Chirurgische Klinik mit Poliklinik; Papadopoulos, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Abt. fuer Klinische Pathologie

    2000-04-01

    Herein we report on the curative resectability rate, acute toxicities, surgical complications, local control and 5-year survival rates achieved with a more aggressive multimodality regimen, including preoperative radiochemotherapy. Patients and Methods: Between 1/1990 and 12/1998, a total of 31 patients with cT4-rectal cancer were treated at our institution. All patients presented with tumor contiguous or adherent to adjacent pelvic organs. Eight patients had synchronous distant metastases. A total radiation dose of 50.4 Gy with a small-volume boost of 5.4 to 9 Gy was delivered (single dose: 1.8 Gy). 5-FU was scheduled as a continuous infusion of 1000 mg/m{sup 2} per 24 hours on days 1 to 5 and 29 to 33. Six weeks after completion of radiochemotherapy, patients were reassessed for resectability. Results: After preoperative radiochemotherapy, 29/31 patients (94%) underwent surgery with curative intent. Resection of the pelvic tumor with negative margins was achieved in 26/31 patients (84%), 3 patients had microscopic residual pelvic disease. In 3/8 patients with distant spread at presentation a complete resection of metastases was finally accomplished. Toxicity of radiochemotherapy occurred mainly as diarrhea (NCI-CTC Grade 3: 23%), dermatitis (Grade 3: 16%) and leucopenia (Grade 3: 10%). Surgical complications appeared as anastomotic leakage in 3, wound infection in 2, fistula, abscess and hemorrhage in 1 patient, respectively. With a median follow-up of 33 months, local failure after curative resection was observed in 4 patients (19%), 3 patients (14%) developed distant metastases. The 5-year overall survival rate for the entire group of 31 patients was 51%, following curative surgery 68%. (orig.) [German] Wir analysierten die Rate an kurativen (R0) Resektionen nach praeoperativer Radiochemotherapie, die Toxizitaet der Radiochemotherapie, die chirurgische Morbiditaet sowie die lokale Kontrolle und das Fuenf-Jahres-Gesamtueberleben nach multimodaler Therapie

  12. New Analytical Methods for the Surface/ Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation

    Directory of Open Access Journals (Sweden)

    K. Nakamae

    2010-12-01

    Full Text Available Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m.

  13. The Prognostic Value of Baseline Lymphocyte, Neutrophil, and Monocyte Counts in Locally Advanced Cervical Carcinoma Treated with Radiation

    Science.gov (United States)

    Himler, Justin; Nagel, Christa I.; Resnick, Kimberly

    2017-01-01

    Background. To determine the prognostic significance of pretreatment levels of circulating lymphocyte (CLC), neutrophil (CNC), and monocyte (CMC) counts in patients with locally advanced cervical carcinoma (CC) treated with definitive radiation. Methods. A retrospective, dual-institution review of patients with Stage IB2-IVA CC from 2005 to 2015. Progression-free (PFS) and Overall Survival (OS) were determined for high and low CLC, CNC, and CMC groups. Multivariate analysis was used to confirm prognostic value of baseline leukocyte counts. Results. 181 patients were included. Median follow-up time was 26 (3–89) months. CNC had no effect on PFS or OS. PFS was similar between CMC groups; however, OS was significantly improved for patients with low CMC (62.5 versus 45.3 months, p = 0.016). High CLC was associated with improved PFS (48.5 versus 27.8 months, p = 0.048) and OS (58.4 versus 34.9 months, p = 0.048). On multivariate analysis, high CNC was associated with increased relapse risk (HR 1.12, p = 0.006) and low CLC was associated with increased mortality risk (HR 0.67, p = 0.027). Conclusion. This study demonstrates that leukocyte values can provide prognostic information in CC. These hypothesis-generating findings warrant further prospective investigations. PMID:28239396

  14. The Prognostic Value of Baseline Lymphocyte, Neutrophil, and Monocyte Counts in Locally Advanced Cervical Carcinoma Treated with Radiation

    Directory of Open Access Journals (Sweden)

    Sareena Singh

    2017-01-01

    Full Text Available Background. To determine the prognostic significance of pretreatment levels of circulating lymphocyte (CLC, neutrophil (CNC, and monocyte (CMC counts in patients with locally advanced cervical carcinoma (CC treated with definitive radiation. Methods. A retrospective, dual-institution review of patients with Stage IB2-IVA CC from 2005 to 2015. Progression-free (PFS and Overall Survival (OS were determined for high and low CLC, CNC, and CMC groups. Multivariate analysis was used to confirm prognostic value of baseline leukocyte counts. Results. 181 patients were included. Median follow-up time was 26 (3–89 months. CNC had no effect on PFS or OS. PFS was similar between CMC groups; however, OS was significantly improved for patients with low CMC (62.5 versus 45.3 months, p=0.016. High CLC was associated with improved PFS (48.5 versus 27.8 months, p=0.048 and OS (58.4 versus 34.9 months, p=0.048. On multivariate analysis, high CNC was associated with increased relapse risk (HR 1.12, p=0.006 and low CLC was associated with increased mortality risk (HR 0.67, p=0.027. Conclusion. This study demonstrates that leukocyte values can provide prognostic information in CC. These hypothesis-generating findings warrant further prospective investigations.

  15. A Cs{sub 2}LiYCl{sub 6}:Ce-based advanced radiation monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Budden, B.S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stonehill, L.C., E-mail: lauracs@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dallmann, N. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Baginski, M.J.; Best, D.J. [SCI Technology, Inc., Huntsville, AL 35803 (United States); Smith, M.B.; Graham, S.A. [Bubble Technology Industries, Chalk River, ON, Canada K0J1J0 (Canada); Dathy, C.; Frank, J.M. [Saint-Gobain Crystals, Hiram, OH 44234 (United States); McClish, M. [Radiation Monitoring Devices, Inc., Watertown, MA 02472 (United States)

    2015-06-01

    Cs{sub 2}LiYCl{sub 6}:Ce{sup 3+} (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups.

  16. A phase I study of combination S-1 plus cisplatin chemotherapy with concurrent thoracic radiation for locally advanced non-small cell lung cancer.

    Science.gov (United States)

    Chikamori, Kenichi; Kishino, Daizo; Takigawa, Nagio; Hotta, Katsuyuki; Nogami, Naoyuki; Kamei, Haruhito; Kuyama, Shoichi; Gemba, Kenichi; Takemoto, Mitsuhiro; Kanazawa, Susumu; Ueoka, Hiroshi; Segawa, Yoshihiko; Takata, Saburo; Tabata, Masahiro; Kiura, Katsuyuki; Tanimoto, Mitsune

    2009-07-01

    A combination of S-1, a newly developed oral 5-fluorouracil derivative, and cisplatin is reported to show anti-tumour activity against advanced non-small cell lung cancer (NSCLC). Because S-1 shows synergistic effects with radiation, we conducted a phase I study to evaluate the maximum tolerated doses (MTDs), recommended doses (RDs), and dose-limiting toxicities (DLTs) of cisplatin and S-1 when combined with concurrent thoracic radiation (total dose of 60 Gy with 2 Gy per daily fraction) in patients with locally advanced NSCLC. Chemotherapy consisted of two 4-week cycles of cisplatin administered on days 1 and 8, and S-1 administered on days 1-14. S-1/cisplatin dosages (mg/m(2)/day) were escalated as follows: 60/30, 60/40, 70/40, 80/40 and 80/50. Twenty-two previously untreated patients were enrolled. The MTDs and RDs for S-1/cisplatin were 80/50 and 80/40, respectively. DLTs included febrile neutropaenia, thrombocytopaenia, bacterial pneumonia and delayed second cycle of chemotherapy. No patient experienced radiation pneumonitis>grade 2 and only one patient experienced grade 3 radiation oesophagitis. The overall response rate was 86.4% with a median survival time of 24.4 months. These results indicate that combination cisplatin-S-1 chemotherapy with concurrent thoracic radiation would be a feasible treatment option and a phase II study is currently under way.

  17. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer.

    Science.gov (United States)

    Chattopadhyay, Niladri; Cai, Zhongli; Pignol, Jean-Philippe; Keller, Brian; Lechtman, Eli; Bendayan, Reina; Reilly, Raymond M

    2010-12-06

    Our purpose was to develop a human epidermal growth factor receptor-2 (HER-2) targeted nanotechnology-based radiosensitizer. HER-2 is overexpressed in 20-30% of all breast cancers and up to 2-fold higher in locally advanced disease (LABC). Trastuzumab was derivatized with a polyethylene glycol (OPSS-PEG-SVA) cross-linker to produce trastuzumab-PEG-OPSS. These immunoconjugates were analyzed by SDS-PAGE, and their immunoreactivity was assessed by flow cytometry using HER-2 overexpressing SK-BR-3 breast cancer cells. Reacting trastuzumab with increasing ratios of PEG resulted in an increase in molecular weight from approximately 148 kDa to 243 kDa, associated with increasing PEG substitution (0.6 to 18.9 PEG chains per trastuzumab). Attachment of approximately 7 PEG chains per trastuzumab resulted in 56% retention in immunoreactivity assessed by flow cytometry. The conjugates were then linked to 30 nm AuNPs. Using a novel (123)iodine-radiotracer based assay that overcomes the current limitations of spectrophotometric quantification of biological molecules on AuNPs we estimate 14.3 ± 2.7 antibodies were attached to each AuNP when 2 × 10(11) AuNPs were reacted with 20 μg of trastuzumab-PEG-OPSS. Specificity of trastuzumab-PEG-AuNPs for HER-2 and internalization in SK-BR-3 cells was demonstrated by comparing the uptake of trastuzumab-PEG-AuNPs or PEG-AuNPs by darkfield microscopy. The ability of trastuzumab-PEG-AuNPs in combination with 300 kVp X-rays to enhance DNA double strand breaks (DSBs) in SK-BR-3 cells was assessed by immunofluorescence using the γ-H2AX assay. γ-H2AX assay results revealed 5.1-fold higher DNA-DSBs with trastuzumab-PEG-AuNPs and X-radiation as compared to treatment with X-radiation alone. The trastuzumab-PEG-AuNPs are a promising targeted nanotechnology-based radiosensitizer for improving LABC therapy. The design and systematic approaches taken to surface modify and characterize trastuzumab-PEG-AuNPs described in this study would have

  18. Risk Factors for Brain Metastases in Locally Advanced Non-Small Cell Lung Cancer With Definitive Chest Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhe; Bi, Nan; Wang, Jingbo; Hui, Zhouguang; Xiao, Zefen; Feng, Qinfu; Zhou, Zongmei; Chen, Dongfu; Lv, Jima; Liang, Jun; Fan, Chengcheng; Liu, Lipin; Wang, Luhua, E-mail: wlhwq@yahoo.com

    2014-06-01

    Purpose: We intended to identify risk factors that affect brain metastases (BM) in patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving definitive radiation therapy, which may guide the choice of selective prevention strategies. Methods and Materials: The characteristics of 346 patients with stage III NSCLC treated with thoracic radiation therapy from January 2008 to December 2010 in our institution were retrospectively reviewed. BM rates were analyzed by the Kaplan-Meier method. Multivariate Cox regression analysis was performed to determine independent risk factors for BM. Results: The median follow-up time was 48.3 months in surviving patients. A total of 74 patients (21.4%) experienced BM at the time of analysis, and for 40 (11.7%) of them, the brain was the first site of failure. The 1-year and 3-year brain metastasis rates were 15% and 28.1%, respectively. In univariate analysis, female sex, age ≤60 years, non-squamous cell carcinoma, T3-4, N3, >3 areas of lymph node metastasis, high lactate dehydrogenase and serum levels of tumor markers (CEA, NSE, CA125) before treatment were significantly associated with BM (P<.05). In multivariate analysis, age ≤60 years (P=.004, hazard ratio [HR] = 0.491), non-squamous cell carcinoma (P=.000, HR=3.726), NSE >18 ng/mL (P=.008, HR=1.968) and CA125 ≥ 35 U/mL (P=.002, HR=2.129) were independent risk factors for BM. For patients with 0, 1, 2, and 3 to 4 risk factors, the 3-year BM rates were 7.3%, 18.9%, 35.8%, and 70.3%, respectively (P<.001). Conclusions: Age ≤60 years, non-squamous cell carcinoma, serum NSE >18 ng/mL, and CA125 ≥ 35 U/mL were independent risk factors for brain metastasis. The possibilities of selectively using prophylactic cranial irradiation in higher-risk patients with LA-NSCLC should be further explored in the future.

  19. Advances in environmental radiation protection: re-thinking animal-environment interaction modelling for wildlife dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Beresford, Nicholas A. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Centre for Ecology and Hydrology, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare [Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm (Sweden); Gashchak, Sergey [Chornobyl Centre for Nuclear Safety, Radioactive Waste and Radioecology, 07100 Slavutych (Ukraine); Hinton, Thomas G. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Centre de Cadarache, 13115 Saint Paul-lez-Durance (France)

    2014-07-01

    Current wildlife dose assessment models adopt simplistic approaches to the representation of animal-environment interaction. The simplest approaches are to assume either that environmental media (e.g. soil, sediment or water) are uniformly contaminated or relating organism exposure to activity concentrations in media collected at the point of sampling of the animal. The external exposure of a reference organism is then estimated by defining the geometric relationship between the organism and the medium. For example, a reference organism within the soil would have a 4p exposure geometry and a reference organism on the soil would have a 2p exposure geometry. At best, the current modelling approaches recognise differences in media activity concentrations by calculating exposure for different areas of contamination and then estimating the fraction of time that an organism spends in each area. In other fields of pollution ecology, for example wildlife risk assessment for chemical pollution, more advanced approaches are being implemented to model animal-environment interaction and estimate exposure. These approaches include individual-based movement modelling and random walk modelling and a variety of software tools have been developed to facilitate the implementation of these models. Although there are more advanced animal-environment interaction modelling approaches that are available, it is questionable whether these should be adopted for use in environmental radiation protection. Would their adoption significantly reduce uncertainty within the assessment process and, if so, by how much? These questions are being addressed within the new TREE (TRansfer - Exposure - Effects) research programme funded by the United Kingdom Natural Environment Research Council (NERC) and within Working Group (WG) 8 of the International Atomic Energy Agency's MODARIA programme. MODARIA WG8 is reviewing some of the alternative approaches that have been developed for animal

  20. Radiation Evaluation of an Advanced 64Mb 3.3V DRAM and Insights into the Effects of Scaling on Radiation Hardness

    Science.gov (United States)

    Shaw, D. C.; Swift, G. M.; Johnston, A. H.

    1995-01-01

    In this paper, total ionizing dose radiation evaluations of the Micron 64 Mb 3.3 V, fast page mode DRAM and the IBM LUNA-ES 16 Mb DRAM are presented. The effects of scaling on total ionizing dose radiation hardness are studied utilizing test structures and a series of 16 Mb DRAMs with different feature sizes from the same manufacturing line. General agreement was found between the threshold voltage shifts of 16 Mb DRAM test structures and the threshold voltage measured on complete circuits using retention time measurements. Retention time measurement data from early radiation doses are shown that allow internal failure modes to be distinguished.

  1. Radiation therapy for the treatment of feline advanced cutaneous squamous cell carcinoma; A utilizacao da radioterapia no tratamento do carcinoma de celulas escamosas cutaneo felino avancado

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, S.C.S.; Corgozinho, K.B.; Ferreira, A.M.R, E-mail: simonecsc@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Carvalho, L.A.V. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil); Holguin, P.G.

    2014-02-15

    The efficacy of radiation therapy for feline advanced cutaneous squamous cell carcinoma was evaluated. A full course radiation therapy protocol was applied to six cats showing single or multiple facial squamous cell carcinomas, in a total of seven histologically confirmed neoplastic lesions. Of the lesions, one was staged as T{sub 1}, and six as T{sub 4} according to WHO staging system of epidermal tumors. The animals were submitted to twelve radiation fractions of 4 Gy each, on a Monday-Wednesday-Friday schedule, and the equipment used was an orthovoltage unit. Energy used was 120 kV, 15 mA and 2 mm aluminum filter. The cats were evaluated during the treatment and 30 and 60 days after the end of the radiation therapy. In this study, 87% of the lesions had complete remission and 13% partial remission to the treatment. Side effects were considered mild according to Veterinary Radiation Therapy Oncology Group Toxicity criteria, and included erythema, epilation and rhinitis. Radiation Therapy was considered safe for feline cutaneous squamous cell carcinoma, leading to mild side effects and can represent a good therapeutic option. (author)

  2. A Dose Escalation and Pharmacodynamic Study of Triapine and Radiation in Patients With Locally Advanced Pancreas Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ludmila Katherine [Department of Internal Medicine, Ohio State University, Columbus, Ohio (United States); Grecula, John [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Jia, Guang [Department of Radiology, Ohio State University, Columbus, Ohio (United States); Wei Lai [Center for Biostatistics, Ohio State University, Columbus, Ohio (United States); Yang Xiangyu [Department of Radiology, Ohio State University, Columbus, Ohio (United States); Otterson, Gregory A. [Department of Internal Medicine, Ohio State University, Columbus, Ohio (United States); Wu Xin; Harper, Erica; Kefauver, Cheryl [Ohio State University Comprehensive Cancer Center, Columbus, Ohio (United States); Zhou Bingsen; Yen Yun [City of Hope Comprehensive Cancer Center, Duarte, California (United States); Bloomston, Mark [Department of Surgery, Division of Surgical Oncology, Ohio State University, Columbus, Ohio (United States); Knopp, Michael [Department of Radiology, Ohio State University, Columbus, Ohio (United States); Ivy, S. Percy [Cancer Therapeutics Evaluation Program, National Cancer Institute, Rockville, Maryland (United States); Grever, Michael [Department of Internal Medicine, Ohio State University, Columbus, Ohio (United States); Bekaii-Saab, Tanios, E-mail: Tanios.Saab@osumc.edu [Department of Internal Medicine, Ohio State University, Columbus, Ohio (United States)

    2012-11-15

    Purpose: Triapine, a novel inhibitor of the M2 subunit of ribonucleotide reductase (RR), is a potent radiosensitizer. This phase 1 study, sponsored by the National Cancer Institute Cancer Therapy Evaluation Program, assessed the safety and tolerability of triapine in combination with radiation (RT) in patients with locally advanced pancreas cancer (LAPCA). Methods and Materials: We evaluated 3 dosage levels of triapine (24 mg/m{sup 2}, 48 mg/m{sup 2}, 72 mg/m{sup 2}) administered with 50.4 Gy of RT in 28 fractions. Patients with LAPCA received triapine thrice weekly, every other week during the course of RT. Dose-limiting toxicity (DLT) was assessed during RT and for 4 weeks after its completion. Dynamic contrast-enhanced magnetic resonance imaging and serum RR levels were evaluated as potential predictors for early response. Results: Twelve patients were treated. Four patients (1 nonevaluable) were enrolled at dosage level 1 (DL1), 3 patients at DL2, and 5 patients (2 nonevaluable) at DL3. No DLTs were observed, and the maximum tolerated dose was not reached. Two patients (17%) achieved partial response, and 6 patients (50%) had stable disease. One patient underwent R0 resection after therapy. Ninety-two percent of patients (100% at DL3) experienced freedom from local tumor progression. In 75% of patients who eventually experienced progression, metastases developed without local progression. RR levels did not seem to predict outcome. In 4 patients with available data, dynamic contrast-enhanced magnetic resonance imaging may predict early response or resistance to therapy. Conclusion: The combination of triapine at 72 mg/m{sup 2} 3 times weekly every other week and standard RT is tolerable with interesting activity in patients with LAPCA.

  3. Recent advances in Tl Br, Cd Te and CdZnTe semiconductor radiation detectors: a review

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone B. [Universidade Bandeirante (UNIBAN), Sao Paulo, SP (Brazil)

    2011-07-01

    The success in the development of radiation spectrometers operating at room temperature is based on many years of effort on the part of large numbers of workers around the world. These individuals have contributed to the understanding of the fundamental materials issues associated with the growth of semiconductors for this application, the development of device fabrication and processing technology, and advances in low noise electronics and pulse processing. Progress in this field continues at an accelerated pace, as in evidenced by the improvements in detector performance and by the growing number of commercial products. Thus, the last years have been seen continued effort in the development of room temperature compound semiconductors devices. High-Z compound semiconductor detectors has been explored for high energy resolution, high detection efficiency and are of low cost. Compound semiconductors detectors are well suited for addressing needs of demanding applications such as bore hole logging where high operating temperature are encountered. In this work recent developments in semiconductors detectors were reviewed. This review concentrated on thallium bromide (TlBr), cadmium zinc telluride (CdZnTe) and cadmium telluride (CdTe) crystals detectors. TlBr has higher stopping power compared to common semiconductor materials because it has the higher photoelectric and total attenuation coefficients over wide energy range from 100 keV to 1 MeV. CdTe and CdZnTe detectors have several attractive features for detecting X-ray and low energy gamma ray. Their relatively large band gaps lead to a relatively low leakage current and offer an excellent energy resolution at room temperature. A literature survey and bibliography was also included. (author)

  4. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    Science.gov (United States)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  5. Advanced Radiation Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    The University of Michigan

    1998-07-01

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size.

  6. Intraoperative radiation of canine carotid artery, internal jugular vein, and vagus nerve. Therapeutic applications in the management of advanced head and neck cancers

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, B.B.; Pelzer, H.; Tsao, C.S.; Ward, W.F.; Johnson, P.; Friedman, C.; Sisson, G.A. Sr.; Kies, M. (Northwestern Univ., Chicago, IL (USA))

    1990-12-01

    As a step in the application of intraoperative radiotherapy (IORT) for treating advanced head and neck cancers, preliminary information was obtained on the radiation tolerance of the canine common carotid artery, internal jugular vein, and vagus nerve to a single, high-dose electron beam. Both sides of the neck of eight mongrel dogs were operated on to expose an 8-cm segment of common carotid artery, internal jugular vein, and vagus nerve. One side of the neck was irradiated, using escalating doses of 2500, 3500, 4500, and 5500 cGy. The contralateral side of the neck served as the unirradiated control. At 3 and 6 months after IORT, one dog at each dose level was killed. None of the dogs developed carotid bleeding at any time after IORT. Light microscopic investigations using hematoxylin-eosin staining on the common carotid artery and internal jugular vein showed no consistent changes that suggested radiation damage; however, the Masson trichrome stain and hydroxyproline concentration of irradiated common carotid artery indicated an increase in the collagen content of the tunica media. Marked changes in the irradiated vagus nerve were seen, indicating severe demyelination and loss of nerve fibers, which appeared to be radiation-dose dependent. Four patients with advanced recurrent head and neck cancer were treated with surgical resection and IORT without any acute or subacute complications. The role of IORT as a supplement to surgery, external beam irradiation, and chemotherapy in selected patients with advanced head and neck cancer needs further exploration.

  7. State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" - research activities and scientific advance in 2013.

    Science.gov (United States)

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovych, L

    2014-09-01

    Research activities and scientific advance achieved in 2013 at the State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report. Key points include the research results of XRCC1 and XPD gene polymorphism in thyroid cancer patients, CD38 gene GG genotype as a risk factor for chronic lymphocytic leukemia, frequency of 185delAG and 5382insC mutations in BRCA1 gene in women with breast cancer, cognitive function and TERF1, TERF2, TERT gene expression both with telomere length in human under the low dose radiation exposure. The "source-scattering/shielding structures- man" models for calculation of partial dose values to the eye lens and new methods for radiation risk assessment were developed and adapted. Radiation risks of leukemia including chronic lymphocytic leukemia in the cohort of liquidators were published according to the "case-control" study results after 20 years of survey. Increase of non-tumor morbidity in liquidators during the 1988-2011 with the maximum level 12-21 years upon irradiation was found. Incidence in evacuees appeared being of two-peak pattern i.e. in the first years after the accident and 12 years later. Experimental studies have concerned the impact of radio-modifiers on cellular systems, reproductive function in the population, features of the child nutrition in radiation contamination area were studied. Report also shows the results of scientific and organizational, medical and preventive work, staff training, and implementation of innovations. The NRCRM Annual Report was approved at the Scientific Council meeting of NAMS on March 3, 2014.

  8. Small bowel tumor:a comparative study of multi-modality MR enterography and CT enterography as diagnostic technique%多模态 MR与CT小肠造影诊断小肠肿瘤性疾病的对比观察

    Institute of Scientific and Technical Information of China (English)

    王梓; 胡道予; 汤浩; 李建军; 孟晓岩; 沈亚琪; 王秋霞

    2015-01-01

    Objective:To compare the diagnostic value of multi-modality MR enterography and CT enterography in small bowel tumor.Methods:From February 2012 to August 2014,Sixty-five patients who were suspected with small bowel diseases underwent CT enterography and multi-modality MR enterography.Two independent readers evaluated CT and MR images for presence of small bowel lesions in duodenum,proximal jejunum,distal jejunum,proximal ileum and distal ileum which were pathologically confirmed by operation and endoscopic biopsy.Results:Of 65 cases,38 small bowel tumors in 37 patients were confirmed (6 adenocarcinomas,7 lymphomas,18 gastrointestinal stromal tumors,3 neuroendocrine tumors,2 hemangiomas,2 lipomas).The detection rate of multi-modality MR enterography and CT enterography in diagnosing small bowel tumor was 97.4% (37/38)and 94.7% (36/38)respectively,with no significant difference (P>0.05).The results of statistic analysis (McNemar test)showed that there was no significant difference of specificity and sensitivity between multi-modality MR enterography and CT enterography for evaluating the tumor diseases located at different segments of small bowel (P>0.05).Conclusion:Multi-modality MR enterography and CT enterography are useful methods for diagno-sing small bowel tumors.%目的:比较多模态 MR 小肠口服造影法与 CT 小肠造影在诊断小肠肿瘤性疾病中的价值。方法:对本院2012年2月至2014年8月对怀疑有小肠肿瘤的65例患者行CT和多模态MR小肠造影检查。由两位腹部影像学医师分别对CT及 MR图像进行分析,记录十二指肠、近段空肠、远段空肠、近段回肠以及远段回肠肠管的病变累及情况,并与手术以及内镜活检病理结果进行对照。结果:经手术及内镜病理证实,65例中共37例患者有38个小肠肿瘤病灶(腺癌6例,淋巴瘤7例,间质瘤18例,神经内分泌肿瘤3例,海绵状血管瘤2例,脂肪瘤2例)。CT及 MRI对小肠肿瘤性

  9. Sanazole as a sensitizer of hypoxic cells with radical radiation in the treatment of advanced cancer of cervix an Indian experience.

    Science.gov (United States)

    Huilgol, Nagraj G; Dobrowsky, Werner; Tatsuzaki, Hideo; Chatterjee, Neela A; Kagiya, V T; Das, Kaushik

    2002-06-01

    AK-2123, is a nitrotriazole with a potential to sensitize hypoxic tissue to radiation. Cancer of cervix in advanced stages are predominantly treated with radiation. These are the tumours which harbour a large hypoxic core. This is an Indian experience of the multicentric trial. Patients were randomized to control and AK-2123 arm. 49 patients were randomized to each group. Patients received external radiation with telecobalt to a dose of 50 Gy in five weeks. Those in the study arm received 600 mg/m2, on alternate days. The patients were further treated with intracavitory radiation a dose of 20 Gy. The total dose of 70 Gy was achieved. Patients in the study arm had a complete response of 71.43% (35 of 49) while only 21 of 49 (42.86%) responded in the control group. The overall survival at two years was 72.2% for the study group and 32.43% for control. Neuropathy, a drug related toxicity was transient except, in one patient, which has persisted. AK-2123, has shown significant radiation sensitizing potential.

  10. Advances in nuclear particle dosimetry for radiation protection and medicine - Ninth Symposium on Neutron Dosimetry (Editorial Material, English)

    Energy Technology Data Exchange (ETDEWEB)

    Zoetelief, J; Bos, A J.; Schuhmacher, H; McDonald, Joseph C.; Schultz, F W.; Pihet, P

    2004-12-15

    The Ninth Symposium on Neutron Dosimetry has been expanded to cover not only neutron radiation but heavy charged particle dosimetry as well. The applications are found in such fields as radiation protection, aircrew dosimetry, medicine, nuclear power and accelerator health physics. Scientists from many countries from around the world presented their work, and described the latest developments in techniques and instrumentation.

  11. Differences in fundamental reaction mechanisms between high and low-LET in recent advancements and applications of ionizing radiation

    Science.gov (United States)

    Farahani, Mahnaz; Clochard, Marie-Claude; Gifford, Ian; Barkatt, Aaron; Al-Sheikhly, Mohamad

    2014-12-01

    Differences among the mechanisms of energy deposition by high-linear energy transfer (LET) radiation, consisting of neutrons, protons, alpha particles, and heavy ions on one hand, and low-LET radiation, exemplified by electron beam and gamma radiation on the other, are utilized in the selection of types of radiation used for specific applications. Thus, high-LET radiation is used for modification of carbon nanotubes, ion track grafting, and the synthesis of membranes and nanowires, as well as for characterization of materials by means of neutron scattering. Recent applications of low-LET irradiation include minimization of radiolytic degradation upon sterilization of ultra-high molecular weight polyethylene (UHMWPE), radiolytic synthesis of nanogels for drug delivery systems, grafting of polymers in the synthesis of adsorbents for uranium from seawater, and reductive remediation of PCBs.1

  12. SBBN 2010: 7. Congress of the Brazilian Society of Nuclear Biosciences. Radiations in biosciences: advances and trends; SBBN 2010: 7. Congresso da Sociedade Brasileira de Biociencias Nucleares. Radiacoes em biociencias: avancos e perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Advance and new perspectives related to the use of ionizing and no ionizing radiations in nuclear biosciences are presented. Multidisciplinary approach, including radiopharmacy, radioprotection and dosimetry, cytogenetic, biosafety, radioecology, environmental toxicology are studied. Topics of Nuclear medicine, radiotherapy and image diagnosis, such as computerized tomography, PET scan, phantoms, biomedical radiography, are reported. Use of radioisotopes, evaluation of radiation dose rates, radiation dose distribution, radiation monitoring is considered. Environmental impact of radiation are also in human beings, animals and for several purposes are analyzed. (MAC)

  13. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  14. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  15. Advances in the project about Pin type silicon radiation detectors; Avances en el proyecto sobre detectores de radiacion de silicio tipo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez F, J. [Instituto Nacional de Investigaciones Nucleares, Laboratorio de Detectores de Radiacion, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Cerdeira, A.; Aceves, M.; Diaz, A.; Estrada, M.; Rosales, P.; Cabal, A.E.; Montano L, M.; Leyva, A

    1998-07-01

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  16. Simultaneous Integrated Boost–Intensity Modulated Radiation Therapy With Concomitant Capecitabine and Mitomycin C for Locally Advanced Anal Carcinoma: A Phase 1 Study

    Energy Technology Data Exchange (ETDEWEB)

    Deenen, Maarten J. [Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Dewit, Luc [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Boot, Henk [Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Beijnen, Jos H. [Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam (Netherlands); Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht University, Utrecht (Netherlands); Schellens, Jan H.M. [Division of Clinical Pharmacology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht University, Utrecht (Netherlands); Cats, Annemieke, E-mail: a.cats@nki.nl [Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2013-04-01

    Purpose: Newer radiation techniques, and the application of continuous 5-FU exposure during radiation therapy using oral capecitabine may improve the treatment of anal cancer. This phase 1, dose-finding study assessed the feasibility and efficacy of simultaneous integrated boost–intensity modulated radiation therapy (SIB-IMRT) with concomitant capecitabine and mitomycin C in locally advanced anal cancer, including pharmacokinetic and pharmacogenetic analyses. Methods and Materials: Patients with locally advanced anal carcinoma were treated with SIB-IMRT in 33 daily fractions of 1.8 Gy to the primary tumor and macroscopically involved lymph nodes and 33 fractions of 1.5 Gy electively to the bilateral iliac and inguinal lymph node areas. Patients received a sequential radiation boost dose of 3 × 1.8 Gy on macroscopic residual tumor if this was still present in week 5 of treatment. Mitomycin C 10 mg/m{sup 2} (maximum 15 mg) was administered intravenously on day 1, and capecitabine was given orally in a dose-escalated fashion (500-825 mg/m{sup 2} b.i.d.) on irradiation days, until dose-limiting toxicity emerged in ≥2 of maximally 6 patients. An additional 8 patients were treated at the maximum tolerated dose (MTD). Results: A total of 18 patients were included. The MTD of capecitabine was determined to be 825 mg/m{sup 2} b.i.d. The predominant acute grade ≥3 toxicities included radiation dermatitis (50%), fatigue (22%), and pain (6%). Fifteen patients (83% [95%-CI: 66%-101%]) achieved a complete response, and 3 (17%) patients a partial response. With a median follow-up of 28 months, none of the complete responders, and 2 partial responders had relapsed. Conclusions: SIB-IMRT with concomitant single dose mitomycin C and capecitabine 825 mg/m{sup 2} b.i.d. on irradiation days resulted in an acceptable safety profile, and proved to be a tolerable and effective treatment regimen for locally advanced anal cancer.

  17. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: A report of randomized trial

    Directory of Open Access Journals (Sweden)

    Huilgol Nagraj

    2010-01-01

    Full Text Available Background: Head and neck cancer is the leading cause of male mortality due to cancer in India. Surgery, radiation alone or in combination has been the backbone of treatment strategies. Chemo-radiation has emerged as the standard of care in most types of head and neck cancer. This strategy has the advantage of maintaining both structure and functions, albeit with increased acute and delayed side effects. Radiation with hyperthermia can achieve the same objective without additional toxicities. Materials and Methods: A total of 56 patients were randomized to radiation therapy (RT alone or RT-hyperthermia (RT-HT arm. Twenty-six patients were included in RT alone arm and 28 patients in the RT-HT arm. Both groups were evenly matched for age, sex, and stage. Patients in both the arms received radiation to a dose of 66-70 Gy in 6.5-7 weeks. Patients in the study group received weekly HT. HT was started after impedance matching to last for 30 minutes. Results: Complete response was seen in 42.4% of RT alone group compare to 78.6% in the HT group. The difference was statistically significant ( < 0.05. Kaplan-Meir analysis of survival also showed a significant improvement in favor of RT-HT. No dose limiting thermal burns and excessive mucosal or thermal toxicity were recorded. Conclusion: Radiofrequency (RF based heating and radical radiation of head and neck cancers is better than in RT alone group. HT should be considered as a valid option wherever the facility for HT is available. This report should infuse greater confidence in radiation Oncologists to practice HT as an adjuvant treatment modality.

  18. Advanced therapeutic strategy for radiation-induced osteosarcoma in the skull base: a case report and review

    Directory of Open Access Journals (Sweden)

    Yamada Shoko Merrit

    2012-08-01

    Full Text Available Abstract A review of patients with skull base osteosarcoma secondary to radiation (radiation-induced osteosarcoma: RIOS of the pituitary tumor shows the mean survival of approximately 7 months (2 weeks – 16 months. This warning prognosis seems to stem from two factors, 1 the anatomical complexity of the skull base for total resection of the tumor, and 2 standard adjuvant therapies for the tumor yet to be established. Contrary to the general belief, the authors report an unusually long survival of a 75-year-old woman with a history of osteosarcoma that developed in the same sequence 20 years after pituitary tumor radiation. On her recent admission, she complained of frontal headaches and MRI studies showed a tumor in the sphenoid sinus. Endoscopic trans-nasal tumor removal allowed for histological diagnosis of an osteosarcoma. However, further rapid tumor growth necessitated a radical tumor resection followed by a combined chemotherapy with ifosfamide, cisplatin, and etoposide (ICE. Despite temporary suppression of the tumor growth, the chemotherapy was discontinued due to severe pancytopenia that occurred after three courses of treatment. Shortly after the discontinuation of ICE therapy, the tumor size increased again rapidly, requiring a novel radiation therapy, Cyber-knife treatment. Following this radiation, the tumor growth was arrested, and the patient remains healthy without neurological symptoms over 24 months. The outcome of Cyber-knife in this case suggests that this specific therapy must be considered for the unresectable skull base RIOS.

  19. 多模态读写教学模式在体育专业大学生英语课堂中的有效性研究%An Empirical Research on the Multi-modal Reading and Writing Teaching Mode in English Class of PE College Student

    Institute of Scientific and Technical Information of China (English)

    杨倩

    2014-01-01

    PE majors are generally weak in English foundation and lack of interest in learning English. A single teaching mode can not arouse their interest and enthusiasm in learning English. Multi-modal reading and writing teaching mode mobilizes different symbols to construct meaning and fully arouse the students’auditory,visual,tact-ile,perceptual abilities to learn the target language. Through adopting multi-modal reading and writing teaching mode to implement a reformation in the 2010 PE majors of Henan Institute of Science and Technology,the teaching experiments and survey result show that:this teaching mode not only arouses PE majors’interest in learning English and improves students’reading and writing skills remarkably.%体育专业大学生英语基础普遍薄弱,对英语学习缺乏兴趣,单一的教学模式无法调动他们学习英语的兴趣和积极性。多模态读写教学模式调动不同的符号资源来构建意义,将学生的听觉、视觉、触觉、感知能力等充分调动起来进行目的语学习。通过在河南科技学院2010级体育学院采用多模态读写教学模式对大学英语读写课程实施改革,教学实验和问卷调查结果表明:该教学模式显著提高了体育专业大学生的英语学习兴趣和英语读写能力。

  20. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  1. Treatment of locally advanced carcinomas of head and neck with intensity-modulated radiation therapy (IMRT in combination with cetuximab and chemotherapy: the REACH protocol

    Directory of Open Access Journals (Sweden)

    Simon Christian

    2010-11-01

    Full Text Available Abstract Background Primary treatment of carcinoma of the oro-/hypopharynx or larynx may consist of combined platinum-containing chemoradiotherapy. In order to improve clinical outcome (i.e. local control/overall survival, combined therapy is intensified by the addition of the EGFR inhibitor cetuximab (Erbitux®. Radiation therapy (RT is carried out as intensity-modulated RT (IMRT to avoid higher grade acute and late toxicity by sparing of surrounding normal tissues. Methods/Design The REACH study is a prospective phase II study combining chemoradiotherapy with carboplatin/5-Fluorouracil (5-FU and the monoclonal epidermal growth factor-receptor (EGFR antibody cetuximab (Erbitux® as intensity-modulated radiation therapy in patients with locally advanced squamous-cell carcinomas of oropharynx, hypopharynx or larynx. Patients receive weekly chemotherapy infusions in the 1st and 5th week of RT. Additionally, cetuximab is administered weekly throughout the treatment course. IMRT is delivered as in a classical concomitant boost concept (bid from fraction 16 to a total dose of 69,9 Gy. Discussion Primary endpoint of the trial is local-regional control (LRC. Disease-free survival, progression-free survival, overall survival, toxicity, proteomic and genomic analyses are secondary endpoints. The aim is to explore the efficacy as well as the safety and feasibility of this combined radioimmunchemotherapy in order to improve the outcome of patients with advanced head and neck cancer. Trial registration ISRCTN87356938

  2. Proceedings of the workshop on applications of synchrotron radiation to trace impurity analysis for advanced silicon processing

    Energy Technology Data Exchange (ETDEWEB)

    Laderman, S [Integrated Circuits Business Div., Hewlett Packard Co., Palo Alto, CA (United States); Pianetta, P [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1993-03-01

    Wafer surface trace impurity analysis is essential for development of competitive Si circuit technologies. Today's grazing incidence x-ray fluorescence techniques with rotating anodes fall short of requirements for the future. Hewlett Packard/Toshiba experiments indicate that with second generation synchrotron sources such as SSRL, the techniques can be extended sufficiently to meet important needs of the leading edge Si circuit industry through nearly all of the 1990's. This workshop was held to identify people interested in use of synchrotron radiation-based methods and to document needs and concerns for further development. Viewgraphs are included for the following presentations: microcontamination needs in silicon technology (M. Liehr), analytical methods for wafer surface contamination (A. Schimazaki), trace impurity analysis of liquid drops using synchrotron radiation (D. Wherry), TRXRF using synchrotron sources (S. Laderman), potential role of synchrotron radiation TRXRF in Si process R D (M. Scott), potenital development of synchrotron radiation facilities (S. Brennan), and identification of goals, needs and concerns (M. Garner).

  3. Cisplatin and Radiation Therapy With or Without Carboplatin and Paclitaxel in Patients With Locally Advanced Cervical Cancer

    Science.gov (United States)

    2016-03-17

    Cervical Adenocarcinoma; Cervical Adenosquamous Carcinoma; Cervical Squamous Cell Carcinoma; Chemotherapeutic Agent Toxicity; Cognitive Side Effects of Cancer Therapy; Psychological Impact of Cancer; Radiation Toxicity; Sexual Dysfunction and Infertility; Stage IB Cervical Cancer; Stage IIA Cervical Cancer; Stage IIB Cervical Cancer; Stage III Cervical Cancer; Stage IVA Cervical Cancer

  4. TU-A-304-00: Imaging, Treatment Planning, and QA for Stereotactic Body Radiation Therapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Increased use of SBRT and hypo fractionation in radiation oncology practice has posted a number of challenges to medical physicist, ranging from planning, image-guided patient setup and on-treatment monitoring, to quality assurance (QA) and dose delivery. This symposium is designed to provide updated knowledge necessary for the safe and efficient implementation of SBRT in various linac platforms, including the emerging digital linacs equipped with high dose rate FFF beams. Issues related to 4D CT, PET and MRI simulations, 3D/4D CBCT guided patient setup, real-time image guidance during SBRT dose delivery using gated/un-gated VMAT or IMRT, and technical advancements in QA of SBRT (in particular, strategies dealing with high dose rate FFF beams) will be addressed. The symposium will help the attendees to gain a comprehensive understanding of the SBRT workflow and facilitate their clinical implementation of the state-of-art imaging and planning techniques. Learning Objectives: Present background knowledge of SBRT, describe essential requirements for safe implementation of SBRT, and discuss issues specific to SBRT treatment planning and QA. Update on the use of multi-dimensional (3D and 4D) and multi-modality (CT, beam-level X-ray imaging, pre- and on-treatment 3D/4D MRI, PET, robotic ultrasound, etc.) for reliable guidance of SBRT. Provide a comprehensive overview of emerging digital linacs and summarize the key geometric and dosimetric features of the new generation of linacs for substantially improved SBRT. Discuss treatment planning and quality assurance issues specific to SBRT. Research grant from Varian Medical Systems.

  5. Concurrent Chemo-Radiation With or Without Induction Gemcitabine, Carboplatin, and Paclitaxel: A Randomized, Phase 2/3 Trial in Locally Advanced Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Terence, E-mail: trdtwk@nccs.com.sg [Division of Radiation Oncology, National Cancer Centre Singapore (Singapore); Lim, Wan-Teck [Division of Medical Oncology, National Cancer Centre Singapore (Singapore); Fong, Kam-Weng; Cheah, Shie-Lee; Soong, Yoke-Lim [Division of Radiation Oncology, National Cancer Centre Singapore (Singapore); Ang, Mei-Kim; Ng, Quan-Sing; Tan, Daniel [Division of Medical Oncology, National Cancer Centre Singapore (Singapore); Ong, Whee-Sze; Tan, Sze-Huey [Division of Clinical Trial and Epidemiological Sciences, National Cancer Centre Singapore (Singapore); Yip, Connie; Quah, Daniel [Division of Radiation Oncology, National Cancer Centre Singapore (Singapore); Soo, Khee-Chee [Division of Surgical Oncology, National Cancer Centre Singapore (Singapore); Wee, Joseph [Division of Radiation Oncology, National Cancer Centre Singapore (Singapore)

    2015-04-01

    Purpose: To compare survival, tumor control, toxicities, and quality of life of patients with locally advanced nasopharyngeal carcinoma (NPC) treated with induction chemotherapy and concurrent chemo-radiation (CCRT), against CCRT alone. Patients and Methods: Patients were stratified by N stage and randomized to induction GCP (3 cycles of gemcitabine 1000 mg/m{sup 2}, carboplatin area under the concentration-time-curve 2.5, and paclitaxel 70 mg/m{sup 2} given days 1 and 8 every 21 days) followed by CCRT (radiation therapy 69.96 Gy with weekly cisplatin 40 mg/m{sup 2}), or CCRT alone. The accrual of 172 was planned to detect a 15% difference in 5-year overall survival (OS) with a 5% significance level and 80% power. Results: Between September 2004 and August 2012, 180 patients were accrued, and 172 (GCP 86, control 86) were analyzed by intention to treat. There was no significant difference in OS (3-year OS 94.3% [GCP] vs 92.3% [control]; hazard ratio 1.05; 1-sided P=.494]), disease-free survival (hazard ratio 0.77, 95% confidence interval 0.44-1.35, P=.362), and distant metastases–free survival (hazard ratio 0.80, 95% confidence interval 0.38-1.67, P=.547) between the 2 arms. Treatment compliance in the induction phase was good, but the relative dose intensity for concurrent cisplatin was significantly lower in the GCP arm. Overall, the GCP arm had higher rates of grades 3 and 4 leukopenia (52% vs 37%) and neutropenia (24% vs 12%), but grade 3 and 4 acute radiation toxicities were not statistically different between the 2 arms. The global quality of life scores were comparable in both arms. Conclusion: Induction chemotherapy with GCP before concurrent chemo-irradiation did not improve survival in locally advanced NPC.

  6. A comparative study of low dose weekly paclitaxel versus cisplatin with concurrent radiation in the treatment of locally advanced head and neck cancers

    Directory of Open Access Journals (Sweden)

    R K Jain

    2009-01-01

    Full Text Available Purpose: The purpose of this study was to compare low dose weekly paclitaxel versus cisplatin with concurrent radiation in locally advanced head and neck cancers. Materials and Methods: From August 2005 to July 2006, a total of 100 biopsy proven, locally advanced head and neck cancers were enrolled for the study. All the patients were stratified in two groups, study group A and control group B. Study group patients received injection Paclitaxel 20 mg/m 2 , I/V 1 hr infusion weekly for 6 weeks and control group patients received injection Cisplatin 30 mg/m 2 , I/V 2 hrs infusion weekly for 6 weeks. All patients received 66-70 Gy concurrent radiation at the rate of 2 Gy/day, 5 #/week, in 6-7 weeks by cobalt theratron phoenix - 80 teletherapy units. Result: Complete response achieved in 73% of patients in study group and 64% of patients in control group. There was no statistically significant difference observed between the study group and the control group (χ2 = 1.167, df = 1, level of significance 0.05. On 3-10 months of follow-up 59% of patients in the study group and 42% of patients in the control group are alive and disease free. Local toxicities including mucositis, dysphasia and skin reactions were more in the study group but tolerable. Conclusion: Efficacy of paclitaxel in low dose weekly schedule is comparable to cisplatin in locally advanced head and neck squamous cell carcinoma. Further analysis and follow-up are needed to evaluate if this benefit will translate into prolonged survival.

  7. Prediction of neoadjuvant radiation chemotherapy response and survival using pretreatment [{sup 18}F]FDG PET/CT scans in locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Ji-In; Ha, Seunggyun; Kim, Sang Eun [Seoul National University Bundang Hospital, Department of Nuclear Medicine, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kang, Sung-Bum; Oh, Heung-Kwon [Seoul National University Bundang Hospital, Department of Surgery, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Lee, Keun-Wook [Seoul National University Bundang Hospital, Department of Internal Medicine, Seongnam (Korea, Republic of); Lee, Hye-Seung [Seoul National University Bundang Hospital, Department of Pathology, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Kim, Jae-Sung [Seoul National University Bundang Hospital, Department of Radiation Oncology, Seongnam (Korea, Republic of); Lee, Ho-Young [Seoul National University Bundang Hospital, Department of Nuclear Medicine, Seoul National University College of Medicine, Seongnam (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of)

    2016-03-15

    The aim of this study was to investigate metabolic and textural parameters from pretreatment [{sup 18}F]FDG PET/CT scans for the prediction of neoadjuvant radiation chemotherapy response and 3-year disease-free survival (DFS) in patients with locally advanced rectal cancer (LARC). We performed a retrospective review of 74 patients diagnosed with LARC who were initially examined with [{sup 18}F]FDG PET/CT, and who underwent neoadjuvant radiation chemotherapy followed by complete resection. The standardized uptake value (mean, peak, and maximum), metabolic volume (MV), and total lesion glycolysis of rectal cancer lesions were calculated using the isocontour method with various thresholds. Using three-dimensional textural analysis, about 50 textural features were calculated for PET images. Response to neoadjuvant radiation chemotherapy, as assessed by histological tumour regression grading (TRG) after surgery and 3-year DFS, was evaluated using univariate/multivariate binary logistic regression and univariate/multivariate Cox regression analyses. MVs calculated using the thresholds mean standardized uptake value of the liver + two standard deviations (SDs), and mean standard uptake of the liver + three SDs were significantly associated with TRG. Textural parameters from histogram-based and co-occurrence analysis were significantly associated with TRG. However, multivariate analysis revealed that none of these parameters had any significance. On the other hand, MV calculated using various thresholds was significantly associated with 3-year DFS, and MV calculated using a higher threshold tended to be more strongly associated with 3-year DFS. In addition, textural parameters including kurtosis of the absolute gradient (GrKurtosis) were significantly associated with 3-year DFS. Multivariate analysis revealed that GrKurtosis could be a prognostic factor for 3-year DFS. Metabolic and textural parameters from initial [{sup 18}F]FDG PET/CT scans could be indexes to assess

  8. Impact of Pretreatment Combined {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Staging on Radiation Therapy Treatment Decisions in Locally Advanced Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Sweet Ping, E-mail: sweet.ng@petermac.org [Peter MacCallum Cancer Centre, Melbourne (Australia); David, Steven [Peter MacCallum Cancer Centre, Melbourne (Australia); Alamgeer, Muhammad; Ganju, Vinod [Monash Cancer Centre, Melbourne (Australia)

    2015-09-01

    Purpose: To assess the diagnostic performance of pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography ({sup 18}F-FDG PET/CT) and its impact on radiation therapy treatment decisions in patients with locally advanced breast cancer (LABC). Methods and Materials: Patients with LABC with Eastern Cooperative Oncology Group performance status <2 and no contraindication to neoadjuvant chemotherapy, surgery, and adjuvant radiation therapy were enrolled on a prospective trial. All patients had pretreatment conventional imaging (CI) performed, including bilateral breast mammography and ultrasound, bone scan, and CT chest, abdomen, and pelvis scans performed. Informed consent was obtained before enrolment. Pretreatment whole-body {sup 18}F-FDG PET/CT scans were performed on all patients, and results were compared with CI findings. Results: A total of 154 patients with LABC with no clinical or radiologic evidence of distant metastases on CI were enrolled. Median age was 49 years (range, 26-70 years). Imaging with PET/CT detected distant metastatic disease and/or locoregional disease not visualized on CI in 32 patients (20.8%). Distant metastatic disease was detected in 17 patients (11.0%): 6 had bony metastases, 5 had intrathoracic metastases (pulmonary/mediastinal), 2 had distant nodal metastases, 2 had liver metastases, 1 had pulmonary and bony metastases, and 1 had mediastinal and distant nodal metastases. Of the remaining 139 patients, nodal disease outside conventional radiation therapy fields was detected on PET/CT in 15 patients (10.8%), with involvement of ipsilateral internal mammary nodes in 13 and ipsilateral level 5 cervical nodes in 2. Conclusions: Imaging with PET/CT provides superior diagnostic and staging information in patients with LABC compared with CI, which has significant therapeutic implications with respect to radiation therapy management. Imaging with PET/CT should be considered in all patients undergoing primary

  9. Stereotactic Body Radiation Therapy Can Be Used Safely to Boost Residual Disease in Locally Advanced Non-Small Cell Lung Cancer: A Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Feddock, Jonathan, E-mail: jmfedd0@uky.edu [Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky (United States); Arnold, Susanne M. [Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky (United States); Department of Medical Oncology, University of Kentucky, Lexington, Kentucky (United States); Shelton, Brent J. [Department of Biostatistics, University of Kentucky, Lexington, Kentucky (United States); Sinha, Partha; Conrad, Gary [Department of Radiology, University of Kentucky, Lexington, Kentucky (United States); Chen, Li [Department of Biostatistics, University of Kentucky, Lexington, Kentucky (United States); Rinehart, John [Department of Medical Oncology, University of Kentucky, Lexington, Kentucky (United States); McGarry, Ronald C. [Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky (United States)

    2013-04-01

    Purpose: To report the results of a prospective, single-institution study evaluating the feasibility of conventional chemoradiation (CRT) followed by stereotactic body radiation therapy (SBRT) as a means of dose escalation for patients with stage II-III non-small cell lung cancer (NSCLC) with residual disease. Methods and Materials: Patients without metastatic disease and with radiologic evidence of limited residual disease (≤5 cm) within the site of the primary tumor and good or complete nodal responses after standard CRT to a target dose of 60 Gy were considered eligible. The SBRT boost was done to achieve a total combined dose biological equivalent dose >100 Gy to the residual primary tumor, consisting of 10 Gy × 2 fractions (20 Gy total) for peripheral tumors, and 6.5 Gy × 3 fractions (19.5 Gy total) for medial tumors using the Radiation Therapy Oncology Group protocol 0813 definitions. The primary endpoint was the development of grade ≥3 radiation pneumonitis (RP). Results: After a median follow-up of 13 months, 4 patients developed acute grade 3 RP, and 1 (2.9%) developed late and persistent grade 3 RP. No patients developed grade 4 or 5 RP. Mean lung dose, V2.5, V5, V10, and V20 values were calculated for the SBRT boost, and none were found to significantly predict for RP. Only advancing age (P=.0147), previous smoking status (P=.0505), and high CRT mean lung dose (P=.0295) were significantly associated with RP development. At the time of analysis, the actuarial local control rate at the primary tumor site was 82.9%, with only 6 patients demonstrating recurrence. Conclusions: Linear accelerator-based SBRT for dose escalation of limited residual NSCLC after definitive CRT was feasible and did not increase the risk for toxicity above that for standard radiation therapy.

  10. Conformal orbit sparing radiation therapy: a treatment option for advanced skin cancer of the parotid and ear region

    OpenAIRE

    Foley, Heath; Hopley, Shane; Brown, Elizabeth; Bernard, Anne; Foote, Matthew

    2016-01-01

    Abstract Introduction New surgical methods have enabled resection of previously in‐operable tumours in the region of the parotid gland and ear. This has translated to deeper target volumes being treated with adjuvant radiotherapy. Due to the limitations of existing conformal techniques, alternative planning approaches are required to cover the target volume with appropriate sparing of adjacent critical structures. Although intensity modulated radiation therapy (IMRT) may be able to achieve th...

  11. Impact of radiation dose and standardized uptake value of (18)FDG PET on nodal control in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Kroon, Petra S; Jürgenliemk-Schulz, Ina M;

    2015-01-01

    BACKGROUND: Despite local control now exceeding 90% with image-guided adaptive brachytherapy (IGABT), regional and distant metastases continue to curb survival in locally advanced cervical cancer. As regional lymph nodes often represent first site of metastatic spread, improved nodal control could...... is a negative prognostic predictor for nodal control. Attention should be raised to administration of a complete schedule of concurrent chemotherapy as well as treatment of para-aortic nodes....

  12. Outcomes in a Multi-institutional Cohort of Patients Treated With Intraoperative Radiation Therapy for Advanced or Recurrent Renal Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Paly, Jonathan J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Biggs, Peter J.; Niemierko, Andrzej [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Roeder, Falk [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Martínez-Monge, Rafael [Radiation Oncology Division, University of Navarre, Pamplona (Spain); Whitson, Jared [Department of Urology, University of California San Francisco, San Francisco, California (United States); Calvo, Felipe A. [Departamento de Oncología, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Fastner, Gerd; Sedlmayer, Felix [Department of Radiotherapy and Radio-Oncology, Paracelsus Medical University Clinics, Salzburg (Austria); Wong, William W. [Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona (United States); Ellis, Rodney J. [Department of Radiation Oncology, Seidman Cancer Center University Hospitals Case Medical Center, Cleveland, Ohio (United States); Haddock, Michael G.; Choo, Richard [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Shipley, William U.; Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Efstathiou, Jason A., E-mail: jefstathiou@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-03-01

    Purpose/Objective(s): This study aimed to analyze outcomes in a multi-institutional cohort of patients with advanced or recurrent renal cell carcinoma (RCC) who were treated with intraoperative radiation therapy (IORT). Methods and Materials: Between 1985 and 2010, 98 patients received IORT for advanced or locally recurrent RCC at 9 institutions. The median follow-up time for surviving patients was 3.5 years. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were estimated with the Kaplan-Meier method. Chained imputation accounted for missing data, and multivariate Cox hazards regression tested significance. Results: IORT was delivered during nephrectomy for advanced disease (28%) or during resection of locally recurrent RCC in the renal fossa (72%). Sixty-nine percent of the patients were male, and the median age was 58 years. At the time of primary resection, the T stages were as follows: 17% T1, 12% T2, 55% T3, and 16% T4. Eighty-seven percent of the patients had a visibly complete resection of tumor. Preoperative or postoperative external beam radiation therapy was administered to 27% and 35% of patients, respectively. The 5-year OS was 37% for advanced disease and 55% for locally recurrent disease. The respective 5-year DSS was 41% and 60%. The respective 5-year DFS was 39% and 52%. Initial nodal involvement (hazard ratio [HR] 2.9-3.6, P<.01), presence of sarcomatoid features (HR 3.7-6.9, P<.05), and higher IORT dose (HR 1.3, P<.001) were statistically significantly associated with decreased survival. Adjuvant systemic therapy was associated with decreased DSS (HR 2.4, P=.03). For locally recurrent tumors, positive margin status (HR 2.6, P=.01) was associated with decreased OS. Conclusions: We report the largest known cohort of patients with RCC managed by IORT and have identified several factors associated with survival. The outcomes for patients receiving IORT in the setting of local recurrence compare favorably to

  13. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    Science.gov (United States)

    Ramanathan, M.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Cowan, P. L.; Montano, P. A.

    1995-02-01

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics.

  14. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    Science.gov (United States)

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  15. High-Pressure Experimental Studies on Geo-Liquids Using Synchrotron Radiation at the Advanced Photon Source

    Institute of Scientific and Technical Information of China (English)

    Yanbin Wang; Guoyin Shen

    2014-01-01

    We review recent progress in studying silicate, carbonate, and metallic liquids of geo-logical and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combina-tion of experimental techniques that allow researchers to investigate structure, density, elasticity, vis-cosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.

  16. Duodenal adenocarcinoma: Advances in diagnosis and surgical management

    Institute of Scientific and Technical Information of China (English)

    Jordan M Cloyd; Elizabeth George; Brendan C Visser

    2016-01-01

    Duodenal adenocarcinoma is a rare but aggressive malignancy. Given its rarity, previous studies have traditionally combined duodenal adenocarcinoma(DA) with either other periampullary cancers or small bowel adenocarcinomas, limiting the available data to guide treatment decisions. Nevertheless, management primarily involves complete surgical resection when technically feasible. Surgery may require pancreaticoduodenectomy or segmental duodenal resection; either are acceptable options as long as negative margins are achievable and an adequate lymphadenectomy can be performed. Adjuvant chemotherapy and radiation are important components of multi-modality treatment for patients at high risk of recurrence. Further research would benefit from multiinstitutional trials that do not combine DA with other periampullary or small bowel malignancies. The purpose of this article is to perform a comprehensive review of DA with special focus on the surgical management and principles.

  17. [A case of double advanced cancer with esophageal and hypopharyngeal carcinoma responding completely to combination chemotherapy of docetaxel/5-fluorouracil and nedaplatin with radiation].

    Science.gov (United States)

    Matsutani, Takeshi; Sasajima, Koji; Kobayashi, Yuko; Suzuki, Seiji; Maruyama, Hiroshi; Miyamoto, Masayuki; Yokoyama, Tadashi; Sugiura, Atsushi; Matsushita, Akira; Yanagi, Ken; Matsuda, Akihisa; Arai, Hiroki; Nishi, Yoshifumi; Wakabayashi, Hideyuki; Tajiri, Takashi

    2009-05-01

    A 69-year-old male was admitted to our hospital because of dysphagia. The diagnosis was double cancer with hypopharyngeal and esophageal carcinoma from upper gastrointestinal endoscopic examination. Pathological examinations of the double cancer revealed moderately-differentiated squamous cell carcinoma. Computed tomography(CT)of the neck and abdomen showed metastases of the right neck and cardiac lymph nodes. Clinical stagings of the double cancer were Stage III (T1, N1, M0)in hypopharyngeal carcinoma and Stage III (T3, N1, M0)in esophageal carcinoma, respectively. He received radiation therapy in combination with chemotherapy using docetaxel(DOC), 5-fluorouracil (5-FU)and nedaplatin(CDGP). After this combination chemoradiation therapy(CRT), the adverse event was grade 2 in leucopenia and grade 2 in gastrointestinal toxicity. Repeated macroscopic and histological examinations after CRT revealed disappearance of the hypopharyngeal and advanced esophageal carcinoma with lymph node metastasis, leading to a complete response(CR). He had maintained CR for the 20 months since undergoing CRT. This combination chemotherapy of DOC, 5-FU and CDGP with radiation may well be effective and tolerable for patients with double cancer of hypopharyngeal and esophageal carcinoma.

  18. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Rompel, Oliver; Janka, Rolf; Lell, Michael M.; Uder, Michael; Hammon, Matthias [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Gloeckler, Martin; Dittrich, Sven [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Cesnjevar, Robert [University Hospital Erlangen, Department of Pediatric Cardiac Surgery, Erlangen (Germany)

    2016-04-15

    Many technical updates have been made in multi-detector CT. To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). ADMIRE demonstrated improved objective and subjective image quality (P <.01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDI{sub vol}, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P <.01). The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality. (orig.)

  19. TU-AB-BRA-10: Prognostic Value of Intra-Radiation Treatment FDG-PET and CT Imaging Features in Locally Advanced Head and Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Song, J; Pollom, E; Durkee, B; Aggarwal, S; Bui, T; Le, Q; Loo, B; Hara, W [Stanford University, Palo Alto, CA (United States); Cui, Y [Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan); Li, R [Stanford University, Palo Alto, CA (United States); Hokkaido University, Global Institute for Collaborative Research and Educat, Sapporo, Hokkaido (Japan)

    2015-06-15

    Purpose: To predict response to radiation treatment using computational FDG-PET and CT images in locally advanced head and neck cancer (HNC). Methods: 68 patients with State III-IVB HNC treated with chemoradiation were included in this retrospective study. For each patient, we analyzed primary tumor and lymph nodes on PET and CT scans acquired both prior to and during radiation treatment, which led to 8 combinations of image datasets. From each image set, we extracted high-throughput, radiomic features of the following types: statistical, morphological, textural, histogram, and wavelet, resulting in a total of 437 features. We then performed unsupervised redundancy removal and stability test on these features. To avoid over-fitting, we trained a logistic regression model with simultaneous feature selection based on least absolute shrinkage and selection operator (LASSO). To objectively evaluate the prediction ability, we performed 5-fold cross validation (CV) with 50 random repeats of stratified bootstrapping. Feature selection and model training was solely conducted on the training set and independently validated on the holdout test set. Receiver operating characteristic (ROC) curve of the pooled Result and the area under the ROC curve (AUC) was calculated as figure of merit. Results: For predicting local-regional recurrence, our model built on pre-treatment PET of lymph nodes achieved the best performance (AUC=0.762) on 5-fold CV, which compared favorably with node volume and SUVmax (AUC=0.704 and 0.449, p<0.001). Wavelet coefficients turned out to be the most predictive features. Prediction of distant recurrence showed a similar trend, in which pre-treatment PET features of lymph nodes had the highest AUC of 0.705. Conclusion: The radiomics approach identified novel imaging features that are predictive to radiation treatment response. If prospectively validated in larger cohorts, they could aid in risk-adaptive treatment of HNC.

  20. Testicular radiation dose after multimodal curative therapy for locally advanced rectal cancer. Influence on hormone levels, quality of life, and sexual functioning

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, S.; Wolff, H.A.; Rave-Fraenk, M.; Hess, C.F. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Jung, K. [University Medicine Goettingen (Germany). Dept. of Medical Statistics; Gaedcke, J.; Ghadimi, M.; Becker, H. [University Medicine Goettingen (Germany). Dept. of General Surgery; Hermann, R.M. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Aerztehaus an der Ammerlandklinik, Westerstede (Germany). Radiotherapy; Christiansen, H. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Hannover Medical School (Germany). Dept. of Radiotherapy

    2012-10-15

    Purpose: The purpose of the current work was to prospectively measure the influence of testicular radiation dose on hormone levels, quality of life (QoL), and sexual functioning following multimodal therapy (neoadjuvant radiochemotherapy, surgery, and adjuvant chemotherapy) for rectal cancer. Patients and methods: From November 2007 to November 2009, 83 male patients were treated at the University of Goettingen with radiochemotherapy (RCT) for locally advanced rectal cancer [total dose 50.4 Gy, concomitant chemotherapy with two cycles of 5-fluorouracil (FU) or 5-FU and oxaliplatin]. Testicular radiation doses were analyzed and correlated with hormone levels [luteinizing hormone (LH), follicle stimulating hormone (FSH), total testosterone and free androgen index (FAI) serum levels], QoL, and sexual functioning, which were determined before and up to 1 year after RCT. Results: Mean dose at the testes was 3.9 Gy (range 0.28-11.98 Gy). It was higher for tumors located < 6 cm from the anocutaneous line (p < 0.05). One year after therapy, testosterone, the testosterone/LH ratio, and the FAI/LH ratio were significantly decreased (3.5-3.0 {mu}g/l, 0.9-0.4, 7.9-4.5, respectively) while LH and FSH (4.2-8.5 IU/l, 6.0-21.9 IU/l) were increased. QoL and sexual functioning were significantly impaired. However, there was no statistical correlation between testicular radiation dose and changes in hormone levels, QoL, or sexual functioning. Conclusion: Multimodal treatment for rectal cancer including RCT leads to hormone level changes and to impaired QoL and sexual functioning. However, because there was no apparent correlation between the analyzed parameters, QoL is probably also influenced by other factors, e.g., psychosocial aspects. (orig.)

  1. Concomitant cetuximab and radiation therapy: A possible promising strategy for locally advanced inoperable non-melanoma skin carcinomas

    Science.gov (United States)

    DELLA VITTORIA SCARPATI, GIUSEPPINA; PERRI, FRANCESCO; PISCONTI, SALVATORE; COSTA, GIUSEPPE; RICCIARDIELLO, FILIPPO; DEL PRETE, SALVATORE; NAPOLITANO, ALBERTO; CARRATURO, MARCO; MAZZONE, SALVATORE; ADDEO, RAFFAELE

    2016-01-01

    Non-melanoma skin cancers (NMSCs) include a heterogeneous group of malignancies arising from the epidermis, comprising squamous cell carcinoma (SCC), basal cell carcinoma (BCC), Merkel cell carcinoma and more rare entities, including malignant pilomatrixoma and sebaceous gland tumours. The treatment of early disease depends primarily on surgery. In addition, certain patients present with extensive local invasion or metastasis, which renders these tumours surgically unresectable. Improving the outcome of radiotherapy through the use of concurrent systemic therapy has been demonstrated in several locally advanced cancer-treatment paradigms. Recently, agents targeting the human epidermal growth factor receptor (EGFR) have exhibited a consolidated activity in phase II clinical trials and case series reports. Cetuximab is a monoclonal antibody that binds to and completely inhibits the EGFR, which has been revealed to be up-regulated in a variety of SCCs, including NMSCs. The present review aimed to summarize the role of anti-EGFR agents in the predominant types of NMSC, including SCC and BCC, and focuses on the cetuximab-based studies, highlighting the biological rationale of this therapeutic option. In addition, the importance of the association between cetuximab and radiotherapy for locally advanced NMSC is discussed. PMID:27073643

  2. The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard

    2013-10-01

    The present text illustrates the practice of integral formulation, zero-variance approaches and sensitivity evaluations in the field of radiative transfer Monte Carlo simulation, as well as the practical implementation of the corresponding algorithms, for such realistic systems as photobioreactors involving spectral integration, multiple scattering and complex geometries. We try to argue that even in such non-academic contexts, strong benefits can be expected from the effort of translating the considered Monte Carlo algorithm into a rigorously equivalent integral formulation. Modifying the initial algorithm to simultaneously compute sensitivities is then straightforward (except for domain deformation sensitivities) and the question of enhancing convergence is turned into that of modeling a set of well identified physical quantities.

  3. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    Science.gov (United States)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  4. Spectrum of p53 gene mutations suggests a possible role for ultraviolet radiation in the pathogenesis of advanced cutaneous lymphomas.

    Science.gov (United States)

    McGregor, J M; Crook, T; Fraser-Andrews, E A; Rozycka, M; Crossland, S; Brooks, L; Whittaker, S J

    1999-03-01

    There is evidence that the incidence of primary cutaneous lymphoma, like other forms of non-Hodgkin's lymphoma, is increasing, yet little is known of the pathogenetic events involved in this group of disorders. In this study we examine the frequency and spectrum of P53 gene mutations in a large series of primary cutaneous lymphomas, with particular emphasis on tumor stage mycosis fungoides, as it is in these cases that p53 overexpression has previously been reported. Sixty-six samples from 55 patients with primary cutaneous B cell and T cell lymphomas were analyzed for mutations in exons 5-9 of the P53 gene using polymerase chain reaction/single strand conformational polymorphism, and subsequent cloning and sequencing of genomic DNA. Fourteen separate P53 mutations were identified in blood, skin, and lymph node samples in 13 patients (24%). Twelve of 14 mutations occurred at dipyrimidine sites, eight resulting in C-->T transitions and one in a CC-->TT tandem base transition, a mutation spectrum strikingly similar to that reported in nonmelanoma skin cancer and characteristic of DNA damage caused by ultraviolet B radiation. In the subset of patients with mycosis fungoides, P53 mutations were identified in six of 17 patients with tumor-stage but in none of 12 patients with plaque-stage disease (Fisher's exact test p = 0.027). These data suggest a role for ultraviolet radiation in the pathogenesis of primary cutaneous lymphomas and a possible ultraviolet B-related step in the progression of mycosis fungoides from plaque to tumor-stage disease.

  5. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    Science.gov (United States)

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-01

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTVP) and involved lymph nodes (GTVLN) to simulate the localization process in image-guided radiation therapy. Techniques included “standard” (direct registration of weekly images to a planning CT), “seeded” (manual prealignment of targets to guide standard registration), “transitive-based” (alignment of pretreatment and planning CTs through one or more intermediate images), and “rereferenced” (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 ± 5.4 mm and 5.4 ± 3.4 mm for the GTVP and GTVLN, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTVP centroid LE to 4.7 ± 3.7 mm (p = 0.011) and 4.3 ± 2.5 mm (p < 1 × 10−3), respectively, but the smallest GTVP LE of 2.4 ± 2.1 mm was provided by rereferenced registration (p < 1 × 10−6). Standard registration significantly reduced GTVLN centroid LE to 3.2 ± 2.5 mm (p < 1 × 10−3) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low as 3

  6. Hedgehog pathway inhibitor in combination with radiation therapy for basal cell carcinomas of the head and neck. First clinical experience with vismodegib for locally advanced disease

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Bjoern; Roedel, Claus; Balermpas, Panagiotis [University Hospital Johann Wolfgang Goethe University, Department of Radiation Oncology, Frankfurt (Germany); Meissner, Markus [University Hospital Johann Wolfgang Goethe University, Department of Dermatology, Frankfurt (Germany); Ghanaati, Shahram [University Hospital Johann Wolfgang Goethe University, Department of Craniofacial and Plastic Surgery, Frankfurt (Germany); Burck, Iris [University Hospital Johann Wolfgang Goethe University, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany)

    2016-01-15

    Definitive radiotherapy and vismodegib, an oral inhibitor of the hedgehog pathway, are both established treatment options for locally advanced basal cell carcinomas (BCC). Both have shown good results in local tumor control; however, the effects concerning advanced tumors are often not of a lasting nature and to date no systematic data about the combination of the two modalities are available. We retrospectively analyzed four patients who received vismodegib and radiotherapy in combination. Radiation doses varied between 50.4 Gy and 66.0 Gy. Three patients had recurrent BCC. One patient had locoregional lymph node involvement. Vismodegib was taken once a day (150 mg) during the entire time of irradiation and beyond upon instructions of the attending dermatologist. In three cases a persistent complete response was observed, in one case the tumor remained stable for approximately 6 months until further tumor progression was documented. The combined therapy was well tolerated in all cases. No exceptional side effects pointing at a drug-radiation interaction were observed. The combination of vismodegib and radiation seems feasible and the initial results are promising. In our cohort, there was no increase in unexpected side effects. Further research is needed to evaluate the significance of this combined therapy. (orig.) [German] Sowohl definitive Radiotherapie als auch Vismodegib, ein oraler Inhibitor der Hedgehog-Signalkaskade, sind etablierte Behandlungsoptionen fuer lokal fortgeschrittene Basalzellkarzinome (BCC). Beide Therapien zeigen fuer sich gute Ansprechraten, aber die lokale Tumorkontrolle ist oft nicht dauerhaft und bis heute existieren kaum Daten ueber eine Kombination der beiden Modalitaeten. Wir analysierten retrospektiv vier Patientenfaelle nach simultaner Applikation von Vismodegib und Bestrahlung. Die Bestrahlungsdosis variierte zwischen 50,4 Gy und 66,0 Gy. Drei der Patienten hatten ein rezidiviertes BCC. Ein Patient hatte einen befallenen regionalen

  7. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Mukhopadhyay, Nitai [Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia (United States); Weiss, Elisabeth, E-mail: eweiss@mcvh-vcu.edu [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States)

    2014-01-01

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectors and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.

  8. Technology advancement of the CCD201-20 EMCCD for the WFIRST coronagraph instrument: sensor characterization and radiation damage

    CERN Document Server

    Harding, Leon K; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Neat, Leo S; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R; Jordand, Douglas

    2016-01-01

    The Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission is a 2.4-m class space telescope that will be used across a swath of astrophysical research domains. JPL will provide a high-contrast imaging coronagraph instrument - one of two major astronomical instruments. In order to achieve the low noise performance required to detect planets under extremely low flux conditions, the electron multiplying charge-coupled device (EMCCD) has been baselined for both of the coronagraph's sensors - the imaging camera and integral field spectrograph. JPL has established an EMCCD test laboratory in order to advance EMCCD maturity to technology readiness level-6. This plan incorporates full sensor characterization, including read noise, dark current, and clock-induced charge. In addition, by considering the unique challenges of the WFIRST space environment, degradation to the sensor's charge transfer efficiency will be assessed, as a result of damage from high-energy particles such ...

  9. The status of targeted agents in the setting of neoadjuvant radiation therapy in locally advanced rectal cancers.

    Science.gov (United States)

    Glynne-Jones, Rob; Hadaki, Maher; Harrison, Mark

    2013-09-01

    Radiotherapy has a longstanding and well-defined role in the treatment of resectable rectal cancer to reduce the historically high risk of local recurrence. In more advanced borderline or unresectable cases, where the circumferential resection margin (CRM) is breached or threatened according to magnetic resonance imaging (MRI), despite optimized local multimodality treatment and the gains achieved by modern high quality total mesorectal excision (TME), at least half the patients fail to achieve sufficient downstaging with current schedules. Many do not achieve an R0 resection. In less locally advanced cases, even if local control is achieved, this confers only a small impact on distant metastases and a significant proportion of patients (30-40%) still subsequently develop metastatic disease. In fact, distant metastases have now become the predominant cause of failure in rectal cancer. Therefore, increasing the intensity and efficacy of chemotherapy and chemoradiotherapy by integrating additional cytotoxics and biologically targetted agents seems an appealing strategy to explore-with the aim of enhancing curative resection rates and improving distant control and survival. However, to date, we lack validated biomarkers for these biological agents apart from wild-type KRAS. For cetuximab, the appearance of an acneiform rash is associated with response, but low levels of magnesium appear more controversial. There are no molecular biomarkers for bevacizumab. Although some less invasive clinical markers have been proposed for bevacizumab, such as circulating endothelial cells (CECS), circulating levels of VEGF and the development of overt hypertension, these biomarkers have not been validated and are observed to emerge only after a trial of the agent. We also lack a simple method of ongoing monitoring of 'on target' effects of these biological agents, which could determine and pre-empt the development of resistance, prior to radiological and clinical assessessments or

  10. Phase II study of preoperative radiation plus concurrent daily tegafur-uracil (UFT with leucovorin for locally advanced rectal cancer

    Directory of Open Access Journals (Sweden)

    Calais Gilles

    2011-03-01

    Full Text Available Abstract Background Considerable variation in intravenous 5-fluorouracil (5-FU metabolism can occur due to the wide range of dihydropyrimidine dehydrogenase (DPD enzyme activity, which can affect both tolerability and efficacy. The oral fluoropyrimidine tegafur-uracil (UFT is an effective, well-tolerated and convenient alternative to intravenous 5-FU. We undertook this study in patients with locally advanced rectal cancer to evaluate the efficacy and tolerability of UFT with leucovorin (LV and preoperative radiotherapy and to evaluate the utility and limitations of multicenter staging using pre- and post-chemoradiotherapy ultrasound. We also performed a validated pretherapy assessment of DPD activity and assessed its potential influence on the tolerability of UFT treatment. Methods This phase II study assessed preoperative UFT with LV and radiotherapy in 85 patients with locally advanced T3 rectal cancer. Patients with potentially resectable tumors received UFT (300 mg/m/2/day, LV (75 mg/day, and pelvic radiotherapy (1.8 Gy/day, 45 Gy total 5 days/week for 5 weeks then surgery 4-6 weeks later. The primary endpoints included tumor downstaging and the pathologic complete response (pCR rate. Results Most adverse events were mild to moderate in nature. Preoperative grade 3/4 adverse events included diarrhea (n = 18, 21% and nausea/vomiting (n = 5, 6%. Two patients heterozygous for dihydropyrimidine dehydrogenase gene (DPYD experienced early grade 4 neutropenia (variant IVS14+1G > A and diarrhea (variant 2846A > T. Pretreatment ultrasound TNM staging was compared with postchemoradiotherapy pathology TN staging and a significant shift towards earlier TNM stages was observed (p Conclusion Preoperative chemoradiotherapy using UFT with LV plus radiotherapy was well tolerated and effective and represents a convenient alternative to 5-FU-based chemoradiotherapy for the treatment of resectable rectal cancer. Pretreatment detection of DPD deficiency should

  11. Recent advances in evolutionary multi-objective optimization

    CERN Document Server

    Datta, Rituparna; Gupta, Abhishek

    2017-01-01

    This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-andcoming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include:< optimization in dynamic environments, multi-objective bilevel programming, handling high ...

  12. Advances in protective agents against high power microwave radiation damage%高功率微波辐射损伤防护药物研究进展

    Institute of Scientific and Technical Information of China (English)

    郑文; 王长振; 胡向军

    2014-01-01

    Along with the development of science and technology , microwaves are widely used in various fields .Though they have brought much convenience to people , their potential adverse health effects are becoming a concern of governments and researchers .High power microwaves ( HPMs) are widely used in high-tech and new concept weapons , increasing the chance that troops are exposed to HPM environments .It has been clearly confirmed that microwave radiation could cause varying degrees of damage to the nervous system , immune system , cardiovascular system and reproductive system under specific conditions .Therefore , it is of important significance to reduce adverse effects of HPM radiation and improve the combat capability of troops via effective medical protection while doing well in physical protection .According to the mecha-nism and characteristics of microwave radiation damage effects , recent advances in microwave radiation protection are re-viewed in this article , hoping to facilitate research on safer and better drugs .%随着科技的进步,微波被广泛运用到各个领域,给人类带来便利的同时,其潜在的健康损害普遍受到各国政府和科研人员的关注。高功率微波( high power microwave ,HPM)在高新技术武器和新概念武器中的应用,使得部队官兵暴露于HPM环境下的概率增加。已有研究明确证实,特定条件的微波辐射对神经系统、免疫系统、心血管系统以及生殖系统存在不同程度的损伤效应。因此,在做好物理防护的同时,积极有效的医学防护,对于减小HPM损伤效应、提高部队官兵作战能力具有重要的意义。该文针对微波辐射损伤效应的机制特点,对近年来微波辐射损伤防护药物的研究进展进行综述,为更加安全有效的新药研发提供依据。

  13. Prolonged radiation time and low nadir hemoglobin during postoperative concurrent chemoradiotherapy are both poor prognostic factors with synergistic effect on locally advanced head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Su NW

    2015-01-01

    Full Text Available Nai-Wen Su,1 Chung-Ji Liu,2 Yi-Shing Leu,3 Jehn-Chuan Lee,3 Yu-Jen Chen,4 Yi-Fang Chang1,51Division of Medical Oncology and Hematology, Department of Internal Medicine, 2Department of Oral and Maxillofacial Surgery, 3Department of Otorhinolaryngology, 4Department of Radiation Oncology, 5Good Clinical Research Center, Department of Medical Research, Mackay Memorial Hospital, Taipei, TaiwanBackground: Anemia, a common complication of head and neck cancer treatment, is regarded as a poor prognostic factor. We evaluated the impact of low hemoglobin (Hb levels, measured at different time points, on a consecutive cohort of patients with locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN who underwent postoperative concurrent chemoradiotherapy (CCRT.Materials and methods: From 2002 to 2009, 140 patients were enrolled and reviewed retrospectively. Preoperative (pre-op Hb, pre-CCRT Hb, and nadir Hb during CCRT were measured and recorded. The three Hb parameters were analyzed against several well-established pathologic risk factors and radiation-associated variables. Prognostic impacts were investigated with multivariate analysis by Cox proportional hazards model.Results: On Cox regression analysis, significantly higher risk of death was associated with pre-op Hb %13 g/dL (hazard ratio [HR] =1.8; 95% confidence interval [CI], 1.1–3.1; P=0.023, nadir Hb %11 g/dL (HR =1.9; 95% CI, 1.1–3.3; P=0.020, radiation treatment time (RTT >7 weeks (HR =1.9; 95% CI, 1.1–3.3; P=0.022, and multiple positive lymph nodes (HR =2.1; 95% CI, 1.2–3.7; P=0.010, after adjusting for primary tumor site and pathologic lymphovascular invasion. Patients with poor prognosticators including low nadir Hb %11 g/dL and RTT >7 weeks had a higher risk of death (HR =4.0; 95% CI =1.6–10.2; P=0.004.Conclusion: In the treatment setting of LA-SCCHN patients who underwent postoperative CCRT, coexistance of lower nadir Hb during CCRT and prolonged RTT resulted in

  14. Can RNA-Seq Resolve the Rapid Radiation of Advanced Moths and Butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An Exploratory Study

    Science.gov (United States)

    Bazinet, Adam L.; Cummings, Michael P.; Mitter, Kim T.; Mitter, Charles W.

    2013-01-01

    Recent molecular phylogenetic studies of the insect order Lepidoptera have robustly resolved family-level divergences within most superfamilies, and most divergences among the relatively species-poor early-arising superfamilies. In sharp contrast, relationships among the superfamilies of more advanced moths and butterflies that comprise the mega-diverse clade Apoditrysia (ca. 145,000 spp.) remain mostly poorly supported. This uncertainty, in turn, limits our ability to discern the origins, ages and evolutionary consequences of traits hypothesized to promote the spectacular diversification of Apoditrysia. Low support along the apoditrysian “backbone” probably reflects rapid diversification. If so, it may be feasible to strengthen resolution by radically increasing the gene sample, but case studies have been few. We explored the potential of next-generation sequencing to conclusively resolve apoditrysian relationships. We used transcriptome RNA-Seq to generate 1579 putatively orthologous gene sequences across a broad sample of 40 apoditrysians plus four outgroups, to which we added two taxa from previously published data. Phylogenetic analysis of a 46-taxon, 741-gene matrix, resulting from a strict filter that eliminated ortholog groups containing any apparent paralogs, yielded dramatic overall increase in bootstrap support for deeper nodes within Apoditrysia as compared to results from previous and concurrent 19-gene analyses. High support was restricted mainly to the huge subclade Obtectomera broadly defined, in which 11 of 12 nodes subtending multiple superfamilies had bootstrap support of 100%. The strongly supported nodes showed little conflict with groupings from previous studies, and were little affected by changes in taxon sampling, suggesting that they reflect true signal rather than artifacts of massive gene sampling. In contrast, strong support was seen at only 2 of 11 deeper nodes among the “lower”, non-obtectomeran apoditrysians. These represent

  15. Interactive Medical Visualization and Simulation for Multi-modal Virtual Learning%适用于多模式虚拟学习的交互医学可视化及模拟

    Institute of Scientific and Technical Information of China (English)

    孙汉秋; 蔡及时; 柏龄

    2004-01-01

    医学图像及其衍生的知识是医学教育中的一个关键学习部分,透过不同的图像模式,可以使医生及医科学生更有效地学习人体的体内结构.而计算机可视化技术最近的发展正满足了医生、外科医生及医科学生与日俱增的需求,为深入地了解人体生理学及病理学提供了宝贵的资料.本文提出了一个网上交互医学学习系统,并提供了一个虚拟现实工具包以支持二维医学图像序列观察、体数据和表面数据的三维可视化、目视放大镜,以及医学数据的交互变形模拟.其中人体组织物理特性的模拟以有限元法为基准,通过优化而获得有关的变形模型参数.该工具包可应用于个性化的二维及三维数据场可视化、优化的学习及手术规划和在线的交互医学教育.%Image and their derivatives form the key learning components in medical education.Medical students and doctors learn to examine the human body through many different imaging modalities, which facilitate them to inspect the internal structure of human bodies. The recent developments of computer visualization technology meet the ever-growing need for doctors, surgeons,and medical students to gain valuable insight into human physiology and pathology. In this paper, we have developed a web-based interactive medical learning system with the advanced VR toolkit that supports 2D medical image sequence viewing, 3D visualization of both volume & surface datasets, visual magnification lens, and interactive deformable simulation of medical data in which the physical properties of human tissues are simulated by heuristic optimization against finite element model. The toolkit we have developed supports personalized 2D/3D visualizations, optimal learning & planning, and on-line interactive medical education.

  16. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    Science.gov (United States)

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

  17. Predictors of grade {>=}2 and grade {>=}3 radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with three-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Jun; Li, Guang; Ma, Lianghua; Han, Chong; Zhang, Shuo; Yao, Lei [Dept. of Radiation Oncology, The First Hospital of China Medical Univ., Shenyang (China)], e-mail: gl1963516@yahoo.cn; Diao, Rao [Dept. of Experimental Technology Center, China Medical Univ., Shenyang (China); Zang, Shuang [Dept. of Nursing, China Medical Univ., Shenyang (China)

    2013-08-15

    Grade {>=}3 radiation pneumonitis (RP) is generally severe and life-threatening. Predictors of grade {>=}2 are usually used for grade {>=}3 RP prediction, but it is unclear whether these predictors are appropriate. In this study, predictors of grade {>=}2 and grade {>=}3 RP were investigated separately. The increased risk of severe RP in elderly patients compared with younger patients was also evaluated. Material and methods: A total of 176 consecutive patients with locally advanced non-small cell lung cancer were followed up prospectively after three-dimensional conformal radiotherapy. RP was graded according to Common Terminology Criteria for Adverse Events version 3.0. Results: Mean lung dose (MLD), mean heart dose, ratio of planning target volume to total lung volume (PTV/Lung), and dose-volume histogram comprehensive value of both heart and lung were associated with both grade {>=}2 and grade {>=}3 RP in univariate analysis. In multivariate logistic regression analysis, age and MLD were predictors of both grade {>=}2 RP and grade {>=}3 RP; receipt of chemotherapy predicted grade {>=}3 RP only; and sex and PTV/Lung predicted grade {>=}2 RP only. Among patients who developed high-grade RP, MLD and PTV/Lung were significantly lower in patients aged {>=}70 years than in younger patients (p<0.05 for both comparisons). Conclusions: The predictors were not completely consistent between grade {>=}2 RP and grade {>=}3 RP. Elderly patients had a higher risk of severe RP than younger patients did, possibly due to lower tolerance of radiation to the lung.

  18. SU-E-T-572: Normal Lung Tissue Sparing in Radiation Therapy for Locally Advanced Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, C; Ju, S; Ahn, Y [Samsung Medical Center, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: To compare normal lung-sparing capabilities of three advanced radiation therapy techniques for locally advanced non-small cell lung cancer (LA-NSCLC). Methods: Four-dimensional computed tomography (4DCT) was performed in 10 patients with stage IIIb LA-NSCLC. The internal target volume (ITV); planning target volume (PTV); and organs at risks (OARs) such as spinal cord, total normal lung, heart, and esophagus were delineated for each CT data set. Intensity-modulated radiation therapy (IMRT), Tomohelical-IMRT (TH-IMRT), and TomoDirect-IMRT (TD-IMRT) plans were generated (total prescribed dose, 66 Gy in 33 fractions to the PTV) for each patient. To reduce the normal lung dose, complete and directional block function was applied outside the normal lung far from the target for both TH-IMRT and TD-IMRT, while pseudo- OAR was set in the same region for IMRT. Dosimetric characteristics of the three plans were compared in terms of target coverage, the sparing capability for the OAR, and the normal tissue complication probability (NTCP). Beam delivery efficiency was also compared. Results: TH-IMRT and TD-IMRT provided better target coverage than IMRT plans. Lung volume receiving ≥–30 Gy, mean dose, and NTCP were significant with TH-IMRT than with IMRT (p=0.006), and volume receiving ≥20–30 Gy was lower in TD-IMRT than in IMRT (p<0.05). Compared with IMRT, TH-IMRT had better sparing effect on the spinal cord (Dmax, NTCP) and heart (V45) (p<0.05). NTCP for the spinal cord, V45 and V60 for the heart, and Dmax for the esophagus were significantly lower in TD-IMRT than in IMRT. The monitor units per fraction were clearly smaller for IMRT than for TH-IMRT and TD-IMRT (p=0.006). Conclusion: In LA-NSCLC, TH-IMRT gave superior PTV coverage and OAR sparing compared to IMRT. TH-IMRT provided better control of the lung volume receiving ≥5–30 Gy. The delivery time and monitor units were lower in TD-IMRT than in TH-IMRT.

  19. SU-E-T-335: Dosimetric Investigation of An Advanced Rotating Gamma Ray System for Imaged Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Eldib, A; Chibani, O; Li, J; Chen, L [Fox Chase Cancer Center, Philadelphia, PA (United States); Li, C [Renmin Hospital of Wuhan University, Wuhan (China); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal)

    2015-06-15

    Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves), or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as

  20. VESPRO: An Individual Patient Data Prospective Meta-Analysis of Selective Internal Radiation Therapy Versus Sorafenib for Advanced, Locally Advanced, or Recurrent Hepatocellular Carcinoma of the SARAH and SIRveNIB Trials

    Science.gov (United States)

    Gibbs, Emma; Gandhi, Mihir; Chatellier, Gilles; Dinut, Aurelia; Pereira, Helena; Chow, Pierce KH; Vilgrain, Valérie

    2017-01-01

    Background Untreated advanced hepatocellular carcinoma (HCC) has an overall poor prognosis. Currently there are 2 ongoing prospective randomized controlled trials that are evaluating the efficacy and safety of sorafenib and selective internal radiation therapy (SIRT) with yttrium-90 resin microspheres in patients with advanced HCC. The SorAfenib versus Radioembolisation in Advanced Hepatocellular carcinoma (SARAH; 459 patients) trial is being performed in Europe and the SIRt VErsus SorafeNIB (SIRveNIB; 360 patients) trial in the Asia Pacific region. Prospectively combining the results, these trials will not only allow for increased precision to estimate efficacy (in terms of survival), but will also provide increased statistical power for subgroup analyses. Objective To ensure the prospectivity and transparency of the meta-analysis. Methods The sirVEnib and SARAH merge PROject (VESPRO) is an individual, patient-data prospective meta-analysis of the SIRveNIB and SARAH randomized trials. The VESPRO protocol includes prespecified hypotheses, inclusion criteria, and outcome measures. The primary outcome measure is overall survival and secondary outcomes include tumor response rate, progression-free survival, progression in the liver as first event, and disease control in the liver. Pooling of toxicity results will allow for robust safety profiles to be established for both therapies, and provides increased statistical power to investigate treatment effects in key subgroups. Analyses will be performed in the intent-to-treat population stratified by trial. Results Both studies are expected to demonstrate a survival benefit for SIRT together with a better toxicity profile compared with sorafenib. It is also anticipated that liver progression as the first event would be longer in the intervention compared with the control. Conclusions As the results of the 2 trials are not yet known, the methodological strength is enhanced, as biases inherent in conventional meta

  1. Early Clinical Outcomes and Toxicity of Intensity Modulated Versus Conventional Pelvic Radiation Therapy for Locally Advanced Cervix Carcinoma: A Prospective Randomized Study

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, Ajeet Kumar, E-mail: ajeetgandhi23@gmail.com [Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi (India); Sharma, Daya Nand; Rath, Goura Kisor; Julka, Pramod Kumar; Subramani, Vellaiyan; Sharma, Seema; Manigandan, Durai; Laviraj, M.A. [Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi (India); Kumar, Sunesh [Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi (India); Thulkar, Sanjay [Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi (India)

    2013-11-01

    Purpose: To evaluate the toxicity and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with whole pelvic conventional radiation therapy (WP-CRT) versus intensity modulated radiation therapy (WP-IMRT). Methods and Materials: Between January 2010 and January 2012, 44 patients with International Federation of Gynecology and Obstetrics (FIGO 2009) stage IIB-IIIB squamous cell carcinoma of the cervix were randomized to receive 50.4 Gy in 28 fractions delivered via either WP-CRT or WP-IMRT with concurrent weekly cisplatin 40 mg/m{sup 2}. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events, version 3.0, and late toxicity was graded according to the Radiation Therapy Oncology Group system. The primary and secondary endpoints were acute gastrointestinal toxicity and disease-free survival, respectively. Results: Of 44 patients, 22 patients received WP-CRT and 22 received WP-IMRT. In the WP-CRT arm, 13 patients had stage IIB disease and 9 had stage IIIB disease; in the IMRT arm, 12 patients had stage IIB disease and 10 had stage IIIB disease. The median follow-up time in the WP-CRT arm was 21.7 months (range, 10.7-37.4 months), and in the WP-IMRT arm it was 21.6 months (range, 7.7-34.4 months). At 27 months, disease-free survival was 79.4% in the WP-CRT group versus 60% in the WP-IMRT group (P=.651), and overall survival was 76% in the WP-CRT group versus 85.7% in the WP-IMRT group (P=.645). Patients in the WP-IMRT arm experienced significantly fewer grade ≥2 acute gastrointestinal toxicities (31.8% vs 63.6%, P=.034) and grade ≥3 gastrointestinal toxicities (4.5% vs 27.3%, P=.047) than did patients receiving WP-CRT and had less chronic gastrointestinal toxicity (13.6% vs 50%, P=.011). Conclusion: WP-IMRT is associated with significantly less toxicity compared with WP-CRT and has a comparable clinical outcome. Further studies with larger sample sizes and longer follow-up times are warranted to justify

  2. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy); Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  3. Advanced imaging and visualization in gastrointestinal disorders

    Institute of Scientific and Technical Information of China (English)

    Odd Helge Gilja; Jan G Hatlebakk; Svein φdegaard; Arnold Bersta; Ivan Viola; Christopher Giertsen; Trygve Hausken; Hans Gregersen

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract.Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography,and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound,three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future.

  4. 公益广告多模态互动意义分析——以公益广告《老爸的谎言,你听得出来吗?》为例%Multi-modality Analysis of Public Service Advertisements—Taking the Public Service Advertisement Papa's Lie as an Example

    Institute of Scientific and Technical Information of China (English)

    王道友

    2015-01-01

    With the advent of information age,people's communication mode is changing dramatically with the new media.The forms of spreading discourses becomes rich and colorful.Discourse analysis and research have developed into the new stage of multi-modality.The study of public service advertising has long been ignored by many scholars.In this paper,the multi modali-ty discourse analysis of image analysis is the theoretical framework,mainly analyzing images'and other symbols'interactive meaning in the public interest advertising discourse and expressing social relations,attitude,emotion,etc.This paper mainly ana-lyzes the four aspects of the contact,social distance,perspective and color (modality),and reveals how the interaction of dis-course can be realized through various means.%人类进入信息时代,交流方式发生了巨大变化.传播声音的载体变得更加丰富,话语分析研究也由此进入了多模态话语分析的新阶段.对广告的研究很多,而对公益广告的研究却很少.该文以多模态话语分析为理论框架,主要分析图像符号,声音符号在公益广告中互动意义.这些符号不仅传达了信息,态度还表达了社会关系和情感.该文选取中央电视台公益广告"老爸的谎言,你听得出来吗?"为文本,揭示语篇的互动意义是怎样通过各种符号得以传达的.

  5. Advanced Radiation Protection (ARP): Advanced Radiation Protection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is building the first prototype integrated system to mitigate solar event risk through probabilistic modeling, forecasting, and dose projection. This new...

  6. RTOG 0417: Efficacy of Bevacizumab in Combination With Definitive Radiation Therapy and Cisplatin Chemotherapy in Untreated Patients With Locally Advanced Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Schefter, Tracey, E-mail: tracey.schefter@ucdenver.edu [University of Colorado, Denver, Aurora, Colorado (United States); Winter, Kathryn [RTOG Statistical Center, Philadelphia, Pennsylvania (United States); Kwon, Janice S. [University of British Columbia and BC Cancer Agency, Vancouver, British Columbia (Canada); Stuhr, Kelly [University of Colorado, Denver, Aurora, Colorado (United States); Balaraj, Khalid [King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia); Yaremko, Brian Patrick [Western University, London Regional Cancer Program, London, Ontario (Canada); Small, William [Loyola University Chicago Stritch School of Medicine, Chicago, Illinois (United States); Sause, William [Intermountain Medical Center, Murray, Utah (United States); Gaffney, David [University of Utah Health Sciences Center, Salt Lake City, Utah (United States)

    2014-01-01

    Purpose: Radiation Therapy Oncology Group 0417 was a phase II study that explored the safety and efficacy of the addition of bevacizumab to chemoradiation therapy. The safety results have been previously reported. Herein we report the secondary efficacy endpoints of overall survival (OS), locoregional failure (LRF), para-aortic nodal failure (PAF), distant failure (DF), and disease-free survival (DFS). Methods and Materials: Eligible patients with bulky Stage IB-IIIB disease were treated with once-weekly cisplatin (40 mg/m{sup 2}) chemotherapy and standard pelvic radiation therapy and brachytherapy. Bevacizumab was administered at 10 mg/kg intravenously every 2 weeks for 3 cycles during chemoradiation. For OS, failure was defined as death of any cause and was measured from study entry to date of death. LRF was defined as any failure in the pelvis. PAF was defined as any para-aortic nodal failure. DF was analyzed both including and excluding PAF. DFS was measured from study entry to date of first LRF. DF was measured with or without PAF or death. OS and DFS were estimated by the Kaplan-Meier method, and LRF and DF rates were estimated by the cumulative incidence method. Results: 49 eligible patients from 28 institutions were enrolled between 2006 and 2009. The median follow-up time was 3.8 years (range, 0.8-6.0 years). The surviving patients had a median follow-up time of 3.9 years (range, 2.1-6.0 years). Most patients had tumors of International Federation of Gynecology and Obstetrics Stage IIB (63%), and 80% were squamous. The 3-year OS, DFS, and LRF were 81.3% (95% confidence interval [CI], 67.2%-89.8%), 68.7% (95% CI, 53.5%-79.8%), and 23.2% (95% CI, 11%-35.4%), respectively. The PAF, DF without PAF, and DF with PAF at 3 years were 8.4% (95% CI, 0.4%-16.3%), 14.7% (95% CI, 4.5%-24.9%), and 23.1% (95% CI 11.0%-35.2%), respectively. Conclusion: In this study, bevacizumab in combination with standard pelvic chemoradiation therapy for locally advanced cervical

  7. Neoadjuvant Sandwich Treatment With Oxaliplatin and Capecitabine Administered Prior to, Concurrently With, and Following Radiation Therapy in Locally Advanced Rectal Cancer: A Prospective Phase 2 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuan-Hong [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou (China); Lin, Jun-Zhong [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou (China); An, Xin [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou (China); Luo, Jie-Lin [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou (China); Cai, Mu-Yan [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou (China); Cai, Pei-Qiang [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou (China); Kong, Ling-Heng; Liu, Guo-Chen; Tang, Jing-Hua; Chen, Gong; Pan, Zhi-Zhong [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou (China); Ding, Pei-Rong, E-mail: dingpr@mail.sysu.edu.cn [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou (China)

    2014-12-01

    Purpose: Systemic failure remains the major challenge in management of locally advanced rectal cancer (LARC). To optimize the timing of neoadjuvant treatment and enhance systemic control, we initiated a phase 2 trial to evaluate a new strategy of neoadjuvant sandwich treatment, integrating induction chemotherapy, concurrent chemoradiation therapy, and consolidation chemotherapy. Here, we present preliminary results of this trial, reporting the tumor response, toxicities, and surgical complications. Methods and Materials: Fifty-one patients with LARC were enrolled, among which were two patients who were ineligible because of distant metastases before treatment. Patients were treated first with one cycle of induction chemotherapy consisting of oxaliplatin, 130 mg/m² on day 1, with capecitabine, 1000 mg/m² twice daily for 14 days every 3 weeks (the XELOX regimen), followed by chemoradiation therapy, 50 Gy over 5 weeks, with the modified XELOX regimen (oxaliplatin 100 mg/m²), and then with another cycle of consolidation chemotherapy with the XELOX regimen. Surgery was performed 6 to 8 weeks after completion of radiation therapy. Tumor responses, toxicities, and surgical complications were recorded. Results: All but one patent completed the planned schedule of neoadjuvant sandwich treatment. Neither life-threatening blood count decrease nor febrile neutropenia were observed. Forty-five patents underwent optimal surgery with total mesorectal excision (TME). Four patients refused surgery because of clinically complete response. There was no perioperative mortality in this cohort. Five patients (11.1%) developed postoperative complications. Among the 45 patients who underwent TME, pathologic complete response (pCR), pCR or major regression, and at least moderate regression were achieved in 19 (42.2%), 37 (82.2%), and 44 patients (97.8%), respectively. Conclusions: Preliminary results suggest that the strategy of neoadjuvant sandwich treatment using XELOX regimen

  8. A Hybrid Algorithm for Optimizing Multi- Modal Functions

    Institute of Scientific and Technical Information of China (English)

    Li Qinghua; Yang Shida; Ruan Youlin

    2006-01-01

    A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.

  9. Computer Based Behavioral Biometric Authentication via Multi-Modal Fusion

    Science.gov (United States)

    2013-03-01

    command shell while the program is executing. Quitting the software is done by closing the command prompt or hitting Ctrl-Alt-F8. During execution...ReBarWindow32 ShellTabWindowClass ToolbarWindow32 Desktop More Programs Pane DesktopSpecialFolders ExplorerBrowserNavigation Shell TrayWnd MS...RunDLL WorkerW TrayNotifyWnd WindowsUpdate- Dwm DesktopProgramsMFU NotificationWindow Ghost ATL:000007FEF6C6D770 ATL:000007FEFB6E41F0 70 ATL

  10. Multi-Modal Neurodiagnostic Tool for Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a critical requirement for a neurodiagnostic tool that can be used to monitor the behavioral health of the crew during long duration exploration missions....

  11. The mysterious multi-modal repellency of DEET

    Science.gov (United States)

    DeGennaro, Matthew

    2015-01-01

    DEET is the most effective insect repellent available and has been widely used for more than half a century. Here, I review what is known about the olfactory and contact mechanisms of DEET repellency. For mosquitoes, DEET has at least two molecular targets: Odorant Receptors (ORs) mediate the effect of DEET at a distance, while unknown chemoreceptors mediate repellency upon contact. Additionally, the ionotropic receptor Ir40a has recently been identified as a putative DEET chemosensor in Drosophila. The mechanism of how DEET manipulates these molecular targets to induce insect avoidance in the vapor phase is also contested. Two hypotheses are the most likely: DEET activates an innate olfactory neural circuit leading to avoidance of hosts (smell and avoid hypothesis) or DEET has no behavioral effect on its own, but instead acts cooperatively with host odors to drive repellency (confusant hypothesis). Resolving this mystery will inform the search for a new generation of insect repellents. PMID:26252744

  12. Multi-modal CT in Stroke Imaging: New Concepts

    Science.gov (United States)

    Ledezma, Carlos J.; Wintermark, Max

    2009-01-01

    A multimodal CT protocol provides a comprehensive non-invasive survey of acute stroke patients with accurate demonstration of the site of arterial occlusion and its hemodynamic tissue status. It combines widespread availability with the ability to provide functional characterization of cerebral ischemia, and could potentially allow more accurate selection of candidates for acute stroke reperfusion therapy. PMID:19195537

  13. Multi-Modal Neurodiagnostic Tool for Stress Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a requirement for a neurodiagnostic tool that can be used to monitor the behavioral health of the crew during long duration Exploration missions. The device...

  14. Multi-modality treatment of colorectal liver metastases

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiang Cai; San-Jun Cai

    2012-01-01

    Liver metastases synchronously or metachronously occur in approximately 50% of colorectal cancer patients. Multimodality comprehensive treatment is the best therapeutic strategy for these patients. However, the optimal pattern of multimodality therapy is still controversial, and it raises several significant concerns. Liver resection is the most important treatment for colorectal liver metastases. The definition of resectability has shifted to focus on the completion of R0 resection and normal liver function maintenance. The role of neoadjuvant and adjuvant chemotherapy still needs to be clarified. The management of either progression or complete remission during neoadjuvant chemotherapy is challenging. The optimal sequencing of surgery and chemotherapy in synchronous colorectal liver metastases patients is still unclear. Conversional chemotherapy, portal vein embolization, two-stage resection, and tumor ablation are effective approaches to improve resectability for initially unresectable patients. Several technical issues and concerns related to these methods need to be further explored. For patients with definitely unresectable liver disease, the necessity of resecting the primary tumor is still debatable, and evaluating and predicting the efficacy of targeted therapy deserve further investigation. This review discusses different patterns and important concerns of multidisciplinary treatment of colorectal liver metastases.

  15. Multi-modality nanoparticles having optically responsive shape

    Science.gov (United States)

    Chen, Fanqing; Bouchard, Louis-Serge

    2015-05-19

    In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.

  16. Ultrathin SWCNT Films Enabled Multi-modal Fiber Sensors

    Science.gov (United States)

    2014-09-30

    derived by  Mason  et al. [46] and  Shiragami et al. [47], the experimentally acquired sedimentation function was then numerically  fitted to extract the...A,  Linderman  R,  Obergfell  D,  Roth   S,  Hierold  C.  Nano‐ electromechanical displacement sensing based on single‐walled carbon nanotubes. Nano...Visible Absorption Spectroscopy.  Anal. Chem., 2006; 78:8098‐8104.  [46]  Mason  M, Weaver W. The settling of small particles in a fluid. Phys. Rev., 1924

  17. The Stability of Multi-modal Traffic Network

    Institute of Scientific and Technical Information of China (English)

    HAN Ling-Hui; Sun Hui-Jun; ZHU Cheng-Juan; WU Jian-Jun; JIA Bin

    2013-01-01

    There is an explicit and implicit assumption in multimodal traffic equilibrium models,that is,if the equilibrium exists,then it will also occur.The assumption is very idealized; in fact,it may be shown that the quite contrary could happen,because in multimodal traffic network,especially in mixed traffic conditions the interaction among traffic modes is asymmetric and the asymmetric interaction may result in the instability of traffic system.In this paper,to study the stability of multimodal traffic system,we respectively present the travel cost function in mixed traffic conditions and in traffic network with dedicated bus lanes.Based on a day-to-day dynamical model,we study the evolution of daily route choice of travelers in multimodal traffic network using 10000 random initial values for different cases.From the results of simulation,it can be concluded that the asymmetric interaction between the cars and buses in mixed traffic conditions can lead the traffic system to instability when traffic demand is larger.We also study the effect of travelers' perception error on the stability of multimodal traffic network.Although the larger perception error can alleviate the effect of interaction between cars and buses and improve the stability of traffic system in mixed traffic conditions,the traffic system also become instable when the traffic demand is larger than a number.For all cases simulated in this study,with the same parameters,traffic system with dedicated bus lane has better stability for traffic demand than that in mixed traffic conditions.We also find that the network with dedicated bus lane has higher portion of travelers by bus than it of mixed traffic network.So it can be concluded that building dedicated bus lane can improve the stability of traffic system and attract more travelers to choose bus reducing the traffic congestion.

  18. Android Based Behavioral Biometric Authentication via Multi-Modal Fusion

    Science.gov (United States)

    2014-06-12

    of your choice in the area that has. Wif i. {McDonalds, starbucks , Pan era. Einstein’s) 2. Use google maps to obta in driving directions to the...2008. [31] Shen, Chao, Zhongmin Cai, Xiaohong Guan, and Jinpei Cai. “A hypo-optimum feature selection strategy for mouse dynamics in continuous

  19. A hybrid genetic algorithm for multi-modal image registration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU (High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the centerline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.

  20. Rapid multi-modality preregistration based on SIFT descriptor.

    Science.gov (United States)

    Chen, Jian; Tian, Jie

    2006-01-01

    This paper describes the scale invariant feature transform (SIFT) method for rapid preregistration of medical image. This technique originates from Lowe's method wherein preregistration is achieved by matching the corresponding keypoints between two images. The computational complexity has been reduced when we applied SIFT preregistration method before refined registration due to its O(n) exponential calculations. The features of SIFT are highly distinctive and invariant to image scaling and rotation, and partially invariant to change in illumination and contrast, it is robust and repeatable for cursorily matching two images. We also altered the descriptor so our method can deal with multimodality preregistration.

  1. Assessment of multi-modality evaluations of obscure gastrointestinal bleeding

    Science.gov (United States)

    Law, Ryan; Varayil, Jithinraj E; WongKeeSong, Louis M; Fidler, Jeff; Fletcher, Joel G; Barlow, John; Alexander, Jeffrey; Rajan, Elizabeth; Hansel, Stephanie; Becker, Brenda; Larson, Joseph J; Enders, Felicity T; Bruining, David H; Coelho-Prabhu, Nayantara

    2017-01-01

    AIM To determine the frequency of bleeding source detection in patients with obscure gastrointestinal bleeding (OGIB) who underwent double balloon enteroscopy (DBE) after pre-procedure imaging [multiphase computed tomography enterography (MPCTE), video capsule endoscopy (VCE), or both] and assess the impact of imaging on DBE diagnostic yield. METHODS Retrospective cohort study using a prospectively maintained database of all adult patients presenting with OGIB who underwent DBE from September 1st, 2002 to June 30th, 2013 at a single tertiary center. RESULTS Four hundred and ninety five patients (52% females; median age 68 years) underwent DBE for OGIB. AVCE and/or MPCTE performed within 1 year prior to DBE (in 441 patients) increased the diagnostic yield of DBE (67.1% with preceding imaging vs 59.5% without). Using DBE as the gold standard, VCE and MPCTE had a diagnostic yield of 72.7% and 32.5% respectively. There were no increased odds of finding a bleeding site at DBE compared to VCE (OR = 1.3, P = 0.150). There were increased odds of finding a bleeding site at DBE compared to MPCTE (OR = 5.9, P < 0.001). In inpatients with overt OGIB, diagnostic yield of DBE was not affected by preceding imaging. CONCLUSION DBE is a safe and well-tolerated procedure for the diagnosis and treatment of OGIB, with a diagnostic yield that may be increased after obtaining a preceding VCE or MPCTE. However, inpatients with active ongoing bleeding may benefit from proceeding directly to antegrade DBE. PMID:28216967

  2. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by usingthe integral, rather than the partial method.

  3. Analyse et traitement d'images multi modales en oncologie

    OpenAIRE

    Hatt, Mathieu

    2012-01-01

    With an initial formation in theoretical computer sciences with a focus on image processing and analysis, my current research activities deal with image and information processing and analysis for applications in medicine, namely oncology and radiotherapy. More specifically, my research interests are image automatic segmentation and classification for organs and tumors delineation, image denoising and deconvolution for qualitative and quantitative improvement, and more recently, multi observa...

  4. A System Approach to Adaptive Multi-Modal Sensor Designs

    Science.gov (United States)

    2010-02-01

    signals needed. As an example, using the Polytec 505 LDV, the built-in automatic focusing takes about 15 seconds to focus the laser beam on the surface...time, e.g. 15 seconds for Polytec OFV-505. With our automatic focusing method, our current implementation reduced the time to 1.5 second, a ten-fold

  5. Multi-modal big data management for film production

    OpenAIRE

    Kim, H.; Pabst, S.; Sneddon, J; Waine , T.; Clifford, J; Hilton, A.

    2015-01-01

    Modern digital film production uses large quantities of data from videos, digital photographs, LIDAR scans, spherical photography and many other sources to create the final film frames. The processing and management of this massive amount of heterogeneous data consumes enormous resources. We propose an integrated pipeline for 2D/3D data registration for film production. We present the prototype application Jigsaw, which allows users to efficiently manage and process various data from digital ...

  6. An Efficient Human Identification through MultiModal Biometric System

    Directory of Open Access Journals (Sweden)

    K. Meena

    Full Text Available ABSTRACT Human identification is essential for proper functioning of society. Human identification through multimodal biometrics is becoming an emerging trend, and one of the reasons is to improve recognition accuracy. Unimodal biometric systems are affected by various problemssuch as noisy sensor data,non-universality, lack of individuality, lack of invariant representation and susceptibility to circumvention.A unimodal system has limited accuracy. Hence, Multimodal biometric systems by combining more than one biometric feature in different levels are proposed in order to enhance the performance of the system. A supervisor module combines the different opinions or decisions delivered by each subsystem and then make a final decision. In this paper, a multimodal biometrics authentication is proposed by combining face, iris and finger features. Biometric features are extracted by Local Derivative Ternary Pattern (LDTP in Contourlet domain and an extensive evaluation of LDTP is done using Support Vector Machine and Nearest Neighborhood Classifier. The experimental evaluations are performed on a public dataset demonstrating the accuracy of the proposed system compared with the existing systems. It is observed that, the combination of face, fingerprint and iris gives better performance in terms of accuracy, False Acceptance Rate, False Rejection Rate with minimum computation time.

  7. Optimized Radial Basis Function Classifier for Multi Modal Biometrics

    Directory of Open Access Journals (Sweden)

    Anand Viswanathan

    2014-07-01

    Full Text Available Biometric systems can be used for the identification or verification of humans based on their physiological or behavioral features. In these systems the biometric characteristics such as fingerprints, palm-print, iris or speech can be recorded and are compared with the samples for the identification or verification. Multimodal biometrics is more accurate and solves spoof attacks than the single modal bio metrics systems. In this study, a multimodal biometric system using fingerprint images and finger-vein patterns is proposed and also an optimized Radial Basis Function (RBF kernel classifier is proposed to identify the authorized users. The extracted features from these modalities are selected by PCA and kernel PCA and combined to classify by RBF classifier. The parameters of RBF classifier is optimized by using BAT algorithm with local search. The performance of the proposed classifier is compared with the KNN classifier, Naïve Bayesian classifier and non-optimized RBF classifier.

  8. A transformation approach to modelling multi-modal diffusions

    DEFF Research Database (Denmark)

    Forman, Julie Lyng; Sørensen, Michael

    2014-01-01

    when the diffusion is observed with additional measurement error. The new approach is applied to molecular dynamics data in the form of a reaction coordinate of the small Trp-zipper protein, from which the folding and unfolding rates of the protein are estimated. Because the diffusion coefficient...... is state-dependent, the new models provide a better fit to this type of protein folding data than the previous models with a constant diffusion coefficient, particularly when the effect of errors with a short time-scale is taken into account....

  9. A Multi-Modal Recognition System Using Face and Speech

    Directory of Open Access Journals (Sweden)

    Samir Akrouf

    2011-05-01

    Full Text Available Nowadays Person Recognition has got more and more interest especially for security reasons. The recognition performed by a biometric system using a single modality tends to be less performing due to sensor data, restricted degrees of freedom and unacceptable error rates. To alleviate some of these problems we use multimodal biometric systems which provide better recognition results. By combining different modalities, such us speech, face, fingerprint, etc., we increase the performance of recognition systems. In this paper, we study the fusion of speech and face in a recognition system for taking a final decision (i.e., accept or reject identity claim. We evaluate the performance of each system differently then we fuse the results and compare the performances.

  10. Multi-modal analysis of small-group conversational dynamics

    NARCIS (Netherlands)

    Akker, op den Rieks; Gatica-Perez, Daniel; Heylen, Dirk; Renals, Steve; Bourlard, Hervé; Carletta, Jean; Popescu-Belis, Andrei

    2012-01-01

    This chapter provides an overview of the basic problems realted to automatic understanding of conversational group dynamics. It provides an overview of current research in automatic detection of the addressee(s) of the speaker in multiparty conversations, the visual focus of attention of participant

  11. Multi-modal RGB–Depth–Thermal Human Body Segmentation

    DEFF Research Database (Denmark)

    Palmero, Cristina; Clapés, Albert; Bahnsen, Chris

    2016-01-01

    device and a registration algorithm. Our baseline extracts regions of interest using background sub- traction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells us- ing different state-of-the-art feature extractions, and models the distribution...... of the descriptors per cell using probabilis- tic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector rep- resentation. The baseline, using Gaussian Mixture Models for the probabilistic modeling and Random Forest for the stacked learning, is superior...

  12. Multi-modal glioblastoma segmentation: man versus machine.

    Directory of Open Access Journals (Sweden)

    Nicole Porz

    Full Text Available BACKGROUND AND PURPOSE: Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS: We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA. In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor, the TV+ (TV plus edema and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS: Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29. Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p0.05 with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS: In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.

  13. Multi-modal imaging of the subscapularis muscle

    OpenAIRE

    Alilet, Mona; Behr, Julien; Nueffer, Jean-Philippe; Barbier-Brion, Benoit; Aubry, Sébastien

    2016-01-01

    Abstract The subscapularis (SSC) muscle is the most powerful of the rotator cuff muscles, and plays an important role in shoulder motion and stabilization. SSC tendon tear is quite uncommon, compared to the supraspinatus (SSP) tendon, and, most of the time, part of a large rupture of the rotator cuff. Various complementary imaging techniques can be used to obtain an accurate diagnosis of SSC tendon lesions, as well as their extension and muscular impact. Pre-operative diagnosis by imaging is ...

  14. Detection of Epileptic Seizures with Multi-modal Signal Processing

    DEFF Research Database (Denmark)

    Conradsen, Isa

    and alarm whenever a seizure starts is of great importance to these patients and their relatives, in the sense, that the alert of the seizure will make them feel more safe. Thus the objective of the project is to investigate the movements of convulsive epileptic seizures and design seizure detection...... convulsive seizures tested. Another study was performed, involving quantitative parameters in the time and frequency domain. The study showed, that there are several differences between tonic seizures and the tonic phase of GTC seizures and furthermore revealed differences of the epileptic (tonic and tonic...

  15. [Preliminary clinical evaluation of continuous infusion of 5-FU and low-dose Cisplatin (LFP) therapy alone and combined with radiation therapy for treatment of advanced or recurrent esophageal cancer].

    Science.gov (United States)

    Itoh, Satoshi; Morita, Sojiro; Ohnishi, Takenao; Tsuji, Akihito; Takamatsu, Masahiro; Horimi, Tadashi

    2002-02-01

    We evaluated the clinical effect of 5-FU and low-dose Cisplatin (LFP) therapy alone and LFP therapy combined with radiation therapy in patients with advanced or recurrent esophageal cancer. From March 1995 to September 2000, 11 patients with inoperable esophageal cancer, 8 patients with adjuvant chemotherapy post operation, and 14 patients with recurrent esophageal cancer were treated with LFP therapy. 5-FU (160 mg/m2/day) was continuously infused over 24 hours, and CDDP (3-7 mg/m2/day) was infused for 30 minutes. The administration schedule consisted of 5-FU for 7 consecutive days and CDDP for 5 days followed by a 2-day rest, each for four weeks. We combined radiation therapy for the patients with all lesions that could be included in the radiation field. Of 30 patients with measurable lesions the response rates of LFP therapy alone and LFP therapy combined with radiation therapy were 33% and 60%, respectively. Toxicity over grade 3 appeared in 3 of 15 patients with LFP therapy combined with radiation therapy. There was no significant difference between LFP therapy alone and LFP therapy combined with radiation therapy with regard to survival rate of inoperable and recurrent esophageal cancer. In conclusion, LFP therapy alone may be effective for esophageal cancer.

  16. Preliminary clinical evaluation of continuous infusion of 5-FU and low-dose cisplatin (LFP) therapy alone and combined with radiation therapy for treatment of advanced or recurrent esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Satoshi; Morita, Sojiro; Ohnishi, Takenao; Tsuji, Akihito; Takamatsu, Masahiro; Horimi, Tadashi [Kochi Municipal Central Hospital, Nankoku (Japan). Cancer Research Center

    2002-02-01

    We evaluated the clinical effect of 5-FU and low-dose Cisplatin (LFP) therapy alone and LFP therapy combined with radiation therapy in patients with advanced or recurrent esophageal cancer. From March 1995 to September 2000, 11 patients with inoperable esophageal cancer, 8 patients with adjuvant chemotherapy post operation, and 14 patients with recurrent esophageal cancer were treated with LFP therapy. 5-FU (160 mg/m{sup 2}/day) was continuously infused over 24 hours, and CDDP (3-7 mg/m{sup 2}/day) was infused for 30 minutes. The administration schedule consisted of 5-FU for 7 consecutive days and CDDP for 5 days followed by a 2-day rest, each for four weeks. We combined radiation therapy for the patients with all lesions that could be included in the radiation field. Of 30 patients with measurable lesions the response rates of LFP therapy alone and LFP therapy combined with radiation therapy were 33% and 60%, respectively. Toxicity over grade 3 appeared in 3 of 15 patients with LFP therapy combined with radiation therapy. There was no significant difference between LFP therapy alone and LFP therapy combined with radiation therapy with regard to survival rate of inoperable and recurrent esophageal cancer. In conclusion, LFP therapy alone may be effective for esophageal cancer. (author)

  17. Advanced gastric adenocarcinoma. Influence of preoperative radiation therapy on toxicity and long-term survival rates; Adenocarcinoma gastrico avancado. Analise da toxicidade e da influencia da radioterapia pre-operatoria nos indices de sobrevivencia a longo prazo

    Energy Technology Data Exchange (ETDEWEB)

    Malzoni, Carlos Eduardo

    1996-12-31

    The surgical treatment of gastric cancer has better long-term survival rates when performed in patients with early gastric cancer. Worse results are obtained in treatment of advanced gastric cancer. Most patients in west centers are treated in advanced stages. A great number of them go through a surgical treatment unable by itself to cure them. the frequent local recurrence caused by failure of the surgical treatment has been keeping poor survival rates in patients with advanced gastric cancer for decades. The desire of improving survival is the reason of the use of adjuvant therapies. This paper achieved the retrospective study of the influence of preoperative radiation therapy (2000 cGy) in long-term survival rates (120 months) of patients with advanced gastric cancer on stages IIIa, IIIb and IV. The possible injuries caused in the liver and kidney were observed also as well as first group was treated by surgical and radiation therapies and the second received surgical treatment only. There was no statistical difference between the two groups when sex, age, race, occurrence of other diseases, nutritional assessment, TNM stage, occurrence of obstruction or bleeding caused by tumor, surgical procedure and hepatic and renal function were considered. Survival rates and changes on hepatic and renal function were statistically compared. The results showed a statistic improvement on the long-term survival rates of stage IIIa patients treated by preoperative radiation therapy. No statistic difference was observed on hepatic or renal function between the groups. No adverse influence of radiation therapy method was detected by the used parameters. There was no statistical difference between the two groups when immediate surgical complications were considered. (author) 112 refs., 34 tabs.

  18. A randomized comparative study between neoadjuvant 5-fluorouracil and leukovorin versus 5-fluorouracil and cisplatin along with concurrent radiation in locally advanced carcinoma rectum

    Directory of Open Access Journals (Sweden)

    Priyanjit Kumar Kayal

    2014-01-01

    Full Text Available Context: Concurrent chemoradiotherapy (CCRT with cisplatin-5-fluorouracil (CDDP-5FU in rectal cancer is based on the concept of biochemical modulation. Aims: The study was designed to evaluate whether CCRT with CDDP and 5-FU is noninferior to CCRT with leukovorin (LV and 5FU in downstaging locally advanced rectal adenocarcinoma and to compare the toxicities between the two arms. Settings and Design : Single institutional, noninferiority, prospective, randomized study. Subjects and Methods : In control arm (N = 24 patients received chemotherapy. With bolus 5FU 350 mg/m 2 /day and LV 20 mg/m 2 /day for days 1-5 and 29-33. In study arm (N = 25, patients received chemotherapy with bolus 5 FU 350 mg/m 2 /day for days 1-5 and 29-33 and CDDP 100 mg/m 2 /day at days 1 and 29. Patients in both the arm received concurrent radiation (50.4 Gy in 28#, in conventional fractionation of 1.8 Gy per fraction. Six to eight weeks after concurrent chemoradiation patients underwent assessment and surgery. Postoperatively, adjuvant chemotherapy with m-FOLFO × 6 of 4 months was given to all patients. Statistical Analysis : The Chi-square test was used to compare categorical variables between the groups. Results: Response rate as assessed by Response Evaluation Criteria in Solid Tumors (RECIST criteria was comparable between the two treatment arms (P = 0.9541. Pathological complete response rate of study arm was comparable to control arm (20 vs 20.83%, P = 0.7778 was not significant. Surgery with R0 resection was possible in 72% cases of study arm compared to 62.5% cases of control arm; P = 0.6861, not significant. Grade III toxicities were quite comparable between two treatment arms. Conclusions : In terms of pathologic complete response (pCR, R0 resection and toxicity profile of both the arms were comparable.

  19. Four-Week Neoadjuvant Intensity-Modulated Radiation Therapy With Concurrent Capecitabine and Oxaliplatin in Locally Advanced Rectal Cancer Patients: A Validation Phase II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Arbea, Leire, E-mail: larbea@unav.es [Department of Oncology, Clinica Universidad de Navarra, Navarra (Spain); Martinez-Monge, Rafael; Diaz-Gonzalez, Juan A.; Moreno, Marta; Rodriguez, Javier [Department of Oncology, Clinica Universidad de Navarra, Navarra (Spain); Hernandez, Jose Luis [Department of General Surgery, Clinica Universidad de Navarra, Navarra (Spain); Sola, Jesus Javier [Department of Pathology, Clinica Universidad de Navarra, Navarra (Spain); Ramos, Luis Isaac [Department of Oncology, Clinica Universidad de Navarra, Navarra (Spain); Subtil, Jose Carlos [Department of Gastroenterology, Clinica Universidad de Navarra, Navarra (Spain); Nunez, Jorge [Department of Preventive Medicine and Public Health, Clinica Universidad de Navarra, Navarra (Spain); Chopitea, Ana; Cambeiro, Mauricio; Gaztanaga, Miren; Garcia-Foncillas, Jesus; Aristu, Javier [Department of Oncology, Clinica Universidad de Navarra, Navarra (Spain)

    2012-06-01

    Purpose: To validate tolerance and pathological complete response rate (pCR) of a 4-week preoperative course of intensity-modulated radiation therapy (IMRT) with concurrent capecitabine and oxaliplatin (CAPOX) in patients with locally advanced rectal cancer. Methods and Materials: Patients with T3 to T4 and/or N+ rectal cancer received preoperative IMRT (47.5 Gy in 19 fractions) with concurrent capecitabine (825 mg/m{sup 2} b.i.d., Monday to Friday) and oxaliplatin (60 mg/m{sup 2} on Days 1, 8, and 15). Surgery was scheduled 4 to 6 weeks after the completion of chemoradiation. Primary end points were toxicity and pathological response rate. Local control (LC), disease-free survival (DFS), and overall survival (OS) were also analyzed. Results: A total of 100 patients were evaluated. Grade 1 to 2 proctitis was observed in 73 patients (73%). Grade 3 diarrhea occurred in 9% of the patients. Grade 3 proctitis in 18% of the first 50 patients led to reduction of the dose per fraction to 47.5 Gy in 20 treatments. The rate of Grade 3 proctitis decreased to 4% thereafter (odds ratio, 0.27). A total of 99 patients underwent surgery. A pCR was observed in 13% of the patients, major response (96-100% of histological response) in 48%, and pN downstaging in 78%. An R0 resection was performed in 97% of the patients. After a median follow-up of 55 months, the LC, DFS, and OS rates were 100%, 84%, and 87%, respectively. Conclusions: Preoperative CAPOX-IMRT therapy (47.5 Gy in 20 fractions) is feasible and safe, and produces major pathological responses in approximately 50% of patients.

  20. Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Capirci, Carlo [Hospital, Division of Radiotherapy, Rovigo (Italy); Rampin, Lucia; Banti, Elena [Hospital, Nuclear Medicine and PET Service, Rovigo (Italy); Erba, Paola A.; Mariani, Giuliano [Regional Center of Nuclear Medicine, Univ. Pisa (Italy); Galeotti, Fabrizio [Hospital, Division of Surgery, Rovigo (Italy); Crepaldi, Giorgio [Hospital, Division of Oncology, Rovigo (Italy); Gava, Marcello [Hospital, Medical Physics Service, Rovigo (Italy); Fanti, Stefano [Politecnico Bologna (Italy). Dept. of Nuclear Medicine; Muzzio, Pier C. [Dept. of Radiology, Ist. Oncologico, Padova (Italy); Rubello, Domenico [Rovigo Hospital, Istituto Oncologico Veneto (IOV)-IRCCS, Nuclear Medicine Service, PET Unit, Rovigo (Italy)

    2007-10-15

    Prediction of rectal cancer response to preoperative, neo-adjuvant chemo-radiation therapy (CRT) provides the opportunity to identify patients in whom a major response is expected and who may therefore benefit from alternative surgical approaches. Traditional morphological imaging techniques are effective in defining tumour extension in the initial diagnostic and staging work-up, but perform poorly in distinguishing residual neoplastic tissue from scarring post CRT, when restaging the patient before surgery. Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) is a promising tool for monitoring the effect of anti-tumour therapy. The aim of this study was to prospectively assess the value of sequential FDG-PET scans in predicting the response of locally advanced rectal cancer to neo-adjuvant CRT. Forty-four consecutive patients with locally advanced (cT3-4) primary rectal cancer and four patients with pelvic recurrence of rectal cancer were enrolled in this prospective study. Treatment consisted of external beam intensified radiotherapy, chemotherapy and, 8-10 weeks later, surgery with curative intent. All patients underwent FDG-PET/CT both before CRT and 5-6 weeks after completing CRT. One patient died before surgery because of acute myocardial infarction, and was therefore excluded from further analysis. Semi-quantitative measurements of FDG uptake (SUV{sub max}), absolute difference ({delta}SUV{sub max}) and percent SUV{sub max} difference (Response Index, RI) between pre- and post-CRT PET scans were considered. Results were correlated with pathological response, assessed both by histopathological staging of the surgical specimens (pTNM) and by the tumour regression grade (TRG) according to Mandard's criteria (patients with TRG1-2 being defined as responders and patients with TRG3-5 as non-responders). Following neo-adjuvant CRT, of the 45 patients submitted to surgery, 23 (51.1%) were classified as responders according to Mandard

  1. Rapid Development of the Radiation Curing Sector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Radiation curing is an advanced material surface treatment technology using ultraviolet (UV) radiation and electronic beams (EB). With the greater attention paid to environ mentel protection in recent years ,radiation curing has developed rapidly.

  2. Nanocomposite for Radiation Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Advanced Extravehicular Activity (EVA) program requires the need for materials that can protect astronauts and spacecrafts from ionizing radiations such as...

  3. 基于多模图像融合理论的人眼球及眼眶肿瘤的三维重建与显示%Three-dimensional reconstruction and display of intraocular and orbital tumors based on multi-modality image fusion theory

    Institute of Scientific and Technical Information of China (English)

    管宇峰; 叶强; 宋志坚

    2005-01-01

    Objective: To study the application of CT and MRI fusion technique in the diagnosis and treatment of intraocular and orbital tumors. Methods: 2D-images of 13 patients with intraocular and orbital tumors were fused by special-point registration and Iterative Local Closest Point(ILCP) method; 3D-fusion images were reconstructed by Ray Tracing method. Results: A 3D-CT-MRI fusion images of intraocular and orbital tumors were reconstructed and displayed. The CT and MRI data of intraocular and orbital tumors were displayed on the same image as a comprehensive whole,which provided a stereogram of 3D-structure of the normal and abnormal orbital tissues. Anatomical structure of the orbit was clearly visualized by 3D-CT-MRI image. Conclusion: The multi-modality fusion technique can provide more accurate and comprehensive information for clinical diagnosis of intraocular and orbital tumors, which is helpful for doctors' planning of surgical operations,clinical education and doctor-patient communication.%目的:研究CT和MRI融合技术在眼球及眼眶肿瘤中的应用.方法:对13例眼球及眼眶肿瘤的CT和MRI的二维图像通过特征点配准结合ILCP法(Iterative Local Closest Point)进行融合,运用Ray Tracing法进行三维融合图像的重建.结果:实现了人眼球及眼眶肿瘤CT和MRI三维融合图像的重建与显示,眼球及眼眶肿瘤的CT和MRI信息综合起来作为一个整体成像在同一幅图像上,立体显示了眼部正常与病变组织的三维结构,提供了眼眶的三维立体视觉,使眼眶的结构便于理解.结论:多模图像融合能使临床获取更准确和全面的诊断信息.它能帮助医师制订周密的手术方案,并且对临床教学及加强医患沟通有重要指导意义.

  4. SU-E-J-244: Development and Validation of a Knowledge Based Planning Model for External Beam Radiation Therapy of Locally Advanced Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z; Kennedy, A [Sarah Cannon, Nashville, TN (United States); Larsen, E; Hayes, C; Grow, A [North Florida Cancer Center, Gainesville, FL (United States); Bahamondes, S.; Zheng, Y; Wu, X [JFK Comprehensive Cancer Institute, Lake Worth, FL (United States); Choi, M; Pai, S [Good Samaritan Hospital, Los Gatos, CA (United States); Li, J [Doctors Hospital of Augusta, Augusta, GA (United States); Cranford, K [Trident Medical Center, Charleston, SC (United States)

    2015-06-15

    Purpose: The study aims to develop and validate a knowledge based planning (KBP) model for external beam radiation therapy of locally advanced non-small cell lung cancer (LA-NSCLC). Methods: RapidPlan™ technology was used to develop a lung KBP model. Plans from 65 patients with LA-NSCLC were used to train the model. 25 patients were treated with VMAT, and the other patients were treated with IMRT. Organs-at-risk (OARs) included right lung, left lung, heart, esophagus, and spinal cord. DVH and geometric distribution DVH were extracted from the treated plans. The model was trained using principal component analysis and step-wise multiple regression. Box plot and regression plot tools were used to identify geometric outliers and dosimetry outliers and help fine-tune the model. The validation was performed by (a) comparing predicted DVH boundaries to actual DVHs of 63 patients and (b) using an independent set of treatment planning data. Results: 63 out of 65 plans were included in the final KBP model with PTV volume ranging from 102.5cc to 1450.2cc. Total treatment dose prescription varied from 50Gy to 70Gy based on institutional guidelines. One patient was excluded due to geometric outlier where 2.18cc of spinal cord was included in PTV. The other patient was excluded due to dosimetric outlier where the dose sparing to spinal cord was heavily enforced in the clinical plan. Target volume, OAR volume, OAR overlap volume percentage to target, and OAR out-of-field volume were included in the trained model. Lungs and heart had two principal component scores of GEDVH, whereas spinal cord and esophagus had three in the final model. Predicted DVH band (mean ±1 standard deviation) represented 66.2±3.6% of all DVHs. Conclusion: A KBP model was developed and validated for radiotherapy of LA-NSCLC in a commercial treatment planning system. The clinical implementation may improve the consistency of IMRT/VMAT planning.

  5. Baseline Metabolic Tumor Volume and Total Lesion Glycolysis Are Associated With Survival Outcomes in Patients With Locally Advanced Pancreatic Cancer Receiving Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dholakia, Avani S. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Chaudhry, Muhammad; Leal, Jeffrey P. [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Chang, Daniel T. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Raman, Siva P. [Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hacker-Prietz, Amy [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopki