WorldWideScience

Sample records for advanced molecular biology

  1. Rhabdomyosarcoma: Advances in Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2015-01-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR, in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.

  2. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  3. Recent advances in yeast molecular biology: recombinant DNA

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis

  4. Recent advances in molecular biology of gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    萧树东; 冉志华

    2003-01-01

    Gastric cancer is a major health care problem and the second most common fatal cancer worldwide. In the last decade, better insight has been gained into the molecular basis underlying the neoplasitc transformation of stomach. The dramatic variation in the incidence of gastric cancer in different geographical areas and from one generation to the next have led to the hypothesis that the incidence of gastric cancer is determined largely by environmental rather than genetic factors.

  5. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  6. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses. PMID:25019235

  7. Molecular subtype analysis determines the association of advanced breast cancer in Egypt with favorable biology

    Directory of Open Access Journals (Sweden)

    DuQuette Rachelle A

    2011-09-01

    Full Text Available Abstract Background Prognostic markers and molecular breast cancer subtypes reflect underlying biological tumor behavior and are important for patient management. Compared to Western countries, women in North Africa are less likely to be prognosticated and treated based on well-characterized markers such as the estrogen receptor (ER, progesterone receptor (PR and Her2. We conducted this study to determine the prevalence of breast cancer molecular subtypes in the North African country of Egypt as a measure of underlying biological characteristics driving tumor manifestations. Methods To determine molecular subtypes we characterized over 200 tumor specimens obtained from Egypt by performing ER, PR, Her2, CK5/6, EGFR and Ki67 immunohistochemistry. Results Our study demonstrated that the Luminal A subtype, associated with favorable prognosis, was found in nearly 45% of cases examined. However, the basal-like subtype, associated with poor prognosis, was found in 11% of cases. These findings are in sharp contrast to other parts of Africa in which the basal-like subtype is over-represented. Conclusions Egyptians appear to have favorable underlying biology, albeit having advanced disease at diagnosis. These data suggest that Egyptians would largely profit from early detection of their disease. Intervention at the public health level, including education on the benefits of early detection is necessary and would likely have tremendous impact on breast cancer outcome in Egypt.

  8. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  9. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  10. Molecular advances in the cell biology of SARS-CoV and current disease prevention strategies

    OpenAIRE

    Atreya CD; Stark Caren J

    2005-01-01

    Abstract In the aftermath of the SARS epidemic, there has been significant progress in understanding the molecular and cell biology of SARS-CoV. Some of the milestones are the availability of viral genome sequence, identification of the viral receptor, development of an infectious cDNA clone, and the identification of viral antigens that elicit neutralizing antibodies. However, there is still a large gap in our understanding of how SARS-CoV interacts with the host cell and the rapidly changin...

  11. Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition.

    Science.gov (United States)

    Cooper, Christopher D O; Newman, Joseph A; Gileadi, Opher

    2014-02-01

    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.

  12. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  13. Glycobiology Current Molecular Biology

    OpenAIRE

    Sabire KARAÇALI

    2003-01-01

    Carbohydrate chemistry evolved into carbohydrate biochemistry and gradually into the biology of carbohydrates, or glycobiology, at the end of the last century. Glycobiology is the new research area of modern molecular biology, and it investigates the structure, biosynthesis and biological functions of glycans. The numbers, linkage types (a or b), positions, binding points and functional group differences of monosaccharides create microheterogeneity. Thus, numerous glycoforms with precise stru...

  14. [Advances in Molecular Cloning].

    Science.gov (United States)

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  15. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    Science.gov (United States)

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  16. A Molecular Biology Database Digest

    OpenAIRE

    Bry, François; Kröger, Peer

    2000-01-01

    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration...

  17. Molecular Biology of Medulloblastoma

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  18. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  19. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  20. 薄荷属植物分子生物学研究进展%Research Advance in Molecular Biology of Plants in Mentha Genus

    Institute of Scientific and Technical Information of China (English)

    王海棠; 于盱; 刘艳; 梁呈元; 李维林

    2012-01-01

    The author reviewed the research advance in the molecular biology of plants in Menthe genus, including enzymatic genes related to volatile oil synthesis way, limonene synthase gene, molecular evolution and so on.%从薄荷属植物挥发油合成途径相关酶基因、柠檬烯合酶基因和分子进化等方面对薄荷属植物的分子生物学研究进行了综述.

  1. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  2. Advances in Biological Science.

    Science.gov (United States)

    Oppenheimer, Steven B.; And Others

    1988-01-01

    Reviews major developments in areas that are at the cutting edge of biological research. Areas include: human anti-cancer gene, recombinant DNA techniques for the detection of Huntington disease carriers, and marine biology. (CW)

  3. The Molecular Era of Surfactant Biology

    OpenAIRE

    Jeffrey A Whitsett

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  4. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed.

  5. Molecular ferroelectrics: where electronics meet biology

    OpenAIRE

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroele...

  6. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    International Nuclear Information System (INIS)

    is being elucidated. Chromatin remodelling is another emerging area in the context of differential gene expression following exposure to stressors in plants as well as mammalian systems. Its role in the development of functional dichotomy in helper T cells has been recently established. It will be interesting to look at changes in the methylation or acetylation of histones following continuous low level radiation exposure. Bacteria have provided intriguing model systems to investigate stress response, Deinococcus radiodurans being a challenging example. In plants the intensive basic research effort may provide mechanistic answers to the efficacy of biotic and abiotic stress tolerant varieties of crop plants that are or will be developed through plant breeding techniques. This symposium will bring together several leading lights in the field of molecular and cell biology of response to stress in different living organisms. Papers relevant to INIS are indexed separately

  7. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  8. The development of molecular biology and social advancement%分子生物学的发展

    Institute of Scientific and Technical Information of China (English)

    龙华

    2005-01-01

    分子生物学(Molecular Biology)是一门现代生物学,一门带动整个生命科学的前沿学科,是生物化学与遗传学、微生物学、细胞学、生物物理学等学科相结合的基础上发展起来的崭新学科。“分子生物学”一词最早于1945年William Astbury首先在Harvey Lecture上应用的,由于它能从分子水平了解各种生命现象的根本原因,一开始就将研究对象主要集中于生物大分子——核酸(DNA和RNA)的研究,并已经成为现代生命科学的“共同语言”。

  9. Bilingual teaching of molecular biology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Recently bilingual teaching in China's universities has been widely carried out and become a popular subject for study. In this paper, the reasons for bilingual teaching of molecular biology are pointed out, the textbook of molecular biology and teaching method in bilingual teaching classes are determined after investigation and the practice of bilingually teaching molecular biology use both English and Chinese in a class. The effect has proved good. The bilingual teaching methods, the problem of bilingual teaching, the importance of understanding its significance and the possibilities of improving such teaching of the subject are also discussed.

  10. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    @@ Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and ultrastructural levels.

  11. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and uhrastructural levels. Morphology is defined as a field of science investigating the shape,

  12. Molecular biology of hearing [

    Directory of Open Access Journals (Sweden)

    Diensthuber, Marc

    2012-04-01

    Full Text Available [english] The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.

  13. Advances in Genome Biology & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas J. Albert, Jon R. Armstrong, Raymond K. Auerback, W. Brad Barbazuk, et al.

    2007-12-01

    This year's meeting focused on the latest advances in new DNA sequencing technologies and the applications of genomics to disease areas in biology and biomedicine. Daytime plenary sessions highlighted cutting-edge research in areas such as complex genetic diseases, comparative genomics, medical sequencing, massively parallel DNA sequencing, and synthetic biology. Technical approaches being developed and utilized in contemporary genomics research were presented during evening concurrent sessions. Also, as in previous years, poster sessions bridged the morning and afternoon plenary sessions. In addition, for the third year in a row, the Advances in Genome Biology and Technology (AGBT) meeting was preceded by a pre-meeting workshop that aimed to provide an introductory overview for trainees and other meeting attendees. This year, speakers at the workshop focused on next-generation sequencing technologies, including their experiences, findings, and helpful advise for others contemplating using these platforms in their research. Speakers from genome centers and core sequencing facilities were featured and the workshop ended with a roundtable discussion, during which speakers fielded questions from the audience.

  14. [Knowledgebases in postgenomic molecular biology].

    Science.gov (United States)

    Lisitsa, A V; Shilov, B V; Evdokimov, P A; Gusev, S A

    2010-01-01

    Knowledgebases can become an effective tool essentially raising quality of information retrieval in molecular biology, promoting the development of new methods of education and forecasting of the biomedical R&D. Knowledge-based technologies should induce "paradigm shift" in the life science due to integrative focusing of research groups towards the challenges of postgenomic era. This paper debates concept of the knowledgebase, which exploits web usage mining to personalize the access of molecular biologist to the Internet resources. PMID:21328913

  15. Advances in molecular biology of lung disease: aiming for precision therapy in non-small cell lung cancer.

    Science.gov (United States)

    Rooney, Claire; Sethi, Tariq

    2015-10-01

    Lung cancer is the principal cause of cancer-related mortality in the developed world, accounting for almost one-quarter of all cancer deaths. Traditional treatment algorithms have largely relied on histologic subtype and have comprised pragmatic chemotherapy regimens with limited efficacy. However, because our understanding of the molecular basis of disease in non-small cell lung cancer (NSCLC) has improved exponentially, it has become apparent that NSCLC can be radically subdivided, or molecularly characterized, based on recurrent driver mutations occurring in specific oncogenes. We know that the presence of such mutations leads to constitutive activation of aberrant signaling proteins that initiate, progress, and sustain tumorigenesis. This persistence of the malignant phenotype is referred to as "oncogene addiction." On this basis, a paradigm shift in treatment approach has occurred. Rational, targeted therapies have been developed, the first being tyrosine kinase inhibitors (TKIs), which entered the clinical arena > 10 years ago. These were tremendously successful, significantly affecting the natural history of NSCLC and improving patient outcomes. However, the benefits of these drugs are somewhat limited by the emergence of adaptive resistance mechanisms, and efforts to tackle this phenomenon are ongoing. A better understanding of all types of oncogene-driven NSCLC and the occurrence of TKI resistance will help us to further develop second- and third-generation small molecule inhibitors and will expand our range of precision therapies for this disease. PMID:26182407

  16. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  17. Molecular Processes in Biological Thermosensation

    Directory of Open Access Journals (Sweden)

    I. Digel

    2008-01-01

    Full Text Available Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.

  18. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  19. 小反刍兽疫分子生物学研究进展%Advance in Molecular Biology of Peste Des Petits Ruminants Virus

    Institute of Scientific and Technical Information of China (English)

    董浩; 段小波

    2011-01-01

    小反刍兽疫(peste des petits ruminants,PPR)是由小反刍兽疫病毒(peste des petits ruminants virus,PPRV)引起的一种急性、烈性、接触性传染病.山羊高度易感;牛、猪等动物也可以感染带毒,野生动物偶有发生.作者主要介绍了小反刍兽疫病毒各基因结构特点,6种结构蛋白的功能,以及小反刍兽疫的诊断技术等方面的最新研究进展.%Peste des petits ruminants virus (PPRV) is the etiological agent of peste des petits ruminants (PPR). Which is an acute and highly contagious viral disease, mainly infectes goats, sheep, antelope and other small ruminants, is especially susceptible to goats. Cattle, pigs, etc. Can also be infected with the virus, but usually appearing subclinical effect, wildlife happen once in a while. This article described the advance in the structure features of PPRV genes, the functions of the six structural protein, expressing protein in vitro and the molecular biological diagnostic techniques.

  20. 淀粉合酶的酶学与分子生物学研究进展%Recent Advances on Enzymology and Molecular Biology of Starch Synthase

    Institute of Scientific and Technical Information of China (English)

    张峰; 蒋德安; 翁晓燕

    2001-01-01

    淀粉合酶作为淀粉合成的关键酶之一,一直是淀粉研究的重要内容。这些研究多集中在对其同工型的研究,淀粉合酶的两类主要同工型分别为淀粉粒结合的淀粉合酶和可溶性淀粉合酶,这两类同工型的作用极为复杂。本文介绍了淀粉合酶同工型的酶学和分子生物学近年来的研究进展,同时也讨论了这些同工型的分类、相互关系及其在淀粉合成过程中的生理功能等内容。%Being one of the key enzymes in the pathway of starch biosynthesis,starch synthase is important contents of starch researches which often focus on the research of its isoforms.Starch synthase includes two major kinds of isoforms, granule-bound starch synthase and soluble starch synthase, whose physiological functions are very complicated.Based on the recent advances on enzymology and molecular biology of these isoforms of starch synthase, category,relationship and physiological functions of these isoforms in the starch biosynthesis are discussed.

  1. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular...

  2. Synthetic Tools for Molecular Biology

    OpenAIRE

    Dervan, Peter B.

    1988-01-01

    Chemistry has made tremendous advances over the past four decades in the broad fields of synthesis and understanding chemical reactivity. In that same time span, a series of revolutionary events occurred in biology. First came the discovery of the double helical structure of DNA in the 1950s by Watson and Crick. This discovery allowed the elucidation of the mechanisms of DNA replication -- how DNA makes copies of itself -- and DNA transcription and translation -- the processes that allow the ...

  3. Synthetic biology: advancing biological frontiers by building synthetic systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E.; Smolke, Christina D.

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  4. Molecular biology of liver disorders: the hepatitis C virus and molecular targets for drug development

    Institute of Scientific and Technical Information of China (English)

    Howard J. Worman; Feng Lin

    2000-01-01

    Molecular biology has made a tremendous impact on the diagnosis and treatment of liver diseases[1,2]. In particular, advances in molecular biology made possible the discovery of the virus that causes hepatitis C. In this review, we use hepatitis C as an example of the impact that molecular biology has made in the area of liver disorders. We emphasize how our growing understanding of the hepatitis C virus (HCV) has lead to the identification of targets for development of new treatments.

  5. ADVANCES AND CHALLENGES IN SUGARCANE BIOTECHNOLOY AND PLANT PATHOLOGY: A REVIEW OF THE IX PLANT PATHOLOGY WORKSHOP AND VI MOLECULAR BIOLOGY WORKSHOP

    Science.gov (United States)

    The IX Pathology Workshop and VI Molecular Biology Workshop of the International Society of Sugar Cane Technologists (ISSCT) were organised jointly and hosted by the Colombian Sugarcane Research Centre (CENICAÑA) from 23-27 June 2008 at the Radisson Royal Hotel in Cali, Colombia. The Workshop was we...

  6. The molecular biology of vertebrate olfaction.

    Science.gov (United States)

    Hayden, Sara; Teeling, Emma C

    2014-11-01

    The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors.

  7. The molecular biology of vertebrate olfaction.

    Science.gov (United States)

    Hayden, Sara; Teeling, Emma C

    2014-11-01

    The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors. PMID:25312375

  8. The molecular biology of ilarviruses.

    Science.gov (United States)

    Pallas, Vicente; Aparicio, Frederic; Herranz, Mari C; Sanchez-Navarro, Jesus A; Scott, Simon W

    2013-01-01

    Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses. PMID:23809923

  9. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  10. Molecular biology of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Miroslav Zavoral; Petra Minarikova; Filip Zavada; Cyril Salek; Marek Minarik

    2011-01-01

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  11. Molecular Biological Methods in Environmental Engineering.

    Science.gov (United States)

    Zhang, Guocai; Wei, Li; Chang, Chein-Chi; Zhang, Yuhua; Wei, Dong

    2016-10-01

    Bacteria, acting as catalysts, perform the function of degrading pollutants. Molecular biological techniques play an important role in research on the community analysis, the composition and the functions of complex microbial communities. The development of secondary high-throughput pyrosequencing techiniques enhances the understanding of the composition of the microbial community. The literatures of 2015 indicated that 16S rDNA gene as genetic tag is still the important method for bacteria identification and classification. 454 high throughput sequencing and Illumina MiSeq sequencing have been the primary and widely recognized methods to analyze the microbial. This review will provide environmental engineers and microbiologists an overview of important advancements in molecular techniques and highlight the application of these methods in diverse environments. PMID:27620079

  12. The molecular biology of cancer.

    Science.gov (United States)

    Bertram, J S

    2000-12-01

    identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.

  13. Research Status of Molecular Biology in Flax

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-zhong

    2016-01-01

    Flax is a kind of worldwide fiber and oil crops, and it has a very important role in economic crop production in the world. With the development of molecular biology techniques, the research of flax molecular level has a very big breakthrough. But, flax molecular biology researches are less reported due to the later starting. This paper summarized the latest research progress of molecular biology of flax, including molecular marker technology, construction of genetic map, gene engineering and omics researches, in order to provide the reference to understand the development and research status for flax molecular breeding researchers.

  14. Molecular characteristics versus biological activity

    Science.gov (United States)

    Applegate, Vernon C.; Smith, Manning A.; Willeford, Bennett R.

    1967-01-01

    The molecular characteristics of mononitrophenols containing halogens not only play a key role in their biological activity but provide a novel example of selective toxicity among vertebrate animals. It has been reported that efforts to control the parasitic sea lamprey in the Great Lakes are directed at present to the applications of a selective toxicant to streams inhabited by lamprey larvae. Since 1961, the larvicide that has been used almost exclusively in the control program has been 3-trifluoromethyl-4-nitrophenol (TFM). However, this is only one of about 15 closely related compounds, all halogen-containing mononitrophenols, that display a selectively toxic action upon lampreys. Although not all of the halogenated mononitrophenols are selectively toxic to lampreys (in fact, fewer than half of those tested), no other group of related compounds has displayed any useful larvicidal activity except for the substituted nitrosalicylanilides.

  15. Arterivirus molecular biology and pathogenesis.

    Science.gov (United States)

    Snijder, Eric J; Kikkert, Marjolein; Fang, Ying

    2013-10-01

    Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection. PMID:23939974

  16. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  17. SNAB: A New Advanced Level Biology Course

    Science.gov (United States)

    Reiss, Michael J.

    2005-01-01

    Of all the sciences, biology has probably made the most rapid progress in recent years and the need for this to be reflected in a new Advanced Level biology course has long been recognised in the UK. After wide-ranging consultation and successful piloting in over 50 schools and colleges in England and Wales, the new Salters-Nuffield Advanced…

  18. Molecular Biology of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    HuanXi; JanBrabender; RalfMetzger; PaulM.Schneider

    2004-01-01

    There have been many new developments in our understanding of esophageal carcinoma biology over the past several years. Information regarding both of the major forms of this disease, adenocarcinoma and squamous cell carcinoma, has accumulated in conjunction with data on precursor conditions such as Barrett's esophagus. Interesting and promising findings have included overexpression of proto-oncogenes,loss of heterozygosity at multiple chromosomal loci, tumor suppressor gene inactivation, epigenetic silencing by DNA methylation, and mutations and deletions involving the tumor suppressor gene p53. Important cancer pathways, the cyclin kinase inhibitor cascade and the DNA mismatch repair process, implicated in the genesis of multiple tumor types have also been inculpated in esophageal carcinogenesis. Alterations in the p16 and p15 cyclin kinase inhibitors including point mutations and homozygous deletions have been reported in primary esophageal tumors. Further developments in the field of molecular carcinogenesis of esophageal malignancies promise to yield improvements in prevention, early detection, prognostic categorization, and perhaps gene-based therapy of this deadly disease.

  19. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the hallmarks of lung cancer. Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  20. Biochemistry and Molecular Biology Education (BAMBED

    Directory of Open Access Journals (Sweden)

    Voet Donald

    2004-05-01

    Full Text Available Biochemistry and Molecular Biology Education (BAMBED is a journal that is a publication of the In-ternational Union of Biochemistry and Molecular Biology (IUBMB and is published by the AmericanSociety of Biochemistry and Molecular Biology (ASBMB. BAMBED, as its name indicates, publishesarticles of interest to educators in biochemistry and molecular biology. These include invited reviewson subjects not yet in textbooks, discussions of curricular development, new laboratory exercises,and articles on educational research. BAMBED also publishes Features on Problem-Based Learning(PBL, Biotechnology Education, and Multimedia in Biochemistry and Molecular Biology Educati-on. An important aspect of these articles is that their educational eectiveness must be assessed. Ishall discuss in greater detail the types of articles that BAMBED publishes and the criteria used foraccepting them for publication. Conference attendees are encouraged to submit articles to BAMBED.

  1. Molecular biology: Self-sustaining chemistry

    OpenAIRE

    Wrede Paul

    2007-01-01

    Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are qu...

  2. Molecular biology of microbial ureases.

    Science.gov (United States)

    Mobley, H L; Island, M D; Hausinger, R P

    1995-09-01

    progress in our understanding of the molecular biology of microbial ureases is reviewed. PMID:7565414

  3. Origins of molecular biology in Japan.

    Science.gov (United States)

    Obayashi, M

    1986-06-01

    The purpose of this paper is to discuss the origins of molecular biology in Japan. Japanese molecular biology does not have a long history since it started only after World War II. Especially, molecular genetics which uses "bacteriophage" had hardly been studied before the war and only a few scientists were interested in it immediately after the war. This is one of the origins of molecular biology in Japan. But there are other origins, one of which is the group formed by biologists, biochemists and physicists interested in nucleic acids. This group also started just after the war. Still another origin is the group of enzymologists. Enzymology was one of the main subjects of biochemistry from before the war. In Japan, biochemistry developed in conjunction with the medical and agricultural sciences from the pre-war era. These played an important role in introducing molecular biology from Europe and the United States after the war. A historical study of the development of molecular biology in Japan, comparing it with the history of molecular biology in Europe and the United States, should contribute to the elucidation of the features of the history of molecular biology in Japan.

  4. The molecular biology of ear development - “Twenty years are nothing”#

    OpenAIRE

    Giraldez, Fernando; FRITZSCH, BERND

    2007-01-01

    Views of classical biological problems changed dramatically with the rise of molecular biology as a common framework. It was indeed the new language of life sciences. Molecular biology increasingly moved us towards a unified view of developmental genetics as ideas and techniques were imported to vertebrates from other biological systems where genetics was in a more advanced state. The ultimate advance has been the ability to actually perform genetic manipulations in vertebrate organisms that ...

  5. Advances in multimodality molecular imaging

    Directory of Open Access Journals (Sweden)

    Zaidi Habib

    2009-01-01

    Full Text Available Multimodality molecular imaging using high resolution positron emission tomography (PET combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT and functional or metabolic (PET information provided in a "one-stop shop" and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed.

  6. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  7. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  8. European Conference on Molecular Biology EMBO

    CERN Multimedia

    1967-01-01

    European Conference on Molecular Biology, which eventually led to the setting up of EMBO, was held at CERN in April. Olivier Reverdin is adressing the delegates. Bernard Gregory is on the left and Willy Spuhler in the centre.

  9. Application of molecular biology in exercise physiology.

    Science.gov (United States)

    Booth, F W

    1989-01-01

    Past progress in exercise biochemical research has often depended on the use of knowledge and techniques which were originally reported from other disciplines. With the advent of newer methodologies in molecular biology, the purpose of this review has been to document the status of information gained from the application of molecular biological techniques to questions in exercise physiology. Furthermore, this review has speculated how new methods in molecular biology might be employed to answer classic questions in exercise physiology. A powerful revolution in science, that is, molecular biology, will provide new information about exercise mechanisms, which ideally will improve the training programs for elite athletes as well as continue to be associated with the public's interest in exercise training.

  10. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  11. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  12. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  13. Nonparametric Methods in Molecular Biology

    OpenAIRE

    Wittkowski, Knut M.; Song, Tingting

    2010-01-01

    In 2003, the completion of the Human Genome Project[1] together with advances in computational resources[2] were expected to launch an era where the genetic and genomic contributions to many common diseases would be found. In the years following, however, researchers became increasingly frustrated as most reported ‘findings’ could not be replicated in independent studies[3]. To improve the signal/noise ratio, it was suggested to increase the number of cases to be included to tens of thousands...

  14. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    Sakorafas, George H; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  15. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  16. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  17. Molecular biological research on Foraminifera

    Institute of Scientific and Technical Information of China (English)

    LI Baohua; Kemal Topac ERTAN; Christoph HEMLEBEN

    2005-01-01

    As one of the most important groups in micropaleontology, Foraminifera is traditionally described to have a membranous, agglutinated or carbonate shell according to its morphology, which resembles the marine granuloreticuloseans. However, recent molecular analyses on its ribosomal RNA gene have disclosed the existence of the naked, and also freshwater and terrestrial species.Foraminiferal SSU rDNA sequence suggests that this group is positioned at the base of the Eukaryotes phylogenetic trees, between Euglenoida and Diplomonadida. Existence of a large amount of genetic types in planktonic foraminifera suggests an underestimation of the biodiversity for the nearly 50 species in world oceans and their close relationship with the ocean environment, such as bio-geographic distribution and water currents. This provides a more reliable proxy for future paleoenvironmental study.

  18. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women. PMID:27607140

  19. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  20. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  1. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    to honor the archaea pioneers Wolfram Zillig and Karl O. Stetter, the book provides a thorough survey of the field from its controversial beginnings to its ongoing expansion to include aspects of eukaryotic biology. The editors have assembled articles from the premier researchers in this rapidly burgeoning...... and technological context, and include accounts of cutting-edge research developments. The book spans archaeal evolution, physiology, and molecular and cellular biology and will be an essential reference for both graduate students and researchers....

  2. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  3. Dictyostelium discoideum: Molecular approaches to cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  4. Application of Mitochondrial DNA Polymorphism to Meloidogyne Molecular Population Biology

    OpenAIRE

    Hyman, B. C.; Whipple, L.E.

    1996-01-01

    Recent advances in molecular biology have enabled the genotyping of individual nematodes, facilitating the analysis of genetic variability within and among plant-pathogenic nematode isolates. This review first describes representative examples of how RFLP, RAPD, AFLP, and DNA sequence analysis have been employed to describe populations of several phytonematodes, including the pinewood, burrowing, root-knot, and cyst nematodes. The second portion of this paper evaluates the utility of a size-v...

  5. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  6. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  7. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  8. Molecular biology of the Chlamydia pneumoniae surface

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Østergaard, Lars; Birkelund, Svend

    1997-01-01

    Chlamydia pneumoniaeis a fastidious microorganism with a characteristic biphasic lifecycle causing a variety of human respiratory tract infections. There is limited knowledge about the molecular biology of C. pneumoniae, and only a few genes have been sequenced. The structure of the chlamydial...

  9. Book review: Baculovirus Molecular Biology, Second Edition

    Science.gov (United States)

    The application of cell culture and molecular biology methodologies to the study of baculoviruses has resulted in an explosion of information on this group of insect pathogens. The quantity of the corresponding literature on baculoviruses has reached a level difficult for any one researcher to mast...

  10. Text Mining applied to Molecular Biology

    NARCIS (Netherlands)

    R. Jelier (Rob)

    2008-01-01

    textabstractThis thesis describes the development of text-mining algorithms for molecular biology, in particular for DNA microarray data analysis. Concept profiles were introduced, which characterize the context in which a gene is mentioned in literature, to retrieve functional associations

  11. Molecular biology of gliomas: present and future challenges.

    Science.gov (United States)

    Altieri, R; Agnoletti, A; Quattrucci, F; Garbossa, D; Calamo Specchia, F M; Bozzaro, M; Fornaro, R; Mencarani, C; Lanotte, M; Spaziante, R; Ducati, A

    2014-09-01

    Malignant brain tumours are one of the most relevant causes of morbidity and mortality across a wide range of individuals. Malignant glioma is the most common intra axial tumor in the adult. Many researches on this theme brought advances in the knowledge of gliomas biology and pathogenesis and to the development of new agents for targeted molecular therapy. Recent studies focused on either tumor metabolism analysis or epigenetic regulation in the pathogenesis or maintenance of brain tumors. This Review summarizes these developments analyzing molecular pathology and possible further developments for targeted therapies.

  12. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    made recently in the field of stem cell biology, researchers now have improved tools to define novel populations of stem cells, examine them ex vivo using conditions that promote self-renewal, track them into recipients, and determine whether they can contribute to the repair of damaged tissues......PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...

  13. Advances in Multimodality Molecular Imaging

    International Nuclear Information System (INIS)

    Multimodality molecular imaging is now playing a pivotal role in clinical setting and biomedical research. Modern molecular imaging technologies are deemed to potentially lead to a revolutionary paradigm shift in healthcare and revolutionize clinical practice. Within the spectrum of macroscopic medical imaging, sensitivity ranges from the detection of millimolar to submillimolar concentrations of contrast media with computed tomography (CT) and magnetic resonance imaging (MRI), respectively, to picomolar concentrations in single-photon emission computed tomography (SPECT) and positron emission 8 9 tomography (PET): a 108-109 difference. Even though the introduction of dedicated dual-modality imaging systems designed specifically and available commercially for clinical practice is relatively recent, the concept of combining anatomical and functional imaging has been recognized for several decades. Software- and hardware-based correlation between anatomical (x-ray CT, MRI) and physiological (PET) information is a promising research field and now offers unique capabilities for the medical imaging community and biomedical researchers. The introduction of dual-modality PET/CT imaging systems in clinical environments has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a 'one-stop shop' and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging where the first patient images have been shown late in 2006. This paper discusses the

  14. Signature molecular descriptor : advanced applications.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report

  15. Breast cancer. From molecular biology to personified therapy

    Directory of Open Access Journals (Sweden)

    Bondarenko I.N.

    2016-03-01

    Full Text Available Advances in molecular biology had changed approaches to systemic treatment of breast cancer. Clinical decisions on the choice of optimal treatment regimens are performing on the basis of immunohistochemical and molecular genetic classifications. Their increasing uses have contributed changes of paradigm for cancer treatment - from the empirical to the individualized and personalized. The basis for such approaches is knowledge of molecular epidemiology, heterogeneity of expression of molecular subtypes, prognostic and predictive biomarkers of breast cancer. Breast cancer is a widely heterogeneous disease with 20 histological types, 8, molecular-genetic, 6 genomic subtypes, which are characterized by specific molecular and biochemical properties, different clinical course and different outcomes. Molecular genetic classification, created not on the basis of clinical, anatomical and morphological heterogeneity of tumor cells, and on the basis of their molecular-genetic heterogeneity is widely used in clinical practice. This allowed to separate the patients with breast cancer to molecular 4 subtypes - luminal A, luminal B, HER / 2 positive and triple-negative. The significant role of immunohistochemical tissue tumor markers, estrogen and progesterone receptors, HER / 2-neu, Ki-67, p53 for selection the optimal treatment strategy is analyzing in this review. To increase the effectiveness of breast cancer treatment is possible, using a differentiated and personalized approach based on new molecular genetic classification of breast cancer (gene profiling or to its analogue - expression classification of breast cancer, based on the principle of diversity of immunohistochemical tumor tissue. Personification of cancer treatment involves a therapy based on the study of individual characteristics of tissue is not only the primary tumor but also its metastases. Citation: Bondarenko IN, Elhajj Mohammad H, Prokhach AV, Zavizion VF, Chebanov KO. [Breast cancer

  16. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  17. Understanding biological functions through molecular networks

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong Jackie Han

    2008-01-01

    The completion of genome sequences and subsequent high-throughput mapping of molecular networks have allowed us to study biology from the network perspective. Experimental, statistical and mathematical modeling approaches have been employed to study the structure, function and dynamics of molecular networks, and begin to reveal important links of various network properties to the functions of the biological systems. In agreement with these functional links, evolutionary selection of a network is apparently based on the function, rather than directly on the structure of the network. Dynamic modularity is one of the prominent features of molecular networks. Taking advantage of such a feature may simplify network-based biological studies through construction of process-specific modular networks and provide functional and mechanistic insights linking genotypic variations to complex traits or diseases, which is likely to be a key approach in the next wave of understanding complex human diseases. With the development of ready-to-use network analysis and modeling tools the networks approaches will be infused into everyday biological research in the near future.

  18. Molecular knots in biology and chemistry.

    Science.gov (United States)

    Lim, Nicole C H; Jackson, Sophie E

    2015-09-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. PMID:26291690

  19. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  20. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  1. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  2. 2004 Reversible Associations in Structure & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  3. Molecular biology of the renin-angiotensin system

    Energy Technology Data Exchange (ETDEWEB)

    Dzau, V.J.; Burt, D.W.; Pratt, R.E. (Harvard Medical School, Boston, MA (USA))

    1988-10-01

    This paper reviews the molecular biology of the renin-angiotensin system. The renin gene structure is analyzed in detail, including an examination of the putative regulatory regions. The combined action of these regulatory sequences would result in the complex, tissue-specific expression and regulation observed in vivo. The expression of the tissue renin-angiotensin systems, which may have important physiological functions, is also described. In addition, the pathway of renin biosynthesis and secretion is reviewed. This includes speculation on the fate of circulating prorenin and the physiological role of multiple renin forms and secretory pathways. The molecular approaches described in this paper have greatly advanced our knowledge of the biology of the renin-angiotensin system. Future studies using these and other approaches should provide further insight into this complex system.

  4. Advance in molecular biology of porcine parvovirus%猪细小病毒分子生物学研究进展

    Institute of Scientific and Technical Information of China (English)

    王芳; 袁海霞; 傅衍

    2011-01-01

    Porcine parvovirus is one of the most important pathogens responsible for reproductive failure. Sequences among different strains are highly conserved. However, PPV2 ( 2001) and PHoV ( Porcine Hokovirus , 2008) found in the latest years are quite different from PPV. Review about the genomic structure, molecular research and culturing information among PPV, PPV2 and PHoV was made for further study.%猪细小病毒(porcine parvovirus,PPV)是引起母猪繁殖障碍的主要病原之一,研究发现该病毒在进化史上相对保守,对宿主专一性高,但近年来相继发现的PPV2和PPV香港株(Porcine HoKovirus,PHoV)与PPV差异较大,对PPV、PPV2和PHoV的基因组结构、分子进化研究、复制培养现状及其蛋白表达方面研究进行了简单综述,为猪细小病毒多样性研究提供参考.

  5. Discovering the intelligence in molecular biology.

    Science.gov (United States)

    Uberbacher, E

    1995-12-01

    The Third International Conference on Intelligent Systems in Molecular Biology was truly an outstanding event. Computational methods in molecular biology have reached a new level of maturity and utility, resulting in many high-impact applications. The success of this meeting bodes well for the rapid and continuing development of computational methods, intelligent systems and information-based approaches for the biosciences. The basic technology, originally most often applied to 'feasibility' problems, is now dealing effectively with the most difficult real-world problems. Significant progress has been made in understanding protein-structure information, structural classification, and how functional information and the relevant features of active-site geometry can be gleaned from structures by automated computational approaches. The value and limits of homology-based methods, and the ability to classify proteins by structure in the absence of homology, have reached a new level of sophistication. New methods for covariation analysis in the folding of large structures such as RNAs have shown remarkably good results, indicating the long-term potential to understand very complicated molecules and multimolecular complexes using computational means. Novel methods, such as HMMs, context-free grammars and the uses of mutual information theory, have taken center stage as highly valuable tools in our quest to represent and characterize biological information. A focus on creative uses of intelligent systems technologies and the trend toward biological application will undoubtedly continue and grow at the 1996 ISMB meeting in St Louis.

  6. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  7. Advanced Molecular Surveillance of Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Livia Maria Gonçalves Rossi

    2015-03-01

    Full Text Available Hepatitis C virus (HCV infection is an important public health problem worldwide. HCV exploits complex molecular mechanisms, which result in a high degree of intrahost genetic heterogeneity. This high degree of variability represents a challenge for the accurate establishment of genetic relatedness between cases and complicates the identification of sources of infection. Tracking HCV infections is crucial for the elucidation of routes of transmission in a variety of settings. Therefore, implementation of HCV advanced molecular surveillance (AMS is essential for disease control. Accounting for virulence is also important for HCV AMS and both viral and host factors contribute to the disease outcome. Therefore, HCV AMS requires the incorporation of host factors as an integral component of the algorithms used to monitor disease occurrence. Importantly, implementation of comprehensive global databases and data mining are also needed for the proper study of the mechanisms responsible for HCV transmission. Here, we review molecular aspects associated with HCV transmission, as well as the most recent technological advances used for virus and host characterization. Additionally, the cornerstone discoveries that have defined the pathway for viral characterization are presented and the importance of implementing advanced HCV molecular surveillance is highlighted.

  8. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    Institute of Scientific and Technical Information of China (English)

    REN Yi-jin

    2005-01-01

    Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA and protein synthesis and how these interactions are regulated. Since the introduction of molecular biology into modern science, numerous other fields have been enabled to go "molecular". Advanced molecular biological techniques showed us new avenue towards finding answers to the questions asked for decades. The first part of this article described the history of molecular biology.It started as a joined discipline of other areas of biology, i.e. genetics and biochemistry in the 1930s and 1940s, and enjoyed its classical period and became institutionalized in the 1950s and 1960s. Major molecular techniques manipulating proteins, DNA and RNA were introduced and their mechanisms were concisely illustrated. The current knowledge of molecular biology and their applications in orthodontic and oral and maxillofacial surgery, i.e. osteoclast differentiation and function, regulation of tooth movement, mechanotransduction/cell-signalling, bone fracture healing, oral cancer as well as craniofacial/dental anomalies and distraction osteogenesis were discussed. Although the problems of introducing molecular technologies are still substantial, it is anticipated that the future of medicine/dentistry will be "molecular": molecular prevention, molecular diagnosis and molecular therapy.

  9. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Julie Maupin- Furlow

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  10. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  11. 2007 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Imke Schroeder

    2008-09-18

    The Archaea are a fascinating and diverse group of prokaryotic organisms with deep roots overlapping those of eukaryotes. The focus of this GRC conference, 'Archaea: Ecology Metabolism & Molecular Biology', expands on a number of emerging topics highlighting the evolution and composition of microbial communities and novel archaeal species, their impact on the environment, archaeal metabolism, and research that stems from sequence analysis of archaeal genomes. The strength of this conference lies in its ability to couple reputable areas with new scientific topics in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  12. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    Science.gov (United States)

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  13. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  14. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  15. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  16. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  17. Synthetic biology: A foundation for multi-scale molecular biology

    OpenAIRE

    Bower, Adam G; McClintock, Maria K; Stephen S. Fong

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Bu...

  18. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    Directory of Open Access Journals (Sweden)

    George H Sakorafas

    2012-07-01

    Full Text Available Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years. Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Results Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active etc. Conclusion Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology

  19. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  20. Biological (molecular and cellular) markers of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.

    1990-10-01

    The overall objective of this study is to evaluate the use of the small aquarium fish, Japanese Medaka (Oryzias latipes), as a predictor of potential genotoxicity following exposure to carcinogens. This will be accomplished by quantitatively investigating the early molecular events associated with genotoxicity of various tissues of Medaka subsequent to exposure of the organism to several known carcinogens, such as diethylnitrosamine (DEN) and benzo(a)pyrene (BaP). Because of the often long latent period between initial contact with certain chemical and physical agents in our environment and subsequent expression of deleterious health or ecological impact, the development of sensitive methods for detecting and estimating early exposure is needed so that necessary interventions can ensue. A promising biological endpoint for detecting early exposure to damaging chemicals is the interaction of these compounds with cellular macromolecules such as Deoxyribonucleic acids (DNA). This biological endpoint assumes significance because it can be one of the critical early events leading eventually to adverse effects (neoplasia) in the exposed organism.

  1. 甘蔗黄叶病及其病原分子生物学研究进展%Advances in researches sugarcane yellow leaf disease and molecular biology of Sugarcane yellow leaf virus

    Institute of Scientific and Technical Information of China (English)

    高三基; 林艺华; 陈如凯

    2012-01-01

    甘蔗黄叶病是由甘蔗黄叶病毒(Sugarcane yellow leaf virus,SCYLV)引起的一种病毒病害,在全球主要甘蔗种植国家或地区普遍发生,危害日益严重。SCYLV经甘蔗蚜虫以持久性方式传播,在寄主植株内主要侵染韧皮部组织。该病毒起源于黄症病毒科属间基因重组,被国际病毒分类命名委员会确认为黄症病毒科马铃薯卷叶病毒属成员。文章综述了甘蔗黄叶病毒生物学特征、病害发生和危害、病原鉴定和检测、分子进化和遗传多样性、基因组结构和基因功能以及抗病转基因等方面研究进展,并对甘蔗黄叶病抗病育种和防治措施作了讨论。%Sugarcane yellow leaf virus(SCYLV) is associated with the sugarcane yellow leaf disease(SCYLD),which has become a serious threat to the sugarcane industry worldwide since the last two decades.The virus infects the phloem tissue,and it is transmitted by the aphid Melanaphis sacchari.SCYLV is thought to have arisen from several recombination events among members of the genera Luterovirus,Polerovius and Enamovus basis on the heterogeneous affinities of its genomic sequence and then is assigned to the genus Polerovirus of the family Luteoviridae by the International Committee on the Taxonomy of Viruses(ICTV).Research advances in SCYLV and its associated disease are summarized in this review including the aspects of the viral biology characteristics,occurrence and effect on sugarcane,methods of identification and detection,molecular evolution and genetic diversity,viral genomic construct and putative genes function as well as transgenic sugarcane of disease resistance.Conventional disease-resistance breeding and control measures were also discussed.

  2. Advances in Fish Biology in Ireland

    OpenAIRE

    Moriarty, C.

    1983-01-01

    Due to little information exchange between Irish freshwater biologists, a seminar was was held to help broaden and share the knowledge of those participating in professional or amateur freshwater biology in Ireland.

  3. Mantle cell lymphoma: biological insights and treatment advances.

    Science.gov (United States)

    Leonard, John P; Williams, Michael E; Goy, Andre; Grant, Steven; Pfreundschuh, Michael; Rosen, Steve T; Sweetenham, John W

    2009-08-01

    Mantle cell lymphoma (MCL) exhibits considerable molecular heterogeneity and complexity, and is regarded as one of the most challenging lymphomas to treat. With increased understanding of the pathobiology of MCL, it is proposed that MCL is the result of 3 major converging factors, namely, deregulated cell cycle pathways, defects in DNA damage responses, and dysregulation of cell survival pathways. In the present era of targeted therapies, these biologic insights have resulted in the identification of several novel rational targets for therapeutic intervention in MCL that are undergoing active clinical testing. To date, there is no standard of care in MCL. Several approaches including conventional anthracycline-based therapies and intensive high-dose strategies with and without stem cell transplantation have failed to produce durable remissions for most patients. Moreover, considering the heterogeneity of MCL, it is increasingly being recognized that risk-adapted therapy might be a relevant therapeutic approach in this disease. At the first and second Global Workshops on Mantle Cell Lymphoma, questions addressing advances in the pathobiology of MCL, optimization of existing therapies, assessment of current data with novel therapeutic strategies, and the identification of molecular or phenotypic risk factors for utilization in risk-adapted therapies were discussed and will be summarized herein. PMID:19717376

  4. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  5. 2003 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Richard F. Shand

    2004-09-21

    The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings. If you wish any further details, please feel free to contact me. Thank you, Dr. Richard F. Shand, 2003 Conference Chair.

  6. The system-biological GLOBE 3D Genome Platform. : A new holistic genome viewer for molecular genetics

    NARCIS (Netherlands)

    M. Lesnussa (Michael); F.N. Kepper (Nick); H.J.F.M.M. Eussen (Bert); T.A. Knoch (Tobias)

    2009-01-01

    textabstractGenomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the

  7. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  8. 2. Molecular Biology as a Tool in Cancer Epidemiology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@There can be little doubt that we are entering a new era in our understanding of the origins of human cancer. Unfortunately from the point of view of the cancer epidemiology community, some of the more recent advances in the molecular biology of cancer (once fully assimilated) will tend to make the talk of the up-to-date cancer epidemiologist a great deal less straightforward than many of us had previously envisaged it to be, There may still be a few cancers that will prove to result from only a few distinctive types of mutation in a relatively small number of genes, but I strongly suspect that the great majority of human cancers that we wish to study will prove to have their origins in a complex set of DNA changes whose precise

  9. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  10. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  11. New advance in the study of the molecular biological identification and typing of Prototheca%无绿藻分子生物学鉴定与分型研究新进展

    Institute of Scientific and Technical Information of China (English)

    李文静; 刘锦燕; 史册; 王影; 孙景勇; 项明洁

    2015-01-01

    以基因序列为鉴定基础的分子生物学方法以其客观、可重复性好等优点,被认为是分子鉴定无绿藻的“金标准”。该文对近年来应用在无绿藻鉴定和分型方面的实时定量 PCR (Real⁃Time Quantitative PCR,RT⁃PCR)技术、单链构象多态性(Single Stranded Conformation Polymophism,SSCP)分析、限制性片段长度多态性(Restriction Fragment Length Polymorphism, RFLP)分析、高分辨率熔解曲线(High Resolution Melting,HRM)分析、质谱(Mass Spectrometry,MS)分析等分子生物学新技术和新方法进行综述。%The molecular biology method based on gene sequencing which is objective,highly reproducible and so on,is consid⁃ered the " gold standard " of Prototheca 's molecular identification.To summarize the new molecular biology methods and techniques applied to Prototheca's identification and typing,such as real⁃time quantitative PCR (RT⁃PCR) technology,single strand conforma⁃tion polymorphism ( SSCP ) analysis, PCR⁃restriction fragment length polymorphism ( RFLP ) analysis, high resolution melting (HRM) analysis,mass spectrometry(MS) analysis.

  12. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    OpenAIRE

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emer...

  13. Advanced Systems Biology Methods in Drug Discovery and Translational Biomedicine

    OpenAIRE

    Jun Zou; Ming-Wu Zheng; Gen Li; Zhi-Guang Su

    2013-01-01

    Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical modeling. The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networ...

  14. Advanced beamline automation for biological crystallography experiments.

    Science.gov (United States)

    Cork, Carl; O'Neill, James; Taylor, John; Earnest, Thomas

    2006-08-01

    An automated crystal-mounting/alignment system has been developed at Lawrence Berkeley National Laboratory and has been installed on three of the protein-crystallography experimental stations at the Advanced Light Source (ALS); it is currently being implemented at synchrotron crystallography beamlines at CHESS, NSLS and the APS. The benefits to using an automounter system include (i) optimization of the use of synchrotron beam time, (ii) facilitation of advanced data-collection techniques, (iii) collection of higher quality data, (iv) reduction of the risk to crystals and (v) exploration of systematic studies of experimental protocols. Developments on the next-generation automounter with improvements in robustness, automated alignment and sample tracking are under way, with an end-to-end data-flow process being developed to allow remote data collection and monitoring. PMID:16855300

  15. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  16. Interactive analysis of systems biology molecular expression data

    OpenAIRE

    Prabhakar Sunil; Salt David E; Kane Michael D; Stephenson Alan; Ouyang Qi; Zhang Mingwu; Burgner John; Buck Charles; Zhang Xiang

    2008-01-01

    Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferr...

  17. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. (Battelle, Columbus, OH (United States)); Chakravarty, L.; Tuovinen, O.H. (Ohio State Univ., Columbus, OH (United States))

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  18. Advanced Potential Energy Surfaces for Molecular Simulation.

    Science.gov (United States)

    Albaugh, Alex; Boateng, Henry A; Bradshaw, Richard T; Demerdash, Omar N; Dziedzic, Jacek; Mao, Yuezhi; Margul, Daniel T; Swails, Jason; Zeng, Qiao; Case, David A; Eastman, Peter; Wang, Lee-Ping; Essex, Jonathan W; Head-Gordon, Martin; Pande, Vijay S; Ponder, Jay W; Shao, Yihan; Skylaris, Chris-Kriton; Todorov, Ilian T; Tuckerman, Mark E; Head-Gordon, Teresa

    2016-09-22

    Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields. PMID:27513316

  19. New advances in pollination biology and the studies in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pollination biology is the study of the various biological features in relation to the event of pollen transfer. It is one of the central concerns of plant reproductive ecology and evolutionary biology. In this paper, we attempt to introduce the main advances and some new interests in pollination biology and make a brief review of the research work that has been done in China in recent years. We also give some insights into the study that we intend to carry out in this field in the future.

  20. Molecular biology techniques and applications for ocean sensing

    Directory of Open Access Journals (Sweden)

    J. P. Zehr

    2008-11-01

    Full Text Available The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Here we review some of the most commonly used molecular biological techniques. Molecular biological techniques permit study of the abundance, distribution, diversity, and physiology of microorganisms in situ. These techniques include the polymerase chain reaction (PCR and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity, oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  1. Imaging morphogenesis: technological advances and biological insights.

    Science.gov (United States)

    Keller, Philipp J

    2013-06-01

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

  2. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  3. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  4. Molecular biology techniques and applications for ocean sensing

    Directory of Open Access Journals (Sweden)

    J. P. Zehr

    2009-05-01

    Full Text Available The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Molecular techniques can form the basis of remote instrumentation sensing technologies for marine microbial diversity and ecological function. Here we review some of the most commonly used molecular biological techniques. These techniques include the polymerase chain reaction (PCR and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity, oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  5. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  6. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  7. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  8. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  9. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  10. Progress in focus: recent advances in histochemistry and cell biology.

    Science.gov (United States)

    Asan, Esther

    2002-12-01

    Advances in histochemical and cell biological techniques enable increasingly refined investigations into the cellular and subcellular distribution of specific molecules and into their role in dynamic processes; thus progress in these fields complements the growing knowledge in genomics and proteomics. The present review summarizes recent technical progress and novel applications. PMID:12483316

  11. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  12. 09091 Executive Summary -- Formal Methods in Molecular Biology

    OpenAIRE

    Breitling, Rainer; Gilbert, David Roger; Heiner, Monika; Priami, Corrado

    2009-01-01

    Formal logical models play an increasing role in the newly emerging field of Systems Biology. Compared to the classical, well-established approach of modeling biological processes using continuous and stochastic differential equations, formal logical models offer a number of important advantages. Many different formal modeling paradigms have been applied to molecular biology, each with its own community, formalisms and tools. In this seminar we brought together modelers from variou...

  13. The cellular and molecular biology of medulloblastoma

    NARCIS (Netherlands)

    Peringa, A; Fung, KM; Muragaki, Y; Trojanowski, JQ

    1995-01-01

    Medulloblastomas are prototypical of primitive neuroectodermal tumors which are some of the most frequent malignant brain tumors of childhood. The cell biology of medulloblastomas is still poorly understood, but recent studies of the expression of trophic factors and their receptors in medulloblasto

  14. Methods in molecular biology: plant cytogenetics

    Science.gov (United States)

    Cytogenetic studies have contributed greatly to our understanding of genetics, biology, reproduction, and evolution. From early studies in basic chromosome behavior the field has expanded enabling whole genome analysis to the manipulation of chromosomes and their organization. This book covers a ran...

  15. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  16. A first attempt to bring computational biology into advanced high school biology classrooms.

    Directory of Open Access Journals (Sweden)

    Suzanne Renick Gallagher

    2011-10-01

    Full Text Available Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  17. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  18. Advances in metallomics by atomic and molecular spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. The scope of research in the field of elemental speciation has considerably evolved during the last decade. The analysis of specific metal-containing contaminants reached the maturity and has given way to the development of analytical methods to describe interactions of metals with biomolecules which are constituents of the genome, proteome, metabolome and other -omes in a cell, tissue or organism. The entirety of metal-biomolecule species has been termed the 'metallome' which gave rise to an emerging discipline: metallomics. Advances of trace element analysis in life sciences resulted in the proliferation of new terms related to the description of metal-interactions with biomolecules, such as, e.g. ionome, metalloproteome, metallogenome, metallometabolome, heteroatom-tagged proteome, single element proteomes (e.g., selenoproteome) and the corresponding -omics. The analytical chemistry challenges in the area metallomics include the detection, quantification, identification and characterization of complexes of metals (metalloids) at trace levels in an environment rich in biomolecules often having similar physicochemical properties. In the past, the only way to access to this information was modelling using stability constants. Today, hyphenated techniques based on the coupling of a high resolution separation technique with sensitive elemental (ICP MS) and molecular (ES MS/MS) mass spectrometry offer the possibility of high-throughput acquisition of metallomics information in many biological systems. The lecture discusses advances in analytical techniques in the field of metallomics. Particular attention will be to developments in multidimensional nanoHPLC with the parallel ICP MS and ESI MS detection and the sensitive spotting of heteroelement-containing proteins in 2D gels, accompanied by advances in MALDI TOF MS. Potential for medical research (e.g., characterization for selenoproteins as new biomarkers of clinical utility

  19. Advances in Neuroscience and the Biological and Toxin Weapons Convention

    Directory of Open Access Journals (Sweden)

    Malcolm Dando

    2011-01-01

    Full Text Available This paper investigates the potential threat to the prohibition of the hostile misuse of the life sciences embodied in the Biological and Toxin Weapons Convention from the rapid advances in the field of neuroscience. The paper describes how the implications of advances in science and technology are considered at the Five Year Review Conferences of the Convention and how State Parties have developed their appreciations since the First Review Conference in 1980. The ongoing advances in neurosciences are then assessed and their implications for the Convention examined. It is concluded that State Parties should consider a much more regular and systematic review system for such relevant advances in science and technology when they meet at the Seventh Review Conference in late 2011, and that neuroscientists should be much more informed and engaged in these processes of protecting their work from malign misuse.

  20. Advances in neuroscience and the biological and toxin weapons convention.

    Science.gov (United States)

    Dando, Malcolm

    2011-01-01

    This paper investigates the potential threat to the prohibition of the hostile misuse of the life sciences embodied in the Biological and Toxin Weapons Convention from the rapid advances in the field of neuroscience. The paper describes how the implications of advances in science and technology are considered at the Five Year Review Conferences of the Convention and how State Parties have developed their appreciations since the First Review Conference in 1980. The ongoing advances in neurosciences are then assessed and their implications for the Convention examined. It is concluded that State Parties should consider a much more regular and systematic review system for such relevant advances in science and technology when they meet at the Seventh Review Conference in late 2011, and that neuroscientists should be much more informed and engaged in these processes of protecting their work from malign misuse.

  1. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.

  2. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  3. CAM Modalities Can Stimulate Advances in Theoretical Biology

    Directory of Open Access Journals (Sweden)

    Alex Hankey

    2005-01-01

    Full Text Available Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘physics of physick’. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties—consumers, health professionals, scientists, institutions and governments.

  4. CAM Modalities Can Stimulate Advances in Theoretical Biology.

    Science.gov (United States)

    Hankey, Alex

    2005-03-01

    Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM-a true 'physics of physick'. The resulting theory seems to be a new, fundamental theory of health and etiology. It suggests that many CAM approaches to health care are scientifically in advance of those based on current Western biology. Such theories may well constitute the next steps in our scientific understanding of biology itself. If successfully developed, these ideas could result in a major paradigm shift in both biology and medicine, which will benefit all interested parties-consumers, health professionals, scientists, institutions and governments. PMID:15841271

  5. The Molecular Biology of Feline Immunodeficiency Virus (FIV

    Directory of Open Access Journals (Sweden)

    Andrew M. L. Lever

    2011-11-01

    Full Text Available Feline immunodeficiency virus (FIV is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been a significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.

  6. RT-PCR Protocols - Methods in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2011-03-01

    Full Text Available “The first record I have of it, is when I made a computer file which I usually did whenever I had an idea, that would have been on the Monday when I got back, and I called it Chain Reaction.POL, meaning polymerase. That was the identifier for it and later I called the thing the Polymerase Chain Reaction, which a lot of people thought was a dumb name for it, but it stuck, and it became PCR”. With these words the Nobel prize winner, Kary Mullis, explains how he named the PCR: one of the most important techniques ever invented and currently used in molecular biology. This book “RT-PCR Protocols” covers a wide range of aspects important for the setting of a PCR experiment for both beginners and advanced users. In my opinion the book is very well structured in three different sections. The first one describes the different technologies now available, like competitive RT-PCR, nested RT-PCR or RT-PCR for cloning. An important part regards the usage of PCR in single cell mouse embryos, stressing how important...........

  7. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    Among other things, Gregory Bateson is considered a pioneer in the study of communication in living systems and evolution. His contribution to cybernetics was very special because for him communication was a characteristic property of the living world. But his formulation of information...... to the fruitfulness of his abductive approach, being as he was concerned with advancing the search for fundamental principles in communication processes in living systems at different hierarchical levels. In this paper I point out some passages to illustrate Bateson’s coherent approach to context...

  8. Asymmetry at the molecular level in biology

    Science.gov (United States)

    Johnson, Louise N.

    2005-10-01

    Naturally occurring biological molecules are made of homochiral building blocks. Proteins are composed of L-amino acids (and not D-amino acids); nucleic acids such as DNA have D-ribose sugars (and not L-ribose sugars). It is not clear why nature selected a particular chirality. Selection could have occurred by chance or as a consequence of basic physical chemistry. Possible proposals, including the contribution of the parity violating the weak nuclear force, are discussed together with the mechanisms by which this very small contribution might be amplified. Homochirality of the amino acids has consequences for protein structure. Helices are right handed and beta sheets have a left-hand twist. When incorporated into the tertiary structure of a protein these chiralities limit the topologies of connections between helices and sheets. Polypeptides comprised of D-amino acids can be synthesized chemically and have been shown to adopt stable structures that are the mirror image of the naturally occurring L-amino acid polypeptides. Chirality is important in drug design. Three examples are discussed: penicillin; the CD4 antagonistic peptides; and thalidomide. The absolute hand of a biological structure can only be established by X-ray crystallographic methods using the technique of anomalous scattering.

  9. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  10. Overview of selected molecular biological databases

    Energy Technology Data Exchange (ETDEWEB)

    Rayl, K.D.; Gaasterland, T.

    1994-11-01

    This paper presents an overview of the purpose, content, and design of a subset of the currently available biological databases, with an emphasis on protein databases. Databases included in this summary are 3D-ALI, Berlin RNA databank, Blocks, DSSP, EMBL Nucleotide Database, EMP, ENZYME, FSSP, GDB, GenBank, HSSP, LiMB, PDB, PIR, PKCDD, ProSite, and SWISS-PROT. The goal is to provide a starting point for researchers who wish to take advantage of the myriad available databases. Rather than providing a complete explanation of each database, we present its content and form by explaining the details of typical entries. Pointers to more complete ``user guides`` are included, along with general information on where to search for a new database.

  11. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  12. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  13. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.;

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU...... the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology...

  14. Biological (molecular and cellular) markers of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; D' Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-12-15

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO{sup 6}-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O{sup 6}-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP.

  15. Comparative molecular modelling of biologically active sterols

    Science.gov (United States)

    Baran, Mariusz; Mazerski, Jan

    2015-04-01

    Membrane sterols are targets for a clinically important antifungal agent - amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction of amphotericin B with ergosterol as compared with cholesterol. The compounds studied were chosen on the basis of structural features characteristic for cholesterol and ergosterol and on available experimental data on the ability to form complexes with the antibiotic. Statistical analysis of the data obtained has been performed. The results show similarity of the conformational spaces occupied by all the sterols tested. This suggests that the conformational differences of sterol molecules are not the major feature responsible for the differential sterol - drug affinity.

  16. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO6-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O6-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  17. Advanced Tomography Techniques For Inorganic, Organic, and Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Friedrich, Heiner

    2016-07-01

    Three-dimensional (3D) tomography using electrons and x-rays has pushed our understanding of the micro- and nanoscale spatial organization for biological, organic and inorganic materials. While significant impact has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition and function of complex 3D assemblies across multiple scales. In this article we highlight several frontiers where new developments in tomography are empowering all new science across biology, chemistry and physics. The 5 articles that appear in this MRS Bulletin Issue describe in detail these latest developments in analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.

  18. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  19. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  20. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  1. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  2. Responses of Cell Renewal Systems to Long-term Low-Level Radiation Exposure: A Feasibility Study Applying Advanced Molecular Biology Techniques on Available Histological and Cytological Material of Exposed Animals and Men

    Energy Technology Data Exchange (ETDEWEB)

    Fliedner Theodor M.; Feinendegen Ludwig E.; Meineke Viktor; Fritz Thomas E.

    2005-02-28

    First results of this feasibility study showed that evaluation of the stored material of the chronically irradiated dogs with modern molecular biological techniques proved to be successful and extremely promising. Therefore an in deep analysis of at least part of the huge amount of remaining material is of outmost interest. The methods applied in this feasibility study were pathological evaluation with different staining methods, protein analysis by means of immunohistochemistry, strand break analysis with the TdT-assay, DNA- and RNA-analysis as well as genomic examination by gene array. Overall more than 50% of the investigated material could be used. In particular the results of an increased stimulation of the immune system within the dogs of the 3mSv group as both compared to the control and higher dose groups gives implications for the in depth study of the cellular events occurring in context with low dose radiation. Based on the findings of this study a further evaluation and statistically analysis of more material can help to identify promising biomarkers for low dose radiation. A systematic evaluation of a correlation of dose rates and strand breaks within the dog tissue might moreover help to explain mechanisms of tolerance to IR. One central problem is that most sequences for dog specific primers are not known yet. The discovery of the dog genome is still under progress. In this study the isolation of RNA within the dog tissue was successful. But up to now there are no gene arrays or gene chips commercially available, tested and adapted for canine tissue. The uncritical use of untested genomic test systems for canine tissue seems to be ineffective at the moment, time consuming and ineffective. Next steps in the investigation of genomic changes after IR within the stored dog tissue should be limited to quantitative RT-PCR of tested primer sequences for the dog. A collaboration with institutions working in the field of the discovery of the dog genome could

  3. [Molecular biological predictors for kidney cancer].

    Science.gov (United States)

    Vtorushin, S V; Tarakanova, V O; Zavyalova, M V

    2016-01-01

    The paper considers the data available in the modern literature on studies of potential molecular predictors for renal cell carcinoma (RCC). Investigations of cell death markers, namely; Bcl-2 as an inhibitor of apoptosis, are of interest. Its high expression correlates with a more favorable prognosis. Inactivation of Berclin 1 that is an authophagy indicator in intact tissues gives rise to t high risk for tumorigenesis. At the same time, high Beclin 1 expression in the tissue of the tumor itself results in the lower efficiency of performed chemotherapy. Excess annexin A2 in the tumor promotes the growth and invasion of cancer cells. Patients with tumor over-expression of SAM68 protein involved in cell proliferation have a lower overall survival rate. The lifespan of patients without distinct metastases survive significantly longer in the overexpression of epithelial cell adhesion molecule (EpCAM). High PD-L1 protein expression on the cell membrane is considered to be a potential marker of effective immunotherapy for RCC. PMID:27077146

  4. Molecular circuits, biological switches, and nonlinear dose-response relationships.

    OpenAIRE

    Andersen, Melvin E.; Yang, Raymond S.H.; French, C. Tenley; Chubb, Laura S; Dennison, James E

    2002-01-01

    Signaling motifs (nuclear transcriptional receptors, kinase/phosphatase cascades, G-coupled protein receptors, etc.) have composite dose-response behaviors in relation to concentrations of protein receptors and endogenous signaling molecules. "Molecular circuits" include the biological components and their interactions that comprise the workings of these signaling motifs. Many of these molecular circuits have nonlinear dose-response behaviors for endogenous ligands and for exogenous toxicants...

  5. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  6. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  7. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  8. A possible molecular metric for biological evolvability

    Indian Academy of Sciences (India)

    Aditya Mittal; B Jayaram

    2012-07-01

    Proteins manifest themselves as phenotypic traits, retained or lost in living systems via evolutionary pressures. Simply put, survival is essentially the ability of a living system to synthesize a functional protein that allows for a response to environmental perturbations (adaptation). Loss of functional proteins leads to extinction. Currently there are no universally applicable quantitative metrics at the molecular level for either measuring ‘evolvability’ of life or for assessing the conditions under which a living system would go extinct and why. In this work, we show emergence of the first such metric by utilizing the recently discovered stoichiometric margin of life for all known naturally occurring (and functional) proteins. The constraint of having well-defined stoichiometries of the 20 amino acids in naturally occurring protein sequences requires utilization of the full scope of degeneracy in the genetic code, i.e. usage of all codons coding for an amino acid, by only 11 of the 20 amino acids. This shows that the non-availability of individual codons for these 11 amino acids would disturb the fine stoichiometric balance resulting in non-functional proteins and hence extinction. Remarkably, these amino acids are found in close proximity of any given amino acid in the backbones of thousands of known crystal structures of folded proteins. On the other hand, stoichiometry of the remaining 9 amino acids, found to be farther/distal from any given amino acid in backbones of folded proteins, is maintained independent of the number of codons available to synthesize them, thereby providing some robustness and hence survivability.

  9. Third international conference on intelligent systems for molecular biology (ISMB-95): Summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The specific aims of the Third International Conference on Intelligent Systems for Molecular Biology (ISMB-95) were to: convene a critical mass of researchers applying advanced computational techniques to problems in molecular biology; promote interchange of problems and solutions between computer scientists and molecular biologists; create education opportunities in this cross-disciplinary field for students and senior researchers wishing to either apply or benefit from these techniques; produce an archival proceedings as a forum for rapid dissemination of new results in a peer-reviewed manner; produce a set of tutorial materials for education and training of researchers interested in this field; maintain the momentum generated by the highly successful previous conferences in the series, and establish a regular event that will help to solidify the field; and foster the involvement of women and minorities in the field.

  10. From Molecular Biology to Biomedicine; De la Biologia Molecular a la Biomedicina

    Energy Technology Data Exchange (ETDEWEB)

    Salas, M.

    2009-07-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita S alas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  11. T-cell acute lymphoblastic leukaemia : recent molecular biology findings

    NARCIS (Netherlands)

    Kraszewska, Monika D.; Dawidowska, Malgorzata; Szczepanski, Tomasz; Witt, Michal

    2012-01-01

    For many years, T-cell acute lymphoblastic leukaemia (T-ALL) has been considered and treated as a single malignancy, but divergent outcomes in T-ALL patients receiving uniform treatment protocols encouraged intensive research on the molecular biology of this disease. Recent findings in the field dem

  12. Web Based Learning Support for Experimental Design in Molecular Biology.

    Science.gov (United States)

    Wilmsen, Tinri; Bisseling, Ton; Hartog, Rob

    An important learning goal of a molecular biology curriculum is a certain proficiency level in experimental design. Currently students are confronted with experimental approaches in textbooks, in lectures and in the laboratory. However, most students do not reach a satisfactory level of competence in the design of experimental approaches. This…

  13. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    Science.gov (United States)

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested genes, mRNA…

  14. Assessing Practical Laboratory Skills in Undergraduate Molecular Biology Courses

    Science.gov (United States)

    Hunt, Lynne; Koenders, Annette; Gynnild, Vidar

    2012-01-01

    This study explored a new strategy of assessing laboratory skills in a molecular biology course to improve: student effort in preparation for and participation in laboratory work; valid evaluation of learning outcomes; and students' employment prospects through provision of evidence of their skills. Previously, assessment was based on written…

  15. A Streamlined Molecular Biology Module for Undergraduate Biochemistry Labs

    Science.gov (United States)

    Muth, Gregory W.; Chihade, Joseph W.

    2008-01-01

    Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here,…

  16. A Biochemistry and Molecular Biology Course for Secondary School Teachers

    Science.gov (United States)

    Fernandez-Novell, J. M.; Cid, E.; Gomis, R.; Barbera, A.; Guinovart, J. J.

    2004-01-01

    This article describes a course for reinforcing the knowledge of biochemistry in secondary school science teachers. The Department of Biochemistry and Molecular Biology of the University of Barcelona designed a course to bring these teachers up to date with this discipline. In addition to updating their knowledge of biochemistry and molecular…

  17. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  18. [Recent biological and therapeutic advances in multiple myeloma].

    Science.gov (United States)

    Coppetelli, U; Avvisati, G; Tribalto, M; Cantonetti, M; La Verde, G; Petrucci, T; Stasi, R; Papa, G

    1992-09-01

    Multiple myeloma still remains a fatal disease. However, in the last months new biological and clinical informations have been provided about this disease. In particular, the immunophenotype of myeloma cells seems indicate, in some patients, a clonal involvement of a stem cell in the pathogenesis of mieloma. Moreover, new biological insights concerning the cytokine network, have revealed a probable effect of some cytokines, such as IL6, IL3, IL4. Finally, new insights in the biology of multiple myeloma have been provided by studies of molecular biology and flow cytometry. As for therapy, the best conventional induction treatment still remains to be defined. In the last years, the increased use of alpha Interferon and new therapeutic modalities, such as transplantation procedures in multiple myeloma, open new hopes toward a cure of this disease. Therefore, in the future a better knowledge of the multiple myeloma biology, associated with a wider use of new effective therapeutic approaches will certainly improve the natural course of this disease. PMID:1439122

  19. Advances in molecular genetic systems in malaria.

    Science.gov (United States)

    de Koning-Ward, Tania F; Gilson, Paul R; Crabb, Brendan S

    2015-06-01

    Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

  20. From Uniplex to Multiplex Molecular Profiling in Advanced Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Ileana, Ecaterina E; Wistuba, Ignacio I; Izzo, Julie G

    2015-01-01

    Non-small cell lung carcinoma is a leading cause of cancer death worldwide. Understanding the molecular biology of survival and proliferation of cancer cells led to a new molecular classification of lung cancer and the development of targeted therapies with promising results. With the advances of image-guided biopsy techniques, tumor samples are becoming smaller, and the molecular testing techniques have to overcome the challenge of integrating the characterization of a panel of abnormalities including gene mutations, copy-number changes, and fusions in a reduced number of assays using only a small amount of genetic material. This article reviews the current knowledge about the most frequent actionable molecular abnormalities in non-small cell lung carcinoma, the new approaches of molecular analysis, and the implications of these findings in the context of clinical practice.

  1. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  2. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  3. Applicable advances in the molecular pathology of glioblastoma.

    Science.gov (United States)

    Ranjit, Melissa; Motomura, Kazuya; Ohka, Fumiharu; Wakabayashi, Toshihiko; Natsume, Atsushi

    2015-07-01

    Comprising more than 80% of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.

  4. Machine learning in systems biology at different scales : from molecular biology to ecology

    OpenAIRE

    Aderhold, Andrej

    2015-01-01

    Machine learning has been a source for continuous methodological advances in the field of computational learning from data. Systems biology has profited in various ways from machine learning techniques but in particular from network inference, i.e. the learning of interactions given observed quantities of the involved components or data that stem from interventional experiments. Originally this domain of system biology was confined to the inference of gene regulation networks but ...

  5. Stochastic narrow escape in molecular and cellular biology analysis and applications

    CERN Document Server

    Holcman, David

    2015-01-01

    This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small sp...

  6. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  7. Biomass and biofuels from microalgae advances in engineering and biology

    CERN Document Server

    Moheimani, Navid Reza; de Boer, Karne; Bahri, Parisa

    2015-01-01

    This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobi

  8. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  9. Conservation biological control of pests in the molecular era: new opportunities to address old constraints

    Directory of Open Access Journals (Sweden)

    Gurr eGeoff

    2016-01-01

    Full Text Available ABSTRACTBiological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA and now – in turn – are being overtaken by next generation sequencing (NGS- based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate the plant defence mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles.

  10. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  11. INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Debra Goldberg; Matthew Hibbs; Lukas Kall; Ravikumar Komandurglayavilli; Shaun Mahony; Voichita Marinescu; Itay Mayrose; Vladimir Minin; Yossef Neeman; Guy Nimrod; Marian Novotny; Stephen Opiyo; Elon Portugaly; Tali Sadka; Noboru Sakabe; Indra Sarkar; Marc Schaub; Paul Shafer; Olena Shmygelska; Gregory Singer; Yun Song; Bhattacharya Soumyaroop; Michael Stadler; Pooja Strope; Rong Su; Yuval Tabach; Hongseok Tae; Todd Taylor; Michael Terribilini; Asha Thomas; Nam Tran; Tsai-Tien Tseng; Akshay Vashist; Parthiban Vijaya; Kai Wang; Ting Wang; Lai Wei; Yong Woo; Chunlei Wu; Yoshihiro Yamanishi; Changhui Yan; Jack Yang; Mary Yang; Ping Ye; Miao Zhang

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  12. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    Science.gov (United States)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  14. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application. PMID:26677427

  15. Molecular biological factors in the diagnosis of cervical intraepithelial neoplasias

    Directory of Open Access Journals (Sweden)

    Yu. N. Ponomareva

    2010-01-01

    Full Text Available The authors have made a complex analysis of the molecular biological factors associated with cervical intraepithelial neoplasia. They have revealed that infection by oncogenic human papillomavirus types is associated with suppressed apoptosis and enhanced cellular proliferative activity, which can be effectively used in the diagnosis and prediction of cervical neoplasias to optimize management tac- tics and to improve the results of treatment.

  16. Towards an Upper-Level Ontology for Molecular Biology

    OpenAIRE

    Schulz, Stefan; Beisswanger, Elena; Wermter, Joachim; Hahn, Udo

    2006-01-01

    There is a growing need for the general-purpose description of the basic ontological entities in the life sciences domain. Up until now, upper-level models are mainly purpose-driven, such as the GENIA ontology, originally devised as a vocabulary for corpus annotation. As an alternative, we here present BioTop, a description-logic-based top-level ontology for molecular biology, as an ontologically more conscious re-design of the GENIA ontology.

  17. In focus: molecular and cell biology research in China.

    Science.gov (United States)

    Yao, Xuebiao; Li, Dangsheng; Pei, Gang

    2013-09-01

    An interactive, intellectual environment with good funding opportunities is essential for the development and success of basic research. The fast-growing economy and investment in science, together with a visionary plan, have attracted foreign scholars to work in China, motivated world-class Chinese scientists to return and strengthened the country's international collaborations. As a result, molecular and cell biology research in China has evolved rapidly over the past decade.

  18. Molecular biology of liver disorders: the hepatitis C virus and moleculartargets for drug development

    Institute of Scientific and Technical Information of China (English)

    Howard J. Worman; Feng Lin

    2000-01-01

    Advances in molecular biology made possible the discovery of the virus that causes hepatitis C. However,little is known about the fundamental aspects of hepatitis C virus (HCV) replication, primarily because arobust cell culture has not been established. As a result, the currently available drugs for the treatment ofhepatitis C are not specifically directed against HCV. Based on what is known about the molecular biology ofHCV, however, drugs can now be developed against specific viral and cellular targets. The next generationof drugs for the treatment of hepatitis C will likely be directed against non-structural HCV proteins withknown enzymatic activities, such as the proteases, RNA helicase and RNA polymerase. Others agentstargeted against the viral RNA, core protein that assembles into the virion capsid and putative cellular“receptors” that bind HCV envelope proteins are also being developed. These drugs should have fewer sideeffects than those currently available and be much more effective for the treatment of chronic hepatitis C.

  19. Advancing cell biology through proteomics in space and time (PROSPECTS).

    Science.gov (United States)

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  20. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  1. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices.

  2. Molecular biology of the skin introduction: approaches and principles.

    Science.gov (United States)

    Slater, C; Goldsmith, L A

    1993-09-01

    This issue of Seminars in Dermatology describes our current understanding of the molecular nature of skin diseases. Some would say it is hubris to even contemplate this charge considering the rapid progress in molecular genetics. We implore the gods protecting the nucleotides to look kindly on our efforts. This introductory article discussed some general methodological considerations and techniques and provides a glossary of common terms used in molecular biology, useful for understanding this issue of Seminars in Dermatology. This article is aimed at neophytes to enhance their ability to enter the magical realm of the gene. The articles in this issue describe diseases with a defined defect at the DNA level or diseases in which there is a rapid closing in on the basic defect. PMID:8217556

  3. Organic conductors as novel ``molecular rulers`` for advanced manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1995-12-31

    Future advanced manufacturing equipment used in high technology programs will require ultra-high precision and associated machining tool operations that require placement accuracy of {approximately} 1--100 nm (1 nm = 10 {angstrom}). There is consensus among engineers that this equipment will be based on STM (Scanning Tunneling Microscope) technology. All such STM-based ``drivers`` must contain a metrology system that requires absolute length standards referenced to atomic spacings for calibration. Properly designed organic conductor substrate crystals have the potential to be molecular rulers for STM-based advanced manufacturing equipment. The major challenges in future organic conductor research aimed at STM metrology application are listed.

  4. Molecular biology in a distributed world. A Kantian perspective on scientific practices and the human mind

    Directory of Open Access Journals (Sweden)

    Mariagrazia Portera

    2016-01-01

    Full Text Available In recent years the number of scholarly publications devoted to Kant's theory of biology has rapidly growing, with particular attention being given to Kant's thoughts about the concepts of teleology, function, organism, and their respective roles in scientific practice. Moving from these recent studies, and distancing itself from their mostly evolutionary background, the main aim of the present paper is to suggest an original "cognitive turn" in the interpretation of Kant's theory of biology. More specifically, the Authors will trace a connection between some Kantian theses about the “peculiar” or special nature of the human mind (intellectus ectypus, advanced in the Critique of the Power of Judgement (§ 76, 77, and some specific epistemological issues pertaining to the research practice of contemporary molecular biology.

  5. Advancements of molecularly imprinted polymers in the food safety field.

    Science.gov (United States)

    Wang, Peilong; Sun, Xiaohua; Su, Xiaoou; Wang, Tie

    2016-06-01

    Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on. Because of high selectivity and specificity, MIPs have drawn great attention in the food safety field. In this review, the recent developments of MIPs in various applications for food safety, including sample preparation, chromatographic separation, sensing, immunoassay etc., have been summarized. We particularly discuss the advancements and limitations in these applications, as well as attempts carried out for their improvement. PMID:26937495

  6. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  7. Radiation biology: Major advances and perspectives for radiotherapy

    International Nuclear Information System (INIS)

    At the beginning of the 21. century, radiation biology is at a major turning point in its history. It must meet the expectations of the radiation oncologists, radiologists and the general public, but its purpose remains the same: to understand the molecular, cellular and tissue levels of lethal and carcinogenic effects of ionizing radiation in order to better protect healthy tissues and to develop treatments more effective against tumours. Four major aspects of radiobiology that marked this decade will be discussed: technological developments, the importance of signalling and repair of radiation-induced deoxyribonucleic acid (DNA) damage, the impact of individual factor in the response to radiation and the contribution of radiobiology to better choose innovative therapies such as proton-therapy or stereotactic body radiation therapy (SBRT). A translational radiobiology should emerge with the help of radiotherapists and radiation physicists and by facilitating access to the new radio and/or chemotherapy modalities. (authors)

  8. Support of the IMA summer program molecular biology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.

    1995-08-01

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The mathematical sciences accompany and support much of the progress achieved by experiment and computation, as well as provide insight into geometric and topological properties of biomolecular structure and processes. The 4 week program at the IMA brought together biologists and mathematicians leading researchers, postdocs, and graduate students. It focused on genetic mapping and DNA sequencing, followed by biomolecular structure and dynamics. High-resolution linkage maps of genetic marker were discussed extensively in relation to the human genome project. The next level of DNA mapping is physical mapping, consisting of overlapping clones spanning the genome. These maps are extremely useful for genetic analysis. They provide the material for less redundant sequencing and for detailed searches for a gene among other things. This topic was also extensively studied by the participants. From there, the program moved to consider protein structure and dynamics; this is a broad field with a large array of interesting topics. It is of key importance in answering basic scientific questions about the nature of all living organisms, and has practical biomedical applications. The major subareas of structure prediction and classification, techniques and heuristics for the simulation of protein folding, and molecular dynamics provide a rich problem domain where mathematics can be helpful in analysis, modeling, and simulation. One of the important problems in molecular biology is the three-dimensional structure of proteins, DNA and RNA in the cell, and the relationship between structure and function. The program helped increased the understanding of the topology of cellular DNA, RNA and proteins and the various life-sustaining mechanisms used by the cell which modify this molecular topology.

  9. Towards molecular computers that operate in a biological environment

    Science.gov (United States)

    Kahan, Maya; Gil, Binyamin; Adar, Rivka; Shapiro, Ehud

    2008-07-01

    important consequences when performed in a proper context. We envision that molecular computers that operate in a biological environment can be the basis of “smart drugs”, which are potent drugs that activate only if certain environmental conditions hold. These conditions could include abnormalities in the molecular composition of the biological environment that are indicative of a particular disease. Here we review the research direction that set this vision and attempts to realize it.

  10. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  11. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  12. NATO Advanced Research Workshop on Vectorization of Advanced Methods for Molecular Electronic Structure

    CERN Document Server

    1984-01-01

    That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga­ tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider­ able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi­ lity of computers have let theorists apply their methods to prob­ lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com­ plete information on molecular properties. We can surel...

  13. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  14. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    Science.gov (United States)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  15. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  16. Diagnosis of Whipple's disease using molecular biology techniques.

    Science.gov (United States)

    Cosme, Ángel; Ojeda, Evelia; Muñagorri, Ana I; Gaminde, Eduardo; Bujanda, Luis; Larzabal, Mikel; Gil, Inés

    2011-04-01

    The diagnosis of Whipple's disease (WD) is based on the existence of clinical signs and symptoms compatible with the disease and in the presence of PAS-positive diastase-resistant granules in the macrophages of the small intestine. If there is suspicion of the disease but no histological findings or only isolated extraintestinal manifestations, species-specific PCR using different sequences of the T. whippleii genome from different tissue types and biological fluids is recommended.This study reports two cases: the first patient had diarrhea and the disease was suspected after an endoscopic examination of the ileum, while the second patient had multi-systemic manifestations,particularly abdominal, thoracic, and peripheral lymphadenopathies. In both cases, the diagnosis was confirmed using molecular biology techniques to samples from the small intestine or from a retroperineal lymph node, respectively. PMID:21526877

  17. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all...... negative bacteria since incubation of EB with antibodies against LPS will liberate it from the chlamydial surface. Therefore the surface localized LPS may be important for chlamydial survival. OMP1 varies between the different serovar of C. trachomatis. Several very conserved regions are separated....... Patient serum samples will recognize the chlamydial DnaK-like protein. From the determined DNA sequence the amino acid sequence was determined. It was 57% homologous to the Eschrichia coli DnaK protein. Also the GroEL-like protein is antigenic and very conserved. Factors of importance for pathogenicity...

  18. International Symposium on Insect Physiology, Biochemistry and Molecular Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ We are building on the success of the Sixth Chinese Insect Physiology, Biochemistry and Molecular Biology Symposium, Beijing, held in 2005. The 2005 symposium saw many Chinese and international authorities share their expertise in a broad range of insect science, including analyses of insect genomes and proteomes, functional gene expression and regulation during development, insect immunity, insect neurobiology, insect-host interactions and insect chemical communication. The coming symposium, which will be held in Shandong University,Jinan, Shandong province, September 19-22, 2007, will offer material along similar lines.

  19. A complex systems approach to computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States)

    1993-09-01

    We report on the containing research program at Santa Fe Institute that applies complex systems methodology to computational molecular biology. Two aspects are stressed here are the use of co-evolving adaptive neutral networks for determining predictable protein structure classifications, and the use of information theory to elucidate protein structure and function. A ``snapshot`` of the current state of research in these two topics is presented, representing the present state of two major research thrusts in the program of Genetic Data and Sequence Analysis at the Santa Fe Institute.

  20. Molecular Biology of Pediatric Hydrocephalus and Hydrocephalus-related Diseases.

    Science.gov (United States)

    Yamasaki, Mami; Kanemura, Yonehiro

    2015-01-01

    We are beginning to understand the molecular biology of hydrocephalus and its related diseases. X-linked hydrocephalus (XLH), holoprosencephaly (HPE), Dandy-Walker malformation (DWM), and neural tube defect (NTD) can all be discussed with respect to their available molecular genetics knowledge base and its clinical applications. XLH is single gene disorder caused by mutations in the neural cell adhesion molecule-encoding L1CAM (L1) gene. Our knowledge of the molecular basis of XLH is already being applied clinically in disease diagnosis, disease classification, and prenatal diagnosis. However, the molecular mechanism underlying XLH-related hydrocephalus still needs to be clarified. Sixteen causative genes for HPE have been identified, of which mutations are most often found in SHH, ZIC2, SIX3, and TGIF. Genetic interactions, gene complexity, and the wide variety of HPE phenotypes and genotypes are topics for future study. For DWM, two important loci, 3q24, which includes the FOXC1 gene, and 6q25.3, which includes the ZIC1 and ZIC4 genes, were recently identified as causative areas. The planar cell polarity (PCP) genes CELSR1, CELSR2, VANGL1, and VANGL2 have been implicated in NTD; these genes have roles in neural tube closure and ependymal ciliary movement. PMID:26227058

  1. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Zhi-Yi Chen

    2014-01-01

    Full Text Available Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy.

  2. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    International Nuclear Information System (INIS)

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  3. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  4. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  5. Errant life, molecular biology, and biopower: Canguilhem, Jacob, and Foucault.

    Science.gov (United States)

    Talcott, Samuel

    2014-01-01

    This paper considers the theoretical circumstances that urged Michel Foucault to analyse modern societies in terms of biopower. Georges Canguilhem's account of the relations between science and the living forms an essential starting point for Foucault's own later explorations, though the challenges posed by the molecular revolution in biology and François Jacob's history of it allowed Foucault to extend and transform Canguilhem's philosophy of error. Using archival research into his 1955-1956 course on "Science and Error," I show that, for Canguilhem, it is inauthentic to treat a living being as an error, even if living things are capable of making errors in the domain of knowledge. The emergent molecular biology in the 1960s posed a grave challenge, however, since it suggested that individuals could indeed be errors of genetic reproduction. The paper discusses how Canguilhem and Foucault each responded to this by examining, among other texts, their respective reviews of Jacob's The Logic of the Living. For Canguilhem this was an opportunity to reaffirm the creativity of life in the living individual, which is not a thing to be evaluated, but the source of values. For Foucault, drawing on Jacob's work, this was the opportunity to develop a transformed account of valuation by posing biopower as the DNA of society. Despite their disagreements, the paper examines these three authors as different iterations of a historical epistemology attuned to errancy, error, and experimentation.

  6. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    Michel Morange

    2009-10-01

    Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity has nevertheless recently made its way into this discipline, in particular through the limits of the molecular description. Its resurrection has been triggered by a small group of theoreticians, the rise of epigenetic descriptions and the publicized discovery of stem cell plasticity. The notion of phenotypic plasticity remains vague. History shows that too strong a belief in plasticity can be an obstacle to the development of biology. Two important questions are still pending: the link between the different forms of plasticity present at different levels of organization, and the relation, if any, between the modular organization of organisms and phenotypic plasticity. Future research will help to discriminate between possible and actual mechanisms of phenotypic plasticity, and to give phenotypic plasticity its real place in the living world.

  7. Developing protein documentaries and other multimedia presentations for molecular biology.

    Science.gov (United States)

    Quinn, G; Wang, H P; Martinez, D; Bourne, P E

    1999-01-01

    Computer-based multimedia technology for distance learning and research has come of age--the price point is acceptable, domain experts using off-the-shelf software can prepare compelling materials, and the material can be efficiently delivered via the Internet to a large audience. While not presenting any new scientific results, this paper outlines experiences with a variety of commercial and free software tools and the associated protocols we have used to prepare protein documentaries and other multimedia presentations relevant to molecular biology. A protein documentary is defined here as a description of the relationship between structure and function in a single protein or in a related family of proteins. A description using text and images which is further enhanced by the use of sound and interactive graphics. Examples of documentaries prepared to describe cAMP dependent protein kinase, the founding structural member of the protein kinase family for which there is now over 40 structures can be found at http://franklin.burnham-inst.org/rcsb. A variety of other prototype multimedia presentations for molecular biology described in this paper can be found at http://fraklin.burnham-inst.org. PMID:10380212

  8. On the shoulders of giants: Molecular Biology in Public Health

    Directory of Open Access Journals (Sweden)

    Carmine Melino

    2005-03-01

    Full Text Available

    We accepted with great pleasure the invitation by professor Walter Ricciardi,our friend and colleague, to write an editorial in order to introduce this special issue dedicated to Molecular Biology in Hygiene. We are delighted for two connected reasons.

    First, Carmine,as a former professor of Hygiene,has passed his concepts of Hygiene on to his family and, despite significant difficulties, keeps working on the problems of preventive medicine in the work environment and in geriatrics. Second, Gerry, raised in an environment of hygienists, has dedicated all his professional efforts to Molecular Biology. As these two distinct experiences have constantly mixed within our family over time, we appreciate the promiscuous intermingling of these two disciplines in this thematic issue.

    The result is a useful common effort aiming at understanding the problems of diseases in the work environment and in the human environment in general.

    These problems have a profound social meaning, for which it is necessary to create an essential collaboration with scientific research.

    This is the only way to benefit human society.

  9. Advances in Biological Function of Toxin-Antitoxin Molecular Systems%毒性分子-抗毒性分子系统的生物学作用研究进展

    Institute of Scientific and Technical Information of China (English)

    李国利; 胡福泉

    2015-01-01

    毒性分子-抗毒性分子系统( toxin-antitoxin systems,TA systems)被发现广泛存在于细菌染色体、质粒以及古细菌基因组中。TA系统是由2个基因组成的操纵子,这2个基因分别编码稳定的毒性分子和不稳定的抗毒性分子。毒性分子总是蛋白质,抗毒性分子可能是蛋白质或RNA。因此,根据抗毒性分子的性质和作用方式的不同可将TA系统家族分为5种类型。Ⅰ型和Ⅲ型的抗毒性分子是RNA,能抑制毒性分子的合成或者与其隔离;II、IV和V型的抗毒性分子是蛋白质,能隔离、平衡毒性分子作用或抑制其合成。TA系统具有多种生物学功能。目前研究表明,TA系统可能在细菌应激应答、程序化细胞死亡、多重耐药的形成、防止DNA入侵、稳定大基因组片段等方面有重要的作用。%Toxin-antitoxin systems( TA systems)extensively exist in bacterial chromosomes and plasmids as well as in archaic genomes. TA systems is an operon consisting of two genes,they are respectively toxin molecule of stably encoded and anti-toxin molecule of unstably encoded. Toxin molecule is always protein,while antitoxin molecule may be protein or RNA. Therefore,currently TA systems family can be divided into five different types. Antitoxin molecule of type I and type III is RNA,it can inhibit the synthesis of toxin molecule or isolate toxin molecule. Antitoxin mole-cule of type II,IV,and V is protein,it can isolate,balance the role of toxin molecule or inhibit its synthesis. TA systems possess multiple biological functions. Recent studies suggested that TA systems might play important role and have involved in the cell stress response,programmed cell death,the form of multidrug resistance,prevention from DNA invasion,as well as stabilization of large genomic fragments and other aspects.

  10. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  11. [Which molecular biology techniques must conform to the armamentarium for basic research in uro-oncology?].

    Science.gov (United States)

    Oriola, Josep

    2013-06-01

    Molecular biology has been one of the scientific disciplines in which there has been more advances in the last years. The first impulse in the study of genetic alterations came from the discovery of DNA structure, followed by elucidation of the genetic code, the discovery of restriction enzymes and subsequently the invention of PCR, not forgetting the exponential development of computer science. All of them have allowed us to know much more about our genome and its regulation than we could imagine. The impulse in proteomics has been especially in tune up of soft methods of ionization coupled with mass spectrometry. Nevertheless, this seems to be only the beginning since today there are continuous methodological advances that will increase more, without doubt, the knowledge and applications in this discipline. PMID:23793758

  12. Review and application of group theory to molecular systems biology

    Directory of Open Access Journals (Sweden)

    Rietman Edward A

    2011-06-01

    Full Text Available Abstract In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  13. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-01-01

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer. PMID:21696623

  14. Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R

    CERN Document Server

    Bloomfield, Victor

    2009-01-01

    This book provides an introduction, suitable for advanced undergraduates and beginning graduate students, to two important aspects of molecular biology and biophysics: computer simulation and data analysis. It introduces tools to enable readers to learn and use fundamental methods for constructing quantitative models of biological mechanisms, both deterministic and with some elements of randomness, including complex reaction equilibria and kinetics, population models, and regulation of metabolism and development; to understand how concepts of probability can help in explaining important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data from spectroscopic, genomic, and proteomic sources. These quantitative tools are implemented using the free, open source software program R. R provides an excellent environment for general numerical and statistical computing and graphics, with capabilities similar to Matlab®. Since R is increasingly used in bioinformat...

  15. Biologia molecular do câncer cervical Molecular biology of cervical cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Augusto Rivoire

    2006-01-01

    . How HPV immortalizes cervical cells is not fully understood. Advances have been made in the application of molecular biology techniques in the understanding of this mechanism. Once established, these techniques will lead to a better assessment of cervical neoplasias and help the development of new therapies, hopefully less invasive and more effective.

  16. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Cláudia Regina Batista de Souza

    2012-07-01

    Full Text Available Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops.

  17. The Impact of Collective Molecular Dynamics on Physiological and Biological Functionalities of Artificial and Biological Membranes

    Science.gov (United States)

    Rheinstadter, Maikel

    2008-03-01

    We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).

  18. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses.

    Science.gov (United States)

    Davey, Peter A; Pernice, Mathieu; Sablok, Gaurav; Larkum, Anthony; Lee, Huey Tyng; Golicz, Agnieszka; Edwards, David; Dolferus, Rudy; Ralph, Peter

    2016-09-01

    Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events. PMID:27443314

  19. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  20. Implementation and Assessment of a Molecular Biology and Bioinformatics Undergraduate Degree Program

    Science.gov (United States)

    Pham, Daphne Q. -D.; Higgs, David C.; Statham, Anne; Schleiter, Mary Kay

    2008-01-01

    The Department of Biological Sciences at the University of Wisconsin-Parkside has developed and implemented an innovative, multidisciplinary undergraduate curriculum in Molecular Biology and Bioinformatics (MBB). The objective of the MBB program is to give students a hands-on facility with molecular biology theories and laboratory techniques, an…

  1. The Development and Implementation of an Instrument to Assess Students’ Data Analysis Skills in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Brian J. Rybarczyk

    2014-03-01

    Full Text Available Developing visual literacy skills is an important component of scientific literacy in undergraduate science education.  Comprehension, analysis, and interpretation are parts of visual literacy that describe related data analysis skills important for learning in the biological sciences. The Molecular Biology Data Analysis Test (MBDAT was developed to measure students’ data analysis skills connected with scientific reasoning when analyzing and interpreting scientific data generated from experimental research.  The skills analyzed included basic skills such as identification of patterns and trends in data and connecting a method that generated the data and advanced skills such as distinguishing positive and negative controls, synthesizing conclusions, determining if data supports a hypothesis, and predicting alternative or next-step experiments.  Construct and content validity were established and calculated statistical parameters demonstrate that the MBDAT is valid and reliable for measuring students’ data analysis skills in molecular and cell biology contexts.  The instrument also measures students’ perceived confidence in their data interpretation abilities.  As scientific research continues to evolve in complexity, interpretation of scientific information in visual formats will continue to be an important component of scientific literacy.  Thus science education will need to support and assess students’ development of these skills as part of students’ scientific training.

  2. Advanced carbon manufacturing for energy and biological applications

    Science.gov (United States)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  3. Traffic phenomena in biology: from molecular motors to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2007-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitative analysis of mode...

  4. Recent advances in the molecular diagnosis of tuberculosis.

    Science.gov (United States)

    Su, Wei-Juin

    2002-12-01

    To date, the diagnosis of tuberculosis has not improved significantly and still relies heavily on staining and culture of sputum or other clinical specimens which were developed more than 100 years ago. Staining does not differentiate tuberculosis from other mycobacterial infections, and culture requires at least 4 to 8 weeks. These are the major problems faced by tuberculosis control programs. In response to this demand, new rapid diagnostic methods are urgently sought. In recent years, much hope has been laid on the development of molecular techniques in the routine tuberculosis laboratory. This review concentrates on 4 techniques that are increasingly used in clinical laboratories: polymerase chain reaction to detect mycobacterial DNA in clinical specimens, nucleic acid probes to identify culture, restriction fragment length polymorphism analysis to compare strains for epidemiologic purposes, and genetic-base susceptibility testing methods for rapid detection of drug resistance. Finally, the increase in the use of clinically-useful molecular biological techniques that affect turnaround time, length of stay, and patient outcome, and reduce overall hospitalization costs will continue until universal standardization for molecular diagnostic procedures are provided. At present, conventional methods should not be replaced by novel methods until the latter are shown to be of equal or greater sensitivity, specificity, reliability, and user-friendliness. However, it is expected that the newly developed molecular techniques will complement our armamentarium of diagnostic tools in the detection of tuberculosis. It is also expected that clinical protocols based on molecular methods will increase the chances for cure by selecting the most appropriate treatment and improving the quality of life of tuberculosis patients. PMID:12542245

  5. Escherichia coli and the French School of Molecular Biology.

    Science.gov (United States)

    Ullmann, Agnes

    2010-09-01

    André Lwoff, Jacques Monod, and François Jacob, the leaders of the French school of molecular biology, greatly contributed between 1937 and 1965 to its development and triumph. The main discovery of Lwoff was the elucidation of the mechanism of bacteriophage induction, the phenomenon of lysogeny, that led to the model of genetic regulation uncovered later by Jacob and Monod. Working on bacterial growth, Monod discovered in 1941 the phenomenon of diauxy and uncovered the nature of enzyme induction. By combining genetic and biochemical approaches, Monod brought to light the structure and functions of the Escherichia coli lactose system, comprising the genes necessary for lactose metabolism, i.e., β-galactosidase and lactose permease, a pump responsible for accumulation of galactosides into the cells. An additional genetic factor (the i gene) determines the inducibility and constitutivity of enzyme synthesis. Around the same time, François Jacob and Elie Wollman dissected the main events of bacterial conjugation that enabled them to construct a map of the E. coli chromosome and to demonstrate its circularity. The genetic analysis of the lactose system led Monod and Jacob to elucidate the mechanism of the regulation of gene expression and to propose the operon model: a unit of coordinate transcription. One of the new concepts that emerged from the operon model was messenger RNA. In 1963, Monod developed one of the most elegant concepts of molecular biology, the theory of allostery. In 1965, Lwoff, Monod and Jacob were awarded the Nobel Prize in Physiology or Medicine.

  6. Molecular Biology and Infection of Hepatitis E Virus

    Science.gov (United States)

    Nan, Yuchen; Zhang, Yan-Jin

    2016-01-01

    Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus. PMID:27656178

  7. Low angle neutron data acquisition system for molecular biology

    International Nuclear Information System (INIS)

    The low angle spectrometer system utilizing a 2-dimensional position sensitive counter was designed to accommodate a variety of experiments in molecular biology requiring good low angle resolution. Biological structures requiring low angle analysis techniques fall into two groups: non-ordered systems (proteins or protein complexes in solution) and ordered systems with large spacings like muscle, collagen, and membranes. For structural investigations into such systems, data are ideally needed to a low scattering angle of 0.20 at 4.5 A or a minimum Q of 0.005 A-1 (Q = theta . 2π/lambda). Depending on the type of structure, data often extend to the high angle region, say 300. Apart from the low angle requirements, the spectrometer has to have good resolution to resolve diffraction peaks from samples with crystal spacings up to 1000 A or even larger. While it is desirable to build a spectrometer to such scattering conditions, given reactor conditions might not permit this and compromises have to be made between flux, resolution and lowest angle. The low angle spectrometer described here was designed to be used at the HFBR neutron beam pipe working at approximately 4.2 A or at the H4 satellite station working at 2.4 A

  8. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  9. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  10. Recent Advances on the Molecular Pathology of Glial Neoplasms in Children and Adults.

    Science.gov (United States)

    Rodriguez, Fausto J; Vizcaino, M Adelita; Lin, Ming-Tseh

    2016-09-01

    Gliomas represent the most common primary intraparenchymal tumors of the central nervous system in adults and children and are a genetic and phenotypic heterogeneous group. Large multi-institutional studies and The Cancer Genome Atlas have provided firm insights into the basic genetic drivers in gliomas. The main molecular biomarkers routinely applied to evaluate diffuse gliomas include MGMT promoter methylation, EGFR alterations (eg, EGFRvIII), IDH1 or IDH2 mutations, and 1p19q co-deletion. Many of these markers have become standard of care for molecular testing and prerequisites for clinical trial enrollment. Other recent biomarkers include TERT promoter and ATRX mutations, alterations that identify specific molecular subgroups of diffuse gliomas with biological and clinical relevance. It has also become apparent that distinctive patterns of molecular genetic evolution develop in the context of current therapeutic regimens. Important insights have also been uncovered in the field of pediatric glioma, including the identification of recurrent mutation, fusion, and/or duplication events of the BRAF, FGFR1, MYB, and MYBL1 genes in pediatric low-grade gliomas, mutations affecting histone components (H3F3A p.K27M or p.G34) in pediatric high-grade gliomas, and aggressive subsets developing in midline central nervous system structures. Here, we summarize current concepts in molecular testing for glial tumors, including recent findings by large-scale discovery efforts and technologic advances that are affecting routine diagnostic work. PMID:27444975

  11. A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms

    OpenAIRE

    Suzanne Renick Gallagher; William Coon; Kristin Donley; Abby Scott; GOLDBERG, DEBRA S.

    2011-01-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in...

  12. Cracking the nodule worm code advances knowledge of parasite biology and biotechnology to tackle major diseases of livestock.

    Science.gov (United States)

    Tyagi, Rahul; Joachim, Anja; Ruttkowski, Bärbel; Rosa, Bruce A; Martin, John C; Hallsworth-Pepin, Kymberlie; Zhang, Xu; Ozersky, Philip; Wilson, Richard K; Ranganathan, Shoba; Sternberg, Paul W; Gasser, Robin B; Mitreva, Makedonka

    2015-11-01

    Many infectious diseases caused by eukaryotic pathogens have a devastating, long-term impact on animal health and welfare. Hundreds of millions of animals are affected by parasitic nematodes of the order Strongylida. Unlocking the molecular biology of representatives of this order, and understanding nematode-host interactions, drug resistance and disease using advanced technologies could lead to entirely new ways of controlling the diseases that they cause. Oesophagostomum dentatum (nodule worm; superfamily Strongyloidea) is an economically important strongylid nematode parasite of swine worldwide. The present article reports recent advances made in biology and animal biotechnology through the draft genome and developmental transcriptome of O. dentatum, in order to support biological research of this and related parasitic nematodes as well as the search for new and improved interventions. This first genome of any member of the Strongyloidea is 443 Mb in size and predicted to encode 25,291 protein-coding genes. Here, we review the dynamics of transcription throughout the life cycle of O. dentatum, describe double-stranded RNA interference (RNAi) machinery and infer molecules involved in development and reproduction, and in inducing or modulating immune responses or disease. The secretome predicted for O. dentatum is particularly rich in peptidases linked to interactions with host tissues and/or feeding activity, and a diverse array of molecules likely involved in immune responses. This research progress provides an important resource for future comparative genomic and molecular biological investigations as well as for biotechnological research toward new anthelmintics, vaccines and diagnostic tests.

  13. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  14. Molecular advances to treat cancer of the brain.

    Science.gov (United States)

    Fathallah-Shaykh, H M; Zhao, L J; Mickey, B; Kafrouni, A I

    2000-06-01

    Malignant primary and metastatic brain tumours continue to be associated with poor prognosis. Nevertheless, recent advances in molecular medicine, specifically in the strategies of gene therapy, targeting tumour cells, anti-angiogenesis and immunotherapy, have created novel tools that may be of therapeutic value. To date, gene therapy trials have not yet demonstrated clinical efficacy because of inherent defects in vector design. Despite this, advances in adenoviral technology, namely the helper-dependent adenoviral constructs (gutless) and the uncovering of brain parenchymal cells as effective and necessary targets for antitumour benefits of adenoviral-mediated gene transfer, suggest that developments in vector design may be approaching the point of clinical utility. Targeting tumour cells refers to strategies that destroy malignant but spare normal cells. A new assortment of oncolytic viruses have emerged, capable of specific lysis of cancer tissue while sparing normal cells and propagating until they reach the tumour borders. Furthermore, peptides have been transformed into bullets that specifically seek and destroy cancer cells. The concept of tumour angiogenesis has been challenged by new but still very controversial findings that tumour cells themselves may form blood channels. These results may lead to the redirecting of the molecular targets toward anti-angiogenesis in some tumours including glioblastoma multiform. Unfortunately, our knowledge regarding the immunological ignorance of the tumour is still limited. Even so, newly discovered molecules have shed light on novel pathways leading to the escape of the tumour from the immune system. Finally, significant limitations in our current experimental tumour models may soon be overcome by firstly, the development of models of reproducible organ-specific tumours in non-inbred animals and secondly applying genomics to individualize therapy for a particular tumour in a specific patient.

  15. MODEL ORGANISMS USED IN MOLECULAR BIOLOGY OR MEDICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Pandey Govind

    2011-11-01

    Full Text Available A model organism is a non-human species that is studied to understand specific biological phenomena with the expectation that investigations made in the organism model will provide insight into the workings of other organisms. The model organisms are widely used to explore potential causes and treatments for human as well as animal diseases when experiments on animals or humans would be unfeasible or considered less ethical. Studying model organisms may be informative, but care must be taken when generalizing from one organism to another. Often, model organisms are chosen on the basis that they are amenable to experimental manipulation. When researchers look for an organism to use in their studies, they look for several traits. Among these are size, generation time, accessibility, manipulation, genetics, conservation of mechanisms and potential economic benefit. As comparative molecular biology has become more common, some researchers have sought model organisms from a wider assortment of lineages on the tree of life. There are many model organisms, such as viruses (e.g., Phage lambda virus, Tobacco mosaic virus, etc., bacteria (e.g., Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Vibrio fischeri, etc., algae (e.g., Chlamydomonas reinhardtii, Emiliania huxleyi, etc., molds (e.g., Aspergillus nidulans, Neurospora crassa, etc., yeasts (e.g., Saccharomyces cerevisiae, Ustilago maydis, etc., higher plants (e.g., Arabidopsis thaliana, Lemna gibba, Lotus japonicus, Nicotiana tabaccum, Oryza sativa, Physcomitrella patens, Zea mays, etc. and animals (e.g., Caenorhabditis elegans, guinea pig, hamster, mouse, rat, cat, chicken, dog, frog, Hydra, Drosophila melanogaster fruit fly, fish, etc..

  16. Advances in Molecular Serotyping and Subtyping of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Pina M. Fratamico

    2016-05-01

    Full Text Available E. coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis (PFGE, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.

  17. Molecularly targeted therapy for advanced hepatocellularcarcinoma - a drug development crisis?

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    This review summarizes the current status of neoadjuvantradiation approaches in the treatment of pancreatic cancer,including a description of modern radiation techniques,and an overview on the literature regarding neoadjuvantradio- or radiochemotherapeutic strategies both forresectable and irresectable pancreatic cancer. Neoadjuvantchemoradiation for locally-advanced, primarily non- orborderline resectable pancreas cancer results in secondaryresectability in a substantial proportion of patients withconsecutively markedly improved overall prognosisand should be considered as possible alternative inpretreatment multidisciplinary evaluations. In resectablepancreatic cancer, outstanding results in terms ofresponse, local control and overall survival have beenobserved with neoadjuvant radio- or radiochemotherapy inseveral phase Ⅰ/Ⅱ trials, which justify further evaluationof this strategy. Further investigation of neoadjuvantchemoradiation strategies should be performed preferentiallyin randomized trials in order to improvecomparability of the current results with other treatmentmodalities. This should include the evaluation of optimalsequencing with newer and more potent systemicinduction therapy approaches. Advances in patientselection based on new molecular markers might be ofcrucial interest in this context. Finally modern externalbeam radiation techniques (intensity-modulated radiationtherapy, image-guided radiation therapy and stereotacticbody radiation therapy), new radiation qualities (protons,heavy ions) or combinations with alternative boostingtechniques widen the therapeutic window and contributeto the reduction of toxicity.

  18. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    Science.gov (United States)

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  19. Advances and applications of molecular cloning in clinical microbiology.

    Science.gov (United States)

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents. PMID:25023463

  20. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  1. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  2. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  3. Advanced pancreatic cancer: flourishing novel approaches in the era of biological therapy.

    Science.gov (United States)

    Chiu, Joanne W; Wong, Hilda; Leung, Roland; Pang, Roberta; Cheung, Tan-To; Fan, Sheung-Tat; Poon, Ronnie; Yau, Thomas

    2014-09-01

    The progress in the development of systemic treatment for advanced pancreatic cancer (APC) has been slow. The mainstream treatment remains using chemotherapy including gemcitabine, FOLFIRINOX, and nab-paclitaxel. Erlotinib is the only approved biological therapy with marginal benefit. Studies of agents targeting epidermal growth factor receptor, angiogenesis, and RAS signaling have not been satisfying, and the usefulness of targeted therapy in APC is uncertain. Understanding in molecular processes and tumor biology has opened the door for new treatment strategies such as targeting insulin-like growth factor 1 receptor, transforming growth factor β, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathway, and Notch pathway. New directions also include the upcoming immunotherapy and many novel agents that act on the microenvironment. The practice of personalized medicine using predictive biomarkers and pharmacogenomics signatures may also enhance the effectiveness of existing treatment. Future treatment approaches may involve comprehensive genomic assessment of tumor and integrated combinations of multiple agents to overcome treatment resistance. PMID:25117068

  4. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  5. The roles of integration in molecular systems biology.

    Science.gov (United States)

    O'Malley, Maureen A; Soyer, Orkun S

    2012-03-01

    A common way to think about scientific practice involves classifying it as hypothesis- or data-driven. We argue that although such distinctions might illuminate scientific practice very generally, they are not sufficient to understand the day-to-day dynamics of scientific activity and the development of programmes of research. One aspect of everyday scientific practice that is beginning to gain more attention is integration. This paper outlines what is meant by this term and how it has been discussed from scientific and philosophical points of view. We focus on methodological, data and explanatory integration, and show how they are connected. Then, using some examples from molecular systems biology, we will show how integration works in a range of inquiries to generate surprising insights and even new fields of research. From these examples we try to gain a broader perspective on integration in relation to the contexts of inquiry in which it is implemented. In today's environment of data-intensive large-scale science, integration has become both a practical and normative requirement with corresponding implications for meta-methodological accounts of scientific practice. We conclude with a discussion of why an understanding of integration and its dynamics is useful for philosophy of science and scientific practice in general.

  6. Do biological molecular machines act as Maxwell's demons?

    CERN Document Server

    Kurzynski, Michal

    2014-01-01

    In the intention of its creator, Maxwell's demon was thought to be an intelligent being able to perform work at the expense of the entropy reduction of a closed operating system. The perplexing notion of the demon's intelligence was formalized in terms of the memory and information processing by Szilard and followers. A non-informational formulation of the problem was proposed by Smoluchowski and popularized by Feynman as the ratchet and pawl machine. A. F. Huxley and followers adopted this way of thinking to propose numerous ratchet mechanisms of the protein molecular machines action, but no entropy reduction takes place for these models. More general models of protein dynamics have been proposed with a number of intramolecular states organized in a network of stochastic transitions. Here, a computer realization of such a network is investigated, displaying, like networks of the systems biology, a transition from the fractal organization on a small length-scale to the small-world organization on the large le...

  7. Diagnosis of Mycobacterium tuberculosis using molecular biology technology

    Institute of Scientific and Technical Information of China (English)

    Juan Garberi; Jorge Labrador; Federico Garberi; Juan Ezequiel Garberi; Julian Peneipil; Miguel Garberi; Luis Scigliano; Alcides Troncoso

    2011-01-01

    Objective:To present an integrated molecular biology dedicated system for tuberculosis diagnosis.Methods:One hundred and five sputum specimens from patients strongly suspected by clinical parameters of tuberculosis were studied by Ziehl-Neelsen staining, by cultivation on solid medium and by a balanced heminested fluorometricPCR system (OrangeG3TB) that could preserve worker safety and produce a rather pure material free of potential inhibitors. DNA amplification was performed in a low cost tuberculosis termocycler-fluorometer. Produced double stranded DNA was flurometrically detected. The whole reaction was conducted in one single tube which would not be opened after adding the processed sample in order to minimize the risk of cross contamination with amplicons.Results: The assay was able to detect30 bacillus per sample mL with99.8% interassay variation coefficient.PCR was positive in23 (21.9%) tested samples (21 of them were smear negative). In our study it showed a preliminary sensitivity of 94.5% for sputum and an overall specificity of98.7%.Conclusions:Total run time of the test is4 h with2.5 real working time. AllPCR positive samples are also positive by microbiological culture and clinical criteria. Results show that it could be a very useful tool to increase detection efficiency of tuberculosis disease in low bacilus load samples. Furthermore, its low cost and friendly using make it feasible to run in poor regions.

  8. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 26. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  9. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 27. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  10. Signal processing for molecular and cellular biological physics: an emerging field

    Science.gov (United States)

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  11. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  12. The stable isotopic signature of biologically produced molecular hydrogen (H2)

    NARCIS (Netherlands)

    Walter, S.; Laukenmann, S.; Stams, A.J.M.; Vollmer, M.K.; Gleixner, G.; Roeckmann, T.

    2011-01-01

    Biologically produced molecular hydrogen (H2) is characterized by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of molecular hydrogen (H2

  13. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  14. Book Review of "The Molecular Biology of Cancer" by Stella Pelengaris, Michael Khan (Editors

    Directory of Open Access Journals (Sweden)

    Schmidt Christian

    2007-11-01

    Full Text Available Abstract Here, a review of "The Molecular Biology of Cancer" (Stella Pelengaris and Michael Khan [Editors] is given. The detailed description of the book is provided here: Pelengaris S, Khan M (Eds: The Molecular Biology of Cancer; Blackwell Publishing, Oxford (U.K.; 2006. 531 pages, 214 illustrations, ISBN 9-78140-511-814-9, £31.99.

  15. 2010 CELL AND MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 13-18, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2010-06-18

    The Cellular and Molecular Fungal Biology Conference provides a forum for presentation of the latest advances in fungal research with an emphasis on filamentous fungi. This open-registration scientific meeting brings together the leading scientists from academia, government and industry to discuss current research results and future directions at Holderness School, an outstanding venue for scientific interaction. A key objective of the conference is to foster interaction among scientists working on model fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa and Aspergillus nidulans and scientists working on a variety of filamentous fungi whose laboratory tractability is often inversely proportional to their medical, industrial or ecological importance. Sessions will be devoted to Systems Biology, Fungi and Cellulosic Biomass, Small RNAs, Population Genomics, Symbioses, Pathogenesis, Membrane Trafficking and Polarity, and Cytoskeleton and Motors. A session will also be devoted to hot topics picked from abstracts. The CMFB conference provides a unique opportunity to examine the breadth of fungal biology in a small meeting format that encourages in-depth discussion among the attendees.

  16. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  17. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    Science.gov (United States)

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival. PMID:23339016

  18. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    Advances in on-line monitoring of nutrient salt concentrations and computer technology has created a large potential for the implementation of advanced and complex control strategies in biological nutrient removal systems. The majority of wastewater treatment plants today are operated with very...

  19. Molecular biological enhancement of coal biodesulfurization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  20. Advances in Biological Water-saving Research: Challenge and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Lun Shan; Xiping Deng; Suiqi Zhang

    2006-01-01

    Increasing the efficiency of water use by crops continues to escalate as a topic of concern because drought is a restrictive environmental factor for crop productivity worldwide. Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture. Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yield now provides us with an opportunity to identify and then precisely select for physiological and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goat. A definition of biological water-saving measures is proposed which embraces improvements in water-use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of biological water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of biological water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.

  1. Advances and Computational Tools towards Predictable Design in Biological Engineering

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    2014-01-01

    Full Text Available The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  2. Update in Molecular Biology for Teachers from Public Schools: a Knowledge Exchange Experience.

    Directory of Open Access Journals (Sweden)

    C.R. Córdula

    2009-05-01

    Full Text Available One  of the goals of the graduate Program in Molecular Biology from UNIFESP (PrMB -UNIFESP is to contribute for continuing education of biology teachers from public high schools. A close relation between university and public schools is an important channel for dissemination of scientific knowledge. Thus, a 40h Molecular Biology updating course was offered to 20 high school teachers. The objective was to discuss genomic and proteomic advances and their application. The course was organized by graduate students  from PrMB -UNIFESP. Three groups ofstudents were formed, two being responsible for theorical and practical classes and one for global logistic including searching for financial support. The themes presented to the teachers were flow of genetic information,  recombinant DNA, gene cloning, transgenic plants and animals, mutation, super bacteria and stem cell. The teachers also had hands-on classes including DNA extraction, PCR, gene cloning and SDS-PAGE. The teachers received an assignment to go back to their s chools and do some activity with their students that would be related to the themes discussed. The students produced videos, discussions, posters, theater, experimental models and pratical classes related to the course themes. After 3 months the teachers r eturned to show their students’ work.  We conclude that information was transmitted to the teachers, updating them, and to high school students, that learned science in a entertaining way. Also, the graduate students had an experience on how to organize a c ourse including all its responsibilities.

  3. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    Science.gov (United States)

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  4. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences.

  5. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Directory of Open Access Journals (Sweden)

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  6. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  7. 非小细胞肺癌分子标志物研究进展%Advance on molecular markers of non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    甄振华

    2011-01-01

    Clinical studies on non-small-cell lung cancer molecular markers have advanced lots of progress, which are benifited from the tumor molecular biology technology of development.The nearest studies and advances of non-small-cell lung cancer molecular markers are included in this paper.%近年来,随着肿瘤分子生物学的不断发展,针对非小细胞肺癌(NSCLC)分子标志物的临床研究正如火如荼地开展,文章就NSCLC领域分子标志物的研究进展进行综述.

  8. Advanced treatment of biologically pretreated coking wastewater by intensified zero-valent iron process (IZVI) combined with anaerobic filter and biological aerated filter (AF/BAF)

    Institute of Scientific and Technical Information of China (English)

    潘碌亭; 韩悦; 吴锦峰

    2015-01-01

    Experiments were conducted to investigate the behavior of the sequential system of intensified zero-valent iron process (IZVI) and anaerobic filter and biological aerated filter (AF/BAF) reactors for advanced treatment of biologically pretreated coking wastewater. Particular attention was paid to the performance of the integrated system for the removal of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total nitrogen (TN). The average removal efficiencies of COD, NH3-N and TN were 76.28%, 96.76% and 59.97%, with the average effluent mass concentrations of 56, 0.53 and 18.83 mg/L, respectively, reaching the first grade of the national discharge standard. Moreover, the results of gas chromatography/mass spectrum (GC/MS) and gel permeation chromatography (GPC) analysis demonstrated that the refractory organic compounds with high relative molecular mass were partly removed in IZVI process by the function of oxidation-reduction, flocculation and adsorption which could also enhance the biodegradability of the system effluent. The removal efficiencies of NH3-N and TN were achieved mainly in the subsequent AF/BAF reactors by nitrification and denitrification. Overall, the results obtained show that the application of IZVI in combination with AF/BAF is a promising technology for advanced treatment of biologically pretreated coking wastewater.

  9. 78 FR 68058 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Science.gov (United States)

    2013-11-13

    ... AGENCY Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and..., ``Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and... period was published on September 30, 2013. At the request of the American Chemistry Council, the...

  10. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment

    Science.gov (United States)

    Polireddy, Kishore; Chen, Qi

    2016-01-01

    Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.

  11. Recent advances in the cell biology of polycystic kidney disease.

    Science.gov (United States)

    Smyth, Brendan J; Snyder, Richard W; Balkovetz, Daniel F; Lipschutz, Joshua H

    2003-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a significant familial disorder, crossing multiple ethnicities as well as organ systems. The goal of understanding and, ultimately, curing ADPKD has fostered collaborative efforts among many laboratories, mustered on by the opportunity to probe fundamental cellular biology. Here we review what is known about ADPKD including well-accepted data such as the identification of the causative genes and the fact that PKD1 and PKD2 act in the same pathway, fairly well-accepted concepts such as the "two-hit hypothesis," and somewhat confusing information regarding polycystin-1 and -2 localization and protein interactions. Special attention is paid to the recently discovered role of the cilium in polycystic kidney disease and the model it suggests. Studying ADPKD is important, not only as an evaluation of a multisystem disorder that spans a lifetime, but as a testament to the achievements of modern biology and medicine.

  12. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed. PMID:25722878

  13. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  14. Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-06-27

    This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.

  15. CAM Modalities Can Stimulate Advances in Theoretical Biology

    OpenAIRE

    Alex Hankey

    2005-01-01

    Most complementary medicine is distinguished by not being supported by underlying theory accepted by Western science. However, for those who accept their validity, complementary and alternative medicine (CAM) modalities offer clues to understanding physiology and medicine more deeply. Ayurveda and vibrational medicine are stimulating new approaches to biological regulation. The new biophysics can be integrated to yield a single consistent theory, which may well underly much of CAM—a true ‘...

  16. 2005年计算分子生物学研究国际会议(RECOMB)%The Ninth Annual International Conference on Research in Computational Molecular Biology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Ninth Annual International Conference on Research in Computational Molecular Biology (RECOMB 2005) will be held on the MIT campus in Cambridge, Massachusetts, USA. RECOMB 2005 is being co-hosted by the Eli & Edythe L. Broad Institute of MIT and Harvard, and Boston University's Center for Advanced Genomic Technology.

  17. 2012 PLANT MOLECULAR BIOLOGY GORDON RESEARCH CONFERENCE, JULY 15-20, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  18. Molecular eco-systems biology: towards an understanding of community function

    OpenAIRE

    Raes, J.; Bork, P.

    2008-01-01

    Systems-biology approaches, which are driven by genome sequencing and high-throughput functional genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we discuss the necessary data types that ar...

  19. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    Science.gov (United States)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  20. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization.

    Science.gov (United States)

    Huang, Jian-Zhong; E, Zhi-Guo; Zhang, Hua-Li; Shu, Qing-Yao

    2014-12-01

    The exploitation of male sterility systems has enabled the commercialization of heterosis in rice, with greatly increased yield and total production of this major staple food crop. Hybrid rice, which was adopted in the 1970s, now covers nearly 13.6 million hectares each year in China alone. Various types of cytoplasmic male sterility (CMS) and environment-conditioned genic male sterility (EGMS) systems have been applied in hybrid rice production. In this paper, recent advances in genetics, biochemistry, and molecular biology are reviewed with an emphasis on major male sterility systems in rice: five CMS systems, i.e., BT-, HL-, WA-, LD- and CW- CMS, and two EGMS systems, i.e., photoperiod- and temperature-sensitive genic male sterility (P/TGMS). The interaction of chimeric mitochondrial genes with nuclear genes causes CMS, which may be restored by restorer of fertility (Rf) genes. The PGMS, on the other hand, is conditioned by a non-coding RNA gene. A survey of the various CMS and EGMS lines used in hybrid rice production over the past three decades shows that the two-line system utilizing EGMS lines is playing a steadily larger role and TGMS lines predominate the current two-line system for hybrid rice production. The findings and experience gained during development and application of, and research on male sterility in rice not only advanced our understanding but also shed light on applications to other crops.

  1. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  2. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    OpenAIRE

    Porter, John R

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information literacy instruction and then proceed to select, update, and write about a current research topic in an upper-level cell biology course is described....

  3. Can the natural diversity of quorum sensing advance synthetic biology?

    Directory of Open Access Journals (Sweden)

    Rene Michele Davis

    2015-03-01

    Full Text Available Quorum-sensing networks enable bacteria to sense and respond to chemical signals produced by neighboring bacteria. They are widespread: over one hundred morphologically and genetically distinct species of eubacteria are known to use quorum sensing to control gene expression. This diversity suggests the potential to use natural protein variants to engineer parallel, input-specific, cell-cell communication pathways. However, only three distinct signaling pathways, Lux, Las, and Rhl, have been adapted for and broadly used in engineered systems. The paucity of unique quorum-sensing systems and their propensity for crosstalk limits the usefulness of our current quorum-sensing toolkit. This review discusses the need for more signaling pathways, roadblocks to using multiple pathways in parallel, and strategies for expanding the quorum-sensing toolbox for synthetic biology.

  4. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    Science.gov (United States)

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  5. Mass spectrometric determination of early and advanced glycation in biology.

    Science.gov (United States)

    Rabbani, Naila; Ashour, Amal; Thornalley, Paul J

    2016-08-01

    Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1-5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and N(ε)-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them - amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine - particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and

  6. Recent advances in the biological study of personality disorders.

    Science.gov (United States)

    New, Antonia S; Goodman, Marianne; Triebwasser, Joseph; Siever, Larry J

    2008-09-01

    While it is premature to provide a simple model for the vulnerability to the development of either borderline (BPD) or schizotypal (SPD) personality disorder, it is clear that these heritable disorders lend themselves to fruitful neurobiological exploration. The most promising findings in BPD suggest that a diminished top-down control of affective responses, which is likely to relate to deceased responsiveness of specific midline regions of prefrontal cortex, may underlie the affective hyperresponsiveness in this disorder. In addition, genetic and neuroendocrine and molecular neuroimaging findings point to a role for serotonin in this affective disinhibition. Clearly SPD falls within the schizophrenia spectrum, but precisely the nature of what predicts full-blown schizophrenia as opposed to the milder symptoms of SPD is not yet clear.

  7. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  8. Células madre: generalidades, eventos biológicos y moleculares Stem cells: general aspects, biological and molecular events

    Directory of Open Access Journals (Sweden)

    Mónica María Cortés Márquez

    2008-09-01

    Full Text Available Las autorrenovación y la diferenciación son características de las células madre que varían entre los diferentes tipos celulares según el tejido en el que se encuentren y el microambiente que las rodee. En ambos procesos intervienen inhibidores del ciclo celular, genes implicados en rearreglos cromosómicos, proteínas del desarrollo esencial y vías de señalización específicas. La autorrenovación está regulada por diversos mecanismos, entre los cuales se destacan las vías Wnt, Notch y Hedgehog, y los factores BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 y sus páralogos. Los adelantos en el conocimiento de la biología de las células madre y de los mecanismos moleculares que regulan la autorrenovación y la diferenciación han convertido a estas células en una importante promesa para la investigación básica y aplicada. Self-renewal capacity and differentiation are features of stem cells that vary among the different cellular types according to the tissue in which they reside and the surrounding microenvironment. Cellular cycle inhibitors, genes implied in chromosomal rearrangements, essential development proteins and specific signaling pathways intervene in these processes. Self-renewal is regulated by different mechanisms, the most important of which are the Wnt, Notch and Hedgehog pathways, and the factors BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 and their paralogs. Advances in the knowledge of stem cells biology and of the molecular mechanisms that influence their selfrenewal and differentiation have made these cells an important promise for both basic and appliedresearch.

  9. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    Science.gov (United States)

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  10. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  11. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  12. Recent advances in the chemical biology of nitroxyl (HNO) detection and generation.

    Science.gov (United States)

    Miao, Zhengrui; King, S Bruce

    2016-07-01

    Nitroxyl or azanone (HNO) represents the redox-related (one electron reduced and protonated) relative of the well-known biological signaling molecule nitric oxide (NO). Despite the close structural similarity to NO, defined biological roles and endogenous formation of HNO remain unclear due to the high reactivity of HNO with itself, soft nucleophiles and transition metals. While significant work has been accomplished in terms of the physiology, biology and chemistry of HNO, important and clarifying work regarding HNO detection and formation has occurred within the last 10 years. This review summarizes advances in the areas of HNO detection and donation and their application to normal and pathological biology. Such chemical biological tools allow a deeper understanding of biological HNO formation and the role that HNO plays in a variety of physiological systems. PMID:27108951

  13. 2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Judith Berman

    2012-06-22

    The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  14. Progress in nucleic acid research and molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, W.E. (Biology Div., Oak Ridge National Lab., Oak Ridge, TN (US)); Moldave, K. (Univ. of California, Santa Cruz, CA (US))

    1989-01-01

    This book is organized under the following headings: Transposable elements in Drosophilia; Regulation of gene expression; Structure and function of repetitive and unusual sequences; Retroviruses; Molecular analysis of chromosomal translocation and gene insertion.

  15. Workshop in computational molecular biology, April 15, 1991--April 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tavare, S.

    1995-04-12

    Funds from this award were used to the Workshop in Computational Molecular Biology, `91 Symposium entitled Interface: Computing Science and Statistics, Seattle, Washington, April 21, 1991; the Workshop in Statistical Issues in Molecular Biology held at Stanford, California, August 8, 1993; and the Session on Population Genetics a part of the 56th Annual Meeting, Institute of Mathematical Statistics, San Francisco, California, August 9, 1993.

  16. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology

    OpenAIRE

    Creager, Angela N. H.

    2009-01-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformat...

  17. Recent advance in the molecular genetics of Wilson disease and hereditary hemochromatosis.

    Science.gov (United States)

    Lv, Tingxia; Li, Xiaojin; Zhang, Wei; Zhao, Xinyan; Ou, Xiaojuan; Huang, Jian

    2016-10-01

    Metabolic liver diseases such as Wilson disease (WD) and hereditary hemochromatosis (HH) possess complicated pathogenesis and typical hereditary characteristics with the hallmarks of a deficiency in metal metabolism. Mutations in genes encoding ATPase, Cu + transporting, beta polypeptide (ATP7B) and hemochromatosis (HFE) or several non-HFE genes are considered to be causative for WD and HH, respectively. Although the identification of novel mutations in ATP7B for WD and HFE or the non-HFE genes for HH has increased, especially with the application of whole genome sequencing technology in recent years, the biological function of the identified mutations, as well as genotype-phenotype correlations remain to be explored. Further analysis of the causative gene mutation would be critical to clarify the mechanisms underlying specific disease phenotypes. In this review, we therefore summarize the recent advances in the molecular genetics of WD and HH including the updated mutation spectrums and the correlation between genotype and phenotype, with an emphasis on biological functional studies of the individual mutations identified in WD and HH. The weakness of the current functional studies and analysis for the clinical association of the individual mutation was also discussed. These works are essential for the understanding of the association between genotypes and phenotypes of these inherited metabolic liver diseases.

  18. Biology and biotechnological advances in Jatropha curcas - A biodiesel plant

    KAUST Repository

    Reddy, Muppala P.

    2009-10-31

    Increasing global demand for energy, the impending depletion of fossil fuels, and concern over global climate change have lead to a resurgence in the development of alternative energy sources. Bio-fuels and bio-energy encompass a wide range of alternative sources of energy of biological origin, and offer excellent, environmentally friendly opportunities to address these issues. The recognition that Jatropha oil can yield high quality biodiesel has led to a surge of interest in Jatropha across the globe, more so in view of the potential for avoiding the dilemma of food vs fuel. Hardiness, rapid growth, easy propagation, short gestation period, wide adaptation, and optimum plant size combine to make this species suitable for sustainable cultivation on wastelands. Besides biodiesel from the seed, the plant produces several useful products that also have commercial value. Large scale cultivation remains the single most important factor that will ultimately determine the success of Jatropha as a source of bio-fuel. The limited knowledge of the genetics of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a bio-fuel crop. Despite the optimal protein content and composition of the pressed cake, the presence of phorbol esters makes it unsuitable for consumption by livestock. A non-toxic variety with low or no phorbol ester content has been identified from Mexico, and the utility of pressed cake from this variety as livestock feed has been demonstrated successfully. In the absence of any morphological differences, identification of linked markers for toxic/non-toxic varieties will add value to the crop and facilitate further improvement. This chapter discusses current efforts towards assessing the diversity and phylogeny of Jatropha, identification of specific markers for toxic and non-toxic varieties, and aspects of micropropagation and genetic

  19. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    Science.gov (United States)

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  20. Micropollutant removal from municipal wastewater: from conventional treatments to advanced biological processes

    OpenAIRE

    Margot, Jonas

    2015-01-01

    Many micropollutants present in municipal wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs), and may generate adverse effects on aquatic life. The objective of this thesis was to study and develop various options to improve micropollutant removal from municipal wastewaters. Various technologies were investigated, from conventional biological treatments to advanced physico-chemical and biological processes such as ozonati...

  1. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    Science.gov (United States)

    Porter, John R.

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information…

  2. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    NARCIS (Netherlands)

    Ren, Yjin

    2005-01-01

    : Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelatio

  3. The stable isotopic signature of biologically produced molecular hydrogen (H-2)

    NARCIS (Netherlands)

    Walter, S.; Laukenmann, S.; Stams, A.J.M.; Vollmer, M.K.; Gleixner, G.; Rockmann, T.

    2012-01-01

    Biologically produced molecular hydrogen (H-2) is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H-2. Large uncertaint

  4. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology

    OpenAIRE

    Jaime M. Cyphert; Trempus, Carol S.; Stavros Garantziotis

    2015-01-01

    Hyaluronan signaling properties are unique among other biologically active molecules, that they are apparently not influenced by postsynthetic molecular modification, but by hyaluronan fragment size. This review summarizes the current knowledge about the generation of hyaluronan fragments of different size and size-dependent differences in hyaluronan signaling as well as their downstream biological effects.

  5. The stable isotopic signature of biologically produced molecular hydrogen (H2)

    NARCIS (Netherlands)

    Walter, S.; Laukenmann, S.; Stams, A.J.M.; Vollmer, M.K.; Gleixner, G.; Roeckmann, T.

    2012-01-01

    Biologically produced molecular hydrogen (H2) is characterised by a very strong depletion in deuterium. Although the biological source to the atmosphere is small compared to photochemical or combustion sources, it makes an important contribution to the global isotope budget of H2. Large uncertaintie

  6. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  7. Design, synthesis, and biological evaluation of potent discodermolide fluorescent and photoaffinity molecular probes.

    Science.gov (United States)

    Smith, Amos B; Rucker, Paul V; Brouard, Ignacio; Freeze, B Scott; Xia, Shujun; Horwitz, Susan Band

    2005-11-10

    [structure: see text] The design, synthesis, and biological evaluation of a series of (+)-discodermolide molecular probes possessing photoaffinity and fluorescent appendages has been achieved. Stereoselective olefin cross-metathesis comprised a key tactic for construction of two of the molecular probes. Three photoaffinity probes were radiolabeled with tritium.

  8. The challenges for molecular nutrition research 4: the "nutritional systems biology level"

    NARCIS (Netherlands)

    Ommen, B. van; Cavallieri, D.; Roche, H.M.; Klein, U.I.; Daniel, H.

    2008-01-01

    Nutritional systems biology may be defined as the ultimate goal of molecular nutrition research, where all relevant aspects of regulation of metabolism in health and disease states at all levels of its complexity are taken into account to describe the molecular physiology of nutritional processes. T

  9. HMM Search for Apoptotic Domains (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Hattori, Masahiro; Kanehisa, Minoru

    2000-01-01

    For the purpose of analyzing apoptotic molecular interactions, we have developed a knowledge base, which consists of apoptotic molecular interactions, together with the WWW interface for it. This database and the user interface enabled us to find out entries containing various information about cell death. This information tells us that the apoptotic molecular interactions are likely to be controlled under a series of specific conserved domains. Thus, the viewpoint of domain seems to be more ...

  10. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social studies of…

  11. Molecular probes for nonlinear optical imaging of biological membranes

    Science.gov (United States)

    Blanchard-Desce, Mireille H.; Ventelon, Lionel; Charier, Sandrine; Moreaux, Laurent; Mertz, Jerome

    2001-12-01

    Second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) are nonlinear optical (NLO) phenomena that scale with excitation intensity squared, and hence give rise to an intrinsic 3-dimensional resolution when used in microscopic imaging. TPEF microscopy has gained widespread popularity in the biology community whereas SHG microscopy promises to be a powerful tool because of its sensitivity to local asymmetry. We have implemented an approach toward the design of NLO-probes specifically adapted for SHG and/or TPEF imaging of biological membranes. Our strategy is based on the design of nanoscale amphiphilic NLO-phores. We have prepared symmetrical bolaamphiphilic fluorophores combining very high two-photon absorption (TPA) cross-sections in the visible red region and affinity for cellular membranes. Their incorporation and orientation in lipid membranes can be monitored via TPEF anisotropy. We have also prepared amphiphilic push-pull chromophores exhibiting both large TPA cross-sections and very large first hyperpolarizabilities in the near-IR region. These NLO-probes have proved to be particularly useful for imaging of biological membranes by simultaneous SHG and TPEF microscopy and offer attractive prospects for real-time imaging of fundamental biological processes such as adhesion, fusion or reporting of membrane potentials.

  12. How was teleology eliminated in early molecular biology?

    Science.gov (United States)

    Sloan, Phillip R

    2012-03-01

    This paper approaches the issue of the status of teleological reasoning in contemporary biology through a historical examination of events of the 1930s that surrounded Niels Bohr's efforts to introduce 'complementarity' into biological discussions. The paper examines responses of three theoretical physicists who engaged boundary questions between the biological and physical sciences in this period in response to Bohr-Ernst Pascual Jordan (1902-80), Erwin Schrödinger (1887-1961), and Max Delbrück (1906-81). It is claimed that none of these physicists sufficiently understood Bohr's 'critical' teleological arguments, which are traced to the lineage of Kant and Harald Høffding and their respective resolutions of the Antinomy of Teleological Judgment. The positions of these four historical actors are discussed in terms of Ernst Mayr's distinction of 'teleological,' 'teleomatic,' and 'teleonomic' explanations. A return to some of the views articulated by Bohr, and behind him, to Høffding and Kant, is claimed to provide a framework for reintroducing a 'critical' teleology into biological discussions. PMID:22326083

  13. A conundrum in molecular toxicology: molecular and biological changes during neoplastic transformation of human cells.

    Science.gov (United States)

    Milo, G E; Shuler, C F; Lee, H; Casto, B C

    1995-12-01

    The process of multistage carcinogenesis lends itself to the concept that the effects of carcinogens are mediated through dose-related, multi-hit, linear changes. Multiple in vitro model systems have been developed that are designed to examine the cellular changes associated with the progression of cells through the different stages in the process; however, these systems may have inherent limitations due to the cell lines used for these studies, the manner of assessing the effects of the carcinogens, and the subsequent growth and differentiation of the exposed cells. Each of these variables results in increasing levels of uncertainty relative to the correlation of the events with the actual process of human tumor development. Therefore, the prediction of the ultimate effect of any carcinogen is difficult. Moreover, relationships between individual biological endpoints resulting from carcinogen treatment appear at best to be approximations. The presence of an activated carcinogen inside the cell can give rise to multiple outcomes, only some of which may be critical events. For example, site-specific modification of the 12th and 13th codons of H-ras is different than that in the adjacent 14th and 15th codons. It is interesting to speculate what effect these differences might have on a biological outcome, e.g., transformation to anchorage-independent growth. The use of different model systems to examine the effects of activated carcinogens also creates additional problems. Comparisons of in vitro transformed cells with similar cells isolated from human tumors indicate that the culture environment appears to influence the expression of a particular phenotype, in that human tumor cells in culture express many of the same parameters as those found in cells transformed with carcinogens in vitro. If the process of transformation is linear, then less aggressive phenotypes should progress to a more aggressive transformed stage. However, in carcinogen-transformed human cells

  14. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank;

    2009-01-01

    Initially, molecular techniques were used to detect and distinguish Plasmodiophora pathotypes in soil. Meanwhile, chromosomes from 2.2 Mb to 680 kb are characterized and the total genome size is estimated to be approximately 20 Mb. Furthermore, the genomic gene structure and the cDNA structure of...

  15. Molecular dynamics simulation of a charged biological membrane

    NARCIS (Netherlands)

    López Cascales, J.J.; García de la Torre, J.; Marrink, S.J.; Berendsen, H.J.C.

    1996-01-01

    A molecular dynamics simulation of a membrane with net charge in its liquid-crystalline state was carried out. It was modeled by dipalmitoylphosphatidylserine lipids with net charge, sodium ions as counterions and water molecules. The behavior of this membrane differs from that was shown by other me

  16. Advances Towards Synthetic Machines at the Molecular and Nanoscale Level

    Directory of Open Access Journals (Sweden)

    Kristina Konstas

    2010-06-01

    Full Text Available The fabrication of increasingly smaller machines to the nanometer scale can be achieved by either a “top-down” or “bottom-up” approach. While the former is reaching its limits of resolution, the latter is showing promise for the assembly of molecular components, in a comparable approach to natural systems, to produce functioning ensembles in a controlled and predetermined manner. In this review we focus on recent progress in molecular systems that act as molecular machine prototypes such as switches, motors, vehicles and logic operators.

  17. Neutrons, deuteration and synchrotron X-rays for the study of biology and advanced materials: A match made in atoms..

    International Nuclear Information System (INIS)

    Together, the Australian Synchrotron in Melbourne and the OPAL research reactor, at the Bragg Institute in Sydney represent Australia's largest ever investment in scientific infrastructure. Both facilities commenced operation in 2007, have passed through their infancy and adolescence to take their place amongst the rank of top-flight international user facilities. Far from middle-aged, these two vibrant landmark facilities (each with 10 operational beamlines) and along with the National Deuteration Facility at ANSTO have provided transformational research capabilities for the Australian scientific community. Although modest in size compared to the well-established international competition, both institutions are producing excellent amounts of high-quality research with the Bragg Institute and the Australian Synchrotron generating more than 200 and 450 peer-reviewed publications per annum respectively. At first glance both synchrotron and neutron sources show similar scientific profiles, encompassing an extremely wide range of disciplines: materials, chemistry, biology, condensed matter physics, nanotechnology, engineering, geosciences, archaeology and studies relating to cultural heritage. Common to both are advanced capabilities for the study of atomic and molecular structure, as well as operational studies of functional materials under a diverse range of extreme environments. A more forensic examination however reveals fundamental differences in their DNA. While the biological, pharmaceutical and medical research communities drive substantial capability development and research outcomes at the Australian Synchrotron, neutron scattering and molecular deuteration at the Bragg Institute provides a focus for studies in soft condensed matter, physical and inorganic chemistry, solid state physics and crystallography. Although their respective probes are generated from different parts of the atom and interact with matter in fundamentally different ways, my

  18. Advances in the Management of Juvenile Idiopathic Arthritis : The coming of age of biologic treatment

    NARCIS (Netherlands)

    J. Anink (Janneke)

    2015-01-01

    markdownabstract__Abstract__ The main aim of this thesis was the evaluation of advances in the management of JIA. It focused on developments in the biologic treatment of JIA, using data from the ABC register. Additionally, it explored new biomarkers and methods for monitoring the disease activity,

  19. Advanced Level Biology Teachers' Attitudes towards Assessment and Their Engagement in Assessment for Learning

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2015-01-01

    This paper reports on a Mixed Methods study involving an investigation into the attitudes of advanced level biology teachers towards assessment and describes the teachers' experiences while being engaged in Assessment for Learning (AfL) practices such as sharing of learning objectives and peer- and self-assessment. Quantitative data were collected…

  20. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  1. The physiology and molecular biology of sponge tissues.

    Science.gov (United States)

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  2. RVB1/RVB2: running rings around molecular biology

    OpenAIRE

    Jha, Sudhakar; Dutta, Anindya

    2009-01-01

    RVB1/RVB2 are two highly conserved members of the AAA+ family that are present in different protein and nucleoprotein complexes. Recent studies implicate that RVB-containing complexes play a role in variable cellular processes such as transcription, DNA damage response, snoRNP assembly, cellular transformation and cancer metastasis. In this review we discuss recent advances in the understanding of RVB-containing complexes and the functions of RVBs in these pathways.

  3. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    OpenAIRE

    de Graaf, Albert A.; Freidig, Andreas P.; Baukje De Roos; Neema Jamshidi; Matthias Heinemann; Rullmann, Johan A.C.; Hall, Kevin D.; Martin Adiels; Ben van Ommen

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  4. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    OpenAIRE

    de Graaf, A A; Freidig, A.P.; Roos, B.; Jamshidi, N.; M. Heinemann; Rullmann, J.A.C.; Hall, K. D.; Adiels, M.; Ommen, B. van

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  5. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    OpenAIRE

    de Graaf, Albert A.; Freidig, Andreas P.; de Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben; Bourne, Philip E.

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today’s important nutritional research questions poses a challenge for modeling to become truly integrative in the co...

  6. Optimal Information Retrieval Model for Molecular Biology Information

    OpenAIRE

    Paulsen, Jon Rune

    2007-01-01

    Search engines for biological information are not a new technology. Since the 1960s computers have emerged as an important tool for biologists. Online Mendelian Inheritance in Man (OMIM) is a comprehensive catalogue containing approximately 14 000 records with information about human genes and genetic disorders. An approach called Latent Semantic Indexing (LSI) was introduced in 1990 that is based on Singular Value Decomposition (SVD). This approach improved the information retrieval and red...

  7. Biomarkers of Aging: From Function to Molecular Biology

    OpenAIRE

    Karl-Heinz Wagner; David Cameron-Smith; Barbara Wessner; Bernhard Franzke

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a sing...

  8. MODEL ORGANISMS USED IN MOLECULAR BIOLOGY OR MEDICAL RESEARCH

    OpenAIRE

    Pandey Govind

    2011-01-01

    A model organism is a non-human species that is studied to understand specific biological phenomena with the expectation that investigations made in the organism model will provide insight into the workings of other organisms. The model organisms are widely used to explore potential causes and treatments for human as well as animal diseases when experiments on animals or humans would be unfeasible or considered less ethical. Studying model organisms may be informative, but care must be taken ...

  9. Molecular biology of Philadelphia-negative myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Paulo Vidal Campregher

    2012-01-01

    Full Text Available Myeloproliferative neoplasms are clonal diseases of hematopoietic stem cells characterized by myeloid hyperplasia and increased risk of developing acute myeloid leukemia. Myeloproliferative neoplasms are caused, as any other malignancy, by genetic defects that culminate in the neoplastic phenotype. In the past six years, since the identification of JAK2V617F, we have experienced a substantial increase in our knowledge about the genetic mechanisms involved in the genesis of myeloproliferative neoplasms. Mutations described in several genes have revealed a considerable degree of molecular homogeneity between different subtypes of myeloproliferative neoplasms. At the same time, the molecular differences between each subtype have become clearer. While mutations in several genes, such as JAK2, myeloproliferative leukemia (MPL and LNK have been validated in functional assays or animal models as causative mutations, the roles of other recurring mutations in the development of disease, such as TET2 and ASXL1 remain to be elucidated. In this review we will examine the most prevalent recurring gene mutations found in myeloproliferative neoplasms and their molecular consequences.

  10. Molecular biology on the ICU. From understanding to treating sepsis.

    Science.gov (United States)

    Winning, J; Claus, R A; Huse, K; Bauer, M

    2006-05-01

    Mounting evidence suggests that beside well established factors, such as virulence of pathogens or site of infection, individual differences in disease manifestation are a result of the genetic predisposition of the patient on an Intensive Care Unit (ICU). Specific genetic factors might not only predict the risk to acquire severe infections but also to develop organ dysfunction or ultimately to die. Thus, the advent of molecular techniques allowing screening for a wide variety of genetic factors, such as single nucleotide polymorphisms in genes controlling expression of important mediator systems in patients as well as their purposeful targeting in animal models of sepsis, are revolutionizing understanding of pathophysiology in the critically ill. Molecular tools are about to challenge ''state-of-the-art'' diagnostic tests such as blood culture as they not only increase sensitivity but dramatically reduce time requirements to identify pathogens and their resistance patterns. Similarly, knowledge of genetic factors might in the near future help to identify ''patients at risk'', i.e. those with a high likelihood to develop organ dysfunction or to guide therapeutic interventions in particular regarding resource-consuming and/or expensive therapies (''theragnostics''). While therapeutic options in molecular intensive care medicine, such as stem cells in the treatment of organ failure or therapeutic gene transfer are possible along the road and might become an option in the future, recombinant DNA technology has already a well defined role in the production of recombinant human proteins from insulin to activated protein C. PMID:16675935

  11. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  12. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  13. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies. PMID:25938277

  14. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  15. Molecular Biology and Genetics of the Acetate-Utilizing Methanogenic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Gunsalus

    2003-07-21

    Methane biosynthesis by the Methanosarcina species, in contrast to other methanogens, occurs from the full range of methanogenic substrates that include acetate, methanol, tri-methyl, di-methyl, and methyl-amine, methyl-sulfides, and in limited instances, H2/CO2. The Methanosarcina are also versatile in their ability to adapt and grow in habitats of varying osmolarity ranging from fresh water environments, marine environments, and to hyper saline environments (ca to 1.2 M NaCl). To facilitate studies that address the biochemistry, molecular biology and physiology of these organisms, we have constructed a whole-genome microarray to identify classes of differentially expressed genes in M. mazei strain Goe1. We propose to further identify and examine how genes and their proteins involved in the synthesis and transport of osmolytes in the cell are regulated. These compounds include N-epsilon-acetyl-beta-lysine, alpha-glutamate, betaine, and potassium whose levels within the cell are modulated in order to provide appropriate osmotic balance. We will identify differentially expressed genes involved in hydrogen and carbon dioxide sequestration since M. mazei strain Goe1 is currently the only practical model for such study. Finally, we will explore the essential roles of two metals, molybdate and tungstate, in methanogen regulation and metabolism of these environmentally essential organsims. The above studies will advance our general understanding of how methanogens respond to their environmental signals, and adapt by adjusting their physiology to thrive in changing anaerobic habitats whether natural or man-made.

  16. Angiostrongylus cantonensis: a review of its distribution, molecular biology and clinical significance as a human pathogen.

    Science.gov (United States)

    Barratt, Joel; Chan, Douglas; Sandaradura, Indy; Malik, Richard; Spielman, Derek; Lee, Rogan; Marriott, Deborah; Harkness, John; Ellis, John; Stark, Damien

    2016-08-01

    Angiostrongylus cantonensis is a metastrongyloid nematode found widely in the Asia-Pacific region, and the aetiological agent of angiostrongyliasis; a disease characterized by eosinophilic meningitis. Rattus rats are definitive hosts of A. cantonensis, while intermediate hosts include terrestrial and aquatic molluscs. Humans are dead-end hosts that usually become infected upon ingestion of infected molluscs. A presumptive diagnosis is often made based on clinical features, a history of mollusc consumption, eosinophilic pleocytosis in cerebral spinal fluid, and advanced imaging such as computed tomography. Serological tests are available for angiostrongyliasis, though many tests are still under development. While there is no treatment consensus, therapy often includes a combination of anthelmintics and corticosteroids. Angiostrongyliasis is relatively rare, but is often associated with morbidity and sometimes mortality. Recent reports suggest the parasites' range is increasing, leading to fatalities in regions previously considered Angiostrongylus-free, and sometimes, delayed diagnosis in newly invaded regions. Increased awareness of angiostrongyliasis would facilitate rapid diagnosis and improved clinical outcomes. This paper summarizes knowledge on the parasites' life cycle, clinical aspects and epidemiology. The molecular biology of Angiostrongylus spp. is also discussed. Attention is paid to the significance of angiostrongyliasis in Australia, given the recent severe cases reported from the Sydney region. PMID:27225800

  17. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    OpenAIRE

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-...

  18. Molecular biology of the kallikrein-kinin system: from structure to function

    Directory of Open Access Journals (Sweden)

    J.B. Pesquero

    1998-09-01

    Full Text Available The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.

  19. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly & Cushing Disease Paradigms

    Directory of Open Access Journals (Sweden)

    Michael Anthony Mooney

    2016-07-01

    Full Text Available The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  20. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms

    Science.gov (United States)

    Mooney, Michael A.; Simon, Elias D.; Little, Andrew S.

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  1. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    Science.gov (United States)

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  2. Modeling human risk: Cell ampersand molecular biology in context

    International Nuclear Information System (INIS)

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response

  3. Modeling human risk: Cell & molecular biology in context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response.

  4. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    OpenAIRE

    Lu, Feng-Mei; Yuan, Zhen

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in n...

  5. The molecular biology of tick-borne encephalitis virus. Review article.

    Science.gov (United States)

    Heinz, F X; Mandl, C W

    1993-10-01

    Tick-borne encephalitis (TBE) virus is a member of the flavivirus genus and the family Flaviviridae. Like other flaviviruses such as yellow fever, Japanese encephalitis or the dengue viruses, it is an important human pathogen, endemic in many European countries, Russia and China. The disease can be effectively prevented by vaccination with a formalin-inactivated whole virus vaccine. In recent years major advances have been made in the understanding of the molecular biology of TBE virus, including the complete sequence analysis of the genomic RNA of the European and Far Eastern strains. As shown in these studies, the virion RNA contains a single long open reading frame that codes for the structural proteins at the 5' end and the nonstructural proteins at the 3' end. Co- and posttranslational cleavages by a viral and cellular proteases lead to the formation of individual viral proteins. The mature virion is composed of an isometric capsid surrounded by a lipid envelope with two membrane-associated proteins. One of these, protein E, is of paramount importance for several important viral functions, especially during the entry phase of the viral life cycle. Protein E is also responsible for the induction of a protective immune response. A detailed map of antigenic sites has been established and the structure of an anchor-free form of E is currently being investigated by X-ray diffraction analysis. Understanding the molecular basis of the functions of this protein together with the knowledge of its three-dimensional structure may provide clues for developing specific antiviral agents. Protein E has also been shown to be an important determinant of virulence, with single amino acid substitutions at selected sites leading to attenuation. Engineering of such mutations into cDNA clones to produce new recombinant viruses may open up new avenues for the development of live vaccines. PMID:8267950

  6. NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows

    CERN Document Server

    1996-01-01

    Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibra...

  7. Two-dimensional engineering of molecular nanoparticles for biological applications

    OpenAIRE

    Tatkiewicz, Witold Ireneusz; Palet, Cristina

    2015-01-01

    El trabajo realizado en esta tesis se ha centrado en dos sistemas de nanopartículas moleculares que tienen un uso potencial en el campo de la nanomedicina: i) vesículas lipídicas – entidades supramoleculares que se proponen como sistemas de liberación de fármacos y ii) cuerpos de inclusión (Inclusion Bodies, IBs) – nanopartículas formadas por agregados proteicos. La primiera parte del trabajo se ha centrado en el estudio comparativo de sistemas vesiculares preparados por i) diferentes metodol...

  8. Two-dimensional engineering of molecular nanoparticles for biological applications

    OpenAIRE

    Tatkiewicz, Witold Ireneusz

    2015-01-01

    El trabajo realizado en esta tesis se ha centrado en dos sistemas de nanopartículas moleculares que tienen un uso potencial en el campo de la nanomedicina: i) vesículas lipídicas – entidades supramoleculares que se proponen como sistemas de liberación de fármacos y ii) cuerpos de inclusión (Inclusion Bodies, IBs) – nanopartículas formadas por agregados proteicos. La primiera parte del trabajo se ha centrado en el estudio comparativo de sistemas vesiculares preparados por i) diferentes meto...

  9. Biological and molecular characterizations of Toxoplasma gondii strains

    Science.gov (United States)

    Cole, R.A.; Lindsay, D.S.; Howe, D.K.; Roderick, Constance L.; Dubey, J.P.; Thomas, N.J.; Baeten, L.A.

    2000-01-01

    Toxoplasma gondii was isolated from brain or heart tissue from 15 southern sea otters (Enhydra lutris nereis) in cell cultures. These strains were used to infect mice that developed antibodies to T. gondii as detected in the modified direct agglutination test and had T. gondii tissue cysts in their brains at necropsy. Mouse brains containing tissue cysts from 4 of the strains were fed to 4 cats. Two of the cats excreted T. gondii oocysts in their feces that were infectious for mice. Molecular analyses of 13 strains indicated that they were all type II strains, but that they were genetically distinct from one another.

  10. The structural biology of molecular recognition by vancomycin.

    Science.gov (United States)

    Loll, P J; Axelsen, P H

    2000-01-01

    Vancomycin is the archetype among naturally occurring compounds known as glycopeptide antibiotics. Because it is a vital therapeutic agent used world-wide for the treatment of infections with gram-positive bacteria, emerging bacterial resistance to vancomycin is a major public health threat. Recent investigations into the mechanisms of action of glycopeptide antibiotics are driven by a need to understand their detailed mechanism of action so that new agents can be developed to overcome resistance. These investigations have revealed that glycopeptide antibiotics exhibit a rich array of complex cooperative phenomena when they bind target ligands, making them valuable model systems for the study of molecular recognition. PMID:10940250

  11. Development and testing of new biologically-based polymers as advanced biocompatible contact lenses

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R.

    2000-06-01

    Nature has evolved complex and elegant materials well suited to fulfill a myriad of functions. Lubricants, structural scaffolds and protective sheaths can all be found in nature, and these provide a rich source of inspiration for the rational design of materials for biomedical applications. Many biological materials are based in some fashion on hydrogels, the crosslinked polymers that absorb and hold water. Biological hydrogels contribute to processes as diverse as mineral nucleation during bone growth and protection and hydration of the cell surface. The carbohydrate layer that coats all living cells, often referred to as the glycocalyx, has hydrogel-like properties that keep cell surfaces well hydrated, segregated from neighboring cells, and resistant to non-specific protein deposition. With the molecular details of cell surface carbohydrates now in hand, adaptation of these structural motifs to synthetic materials is an appealing strategy for improving biocompatibility. The goal of this collaborative project between Prof. Bertozzi's research group, the Center for Advanced Materials at Lawrence Berkeley National Laboratory and Sunsoft Corporation was the design, synthesis and characterization of novel hydrogel polymers for improved soft contact lens materials. Our efforts were motivated by the urgent need for improved materials that allow extended wear, and essential feature for those whose occupation requires the use of contact lenses rather than traditional spectacles. Our strategy was to transplant the chemical features of cell surface molecules into contact lens materials so that they more closely resemble the tissue in which they reside. Specifically, we integrated carbohydrate molecules similar to those found on cell surfaces, and sulfoxide materials inspired by the properties of the carbohydrates, into hydrogels composed of biocompatible and manufacturable substrates. The new materials were characterized with respect to surface and bulk hydrophilicity

  12. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Science.gov (United States)

    de Graaf, Albert A.; Freidig, Andreas P.; De Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales. PMID:19956660

  13. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    Directory of Open Access Journals (Sweden)

    Albert A de Graaf

    2009-11-01

    Full Text Available The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a "middle-out" strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from "-omics" signatures are identified as key elements of a successful systems biology modeling approach in nutrition research--one that integrates physiological mechanisms and data at multiple space and time scales.

  14. Chemical Biology Studies on Molecular Diversity of Annonaceous Acetogenins

    Institute of Scientific and Technical Information of China (English)

    Yao Zhu-Jun

    2004-01-01

    Annonaceous acetogenins, isolated from the Annonaceae plants, have been attracting worldwide attention in recent years due to their biological activities, especially as growth inhibitors of certain tumor ceils [ 1 ]. They have been shown to function by blocking complex I in mitochondria [2] as well as ubiquinone-linked NADPH oxidase in the cells of specific tumor cell lines, including some multidrug-resistant ones [3]. These features make these acetogenins excellent leads for the new antitumor agents. In our previous work, the compounds 1a to 1d (Figure 1), which relies on structure simplification while maintaining all essential functionalities of the acetogenins, was in vitro tested against several human solid tumor cell lines and showed interesting cell selectivity [4]. All four analogues show remarkable activity against the HCT-8 and HT-29 cell lines, while compound 1c was found the best [4bi. In order to further investigate the effects of key structural features, a convergent parallel fragments assembly strategy was developed [4e]. In addition, the biological relevancies of typical annonaceous acetogenin mimetics were also studied [4f].

  15. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Chavshin; Mohammad Ali Oshaghi; Hasan Vatandoost; Ahmad Ali Hanafi-Bojd; Ahmad Raeisi; Fatemeh Nikpoor

    2014-01-01

    Objective: To identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran. Methods: Wild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested–PCR method. Results: Results showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples. Conclusions:Presence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.

  16. Molecular biology of maize Ac/Ds elements: an overview.

    Science.gov (United States)

    Lazarow, Katina; Doll, My-Linh; Kunze, Reinhard

    2013-01-01

    Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.

  17. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays. PMID:26631264

  18. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-01

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  19. Cell and molecular biology for diagnostic and therapeutic technology

    Science.gov (United States)

    Tan, M. I.

    2016-03-01

    Our body contains 100 trillion cells. However, each cell has certain function and structure. For maintaining their integrity, cells will be collaborating with each other and with extracellular matrix surround them to form a tissue. These interactions effect internally on many networks or pathway such as signalling pathway, metabolic pathway and transport network in the cell. These networks interact with each other to maintain cell survival, cell structure and function and moreover the tissue as well as the organ which the cells built. Therefore, as part of a tissue, genetic and epigenetic abnormality of a cell can also alter these networks, and moreover disturb the function of the tissue itself. Hence, condition of genetic and epigenetic of the cell may affect other conditions in omics level such as transcriptomic, proteomic, metabolomics characteristics which can be differentiated by a particular unique molecular profile from each level, which can be used for diagnostic as well as for targeted therapy.

  20. Molecular biology and pathogenesis of hepatitis E virus

    Indian Academy of Sciences (India)

    Vivek Chandra; Shikha Taneja; Manjula Kalia; Shahid Jameel

    2008-11-01

    The hepatitis E virus (HEV) is a small RNA virus and the etiological agent for hepatitis E, a form of acute viral hepatitis. The virus has a feco-oral transmission cycle and is transmitted through environmental contamination, mainly through drinking water. Recent studies on the isolation of HEV-like viruses from animal species also suggest zoonotic transfer of the virus. The absence of small animal models of infection and efficient cell culture systems has precluded virological studies on the replication cycle and pathogenesis of HEV. A vaccine against HEV has undergone successful clinical testing and diagnostic tests are available. This review describes HEV epidemiology, clinical presentation, pathogenesis, molecular virology and the host response to HEV infection. The focus is on published literature in the past decade.

  1. Biotechnology of microbial xylanases: enzymology, molecular biology, and application.

    Science.gov (United States)

    Subramaniyan, S; Prema, P

    2002-01-01

    Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems. PMID:11958335

  2. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  3. Molecular biology and genetics of embryonic eyelid development.

    Science.gov (United States)

    Rubinstein, Tal J; Weber, Adam C; Traboulsi, Elias I

    2016-09-01

    The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways. PMID:26863902

  4. Applications of Discrete Molecular Dynamics in biology and medicine.

    Science.gov (United States)

    Proctor, Elizabeth A; Dokholyan, Nikolay V

    2016-04-01

    Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications.

  5. Applications of Discrete Molecular Dynamics in biology and medicine.

    Science.gov (United States)

    Proctor, Elizabeth A; Dokholyan, Nikolay V

    2016-04-01

    Discrete Molecular Dynamics (DMD) is a physics-based simulation method using discrete energetic potentials rather than traditional continuous potentials, allowing microsecond time scale simulations of biomolecular systems to be performed on personal computers rather than supercomputers or specialized hardware. With the ongoing explosion in processing power even in personal computers, applications of DMD have similarly multiplied. In the past two years, researchers have used DMD to model structures of disease-implicated protein folding intermediates, study assembly of protein complexes, predict protein-protein binding conformations, engineer rescue mutations in disease-causative protein mutants, design a protein conformational switch to control cell signaling, and describe the behavior of polymeric dispersants for environmental cleanup of oil spills, among other innovative applications. PMID:26638022

  6. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  7. PASBio: predicate-argument structures for event extraction in molecular biology

    Directory of Open Access Journals (Sweden)

    Shah Parantu K

    2004-10-01

    Full Text Available Abstract Background The exploitation of information extraction (IE, a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sentence structure. A consensus in the IE community is emerging on the necessity for exploiting deeper knowledge structures such as through the relations between a verb and its arguments shown by predicate-argument structure (PAS. PAS is of interest as structures typically correspond to events of interest and their participating entities. For this to be realized within IE a key knowledge component is the definition of PAS frames. PAS frames for non-technical domains such as newswire are already being constructed in several projects such as PropBank, VerbNet, and FrameNet. Knowledge from PAS should enable more accurate applications in several areas where sentence understanding is required like machine translation and text summarization. In this article, we explore the need to adapt PAS for the MB domain and specify PAS frames to support IE, as well as outlining the major issues that require consideration in their construction. Results We introduce PASBio by extending a model based on PropBank to the MB domain. The hypothesis we explore is that PAS holds the key for understanding relationships describing the roles of genes and gene products in mediating their biological functions. We chose predicates describing gene expression, molecular interactions and signal transduction events with the aim of covering a number of research areas in MB. Analysis was performed on sentences containing a set of verbal predicates from MEDLINE and full text journals. Results confirm

  8. Polycystic liver diseases: advanced insights into the molecular mechanisms.

    Science.gov (United States)

    Perugorria, Maria J; Masyuk, Tatyana V; Marin, Jose J; Marzioni, Marco; Bujanda, Luis; LaRusso, Nicholas F; Banales, Jesus M

    2014-12-01

    Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated.

  9. Recent advances in the molecular design of synthetic vaccines

    Science.gov (United States)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  10. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  11. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology.

  12. Book review: Advances in reintroduction biology of Australian and New Zealand fauna

    Science.gov (United States)

    Muths, Erin L.

    2016-01-01

    Reintroduction, and other forms of moving animals around the landscape, is an established action that has been used in the contexts of mitigation, conservation, and salvage. Advances in Reintroduction Biology of Australian and New Zealand Fauna is more than an update of its predecessor (Serena 1995). This book not only enumerates advances in reintroduction but also provides a cogent road map for understanding and applying current knowledge, and for developing future strategies.

  13. Advances of molecular imaging probes for the diagnosis of Alzheimer's disease.

    Science.gov (United States)

    Zhou, Ming; Wang, Xiaobo; Liu, Zhiguo; Yu, Lun; Hu, Shuo; Chen, Lizhang; Zeng, Wenbin

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains and it becomes the most common cause of dementia in the elderly. There is an urgent need for the early diagnosis and treatment of AD to ease caregiver burden and medical costs, as well as improve patients' living activities associated with the dramatic increasing number of affected individuals. Molecular imaging with target-specific probes is contributing to identify the underlying biology in AD, which benefits to the early diagnosis of AD and the evaluation of anti-AD therapy. Molecular imaging probes, such as (11)C-PIB, (11)C-MP4A, (18)F-AV-45, and (11)F-FDG, can selectively bind to special bimolecular of AD or accurately accumulate at the location of damage areas, thus become an edge tool for a better management of the diseases in the clinical practice and new drug development. In the past decades, a large variety of probes is being developed and tested to be useful for the early and accurate diagnosis of Alzheimer's disease, patient selection for disease-modifying therapeutic trials and monitoring the effect of anti-amyloid therapy. Since imaging probes may also help to guide physicians to identify those patients that could best benefit from a given therapeutic regimen, dose, or duration of drug, this paper is to present a perspective of the available imaging probes for AD, classified on different modalities. Meanwhile, recent advances of those probes that have been selected for clinical trials and are at the different stages of the US Food and Drugs Administration (FDA) approval are outlined. Additionally, future directions and specific application of imaging strategies designed for both diagnosis and treatment for AD are discussed. PMID:24484277

  14. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara

    2010-09-01

    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  15. Chromatic alteration on marble surfaces analysed by molecular biology tools

    Directory of Open Access Journals (Sweden)

    Franco Palla

    2007-07-01

    Full Text Available The patina represents a superficial natural alteration of the constituting matter of the work of art. It emerges from the natural and usual stabilization process that the materials of the surface undergo because of the interaction with outdoor agents characterizing the surrounding environment. Besides, it is not linked to an obvious phenomenon of degradation that can be noticed through the change in the original colour of the matter. This is what we intend when we talk about biological patina usually generated by macro and/or micro-organic colonization (fungi, bacteria, alga which contributes to surface bio-deterioration and thus lead to the formation of orange, red or even brown and dark pigmented areas. The presence of chromatic alterations (rose-coloured areas, as a consequence of bacterial colonization, was most particularly pointed out in different sites, such as in the marble slabs on the facades of both the Cathedral of Siena (Duomo di Siena and the Certosa of Pavia. The present study shows an example of chromatic alteration of the surface of marble works due to bacterial colonization.

  16. Molecular Imaging Approaches to Understanding the Roles of Hydrogen Peroxide Biology in Stress and Development

    OpenAIRE

    Dickinson, Bryan Craig

    2010-01-01

    The production of hydrogen peroxide (H2O2) in biological systems is associated with a variety of pathologies including neurodegenerative diseases, cancer, and the general process of aging. However, a growing body of evidence suggests that the reactivity of this particular reactive oxygen species (ROS) is also harnessed for physiological processes. Molecular imaging using fluorescence microscopy offers a valuable approach for deciphering the multifaceted roles of H2O2 in biological processes. ...

  17. Molecular motor traffic: From biological nanomachines to macroscopic transport

    Science.gov (United States)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  18. A systems biology approach identifies Molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    OpenAIRE

    Nil Turan; Susana Kalko; Anna Stincone; Kim Clarke; Ayesha Sabah; Katherine Howlett; S John Curnow; Rodriguez, Diego A.; Marta Cascante; Laura O'Neill; Stuart Egginton; Josep Roca; Francesco Falciani

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular an...

  19. Biochemical and molecular biological aspects of silverfish allergens.

    Science.gov (United States)

    Barletta, Bianca; Di Felice, Gabriella; Pini, Carlo

    2007-01-01

    Insects and insect-derived materials have been implicated as a risk factor for sensitization and subsequent elicitation of allergic rhinitis and allergic bronchial asthma. During the last decades, insects other than those known as allergenic, were investigated for their potential role in inducing and triggering an IgE immune response. Among these, the silverfish, an insect belonging to the Thysanura order, appeared to be of particular interest. Silverfish (Lepisma saccharina) is the most primitive living insect, and represents a descendent of the ancestral wingless insects. They are 3-12 mm long, have three tail feelers and are covered with shiny scales. They shun light and need a humid environment and their diet consists of carbohydrate materials such as paper and book-binding glue, crumbs of bread and flour. Because of these features, silverfish finds an optimal habitat both in dwellings and workplaces and in spite of its antiquity, silverfish has succeeded in exploiting the new opportunity created by man. Although its importance significantly increased when it has been demonstrated that house dust contains significant silverfish levels even in houses where the inhabitants were unaware of its presence, no silverfish extract for diagnosis of allergic diseases is commercially available yet. Identification of optimal extraction conditions and characterization of allergenic extracts are the first steps to obtain an effective allergen preparation suitable for diagnosis and therapy, and will be useful as a reference preparation for assessing silverfish exposure in different indoor environments. It has been cloned and characterized a silverfish tropomyosin, named Lep s 1, which represents the first allergen identified in silverfish extract and can be regarded as a molecule cross-reactive among inhalant and edible invertebrates allergenic sources. rLep s 1 displayed biological activity, suggesting that it could be regarded as a useful tool to study the role of silverfish

  20. Nanoparticle-Templated Molecular Recognition Platforms for Detection of Biological Analytes.

    Science.gov (United States)

    Beyene, Abraham G; Demirer, Gozde S; Landry, Markita P

    2016-01-01

    Molecular recognition of biological analytes with optical nanosensors provides both spatial and temporal biochemical information. A recently developed sensing platform exploits near-infrared fluorescent single-wall carbon nanotubes combined with electrostatically pinned heteropolymers to yield a synthetic molecular recognition technique that is maximally transparent through biological matter. This molecular recognition technique is known as corona phase molecular recognition (CoPhMoRe). In CoPhMoRe, the specificity of a folded polymer toward an analyte does not arise from a pre-existing polymer-analyte chemical affinity. Rather, specificity is conferred through conformational changes undergone by a polymer that is pinned to the surface of a nanoparticle in the presence of an analyte and the subsequent modifications in fluorescence readout of the nanoparticles. The protocols in this article describe a novel single-molecule microscopy tool (near-infrared fluorescence and total internal reflection fluorescence [nIRF TIRF] hybrid microscope) to visualize the CoPhMoRe recognition process, enabling a better understanding of synthetic molecular recognition. We describe this requisite microscope for simultaneous single-molecule visualization of optical molecular recognition and signal transduction. We elaborate on the general procedures for synthesizing and identifying single-walled carbon nanotube-based sensors that employ CoPhMoRe via two biologically relevant examples of single-molecule recognition for the hormone estradiol and the neurotransmitter dopamine. © 2016 by John Wiley & Sons, Inc. PMID:27622569

  1. Biochemistry and molecular biology of the Caenorhabditis elegans dauer larva

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, W.G.

    1989-01-01

    Biochemical and molecular techniques have been used to study the formation and recovery of the developmentally arrested, non-feeding dauer stage of the nematode Caenorhabditis elegans. While investigating developmental transitions in energy metabolism, a major metabolite isolated from perchloric acid extracts has been identified as a modified uridine nucleotide. The compound was isolated by gel filtration and ion-exchange chromatography and its structure was determined by {sup 1}H NMR and {sup 13}C NMR spectroscopy. This compound is the most abundant metabolite detected in {sup 31}PMR spectra of perchloric acid extracts from growing larvae. In the absence of phosphoarginine or phosphocreatine, this modified nucleotide may have an important function in the nematode's energy metabolism, and it may also be found in several other invertebrates. During recovery from the dauer stage, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approximately}7.3 to {approximately}6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and coincides with, or soon follows, the development commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes. A library enriched for sequences expressed specifically during the L2d (predauer) stage was made by selecting plaques from a genomic lambda library that hybridized to subtracted L2d cDNA probes. Ultimately, three clones that were shown to hybridize only to L2d RNA were selected.

  2. Hepatitis C virus: molecular biology & current therapeutic options.

    Science.gov (United States)

    Sharma, Suresh D

    2010-01-01

    Hepatitis C virus (HCV) is a small (approximately 55 to 65 nm), spherical, enveloped, hepatotropic RNA virus that causes acute and chronic hepatitis in humans. Persistent virus infection with HCV often leads to cirrhosis and hepatocellular carcinoma (HCC). At present there is neither a selective antiviral therapy nor a preventive vaccine. The only available treatment option is a long-acting pegylated-interferon-alpha, given in combination with nucleoside analog ribavirin, which is not very effective. Molecular studies of HCV began with the successful cloning of its genome in 1989. For many years, research to develop therapeutics was stalled by the inability to grow virus in tissue culture. A major milestone was achieved with the recent development of a robust cell culture system for HCV propagation. HCV proteins assemble and form replication complexes on modified host membranes, called as membranous webs. Even though HCV is detected and targeted by host immune mechanisms, it establishes and maintains a life-long persistent infection. HCV has evolved multiple strategies to survive and persist in hostile cellular environments; and the viral population is known to rapidly change during the course of a natural infection thereby escaping immune surveillance. Rapid mutations also help virus to survive by selecting for the variants which are resistant to antiviral drugs. Although precise mechanisms regulating HCV entry into hepatic cells via receptors remain unknown, HCV also has the capability of direct cell-to-cell transmission. The extremely complex and incompletely understood nature of the HCV lifecycle has complicated the discovery of new therapies. A complete understanding of the functional roles played by the HCV proteins during HCV lifecycle is vital for developing a successful cure. This review deals with current status of efforts in addressing these daunting tasks and challenges in developing therapeutics against chronic and rapidly changing hepatitis C virus

  3. Molecular biology of Lea genes of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report contains our progress to date in determining the function of the D-7 Lea proteins in cotton embryos. We have completely sequenced the D-7 gene and established {ital E. coli} transformants which synthesize reasonable amounts of the D-7 protein. Two-dimensional electrophoresis was required to assay fractions for D-7 protein during purification to homogeneity, since D-7 has no known enzymatic activity, contains no Trp, and little Phe or Tyr, and {ital E. coli} has several proteins of similar molecular weight to D-7. Purified D-7 was used to generate monospecific antibodies which are being used for determination of the cellular distribution of D-7, and also for exact quantitation of D-7 in late-stage cotton embryos. Computerized modelling of D-7 has shown similarities to proteins with a coiled-coil structure, but fitting D-7 to this structure resulted in a violation of the handedness rule. If the pitch of the helix is changed from 3.6 to 3.667, however, a three dimensional structure (not a coiled coil) is generated which has overall energetics of formation nearly as favorable as the traditional {alpha} helix. The driving force for the change in pitch is proposed to result from favorable energetics of dimerization. Preliminary evidence indicates that D-7 does indeed dimerize in solution. Future experiments will determine the exact 3D structure of D-7 and the related protein D-29, as well as test the hypothesis that D-7 and D-29 are involved in mitigating dehydration of embryos and plants through sequestering phosphate or other ions in sufficient quantity to prevent ion precipitation or crystallization. 13 refs., 3 figs. (MHB)

  4. Advances in radionuclide molecular imaging of pancreatic β-cells

    International Nuclear Information System (INIS)

    In both type 1 and type 2 diabetes mellitus, β-cell mass (BCM) is lost.Various treatments are developed to restore or reconstruct BCM. The development of non-invasive methods to quantify BCM in vivo offers the potential for early detection of β-cell dysfunction prior to the clinical onset of diabetes. PET imaging with radioligands that directly target the pancreatic β-cells appears promising. The ability to determine the BCM has been investigated in several targets and their corresponding radiotracers, including radiolabeled receptor ligands, antibodies, metabolites and reporter genes. Therefore, we summarize the recent progress in radionuclide molecular imaging of pancreatic β-cells. (authors)

  5. Recent advances on polyoxometalate-based molecular and composite materials.

    Science.gov (United States)

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references). PMID:22850732

  6. Recent Advances in Biological Control of Pest Insects by Using Viruses in China

    Institute of Scientific and Technical Information of China (English)

    Xiu-lian SUN; Hui-yin PENG

    2007-01-01

    Insect viruses are attractive as biological control agents and could be a feasible alternative to chemical insecticides in the management of insect infestations. This review describes recent advances in the development of wild-type and genetically modified viruses as insecticides. A new strategy of application of insect viruses in China is reviewed. Also, the assessment of biosafety of genetically modified Helicoverpa armigera Nucleopolyhedovirus (HearNPV) is emphasized as a case-study.

  7. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  8. Unwinding RNA’s Secrets: Advances in the Biology, Physics, and Modeling of Complex RNAs

    OpenAIRE

    Herschlag, Daniel; Chu, Vincent B.

    2008-01-01

    The rapid development of our understanding of the diverse biological roles fulfilled by non-coding RNA has motivated interest in the basic macromolecular behavior, structure, and function of RNA. We focus on two areas in the behavior of complex RNAs. First, we present advances in the understanding of how RNA folding is accomplished in vivo by presenting a mechanism for the action of DEAD-box proteins. Members of this family are intimately associated with almost all cellular processes involvin...

  9. Instant Abdominal Wall Reconstruction with Biologic Mesh following Resection of Locally Advanced Colonic Cancer

    OpenAIRE

    Oskay Kaya; Engin Olcucuoglu; Gaye Seker; Hakan Kulacoglu

    2012-01-01

    We present a case of immediate abdominal wall reconstruction with biologic mesh following the resection of locally advanced colonic cancer. The tumor in the right colon did not respond to neoadjuvant chemotherapy. Surgical enbloc excision, including excision of the invasion in the abdominal wall, was achieved, and the defect was reconstructed with porcine dermal collagen mesh. The patient was discharged with no complication, and adaptation of the mesh was excellent at the six-month followup.

  10. The Morphology and Cell Biology of the Hair Apparatus : Recent Advances

    OpenAIRE

    Ito, Masaaki

    1990-01-01

    Recent advances in knowledge of the morphology and biology of hair apparatuses are introduced. The hair apparatus morphologically shows a cyclic change "hair cycle" from anagen through catagen to telogen. In anagen, the hair apparatus is composed of eight epithelial cell layers, one of which has been very recently discovered: the innermost cell layer of the outer root sheath. When the ultrastructures of these cell layers are compared with each other, the cells of each layer reveal unique ultr...

  11. Advanced High School Biology in an Era of Rapid Change: A Summary of the Biology Panel Report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools

    OpenAIRE

    Wood, William B.

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Pan...

  12. Advances in research on molecular biological markers for the differential diagnosis of basal cell ;carcinoma and trichoblastoma%基底细胞癌与毛母细胞瘤鉴别相关分子标记物的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙成帅; 丁跃明; 潘云

    2014-01-01

    Basal cell carcinoma has much difference with trichoblastoma in therapy and prognosis. In the past years, due to the lack of definite classification and distinctions of basal cell carcinoma and trichoblastoma, misdiagnosis and mismanagement were often encountered and the patients underwent inappropriate treatment. So we must differentiate basal cell carcinoma from trichoblastoma early and accurately. It is difficult to distinguish them distinctly only by clinical presentation and pathologic features. In recent years, with the development of molecular biology, research in immunohistochemisty and genetics have increased, and provide us some new identification. This review article mainly describes the recent development of molecular biological markers AR, CD10, Ln5γ2, Nestin, PHLDAl and CK20 for the differential diagnosis of basal cell carcinoma and trichoblastoma.%基底细胞癌与毛母细胞瘤在治疗和预后方面有很大的不同。过去由于对两者的分类和诊断比较混乱,给临床治疗带来诸多不便,也给患者增加了不必要的痛苦。这就要求临床医师能及时、准确、有效地鉴别诊断基底细胞癌和毛母细胞瘤。临床上,尤其在病理上,明确鉴别两者很困难。近些年,随着分子生物学技术的发展,从免疫组织化学和遗传学等方面对两者的研究增多,为我们提供一些新的鉴别依据。本文综述几种近年来研究较多的用于两者鉴别诊断的分子生物学标记物AR、CD10、Ln5γ2、Nestin、PHLDAl和CK20的进展。

  13. Singlet molecular oxygen generated in dark biological process.

    Science.gov (United States)

    Di Mascio, Paolo; Medeiros, Marisa H G

    2014-10-01

    Ultraweak chemiluminescence arising from biomolecules oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [(1)O2] and electronically excited triplet carbonyl products involving dioxetane intermediates. As examples, we will discuss the generation of (1)O2 from lipid hydroperoxides, which involves a cyclic mechanism from a linear tetraoxide intermediate. The generation of (1)O2 in aqueous solution via energy transfer from the excited triplet acetone arising from the thermodecomposition of dioxetane a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source, will also be discussed. The approach used to unequivocally demonstrate the generation of (1)O2 in these reactions is the use of (18)O-labeled hydroperoxide / triplet dioxygen ((18)[(3)O2]), the detection of labeled compounds by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) and the direct spectroscopic detection and characterization of (1)O2 light emission. Characteristic light emission at 1,270nm, corresponding to the singlet delta state monomolecular decay was observed. Using(18)[(3)O2], we observed the formation of (18)O-labeled (1)O2 ((18)[(1)O2]) by the chemical trapping of (18)[(1)O2]with the anthracene-9,10-diyldiethane-2,1-diyl disulfate disodium salt (EAS) and detected the corresponding (18)O-labeled EAS endoperoxide usingHPLC-MS/MS. The combined use of the thermolysis of a water-soluble naphthalene endoperoxide as a generator of (18)O labeled (1)O2 and the sensitivity of HPLC-MS/MS allowed the study of (1)O2reactivity toward biomolecules. Photoemission properties and chemical trapping clearly demonstrate that the production of hydroperoxide and excited carbonyls generates (18)[(1)O2], and points to the involvement of (1)O2 in physiological and pathophysiological mechanism. Supported by FAPESP (2012/12663-1), CAPES, INCT Redoxoma (FAPESP/CNPq/CAPES; 573530/2008-4), NAP Redoxoma (PRPUSP; 2011.1.9352.1.8), CEPID

  14. Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology

    Directory of Open Access Journals (Sweden)

    Shaobin Yu

    2015-01-01

    Full Text Available Methamphetamine (METH is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.

  15. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  16. Allelic polymorphism of glucocorticoid receptor NR3C1 (GR: from molecular biology to clinical implications

    Directory of Open Access Journals (Sweden)

    Orlovsky M. A.

    2012-09-01

    Full Text Available Polymorphism of stress-related genes is a key factor determining difference in the stress reactivity and resistance among humans. Glucocorticoid receptors are important actors of stress responses. This review is focused on the molecular biology and clinical implications of glucocorticoid receptor gene polymorphism.

  17. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  18. Web based learning support for experimental design in molecular biology: a top-down approach

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.; Hartog, R.; Bisseling, T.

    2003-01-01

    An important learning goal of a molecular biology curriculum is the attainment of a certain competence level in experimental design. Currently, undergraduate students are confronted with experimental approaches in textbooks, lectures and laboratory courses. However, most students do not reach a sati

  19. Genetics and Faith: Religious Enchantment through Creative Engagement with Molecular Biology

    Science.gov (United States)

    Jenkins, Kathleen E.

    2007-01-01

    In this article I develop heuristic types for understanding how the U.S. evangelical Christian subculture engages the newer science of molecular biology as it works to legitimate and enchant religious worldview: 1.) "symbolic engagement," employing genes and DNA as sacred icon; 2.) "disputatious engagement," debating genetic essentialism and…

  20. BioFrameNet: A FrameNet Extension to the Domain of Molecular Biology

    Science.gov (United States)

    Dolbey, Andrew Eric

    2009-01-01

    In this study I introduce BioFrameNet, an extension of the Berkeley FrameNet lexical database to the domain of molecular biology. I examine the syntactic and semantic combinatorial possibilities exhibited in the lexical items used in this domain in order to get a better understanding of the grammatical properties of the language used in scientific…

  1. Designing and Implementing a Hands-On, Inquiry-Based Molecular Biology Course

    Science.gov (United States)

    Regassa, Laura B.; Morrison-Shetlar, Alison I.

    2007-01-01

    Inquiry-based learning was used to enhance an undergraduate molecular biology course at Georgia Southern University, a primarily undergraduate institution in rural southeast Georgia. The goal was to use a long-term, in-class project to accelerate higher-order thinking, thereby enabling students to problem solve and apply their knowledge to novel…

  2. Using Restriction Mapping to Teach Basic Skills in the Molecular Biology Lab

    Science.gov (United States)

    Walsh, Lauren; Shaker, Elizabeth; De Stasio, Elizabeth A.

    2007-01-01

    Digestion of DNA with restriction enzymes, calculation of volumes and concentrations of reagents for reactions, and the separation of DNA fragments by agarose gel electrophoresis are common molecular biology techniques that are best taught through repetition. The following open-ended, investigative laboratory exercise in plasmid restriction…

  3. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  4. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  5. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  6. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  7. Glycoprotein Biochemistry (Biosynthesis)--A Vehicle for Teaching Many Aspects of Biochemistry and Molecular Biology.

    Science.gov (United States)

    Cole, Clair R.; Smith, Christopher A.

    1990-01-01

    Information about the biosynthesis of the carbohydrate portions or glycans of glycoproteins is presented. The teaching of glycosylation can be used to develop and emphasize many general aspects of biosynthesis, in addition to explaining specific biochemical and molecular biological features associated with producing the oligosaccharide portions of…

  8. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  9. Text-mining and information-retrieval services for molecular biology

    OpenAIRE

    Krallinger, Martin; Valencia, Alfonso

    2005-01-01

    Text-mining in molecular biology - defined as the automatic extraction of information about genes, proteins and their functional relationships from text documents - has emerged as a hybrid discipline on the edges of the fields of information science, bioinformatics and computational linguistics. A range of text-mining applications have been developed recently that will improve access to knowledge for biologists and database annotators.

  10. An Inquiry-Infused Introductory Biology Laboratory That Integrates Mendel's Pea Phenotypes with Molecular Mechanisms

    Science.gov (United States)

    Kudish, Philip; Schlag, Erin; Kaplinsky, Nicholas J.

    2015-01-01

    We developed a multi-week laboratory in which college-level introductory biology students investigate Mendel's stem length phenotype in peas. Students collect, analyze and interpret convergent evidence from molecular and physiological techniques. In weeks 1 and 2, students treat control and experimental plants with Gibberellic Acid (GA) to…

  11. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D.

    2006-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In ad

  12. BLAP-Tags, TUBEs and DUB-Chips: Combined Novel Technologies will Advance Molecular Epithelial Physiology

    OpenAIRE

    Hamilton, Kirk L.

    2012-01-01

    The field of ubiquitylation and deubiquitylation of proteins in molecular physiology is growing at a rapid rate. Our understanding of molecular physiology of these processes may become limited by the advancement of technologies that scientists can employ. Therefore, it is important to approach physiological questions of ubiquitylation and deubiquitylation of proteins from a multiple methodological direction. Indeed, the role of ubiquitylation and deubiquitylation of proteins in cellular funct...

  13. BLAP-tags, TUBEs and DUB-Chips: Combined novel technologies will advance molecular epithelial physiology

    OpenAIRE

    KirkLHamilton

    2012-01-01

    The field of ubiquitylation and dubiquitylation of proteins in molecular physiology is growing at a rapid rate. Our understanding of molecular physiology of these processes may become limited by the advancement of technologies that scientists can employ. Therefore, it is important to approach physiological questions of ubiquitylation and dubiquitylation of proteins from a multiple methodological direction. Indeed, the role of ubiquitylation and dubiquitylation of proteins in cellular functio...

  14. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology.

    Science.gov (United States)

    Creager, Angela N H

    2009-03-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These 'suicide experiments', a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  15. Molecular bioengineering of biomaterials in the 1990s and beyond: a growing liaison of polymers with molecular biology.

    Science.gov (United States)

    Hoffman, A S

    1992-02-01

    An important trend in biomaterials research and development is the synthesis of polymers that combine capabilities of biologic recognition (biomimetic) with special physicochemical properties of the synthetic polymer system. Another important trend in such "molecular bioengineering" is to develop, perhaps via computer-aided molecular design, new artificial biomimetic systems by exact placement of functional groups on rigid polymer backbones, cross-linked structures, or macromolecular assemblies. In this way, biocatalytic functioning or biorecognition similar to enzymes and antibodies can be achieved without the inherent instability often encountered with the native biomolecules or assemblies. Perhaps the most exciting trend in biomaterials research and development is the availability of new biomolecules, e.g., via protein engineering and of hardy cells with specific biofunctions and bioresponses that can be tailored to specific medical or biotechnological needs. The wide variety of ways that such biomolecules and cells can be combined with polymeric biomaterials provides tremendously exciting opportunities for the biomaterials scientists and engineers. In addition to these synthetic approaches, new and exciting analytical tools, such as the scanning tunneling microscope and the atomic force microscope, are permitting study on a molecular scale of individual and small clusters of proteins and other biomolecular assemblies on surfaces. Cell attachments and spreading may also be visualized at various depths within the cell using the confocal laser microscope. Such analytical techniques can lead to important new knowledge about biologic interactions with biomaterials and, therefore, to development of even more biocompatible implants and devices. This paper overviews the present state of polymeric biomaterials and highlights the important and exciting opportunities generated by the liaison of these materials with molecular biology.

  16. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 30. Reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques.

  17. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 29. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques.

  18. Abstracts of the 28. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 28. Reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Biochemistry, genetic and molecular biology aspects of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques.

  19. [Molecular biology and childhood leukemia: E2A-PBX1 and central nervous system relapse].

    Science.gov (United States)

    Núñez-Enríquez, Juan Carlos; Mejía-Aranguré, Juan Manuel

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The inclusion of molecular biology techniques in the diagnosis and prognostic stratification of these patients has allowed major treatment achievements in developed countries. One of the best studied gene rearrangements is E2A-PBX1, which predicts isolated central nervous system relapse in patients with ALL. However, further research on the search for new molecular markers related to prognosis of patients with childhood leukemia is required. Such studies need the integration of different disciplines, including epidemiology. Epidemiological studies are needed not only to accelerate the discovery of new molecular markers and new biological signals as to the etiology and pathophysiology of cancer, but also to evaluate the clinical impact of these findings in well-defined populations. PMID:26509298

  20. Advances in molecular-replacement procedures: the REVAN pipeline.

    Science.gov (United States)

    Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo; Mazzone, Annamaria

    2015-09-01

    The REVAN pipeline aiming at the solution of protein structures via molecular replacement (MR) has been assembled. It is the successor to REVA, a pipeline that is particularly efficient when the sequence identity (SI) between the target and the model is greater than 0.30. The REVAN and REVA procedures coincide when the SI is >0.30, but differ substantially in worse conditions. To treat these cases, REVAN combines a variety of programs and algorithms (REMO09, REFMAC, DM, DSR, VLD, free lunch, Coot, Buccaneer and phenix.autobuild). The MR model, suitably rotated and positioned, is first refined by a standard REFMAC refinement procedure, and the corresponding electron density is then submitted to cycles of DM-VLD-REFMAC. The next REFMAC applications exploit the better electron densities obtained at the end of the VLD-EDM sections (a procedure called vector refinement). In order to make the model more similar to the target, the model is submitted to mutations, in which Coot plays a basic role, and it is then cyclically resubmitted to REFMAC-EDM-VLD cycles. The phases thus obtained are submitted to free lunch and allow most of the test structures studied by DiMaio et al. [(2011), Nature (London), 473, 540-543] to be solved without using energy-guided programs. PMID:26327375

  1. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...

  2. Advances in molecular surveillance of Clostridium difficile in Bulgaria.

    Science.gov (United States)

    Dobreva, Elina G; Ivanov, Ivan N; Vathcheva-Dobrevska, Rossitza S; Ivanova, Katucha I; Asseva, Galina D; Petrov, Petar K; Kantardjiev, Todor V

    2013-09-01

    The increasing incidence of Clostridium difficile infection (CDI) in Bulgaria has indicated the need to implement better surveillance approaches. The aim of the present work was to improve the current surveillance of CDI in Bulgaria by introducing innovative methods for identification and typing. One hundred and twenty stool samples obtained from 108 patients were studied over 4 years from which 32 C. difficile isolates were obtained. An innovative duplex EvaGreen real-time PCR assay based on simultaneous detection of the gluD and tcdB genes was developed for rapid C. difficile identification. Four toxigenic profiles were distinguished by PCR: A(+)B(+)CDT(-) (53.1 %, 17/32), A(-)B(+)CDT(-) (28.1 %, 9/32), A(+)B(+)CDT(+) (9.4 %, 3/32) and A(-)B(-)CDT(-) (9.4 %, 3/32). PCR ribotyping and multilocus variable number of tandem repeat analysis (MLVA7) were used for molecular characterization of the isolates. In total, nine distinct ribotypes were confirmed and the most prevalent for Bulgarian hospitals was 017 followed by 014/020, together accounting for 44 % of all isolates. Eighteen per cent of the isolates (6/32) did not match any of the 25 reference ribotypes available in this study. Twenty-four MLVA7 genotypes were detected among the clinical C. difficile isolates, distributed as follows: five for 017 ribotype, two for 014/020, 001, 002, 012 and 046 each, and one each for ribotypes 023, 070 and 078. The correlation between the typing methods was significant and allowed the identification of several clonal complexes. These results suggest that most C. difficile cases in the eight Bulgarian hospitals studied were associated with isolates belonging to the outbreak ribotypes 017 and 014/20, which are widely distributed in Europe. The real-time PCR protocol for simultaneous detection of gluD and tcdB proved to be very effective and improved C. difficile identification and confirmation of clinical C. difficile isolates. PMID:23598377

  3. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  4. Biological and molecular characterization of classical swine fever challenge virus from India

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2015-03-01

    Full Text Available Aim: The aim of this study was biological and molecular characterization of classical swine fever (CSF challenge virus from India. Materials and Methods: CSF challenge virus maintained at Division of Biological standardization was experimentally infected to two seronegative piglets. The biological characterization was done by clinical sign and symptoms along with postmortem findings. For molecular characterization 5’-nontranslated region, E2 and NS5B regions were amplified by reverse transcription polymerase chain reaction and sequenced. The sequences were compared with that of reference strains and the local field isolates to establish a phylogenetic relation. Results: The virus produced symptoms of acute disease in the piglets with typical post-mortem lesions. Phylogenetic analysis of the three regions showed that the current Indian CSF Challenge virus is having maximum similarity with the BresciaX strain (USA and Madhya Pradesh isolate (India and is belonging to subgroup 1.2 under Group 1. Conclusion: Based on biological and molecular characterization of CSF challenge virus from India is described as a highly virulent virus belonging to subgroup 1.2 under Group 1 along with some field isolates from India and Brescia strain.

  5. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  6. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. PMID:27131870

  7. Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR

    OpenAIRE

    Türkay, Metin; Weber, Gerhard-Wilhelm; Blazewicz, Jacek; Rauner, Marion

    2014-01-01

    CEJOR (2014) 22:427–430 DOI 10.1007/s10100-013-0327-2 EDITORIAL Recent advances in computational biology, bioinformatics, medicine, and healthcare by modern OR Gerhard-Wilhelm Weber · Jacek Blazewicz · Marion Rauner · Metin Türkay Published online: 7 September 2013 © Springer-Verlag Berlin Heidelberg 2013 At the occasion of the 25th European Conference on Operational Research, EURO XXV 2012, July 8–11, 2012, in Vilnius, Lithuania (http://www.euro-2012.lt/), the ...

  8. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  9. Physics in cell biology: on the physics of biopolymers and molecular motors.

    Science.gov (United States)

    Frey, Erwin

    2002-03-12

    "What is Life?" is the title of a book by Erwin Schrödinger, first published in 1944. This book is a bold attempt to try to understand some of the wonders of life in terms of physics, in particular statistical mechanics. Since the publication of this visionary book, we have seen a revolution in molecular biology complemented by the development of new physical tools like single-molecule spectroscopy. The goal of this article is to highlight some examples where physics can contribute to questions in cell biology. One might hope that through interdisciplinary research one can get closer to answering Schrödinger's fundamental question.

  10. A Research Project-Based and Self-Determined Teaching System of Molecular Biology Techniques for Undergraduates

    Science.gov (United States)

    Zhang, Shuping

    2008-01-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a…

  11. Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors.

    Science.gov (United States)

    Trevisan, Sara; Francioso, Ornella; Quaggiotti, Silvia; Nardi, Serenella

    2010-06-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an "auxin-like" activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  12. The role of the molecular biology laboratory in the management of chronic hepatitis B and C

    Directory of Open Access Journals (Sweden)

    Peter Karayiannis

    2013-03-01

    Full Text Available Molecular biology techniques are routinely used nowadays to diagnose and evaluate antiviral treatment of patients with chronic hepatitis B (HBV and hepatitis C virus (HCV infections. Current tools at our disposal include tests that quantify the amount of circulating virus in the blood, techniques that can analyse genomic sequences to determine viral genotypes or subtypes, or determine amino-acid substitutions that may confer resistance to existing antiviral drugs. What is more, continuously evolving serological tests for the detection of viral antigens or their corresponding antibodies, have made diagnosis of disease as sensitive as possible. The present review will concentrate primarily on molecular diagnostics.

  13. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences.

    Science.gov (United States)

    Faure, Denis; Joly, Dominique

    2015-04-01

    Next-generation sequencing (NGS) provides unprecedented insight into (meta)genomes, (meta)transcriptomes (cDNA) and (meta)barcodes of individuals, populations and communities of Archaea, Bacteria and Eukarya, as well as viruses. This special issue combines reviews and original papers reporting technical and scientific advances in genomics and transcriptomics of non-model species, as well as quantification and functional analyses of biodiversity using NGS technologies of the second and third generations. In addition, certain papers also exemplify the transition from Sanger to NGS barcodes in molecular taxonomy.

  14. To Fly or Not to Fly: Teaching Advanced Secondary School Students about Principles of Flight in Biological Systems

    Science.gov (United States)

    Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.

    2015-01-01

    Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…

  15. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  16. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  17. Molecular biological analysis of genotyping and phylogeny of severe acute respiratory syndrome associated coronavirus

    Institute of Scientific and Technical Information of China (English)

    王志刚; 李兰娟; 罗芸; 张俊彦; 王敏雅; 程苏云; 张严峻; 王晓萌; 卢亦愚; 吴南屏; 梅玲玲; 王赞信

    2004-01-01

    Background SARS-CoV is the causative agent of severe acute respiratory syndrome (SARS) which has been associated with outbreaks of SARS in Guangdong, Hong Kong and Beijing of China, and other regions worldwide. SARS-CoV from human has shown some variations but its origin is still unknown. The genotyping and phylogeny of SARS-CoV were analyzed and reported in this paper. Methods Full or partial genomes of 44 SARS-CoV strains were collected from GenBank. The genotype, single nucleotide polymorphism and phylogeny of these SARS-CoV strains were analyzed by molecular biological, bioinformatic and epidemiological methods. Conclusion The results mentioned above suggest that SARS-CoV is responding to host immunological pressures and experiencing variation which provide clues, information and evidence of molecular biology for the clinical pathology, vaccine developing and epidemic investigation.

  18. Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila

    2010-01-01

    Background In order to reduce the side-effects of chemotherapy, combined chemotherapy-electroporation (electrochemotherapy) has been suggested. Electroporation, application of appropriate electric pulses to biological cells, can significantly enhance molecular uptake of cells due to formation of transient pores in the cell membrane. It was experimentally demonstrated that the efficiency of electroporation is under the control of electric pulse parameters. However, the theoretical basis for th...

  19. A cooperative framework for molecular biology database integration using image object selection.

    OpenAIRE

    Khan, Nawaz

    2004-01-01

    The theme and the concept of 'Molecular Biology Database Integration’ and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a...

  20. The molecular biology revolution and the rise of bioscience megacentres in North America and Europe

    OpenAIRE

    Philip Cooke

    2004-01-01

    This paper focuses on 'triple helix' effects in biosciences. Scientific change can have profound socioeconomic effects. The molecular biology revolution tilted pharmaceuticals production away from its fine chemistry path dependence into microbiology and biotechnology. The key to any triple helix effects has thus shifted to universities and spinouts buttressed with burgeoning public funding, leaving 'big pharma' increasingly playing the role of licenser and marketer of bought-in therapeutic tr...

  1. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  2. Deposition rates in growing tissue: Implications for physiology, molecular biology, and response to environmental variation

    OpenAIRE

    Silk, Wendy K.; Bogeat-Triboulot, Marie-Béatrice

    2014-01-01

    Net rates of biosynthesis and mineral deposition are needed to understand the physiology and molecular biology of growth and plant responses to environmental variation. Many popular models ignore cell expansion and displacement. In contrast, the continuity equation, used with empirical data on growth velocity and concentration, allows computation of biosynthesis and deposition rates in growing tissue. This article describes data and methods needed to calculate deposition rates and reviews som...

  3. Utility of the molecular biology techniques to the analytical control of the microbiological quality of waters

    International Nuclear Information System (INIS)

    The molecular biology techniques made accessible to the water industry the ability to detect and quantify, in a few hours, any organism known. given this scenario, it is important to realize the strengths and weaknesses of these techniques to get a better picture of the scope of its implementation and its most that probably usefulness. We must be familiar with these techniques to understand the results and properly evaluate its detection limit. (Author) 4 refs.

  4. Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    OpenAIRE

    Drellich, Elizabeth; Gainer-Dewar, Andrew; Harrington, Heather A.; He, Qijun; Heitsch, Christine; Poznanović, Svetlana

    2015-01-01

    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and thei...

  5. Pulsed-Field Gel Electrophoresis (PFGE) Technique and its use in Molecular Biology

    OpenAIRE

    BASIM, Esin (HACIOĞLU)

    2001-01-01

    In recent years, the use of pulsed-field gel electrophoresis (PFGE) in the molecular biology area has been subject to much research. PFGE is a powerful tool for characterizing various strains at the DNA level, obtaining relevant information on genome size and constructing the physical and genetic map of the chromosome of bacteria that are poorly understood at the genetic level as well as in separating chromosomes in microorganisms, and in the long-range mapping of mammalian genes. PFGE also h...

  6. PASBio: predicate-argument structures for event extraction in molecular biology

    OpenAIRE

    Shah Parantu K; Wattarujeekrit Tuangthong; Collier Nigel

    2004-01-01

    Abstract Background The exploitation of information extraction (IE), a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB) research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sen...

  7. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  8. A framework for molecular biology databases integration using context graph keying.

    OpenAIRE

    Khan, Nawaz; Stockman, A. G.; Rahman, Shahedur

    2004-01-01

    This paper proposed a novel framework for integrating public domain molecular biology databases with the aid of a context graph. A context graph is used to map data in order to establish an integration domain for the participating multi-resource database federation. Data are presented in a consolidated form upon retrieval from the multiple databases. The approach presented in this paper is novel in the sense that, it can be implemented within a component database and can initiate data consoli...

  9. Extraction from Natural Planktonic Microorganisms of DNA Suitable for Molecular Biological Studies

    OpenAIRE

    Jed A. Fuhrman; Comeau, Dorothy E.; Hagström, Åke; Chan, Amy M.

    1988-01-01

    We developed a simple technique for the high-yield extraction of purified DNA from mixed populations of natural planktonic marine microbes (primarily bacteria). This is a necessary step for several molecular biological approaches to the study of microbial communities in nature. The microorganisms from near-shore marine and brackish water samples, ranging in volume from 8 to 40 liters, were collected on 0.22-μm-pore-size fluorocarbon-based filters, after prefiltration through glass fiber filte...

  10. Making Sense of Taste : Psychophysical, molecular biological and neurophysiological studies of umami taste processing in humans

    OpenAIRE

    2011-01-01

    Monosodium glutamate elicits a specific umami taste and increases palatability of food. In order to comprehensively study the mechanisms of the taste perception of glutamate, this work compiles results from several research fields namely, psychophysics, molecular biology and neurophysiology. At the perception level, the aim of the study was to explore individual variation in the perception of glutamate in the healthy population. At the cellular level, the question referred to the role of s...

  11. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    Science.gov (United States)

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  12. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  13. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  14. Experimental genomics: The application of DNA microarrays in cellular and molecular biology studies

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellular and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quant itative fashion. DNA microarrays can be used to measure levels of gene expressio n for tens of thousands of gene simultaneously and take advantage of all availab le sequence information for experimental design and data interpretation in pursu it of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a catalogue of all the genes and informati on about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in genome and gene function analysis, gene expression studies, biological signal and defense system, cell cyclereg ulation, mechanism of transcriptional regulation, proteomics, and the functional ity of food component.

  15. Molecular Biology at the Quantum Level: Can Modern Density Functional Theory Forge the Path?

    CERN Document Server

    Kolb, Brian; 10.1142/S1793984412300063

    2012-01-01

    Recent years have seen vast improvements in the ability of rigorous quantum-mechanical methods to treat systems of interest to molecular biology. In this review article, we survey common computational methods used to study such large, weakly bound systems, starting from classical simulations and reaching to quantum chemistry and density functional theory. We sketch their underlying frameworks and investigate their strengths and weaknesses when applied to potentially large biomolecules. In particular, density functional theory---a framework that can treat thousands of atoms on firm theoretical ground---can now accurately describe systems dominated by weak van der Waals interactions. This newfound ability has rekindled interest in using this tried-and-true approach to investigate biological systems of real importance. In this review, we focus on some new methods within density functional theory that allow for accurate inclusion of the weak interactions that dominate binding in biological macromolecules. Recent ...

  16. Molecular modeling studies, synthesis and biological evaluation of dabigatran analogues as thrombin inhibitors.

    Science.gov (United States)

    Dong, Ming-Hui; Chen, Hai-Feng; Ren, Yu-Jie; Shao, Fang-Ming

    2016-01-15

    In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure-activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q(2) and a non-cross-validation r(2), which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.

  17. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    Science.gov (United States)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  18. Biological Assessment of the Advanced Turbine Design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.; Deng, Zhiqun; Richmond, Marshall C.; Moursund, Russell A.; Carlson, Thomas J.; Rakowski, Cynthia L.; Duncan, Joanne P.

    2007-09-12

    This report summarizes the results of studies sponsored by the U.S. Department of Energy and conducted by Pacific Northwest National Laboratory to evaluate the biological performance (likelihood of injury to fish) from an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in Washington State in 2005. PNNL studies included a novel dye technique to measure injury to juvenile fish in the field, an evaluation of blade-strike using both deterministic and stochastic models, and extended analysis of the response of the Sensor Fish Device to strike, pressure, and turbulence within the turbine system. Fluorescein dye was used to evaluate injuries to live fish passed through the advanced turbine and an existing turbine at two spill discharges (15 and 17 kcfs). Under most treatments the results were not significantly different for the two turbines, however, eye injury occurred in nearly 30% of fish passing through Unit 9 but in less than 10% of those passing through Unit 8 at 15 kcfs. Both deterministic and stochastic blade-strike models were applied for the original and new AHTS turbines. The modeled probabilities were compared to the Sensor Fish results (Carlson et al. 2006) and the biological studies using juvenile fish (Normandeau et al. 2005) under the same operational parameters. The new AHTS turbine had slightly higher modeled injury rates than the original turbine, but no statistical evidence to suggest that there is significant difference in blade-strike injury probabilities between the two turbines, which is consistent with the experiment results using Sensor Fish and juvenile fish. PNNL also conducted Sensor Fish studies at Wanapum Dam in 2005 concurrent with live fish studies. The probablility of severe collision events was similar for both turbine. The advanced turbine had a slightly lower probability of severe shear events but a slightly higher probability of slight shear.

  19. Rotational spectra of N$_2^+$: An advanced undergraduate laboratory in atomic and molecular spectroscopy

    CERN Document Server

    Bayram, S B; Arndt, P T

    2015-01-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial AC capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  20. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.