WorldWideScience

Sample records for advanced microwave processing

  1. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  2. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  3. Use of the inverse temperature profile in microwave processing of advanced ceramics

    International Nuclear Information System (INIS)

    Binner, J.G.P.; Al-Dawery, I.A.; Aneziris, C.; Cross, T.E.

    1992-01-01

    Attempts are being made to exploit the inverse temperature profile which can be developed with microwave heating with respect to the processing of certain advanced ceramics. This paper discusses the results obtained to date during the microwave sintering of YBCO high-T c superconductors and the microwave reaction bonding of silicon nitride

  4. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  5. Microwave processing of ceramic oxide filaments

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  6. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  7. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  8. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  9. A review on the susceptor assisted microwave processing of materials

    International Nuclear Information System (INIS)

    Bhattacharya, Madhuchhanda; Basak, Tanmay

    2016-01-01

    Microwave processing has received significant attention based on the energy efficient volumetric processing. The internal heat generation during the microwave heating unleashes the heat transfer limitations of the conventional furnaces and thus, the microwave processing can be performed at much faster rates than the conventional furnaces. Susceptors further accelerate the microwave processing via providing a two-way heating with reduced heat losses from the surface of the material. In addition, the rapid initial heating via susceptors becomes the key factor to execute the energy efficient microwave processing for the poorly microwave absorbing materials. These characteristics have been massively exploited for various applications (material processing, synthesis and waste treatments) over the last few decades and this review evaluates those processing characteristics with an emphasis on the energy efficiency. Till date, the advancement of the susceptor assisted microwave processing is primarily based on the experimental trials and this review brings together various case studies so that the readers can have a clear idea about the current status in each field of applications. This can be of immense help not only to select the appropriate susceptor, but also to select the future research direction for the advancement of the energy efficient processing. - Highlights: • Susceptor assisted hybrid microwave processing has been reviewed. • Energy efficiency of the hybrid heating has been analyzed for various applications. • The applications include material processing, synthesis and waste treatment. • The role of susceptors on the energy efficient material processing is highlighted. • The enhancement of the processing via the susceptors has been reported.

  10. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  11. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  12. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  13. Technological advances in (U,Pu)O2 CRO recycling using microwave heating

    International Nuclear Information System (INIS)

    Das, D.K.; Singh, G.; Khot, P.M; Kumar, S.; Mishra, A.K.; Behere, P.G.; Afzal, Mohd; Kumar, Arun

    2014-01-01

    A batch type wet recycling process viz. microwave direct de-nitration and calcination technique (MWDDC) has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, India. The process was developed for complete and multiple recycling of PFBR clean rejected (U,Pu)O 2 MOX fuel pellets (CRO) up to 30(wt%) of PuO 2 . The complete recycling of CRO containing higher Pu content with conventional dry recycling was difficult to achieve and certain amount of virgin powder is always needed to obtain the required product characteristics. The conditioned co-de-nitrated powder via MWDDC process have more or less similar characteristics to that of virgin powder with respect to particle size, apparent and tap density, surface area. This paper presents an insight into MWDDC process details and recent advancements made for improvement of powder and product characteristics. Low temperature microwave calcination (LTMC) was incorporated to improve the quality of co-de-nitrated powder with regard to volatile impurities and nitrate content. MWDDC powder and pellets were subjected to extensive chemical and physical characterization as per PFBR specification document. MOX pellets were fabricated from virgin and MWDDC powder via powder oxide pelletizing route and characterized. The homogeneity in the MOX pellets fabricated from MWDDC powder was found as good as that of virgin. Industrial microwave heating systems are indigenously developed and have advanced applicator and wave transmission designs to achieve high throughput, precise control of microwave power hence the temperature during the course of the process. It was demonstrated that MWDDC is a novel technique for (U,Pu)O 2 MOX rejects recycling in view of complete and multiple recycling. Key words: (U,Pu)O 2 MOX, CRO, Recycling, MWDDC. (authors)

  14. Microwave-assisted flow processing in heterogeneously copper nano-catalyzed reactions

    NARCIS (Netherlands)

    Benaskar, F.

    2012-01-01

    In the last decades, micro-processing and microwave technology have been established as mature technologies, however, mainly instigated by academia. Many advances in micro-process technology have led to novel routes and/or process windows to replace batch operations by more efficient continuous

  15. Microstructural examination by TEM of WC/Co composites prepared by conventional and Microwave processes

    International Nuclear Information System (INIS)

    Agrawal, D.; Cheng, J.; Papworth, A.J.; Jain, H.; Williams, D.B.

    2001-01-01

    Recently, significant developments and advances have taken place in the field of microwave processing of ceramics, composites and metals. Microwave sintering technology of WC/Co based hard metal parts has been now developed for commercial products. Microwave processed WC/Co parts reportedly have exhibited superior performance over standard parts. Additionally, the microwave process requires only one tenth of the total cycle time employed in a conventional process. Laboratory corrosion and impact resistance tests have proved that microwave processed WC/Co parts are several times more resistant than the conventional parts of the same composition. The scanning transmission electron microscopic (STEM) examination conducted an conventionally and microwave sintered WC/Co samples exhibited remarkable difference in the chemistry of cobalt binder phase. It is understood that the superior mechanical properties of microwave sintered part are due to the pure cobalt phase present at the grain boundary of WC grains, while the conventionally sintered part showed there was substantial inter-alloying of Co with tungsten. (author)

  16. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  17. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  18. Emerging Trends in Microwave Processing of Spices and Herbs.

    Science.gov (United States)

    Rahath Kubra, Ismail; Kumar, Devender; Jagan Mohan Rao, Lingamallu

    2016-10-02

    Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid-liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.

  19. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  20. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  1. Microwave heating processes involving carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, J.A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2010-01-15

    Carbon materials are, in general, very good absorbents of microwaves, i.e., they are easily heated by microwave radiation. This characteristic allows them to be transformed by microwave heating, giving rise to new carbons with tailored properties, to be used as microwave receptors, in order to heat other materials indirectly, or to act as a catalyst and microwave receptor in different heterogeneous reactions. In recent years, the number of processes that combine the use of carbons and microwave heating instead of other methods based on conventional heating has increased. In this paper some of the microwave-assisted processes in which carbon materials are produced, transformed or used in thermal treatments (generally, as microwave absorbers and catalysts) are reviewed and the main achievements of this technique are compared with those obtained by means of conventional (non microwave-assisted) methods in similar conditions. (author)

  2. Microwave processing in MOX fuel cycle

    International Nuclear Information System (INIS)

    Mallik, G.K.; Malav, R.K.; Panakkal, J.P.; Kamath, H.S.

    2005-01-01

    The prominent aspect of the microwave heating technique applications in nuclear material processing is its eco-friendly status. It is envisaged that no active liquid waste will be generated from microwave processing. AFFF has fabricated the (U, Pu) 2 O mixed oxide fuels for PHWRs, BWRs and PFBR. AFFF is also working for the AHWR fuel cycle. The present paper summarises about the process experiments, instrumental development, results, and future applications of microwave heating technique. (author)

  3. Advancements of microwave diagnostics in magnetically confined plasmas

    NARCIS (Netherlands)

    Mase, A.; Kogi, Y.; Ito, N.; Yokota, Y.; Akaki, K.; Kawahata, K.; Nagayama, Y.; Tokuzawa, T.; Yamaguchi, S.; Hojo, H.; Oyama, N.; N C Luhmann Jr.,; Park, H. K.; Donne, A. J. H.

    2009-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Recent advances in electronic devices and components together with computer technology have enabled the

  4. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    Administrator

    Microstructures of sintered titania samples: (a) microwave and (b) conventional. Figure 5. ..... contaminated soil vitrification, volatile organic compounds treatment and ... ficant advancements will take place in the science and technology of ...

  5. Study on microwave assisted process in chemical extraction

    International Nuclear Information System (INIS)

    Amer Ali; Rosli Mohd Yunus; Ramlan Abd Aziz

    2001-01-01

    The microwave assisted process is a revolutionary method of extraction that reduces the extraction time to as little as a few seconds, with up to a ten-fold decrease in the use of solvents. The target material is immersed in solvent that is transparent to microwaves, so only the target material is heated, and because of the microwaves tend to heat the inside of the material quickly, the target chemical are expelled in a few seconds. benefits from this process include significant reductions in the amount of energy required and substantial reductions in the cost and dispose of hazardous solvents. A thorough review has been displayed on: using the microwave in extraction, applications of microwave in industry, process flow diagram, mechanism of the process and comparison between microwave process and other extraction techniques (soxhlet, steam distillation and supercritical fluid). This review attempts to summarize the studies about microwave assisted process as a very promising technique. (Author)

  6. Prospects of microwave processing: An overview

    Indian Academy of Sciences (India)

    Administrator

    wave heating. In addition, microwave energy is being explored for the sintering of metal powders also. Ceramic and metal nanopowders have been sintered in microwave. Furthermore, initiatives have been taken to process the amorphous materials (e.g. glass) by microwave heating. Besides this, an attempt has been made ...

  7. Optical technology for microwave applications VI and optoelectronic signal processing for phased-array antennas III; Proceedings of the Meeting, Orlando, FL, Apr. 20-23, 1992

    Science.gov (United States)

    Yao, Shi-Kay; Hendrickson, Brian M.

    The following topics related to optical technology for microwave applications are discussed: advanced acoustooptic devices, signal processing device technologies, optical signal processor technologies, microwave and optomicrowave devices, advanced lasers and sources, wideband electrooptic modulators, and wideband optical communications. The topics considered in the discussion of optoelectronic signal processing for phased-array antennas include devices, signal processing, and antenna systems.

  8. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  9. Precision microwave applicators and systems for plasma and materials processing

    International Nuclear Information System (INIS)

    Asmussen, J.; Garard, R.

    1988-01-01

    Modern applications of microwave energy have imposed new requirements upon microwave processing systems. Interest in energy efficiency, processing uniformity and control of process cycles has placed new design conditions upon microwave power oscillators, microwave systems and microwave applicator design. One approach of meeting new application requirements is the use of single-mode or controlled multimode applicators. The use of a single-mode applicator for plasma generation and materials processing will be presented. Descriptions of actual applicator designs for heating, curing, and processing of solid materials and the generations of high and low pressure discharges will be given. The impact of these applicators on the total microwave system including the microwave power source will be described. Specific examples of applicator and associated microwave systems will be detailed for the applications of (1) plasma thin film deposition and (2) the precision processing and diagnosis of materials. Methods of process control and diagnosis, control of process uniformity and process scale up are discussed

  10. Microwave processing for ceramic materials in microsystem technology

    International Nuclear Information System (INIS)

    Rhee, S.

    2002-11-01

    In this study, the applicability of microwaves for sintering of monolithic ceramics and ceramic microcomponents was investigated. Experiments with 2.45 GHz and 30 GHz microwaves were conducted and contrasted to conventional thermal processing. The advantages and disadvantages of microwave processing were then assessed. Nanoscale zirconia and sub-micron lead-zirconate-titanate electroceramics were selected for the evaluation. (orig.)

  11. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  12. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  13. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  14. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  15. Microwave processing of gustatory tissues for immunohistochemistry

    Science.gov (United States)

    Bond, Amanda; Kinnamon, John C.

    2013-01-01

    We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications. PMID:23473796

  16. Continuous vulcanization of extruded profile by microwave process

    International Nuclear Information System (INIS)

    Lim Hun Soo

    1994-01-01

    Continuous vulcanization is being increasingly used today in the manufacture of extrusion profiles. This is particularly so with the microwave/hot air continuous vulcanization process. Although this process is now quite widely used in Europe and to a lesser extent in USA, it is still not used in Malaysia. To improve the technological capability of the rubber-based industry in extrusion product, the RRIM has acquired a microwave/hot air tunnel continuous vulcanization equipment to enable development work in this area to be carried out with the aim of upgrading the rubber industry towards this more automated manufacturing process. This is particularly pertinent in view of the anticipated labour shortage, and, increasing labour and energy cost. This paper outlines the basic principles of operation of the microwave/hot air tunnel continuous vulcanization process and describes some aspects of compounding involving natural and synthetic rubbers for use in the process. As temperature increase is one of the major factors influencing the vulcanization of profile in this process, study was therefore concentrated on the heat generation aspect in the microwave tunnel

  17. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  18. Microwave Plasma Sources for Gas Processing

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2008-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented

  19. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  20. GPM GROUND VALIDATION ADVANCED MICROWAVE RADIOMETER RAIN IDENTIFICATION (ADMIRARI) GCPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Radiometer Rain Identification (ADMIRARI) GCPEx dataset measures brightness temperature at three frequencies (10.7, 21.0...

  1. A comparative study on microwave and routine tissue processing

    Directory of Open Access Journals (Sweden)

    T Mahesh Babu

    2011-01-01

    Conclusions: The individual scores by different observers regarding the various parameters included in the study were statistically insignificant, the overall quality of microwave-processed and microwave-stained slides appeared slightly better than conventionally processed and stained slides.

  2. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  3. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  4. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lixin; Jin Zhi; Liu Xinyu, E-mail: zhaolixin@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2009-12-15

    In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs. (semiconductor devices)

  5. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    Science.gov (United States)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  6. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  7. Physical quality characteristics of the microwave-dried breadfruit powders due to different processing conditions

    Science.gov (United States)

    Taruna, I.; Hakim, A. L.; Sutarsi

    2018-03-01

    Production of breadfruit powder has been an option to make easy its uses in various food processing. Accordingly, there is a need recently to apply advanced drying method, i.e. microwave drying, for improving quality since conventional methods produced highly variable product quality and required longer process. The present work was aimed to study the effect of microwave power and grinding time on physical quality of breadfruit powders. The experiment was done initially by drying breadfruit slices in a microwave dryer at power level of 420, 540, and 720 W and then grinding for 3, 5, and 7 min to get powdery product of less than 80 mesh. The physical quality of breadfruit powders were measured in terms of fineness modulus (FM), average particle size (D), whiteness (WI), total color difference (ΔE), water absorption (Wa), oil absorption (La), bulk density (ρb) and consistency gel (Gc). The results showed that physical quality of powders and its ranged-values included the FM (2.08-2.62), D (0.44-0.68 mm), WI (75.2-77.9), ΔE (7.4-10.5), Wa (5.5-6.2 ml/g), La (0.7-0.9 ml/g), ρb (0.62-0.70 g/cm3) and Gc (41.3-46.8 mm). The experiment revealed that variation of microwave power and grinding time affected significantly the quality of the breadfruit powders. However, microwave power was more dominant factor to affect quality of breadfruit powder in comparison to the grinding time.

  8. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  9. Processing of volatile organic compounds by microwave plasmas

    International Nuclear Information System (INIS)

    Mizeraczyk, J.; Jasinski, M.; Dors, M.; Zakrzewski, Z.

    2011-01-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  10. Processing of volatile organic compounds by microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland)

    2011-07-01

    In this paper atmospheric pressure microwave discharge methods and devices used for producing the nonthermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguidebased surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguidebased nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzletype MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented. (author)

  11. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    This thesis presents a theoretical and experimental study of optical phase modulation and its applications in all-optical microwave signal processing, which include all-optical microwave filtering, all-optical microwave mixing, optical code-division multiple-access (CDMA) coding, and ultrawideband (UWB) signal generation. All-optical microwave signal processing can be considered as the use of opto-electronic devices and systems to process microwave signals in the optical domain, which provides several significant advantages such as low loss, low dispersion, light weight, high time bandwidth products, and immunity to electromagnetic interference. In conventional approaches, the intensity of an optical carrier is modulated by a microwave signal based on direct modulation or external modulation. The intensity-modulated optical signal is then fed to a photonic circuit or system to achieve specific signal processing functionalities. The microwave signal being processed is usually obtained based on direct detection, i.e., an opto-electronic conversion by use of a photodiode. In this thesis, the research efforts are focused on the optical phase modulation and its applications in all-optical microwave signal processing. To avoid using coherent detection which is complicated and costly, simple and effective phase modulation to intensity modulation (PM-IM) conversion schemes are pursued. Based on a theoretical study of optical phase modulation, two approaches to achieving PM-IM conversions are proposed. In the first approach, the use of chromatic dispersion induced by a dispersive device to alter the phase relationships among the sidebands and the optical carrier of a phase-modulated optical signal to realize PM-IM conversion is investigated. In the second approach, instead of using a dispersive device, the PM-IM conversion is realized based on optical frequency discrimination implemented using an optical filter. We show that the proposed PM-IM conversion schemes can be

  12. Optimisation of microwave-assisted processing in production of pineapple jam

    Science.gov (United States)

    Ismail, Nur Aisyah Mohd; Abdullah, Norazlin; Muhammad, Norhayati

    2017-10-01

    Pineapples are available all year round since they are unseasonal fruits. Due to the continuous harvesting of the fruit, the retailers and farmers had to find a solution such as the processing of pineapple into jam, to treat the unsuccessfully sold pineapples. The direct heating of pineapple puree during the production of pineapple jam can cause over degradation of quality of the fresh pineapple. Thus, this study aims to optimise the microwave-assisted processing conditions for producing pineapple jam which could reduce water activity and meets minimum requirement for pH and total soluble solids contents of fruit jam. The power and time of the microwave processing were chosen as the factors, while the water activity, pH and total soluble solids (TSS) content of the pineapple jam were determined as responses to be optimised. The microwave treatment on the pineapple jam was able to give significant effect on the water activity and TSS content of the pineapple jam. The optimum power and time for the microwave processing of pineapple jam is 800 Watt and 8 minutes, respectively. The use of domestic microwave oven for the pineapple jam production results in acceptable pineapple jam same as conventional fruit jam sold in the marketplace.

  13. The catalytic oxidation of malachite green by the microwave-Fenton processes.

    Science.gov (United States)

    Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng

    2010-01-01

    Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.

  14. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... amplifier architectures. In addition, distortion analysis and power combining techniques are considered. Another key element in most microwave systems is a signal generator. It forms the heart of all kinds of communication and radar systems. The fourth part of this book is dedicated to signal generators...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...

  15. Highlights from panel discussion on key issues for future developments in microwave processing

    International Nuclear Information System (INIS)

    Gac, F.D.; Iskander, M.F.

    1992-01-01

    This paper reports on highlights from a panel discussion on Key Issues for Future Development in Microwave Processing. Although the panelists represented a mix of individuals from government, academia, and industry, only one aspect of industry was represented, namely microwave system manufacturers. For further panel discussions, it is recommended that the materials manufacturing (i.e., microwave user) sector also be represented. Three important points emerged from the panel discussion. The first deals with the credibility and usability of information, be it dielectric property measurements, experimental procedures, or microwave processing results. Second, a considerable communication and education gap continues to exist between the materials community and microwave engineers. Finally, a more realistic approach should be taken in identifying where microwave processing makes sense

  16. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  17. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  18. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  19. The process research of drying UF4 by microwave

    International Nuclear Information System (INIS)

    Wen Guo; Wang Yunbo; Liu Long

    2010-01-01

    This paper make use of microwave to dry UF 4 filter cake, the aim is desorbed adsorption water. The research focus on such process conditions, boat material, thickness of filter cake, drying time, setting temperature, heating power and so on. the research of desorption crystal water of UF 4 that dried by microwave in fixed bed .When UF 4 drying by microwave and claiming by fixed bed, the qualified UF 4 powder is prepared. The research is shown that microwave can desorbs adsorption water which contain in UF 4 filter cake. There is a stable water contents in UF 4 after drying, and the sum of two members is less. After drying by microwave and claiming by fixed bed, the contents of water, UO 2 and UO 2 F 2 are all according to the quality standard. (authors)

  20. Four-hour processing of clinical/diagnostic specimens for electron microscopy using microwave technique.

    Science.gov (United States)

    Giberson, R T; Demaree, R S; Nordhausen, R W

    1997-01-01

    A protocol for routine 4-hour microwave tissue processing of clinical or other samples for electron microscopy was developed. Specimens are processed by using a temperature-restrictive probe that can be set to automatically cycle the magnetron to maintain any designated temperature restriction (temperature maximum). In addition, specimen processing during fixation is performed in 1.7-ml microcentrifuge tubes followed by subsequent processing in flow-through baskets. Quality control is made possible during each step through the addition of an RS232 port to the microwave, allowing direct connection of the microwave oven to any personal computer. The software provided with the temperature probe enables the user to monitor time and temperature on a real-time basis. Tissue specimens, goat placenta, mouse liver, mouse kidney, and deer esophagus were processed by conventional and microwave techniques in this study. In all instances, the results for the microwave-processed samples were equal to or better than those achieved by routine processing techniques.

  1. An experimental facility for microwave induced plasma processing of materials

    International Nuclear Information System (INIS)

    Patil, D.S.; Ramachandran, K.; Bhide, A.L.; Venkatramani, N.

    1997-01-01

    Microwave induced plasma processing offers many advantages over conventional processes. However this technology is in the development stage. This report gives a detailed information about a microwave plasma processing facility (2.45 GHz, 700 W) set up in the Laser and Plasma Technology Division. The equipment details and the results obtained on deposition of diamond like carbon (DLC) thin films and surface modification of polymer PET (polyethylene terephthalate) using this facility are given in this report. (author)

  2. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  3. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    Directory of Open Access Journals (Sweden)

    Jinghua Ye

    2017-01-01

    Full Text Available Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials.

  4. System to continuously produce carbon fiber via microwave assisted plasma processing

    Science.gov (United States)

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  5. System design development for microwave and millimeter-wave materials processing

    Science.gov (United States)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  6. Influence of microwave heating on the stability of processed samn

    OpenAIRE

    Farag, Radwan S.; Taha, Soad H.

    1991-01-01

    Butter was converted to samn by microwave and conventional heating. The quality of the processed samn by the two methods was followed by determining the acid, peroxide and TBA values over a period of six weeks at 60°C. The fatty acid composition of samn samples was determined by gas-liquid chromatographic technique. The data show that butter conversion to samn by microwave heating was accomplished in about one half of the time that conventional heating requires. Microwave heating obviously in...

  7. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  8. Microwave irradiation enhances kinetics of the biomimetic process of hydroxyapatite nanocomposites

    International Nuclear Information System (INIS)

    Guha, Avijit; Nayar, Suprabha; Thatoi, H N

    2010-01-01

    In situ synthesized hydroxyapatite-poly(vinyl) alcohol nanocomposite was subjected to microwave irradiation, post synthesis. Interestingly, the aging time of 1 week required for the normal biomimetic process was reduced to 1 h post microwave irradiation, as characterized by x-ray powder diffraction and transmission electron microscopy. The surface topography shows the tendency of tubules to cross-link with the help of microwave energy. The microwave energy seems to provide a directional pull to the polymer chains which could have led to an enhancement of the kinetics of phase formation. (communication)

  9. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  10. Microwave plasma emerging technologies for chemical processes

    NARCIS (Netherlands)

    de la Fuente, Javier F.; Kiss, Anton A.; Radoiu, Marilena T.; Stefanidis, Georgios D.

    2017-01-01

    Microwave plasma (MWP) technology is currently being used in application fields such as semiconductor and material processing, diamond film deposition and waste remediation. Specific advantages of the technology include the enablement of a high energy density source and a highly reactive medium,

  11. Process characteristics for microwave assisted hydrothermal carbonization of cellulose.

    Science.gov (United States)

    Zhang, Junting; An, Ying; Borrion, Aiduan; He, Wenzhi; Wang, Nan; Chen, Yirong; Li, Guangming

    2018-07-01

    The process characteristics of microwave assisted hydrothermal carbonization of cellulose was investigated and a first order kinetics model based on carbon concentration was developed. Chemical properties analysis showed that comparing to conventional hydrothermal carbonization, hydrochar with comparable energy properties can be obtained with 5-10 times decrease in reaction time with assistance of microwave heating. Results from kinetics study was in great agreement with experimental analysis, that they both illustrated the predominant mechanism of the reaction depend on variations in the reaction rates of two co-existent pathways. Particularly, the pyrolysis-like intramolecular dehydration reaction was proved to be the predominant mechanism for hydrochar generation under high temperatures. Finally, the enhancement effects of microwave heating were reflected under both soluble and solid pathways in this research, suggesting microwave-assisted hydrothermal carbonization as a more attracting method for carbon-enriched hydrochar recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  13. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    International Nuclear Information System (INIS)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa Ma.; Aguilar, Cristóbal N.; Garrote, Gil; Ruiz, Héctor A.

    2017-01-01

    Highlights: • Microwave heating pretreatment for lignocellulosic material. • Fundament of lignocellulosic material fractionation using microwave irradiation. • Energy consumption in microwave pretreatments and microwave reactors description. • Microwave heating as pretreatment in a biorefinery concept. - Abstract: The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.

  14. 2.45 GHz Microwave Processing and Its Influence on Glass Fiber Reinforced Plastics

    Science.gov (United States)

    Zaremba, Swen

    2018-01-01

    During the production of fiber-reinforced composite materials, liquid resin is introduced into the fiber material and cured, i.e., hardened. An elevated temperature is needed for this curing. Microwave curing of composites has been investigated for some time, but it has mostly been done using small domestic or laboratory equipment. However, no investigation has been carried out using an industrial-sized chamber-microwave for glass fiber-reinforced plastic (GFRP). Here, we show that microwave curing produces laminates of the same quality as oven-cured ones. The study shows that, if the process is done right, GFRP samples can be produced with an industrial scale microwave. Even if not fully cured, microwave samples show a glass transition temperature measured with DMA (Tg-DMA) that is comparable to the Tg-DMA according to the proposed cure cycle on the data sheet. Specific microwave-cured configurations show better inter-laminar shear strength than oven specimens. The results show that microwave-based heat introduction can be a beneficial curing method for GFRP laminates. A microwave-optimized process is faster and leads to better mechanical properties. PMID:29783684

  15. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Reports: Final Comprehensive Performance Test Report, P/N: 1356006-1, S.N: 202/A2

    Science.gov (United States)

    Platt, R.

    1998-01-01

    This is the Performance Verification Report. the process specification establishes the requirements for the comprehensive performance test (CPT) and limited performance test (LPT) of the earth observing system advanced microwave sounding unit-A2 (EOS/AMSU-A2), referred to as the unit. The unit is defined on drawing 1356006.

  16. NOAA Climate Data Record (CDR) of Advanced Microwave Sounding Unit (AMSU)-A Brightness Temperature, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Climate Data Record (CDR) for Advanced Microwave Sounding Unit-A (AMSU-A) brightness temperature in "window channels". The data cover a time period from...

  17. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  18. Earth Observing System (EOS)/ Advanced Microwave Sounding Unit-A (AMSU-A): Special Test Equipment. Software Requirements

    Science.gov (United States)

    Schwantje, Robert

    1995-01-01

    This document defines the functional, performance, and interface requirements for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A) Special Test Equipment (STE) software used in the test and integration of the instruments.

  19. Rheological and sensory behaviors of parboiled pasta cooked using a microwave pasteurization process.

    Science.gov (United States)

    Joyner, Helen S; Jones, Kari E; Rasco, Barbara A

    2017-10-01

    Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.

  20. Synthesis of cocarboxylase: process intensification via microwave irradiation

    OpenAIRE

    Пинчукова, Наталия Александровна; Волошко, Александр Юрьевич; Горобец, Николай Юрьевич; Беликов, Константин Николаевич; Гудзенко, Людмила Васильевна; Чебанов, Валентин Анатольевич

    2013-01-01

    Energy saving is the key point in the development of new chemical technologies and industrial scaling of the processes of obtaining chemical reagents, functional materials, pharmaceutical substances, etc. The use of the non-classical process activation methods, including microwave radiation, known as effective heating source, allowing significant process acceleration, is a promising direction in the field of new energy-saving technologies.The paper gives the results of modeling of the process...

  1. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  2. Recent advances in environmental monitoring using commercial microwave links

    Science.gov (United States)

    Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori

    2016-04-01

    Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected

  3. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  4. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    Science.gov (United States)

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  5. In-liquid Plasma. A stable light source for advanced oxidation processes in environmental remediation

    Science.gov (United States)

    Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi

    2018-06-01

    A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.

  6. Microwave off-gas treatment apparatus and process

    Science.gov (United States)

    Schulz, Rebecca L.; Clark, David E.; Wicks, George G.

    2003-01-01

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  7. Scaling up the microwave firing of ceramics

    International Nuclear Information System (INIS)

    Wroe, F.C.R.

    1993-01-01

    EA Technology, through a comprehensive R ampersand D program, is developing new microwave furnace technology focused on the ceramics processing industries. Using a combination of computer modelling, experimentation and feasibility studies, EA Technology has developed processes and procedures for firing large ceramic components. The aim of this work is to describe the investigation of the firing of ceramic products such as bricks, pottery, refractories, and industrial ceramics, using advanced processing techniques to produce and maintain uniformity of temperature throughout the components and kiln environment. This has achieved the goal of producing uniform microstructures and low thermal stress by careful control of the firing cycle. This paper illustrates the feasibility of microwave-assisted firing and shows it to be economically viable in terms of energy costs and process control. 6 refs., 1 fig

  8. Radiation Processing of Advanced Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Jeun, Joonpyo; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and {gamma}-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose.

  9. Microwave processing of cement and concrete materials – towards an industrial reality?

    International Nuclear Information System (INIS)

    Buttress, Adam; Jones, Aled; Kingman, Sam

    2015-01-01

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

  10. Status of microwave process development for RH-TRU [remote-handled transuranic] wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in-drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. The microwave fields are uniform in one dimension to reduce the formation of hot spots on the microwaved wasteform. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 1 fig., 1 tab

  11. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  12. Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater

    International Nuclear Information System (INIS)

    Yang Yu; Wang Peng; Shi Shujie; Liu Yuan

    2009-01-01

    This paper explored a novel process for wastewater treatment, i.e. microwave enhanced Fenton-like process. This novel process was introduced to treat high concentration pharmaceutical wastewater with initial COD loading of 49,912.5 mg L -1 . Operating parameters were investigated and the optimal condition included as follows: microwave power was 300 W, radiation time was 6 min, initial pH was 4.42, H 2 O 2 dosage was 1300 mg L -1 and Fe 2 (SO 4 ) 3 dosage was 4900 mg L -1 , respectively. Within the present experimental condition used, the COD removal and UV 254 removal reached to 57.53% and 55.06%, respectively, and BOD 5 /COD was enhanced from 0.165 to 0.470. The variation of molecular weight distribution indicated that both macromolecular substances and micromolecular substances were eliminated quite well. The structure of flocs revealed that one ferric hydrated ion seemed to connect with another ferric hydrated ion and/or organic compound molecule to form large-scale particles by means of van der waals force and/or hydrogen bond. Subsequently, these particles aggregated to form flocs and settled down. Comparing with traditional Fenton-like reaction and conventional heating assisted Fenton-like reaction, microwave enhanced Fenton-like process displayed superior treatment efficiency. Microwave was in favor of improving the degradation efficiency, the settling quality of sludge, as well as reducing the yield of sludge and enhancing the biodegradability of effluent. Microwave enhanced Fenton-like process is believed to be a promising treatment technology for high concentration and biorefractory wastewater.

  13. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  14. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    Directory of Open Access Journals (Sweden)

    Magdalena Montowska

    2016-01-01

    Full Text Available New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages. Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed aft er 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  15. Survival of Anisakis simplex in microwave-processed arrowtooth flounder (Atheresthes stomias).

    Science.gov (United States)

    Adams, A M; Miller, K S; Wekell, M M; Dong, F M

    1999-04-01

    The purpose of this study was to define the relationship between survival and temperature of nematodes of the species Anisakis simplex in microwave-processed arrowtooth flounder (Atheresthes stomias). Ten fillets (each 126 to 467 g, 0.5 to 1.75 cm thick), with an average of five larvae of Anisakis simplex per fillet, were processed to target temperatures on high (100%) power using a commercial 700-W microwave oven. Fillets were neither covered nor rotated and had a temperature probe inserted to two-thirds depth into the thickest portion. After the fillet was digested using a 1% pepsin solution, the viability of nematodes was determined by viewing them under a dissecting microscope. Survival rates were 31% at 140 degrees F (60 degrees C), 11% at 150 degrees F (65 degrees C), 2% at 160 degrees F (71 degrees C), 3% at 165 degrees F (74 degrees C), and 0% at 170 degrees F (77 degrees C). Microwave processing of standardized fillet "sandwiches," 14 cm long, 4.5 cm wide, and approximately 1.75 cm high, each of which was preinoculated with 10 live nematodes, resulted in no survival at either 160 degrees F or 170 degrees F. Using ultraviolet light to detect both viable and nonviable nematodes in fillet sandwiches as an alternative method to pepsin digestion resulted in survival rates of 1% at 140 degrees F (60 degrees C), 3% at 145 degrees F (63 degrees C), and 0% at 150 degrees F (65 degrees C). Smaller fillet sandwiches, which most likely had fewer cold spots during microwave processing, required 150 degrees F (65 degrees C), whereas larger whole fillets required 170 degrees F (77 degrees C) to kill larvae of Anisakis simplex. The parasites were most likely inactivated by a thermal mechanism of microwave treatment. Damage to the nematodes was often evident from ruptured cuticles that were no longer resistant to digestive enzymes. The high hydrostatic pressure and low chloride content of the pseudocoelomic fluid probably contributed greatly to the damage incurred by the

  16. Earth Observing System (EOS) Advanced Microwave Sounding Unit-A (AMSU-A): Instrumentation interface control document

    Science.gov (United States)

    1994-01-01

    This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).

  17. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  18. Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process

    International Nuclear Information System (INIS)

    Tan, S T; Yahaya, M; Yap, C C; Umar, A A; Salleh, M M

    2013-01-01

    One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO 3 ).6H 2 O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.

  19. Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process

    Science.gov (United States)

    Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.

    2013-04-01

    One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.

  20. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    International Nuclear Information System (INIS)

    Handayani, Prima Astuti; Abdullah; Hadiyanto, Dan

    2015-01-01

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form

  1. Process intensification of biodiesel production by using microwave and ionic liquids as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Prima Astuti [Department of Chemical Engineering, Diponegoro University (Indonesia); Chemical Engineering Program, Faculty of Engineering, Semarang State University (Indonesia); Abdullah; Hadiyanto, Dan, E-mail: hadiyanto@live.undip.ac.id [Department of Chemical Engineering, Diponegoro University (Indonesia)

    2015-12-29

    The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.

  2. [Application of microwave technology in extraction process of Guizhi Fuling capsule].

    Science.gov (United States)

    Wang, Zheng-kuan; Zhou, Mao; Liu, Yuan; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    In this paper, optimization of the conditions of microwave technique in extraction process of Guizhi Fuling capsule in the condition of a pilot scale was carried out. First of all, through the single factor experiment investigation of various factors, the overall impact tendency and range of each factor were determined. Secondly, L9 (3(4)) orthogonal test optimization was used, and the contents of gallic acid in liquid, paeoniflorin, benzoic acid, cinnamic acid, benzoyl paeoniflorin, amygdalin of the liquid medicine were detected. The extraction rate and comprehensive evaluation were calculated with the extraction effect, as the judgment basis. Theoptimum extraction process of Guizhi Fuling capsule by microwave technology was as follows: the ratio of liquid to solid was 6: 1 added to drinking water, the microwave power was 6 kW, extraction time was 20 min for 3 times. The process of the three batch of amplification through verification, the results are stable, and compared with conventional water extraction has the advantages of energy saving, time saving, high efficiency advantages. The above results show the optimum extracting technology of high efficiency, stable and feasible.

  3. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  4. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    International Nuclear Information System (INIS)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma'a, A I; Shaw, A; Wylie, S R

    2011-01-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  5. Assessment of Microwave/UV/O3 in the Photo-Catalytic Degradation of Bromothymol Blue in Aqueous Nano TiO2 Particles Dispersions

    Directory of Open Access Journals (Sweden)

    Kim Sun-Jae

    2010-01-01

    Full Text Available Abstract In this study, a microwave/UV/TiO2/ozone/H2O2 hybrid process system, in which various techniques that have been used for water treatment are combined, is evaluated to develop an advanced technology to treat non-biodegradable water pollutants efficiently. In particular, the objective of this study is to develop a novel advanced oxidation process that overcomes the limitations of existing single-process water treatment methods by adding microwave irradiation to maximize the formation of active intermediate products, e.g., OH radicals, with the aid of UV irradiation by microwave discharge electrodeless lamp, photo-catalysts, and auxiliary oxidants. The results of photo-catalytic degradation of BTB showed that the decomposition rate increased with the TiO2 particle dosages and microwave intensity. When an auxiliary oxidant such as ozone or hydrogen peroxide was added to the microwave-assisted photo-catalysis, however, a synergy effect that enhanced the reaction rate considerably was observed.

  6. Microwave evaluation of electromigration susceptibility in advanced interconnects

    Science.gov (United States)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  7. Investigation into the use of microwave sensors to monitor particulate manufacturing processes

    Science.gov (United States)

    Austin, John Samuel, III

    Knowledge of a material's properties in-line during manufacture is of critical importance to many industries, including the pharmaceutical industry, and can be used for either process or quality control. Different microwave sensor configurations were tested to determine both the moisture content and the bulk density in pharmaceutical powders during processing on-line. Although these parameters can significantly affect a material's flowability, compressibility, and cohesivity, in the presence of blends, the picture is incomplete. Due to the ease with which particulate blends tend to segregate, blend uniformity and chemical composition are two critical parameters in nearly all solids manufacturing industries. The prevailing wisdom has been that microwave sensors are not capable of or sensitive enough to measure the relative concentrations of components in a blend. Consequently, it is common to turn to near infrared sensing to determine material composition on-line. In this study, a novel microwave sensor was designed and utilized to determine, separately, the concentrations of different components in a blend of pharmaceutical powders. This custom microwave sensor was shown to have comparable accuracy to the state-of-the-art for both chemical composition and moisture content determination.

  8. Dielectric properties of Zea mays kernels - studies for microwave power processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, Emanoil; Neamtu, Camelia; Surducan, Vasile, E-mail: emanoil.surducan@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Microwaves absorption in biological samples can be predicted by their specific dielectrical properties. In this paper, the dielectric properties ({epsilon}' and {epsilon}'') of corn (Zea mays) kernels in the 500 MHz - 20 GHz frequencies range are presented. A short analysis of the microwaves absorption process is also presented, in correlation with the specific thermal properties of the samples, measured by simultaneous TGA-DSC method.

  9. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    Science.gov (United States)

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  10. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    Science.gov (United States)

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  11. Microwave-assisted routes for rapid and efficient modification of layered perovskites.

    Science.gov (United States)

    Akbarian-Tefaghi, S; Wiley, J B

    2018-02-27

    Recent advances in exploiting microwave radiation in the topochemical modification of layered oxide perovskites are presented. Such methods work well for rapid bulk synthetic steps used in the production of novel inorganic-organic hybrids (protonation, grafting, intercalation, and in situ click reactions), exfoliation to produce dispersed nanosheets, and post-exfoliation processing to rapidly vary nanosheet surface groups. Compared to traditional methods that often take days, microwave methods can produce quality products in as little as 1-2 h.

  12. Wear study of Al-SiC metal matrix composites processed through microwave energy

    Science.gov (United States)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  13. First results of in-can microwave processing experiments for radioactive liquid wastes at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    White, T.L.; Youngblood, E.L.; Berry, J.B.; Mattus, A.J.

    1990-01-01

    The Oak Ridge National Laboratory (ORNL) Waste Handling and Packaging Plant is developing a microwave process to reduce and solidify remote-handled transuranic (RH-TRU) liquids and sludges presently stored in large tanks at ORNL. Testing has recently begun on an in drum microwave process using nonradioactive RH-TRU surrogates. The microwave process development effort has focused on an in-drum process to dry the RH-TRU liquids and sludges in the final storage container and then melt the salt residues to form a solid monolith. A 1/3-scale proprietary microwave applicator was designed, fabricated, and tested to demonstrate the essential features of the microwave design and to provide input into the design of the full-scale applicator. Conductivity cell measurements suggest that the microwave energy heats near the surface of the surrogate over a wide range of temperatures. The final wasteform meets the waste acceptance criteria for the Waste Isolation Pilot Plant, a federal repository for defense transuranic wastes near Carlsbad, New Mexico. 7 refs., 3 figs., 1 tab

  14. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  15. A ferrite nano-particles based fully printed process for tunable microwave components

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    With the advent of nano-particles based metallic inks, inkjet printing emerged as an attractive medium for fast prototyping as well as for low cost and flexible electronics. However, at present, it is limited to printing of metallic inks on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver-organo-complex (SOC) ink for metal traces printing. Due to the magnetic nature of the ink, this process is highly suitable for tunable microwave components. The printed magnetic substrate is characterized for the magnetostatic as well as microwave properties. The measured B(H) curve shows a saturation magnetization and remanence of 1560 and 350 Gauss respectively. As a proof of concept, a patch antenna is implemented in the proposed stack up which shows a tuning range of 4 % around the center frequency. © 2016 IEEE.

  16. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-01-01

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within

  17. In Situ Spectroscopic Analysis of the Carbothermal Reduction Process of Iron Oxides during Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Jun Fukushima

    2018-01-01

    Full Text Available The effects of microwave plasma induction and reduction on the promotion of the carbothermal reduction of iron oxides (α-Fe2O3, γ-Fe2O3, and Fe3O4 are investigated using in situ emission spectroscopy measurements during 2.45 GHz microwave processing, and the plasma discharge (such as CN and N2 is measured during microwave E-field irradiation. It is shown that CN gas or excited CN molecules contribute to the iron oxide reduction reactions, as well as to the thermal reduction. On the other hand, no plasma is generated during microwave H-field irradiation, resulting in thermal reduction. Magnetite strongly interacts with the microwave H-field, and the reduction reaction is clearly promoted by microwave H-field irradiation, as well as thermal reduction reaction.

  18. Extra-terrestrial construction processes - Advancements, opportunities and challenges

    Science.gov (United States)

    Lim, Sungwoo; Prabhu, Vibha Levin; Anand, Mahesh; Taylor, Lawrence A.

    2017-10-01

    Government space agencies, including NASA and ESA, are conducting preliminary studies on building alternative space-habitat systems for deep-space exploration. Such studies include development of advanced technologies for planetary surface exploration, including an in-depth understanding of the use of local resources. Currently, NASA plans to land humans on Mars in the 2030s. Similarly, other space agencies from Europe (ESA), Canada (CSA), Russia (Roscosmos), India (ISRO), Japan (JAXA) and China (CNSA) have already initiated or announced their plans for launching a series of lunar missions over the next decade, ranging from orbiters, landers and rovers for extended stays on the lunar surface. As the Space Odyssey is one of humanity's oldest dreams, there has been a series of research works for establishing temporary or permanent settlement on other planetary bodies, including the Moon and Mars. This paper reviews current projects developing extra-terrestrial construction, broadly categorised as: (i) ISRU-based construction materials; (ii) fabrication methods; and (iii) construction processes. It also discusses four categories of challenges to developing an appropriate construction process: (i) lunar simulants; (ii) material fabrication and curing; (iii) microwave-sintering based fabrication; and (iv) fully autonomous and scaled-up construction processes.

  19. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    Science.gov (United States)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  20. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office

    Directory of Open Access Journals (Sweden)

    Amy Doherty

    2015-01-01

    Full Text Available An appraisal of the Advanced Technology Microwave Sounder (ATMS for use in numerical weather prediction (NWP is presented, including an assessment of the data quality, the impact on Met Office global forecasts in preoperational trials, and a summary of performance over a period of 17 months operational use. After remapping, the noise performance (NEΔT of the tropospheric temperature sounding channels is evaluated to be approximately 0.1 K, comparing favourably with AMSU-A. However, the noise is not random, differences between observations and simulations based on short-range forecast fields show a spurious striping effect, due to 1/f noise in the receiver. The amplitude of this signal is several tenths of a Kelvin, potentially a concern for NWP applications. In preoperational tests, adding ATMS data to a full Met Office system already exploiting data from four microwave sounders improves southern hemisphere mean sea level pressure forecasts in the 2- to 5-day range by 1-2%. In operational use, where data from five other microwave sounders is assimilated, forecast impact is typically between −0.05 and −0.1 J/kg (3.4% of total mean impact per day over the period 1 April to 31 July 2013. This suggests benefits beyond redundancy, associated with reducing already small analysis errors.

  1. Investigation on computation of elliptical microwave plasma cavity

    Science.gov (United States)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  2. On-off temperature and power controller for improvement of the processes conditions assisted with microwaves

    Directory of Open Access Journals (Sweden)

    Viviana Marcela Hernández Velásquez

    2017-07-01

    Full Text Available Introduction: The use of microwaves in the process of fruits and vegetables dehydration is presented as an alternative process to the conventional ones because of the benefits in a reduction of transport costs, less processing time and final product volume, as well as a greater time of conservation and storage. Objective: Therefore, the aim of this study is to modify the microwave radiation supply, implementing an ON-OFF control of power and temperature in order to evaluate these parameters in the process and energy yield in the papaya. Methodology: For the development of the project, a factorial design of experiments was done taking into account the time on and off of the radiation and the sample geometry (slice and cube; runs were performed in duplicate and randomly in the modified microwave oven of 2.45GHz and 1kW of power. Results: The amount of moisture removed, the energy yield of the process and the initial organoleptic properties were analyzed. In the tests carried out, a maximum energy yield was 0.014kg/kJ with a reduction of 86% of the papaya sample weight processed in the radiation rate of 6x12 for a slice of 0,01m of thickness. Conclusions: It was achieved modification of the control in the microwave oven and the runs were carried out concluding that the parameters evaluated and are influential in the process and can be achieved moisture removal of 86%.

  3. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  4. Microwave superheaters for fusion

    International Nuclear Information System (INIS)

    Campbell, R.B.; Hoffman, M.A.; Logan, B.G.

    1987-01-01

    The microwave superheater uses the synchrotron radiation from a thermonuclear plasma to heat gas seeded with an alkali metal to temperatures far above the temperature of material walls. It can improve the efficiency of the Compact Fusion Advanced Rankine (CFAR) cycle described elsewhere in these proceedings. For a proof-of-principle experiment using helium, calculations show that a gas superheat ΔT of 2000 0 K is possible when the wall temperature is maintained at 1000 0 K. The concept can be scaled to reactor grade systems. Because of the need for synchrotron radiation, the microwave superheater is best suited for use with plasmas burning an advanced fuel such as D- 3 He. 5 refs

  5. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  6. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  7. Scale-up of microwave assisted flow synthesis by transient processing through monomode cavities in series

    NARCIS (Netherlands)

    Patil, N.G.; Benaskar, F.; Rebrov, E.; Meuldijk, J.; Hulshof, L.A.; Hessel, V.; Schouten, J.C.

    2014-01-01

    A new scale-up concept for microwave assisted flow processing is presented where modular scale-up is achieved by implementing microwave cavities in series. The scale-up concept is demonstrated for case studies of a packed-bed reactor and a wall-coated tubular reactor. With known kinetics and

  8. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    Directory of Open Access Journals (Sweden)

    Gong Cheng

    2015-01-01

    Full Text Available The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well describe COD removal from pesticide-containing wastewater by MWEUV/Fenton, and the apparent rate constant (k was 0.0125 min−1. The optimal conditions for MWEUV/Fenton process were determined as initial pH of 5, Fe2+ dosage of 0.8 mmol/L, and H2O2 dosage of 100 mmol/L. Under the optimal conditions, the reaction exhibited high mineralization degrees of organics, where COD and dissolved organic carbon (DOC concentration decreased from 183.2 mg/L to 36.9 mg/L and 43.5 mg/L to 27.8 mg/L, respectively. Three main pesticides in the wastewater, as Dimethoate, Triazophos, and Malathion, were completely removed by the MWEUV/Fenton process within 120 min. The high degree of pesticides decomposition and mineralization was proved by the detected inorganic anions.

  9. The research of technology and equipment for a microwave denitration process of the uranyl nitrate solution

    International Nuclear Information System (INIS)

    Bao Weimin; Wang Xuejun; Ma Xuquan; Shi Miaoyi; Zhang Zhicheng; Bao Zhu Tian.

    1991-01-01

    In order to improve the present process of converting the plutonium nitrate into oxide powder in the nuclear fuel cycle, a new conversion process for the direct denitration using microwave heating has been developed. Microwave denitration is based on intramolecular polarization of a material in electric field and has no need of a process of heat transfer during microwave heating, so that the whole material can be heated quickly and uniformly. The thermal decomposition reactions of Pu, U, Th and RE nitrate have been analyzed and compared. The uranyl nitrate solution was chosen as imitative plutonium nitrate solution. The performance parameters ε r tanδ of U, Th and RE nitrate and oxide in microwave field were measured. The data obtained show that all of them could absorb microwave energy well and cause heating decomposition reactions. The microwave denitration test unit was designed and made. Denitration tests for rare-earths nitrate and uranyl nitrate solutions were performed. It could be completed in one step that the uranyl nitrate solution was evaporated, dryed and denitrated in a vessel. The denitrated products are a porous lump and easy to scrape off from the denitration vessel. The main forms of the products UO 3 ·0.8H 2 O and U 3 O 8 which have excellent powder properties. The capacity of the denitration unit is 1.3 kg UO 3 /h. According to the experimental results the simplicity, feasibility and good repeatability of the process have been fully proved. The unit operates easily and is adaptable to conversion of nitrate in nuclear fuel cycle. (author)

  10. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.

    Science.gov (United States)

    Frecentese, Francesco; Saccone, Irene; Caliendo, Giuseppe; Corvino, Angela; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Severino, Beatrice; Santagada, Vincenzo

    2016-01-01

    Green chemistry is a discipline of great interest in medicinal chemistry. It involves all fields of chemistry and it is based on the principle to conduct chemical reactions protecting the environment at the same time, through the use of chemical procedures able to avoid pollution. In this context, water as solvent is a good choice because it is abundant, nontoxic, non-caustic, and non-combustible. Even if microwave assisted organic reactions in conventional solvents have quickly progressed, in the recent years medicinal chemists have focused their attention to processes deemed not dangerous for the environment, using nanotechnology and greener solvents as water. Several reports of reaction optimizations and selectivities, demonstrating the capability of microwave to allow the obtaining of increased yields have been recently published using water as solvent. In this review, we selected the available knowledge related to microwave assisted organic synthesis in aqueous medium, furnishing examples of the newest strategies to obtain useful scaffolds and novel derivatives for medicinal chemistry purposes. The intention of this review is to demonstrate the exclusive ability of MAOS in water as solvent or as co-solvent. For this purpose we report here the most representative applications of MAOS using water as solvent, focusing on medicinal chemistry processes leading to interesting nitrogen containing heterocycles with potential pharmaceutical applications.

  11. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    Science.gov (United States)

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  13. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  14. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  15. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  16. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding, Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200. 1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.

  17. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  18. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    Energy Technology Data Exchange (ETDEWEB)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi\t, Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  19. Microwave and particle beam sources and directed energy concepts

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    This book containing the proceedings of the SPIE on microwave and particle beam sources and directed energy concepts. Topics covered include: High power microwave sources, Direct energy concepts, Advanced accelerators, and Particle beams

  20. Microwave Assisted Manufacturing and Repair of Carbon Reinforced Nanocomposites

    OpenAIRE

    Sosa, Edward D.; Worthy, Erica S.; Darlington, Thomas K.

    2016-01-01

    We report a composite capable of advanced manufacturing and damage repair. Microwave energy is used to induce thermal reversible polymerization of the matrix allowing for microwave assisted composite welding and repair. Composites can be bonded together in just a few minutes through microwave welding. Lap shear testing demonstrates that microwave welded composites exhibit 40% bond strength relative to composites bonded with epoxy resin. Double cantilever beam testing shows 60% recovery in del...

  1. A microwave interferometer for density measurement and stabilization in process plasmas

    International Nuclear Information System (INIS)

    Pearson, D.I.C.; Campbell, G.A.; Domier, C.W.

    1988-01-01

    A low-cost heterodyne microwave interferometer system capable of measuring and/or controlling the plasma density over a dynamic range covering two orders of magnitude is demonstrated. The microwave frequency is chosen to match the size and density of plasma to be monitored. Large amplitude, high frequency fluctuations can be quantitatively followed and the longer-time-scale density can be held constant over hours of operation, for example during an inline production process to maintain uniformity and stoichiometry of films. A linear relationship is shown between plasma density and discharge current in a specific plasma device. This simple relationship makes control of the plasma straightforward using the interferometer as a density monitor. Other plasma processes could equally well benefit from such density control capability. By combining the interferometer measurement with diagnostics such as probes or optical spectroscopy, the total density profile and the constituent proportions of the various species in the plasma could be determined

  2. Blends of ground tire rubber devulcanized by microwaves/HDPE - Part A: influence of devulcanization process

    Directory of Open Access Journals (Sweden)

    Fabiula Danielli Bastos de Sousa

    2015-06-01

    Full Text Available AbstractThe main objective of this work is the study of the influence of microwaves devulcanization of the elastomeric phase on dynamically revulcanized blends based on Ground Tire Rubber (GTR/High Density Polyethylene (HDPE. The devulcanization of the GTR was performed in a system comprised of a conventional microwave oven adapted with a motorized stirring at a constant microwaves power and at various exposure times. The influence of the devulcanization process on the final properties of the blends was evaluated in terms of mechanical, viscoelastic, thermal and rheological properties. The morphology was also studied.

  3. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    Science.gov (United States)

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  5. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  6. Lipids characterization of ultrasound and microwave processed germinated sorghum.

    Science.gov (United States)

    Hassan, Sadia; Imran, Muhammad; Ahmad, Nazir; Khan, Muhammad Kamran

    2017-06-27

    Cereal crops and oilseeds provide diverse pool of fatty acids with characteristic properties. Sorghum (Sorghum bicolor (L.) Moench) provides the staple food with serving as main source of energy and protein. Germination of sorghum generally increases the nutritive value of seeds and the effects of germination on lipids composition of seeds vary greatly with processing conditions. Therefore, the current study was conducted to compare the effect of emerging processing techniques such as ultrasound (US) and microwave (MW) on fatty acids composition and oil yield of sorghum seeds before and after germination. Initially sorghum grains were soaked with 5% NaOCl (sodium hypochlorite) for surface sterilization. Afterwards, grains were soaked in excess water for 22 h at room temperature and were divided into four portions. The first portion (100 g grains) was subjected to germination without applying any microwave and ultrasonic treatment (T 0 ). Second portion was further divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and grains were subjected to ultrasonic treatments using two different ultrasonic intensities (US 1 : 40%; US 2 : 60%) within range of 0-100% and with two different time durations (t US1 : 5 min; t US2 : 10 min) at constant temperature. Third portion was also divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group) and exposed to microwave treatments at two different power levels (MW 1 : 450 watt; MW 2 : 700 watt) within the range of 100-900 W for two different time durations (t MW1 : 15 s; t MW2 : 30s). Similarly, fourth portion was divided into four groups (T 1 , T 2 , T 3 , T 4 ) (100 g of each group). Each group was exposed to both MW (MW 1 , MW 2 ) (100-900 watt power) & US (US 1 , US 2 ) (0-100% intensity) treatments at two different time levels (t US , t MW ). Then, germination was carried out and pre-treated raw and pre-treated germinated sorghum grains were analyzed for total oil yield, fatty acid

  7. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  8. Heat transfer within a concrete slab applying the microwave decontamination process

    International Nuclear Information System (INIS)

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.

    1993-01-01

    Decontamination of a radioactive contaminated concrete surface is a new technology for the treatment of radioactive waste. In this paper, concrete decontamination using microwave technology is investigated theoretically. A plane wave assumption of microwave propagation has been employed to estimate the microwave field and power dissipation within the concrete. A one-dimensional, unsteady heat conduction model with microwave heat dissipation resulting from microwave-material interaction has been used to evaluate frequency, steel reinforcement within the concrete, and thermal boundary conditions are also considered in the present model. Four commonly used microwave frequencies of 0.896, 2.45, 10.6, and 18.0 GHz have been utilized in the analysis. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the microwave power dissipation shifts toward the front surface of the concrete. Furthermore, it was observed that use of a higher frequency microwave could reduce power intensity requirements needed to raise the temperature difference or thermal stress to the same value in the same period of time. It was found that the presence of reinforcing steel mesh causes part of the microwave energy to be blocked and reflected. Thus, the temperature or thermal stress of the concrete increases before the reinforcement, and decreases after the reinforcement. 16 refs., 6 figs., 3 tabs

  9. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    Science.gov (United States)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  10. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of

  11. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  12. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  13. Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture.

    Science.gov (United States)

    Piątkowski, Marek; Janus, Łukasz; Radwan-Pragłowska, Julia; Bogdał, Dariusz; Matysek, Dalibor

    2018-04-01

    A new type of promising chitosan beads with advanced properties were obtained under microwave radiation according to Green Chemistry principles. Biomaterials were prepared using chitosan as raw material and glutamic acid/1,5-pentanodiol mixture as crosslinking agents. Additionally beads were modified with Tilia platyphyllos extract to enhance their antioxidant properties. Beads were investigated over their chemical structure by FT-IR analysis. Also their morphology has been investigated by SEM method. Additionally swelling capacity of the obtained hydrogels was determined. Lack of cytotoxicity has been confirmed by MTT assay. Proliferation studies were carried out on L929 mouse fibroblasts. Advanced properties of the obtained beads were investigated by studying pH sensitivity and antioxidant properties by DPPH method. Also susceptibility to degradation and biodegradation by Sturm Test method was evaluated. Results shows that proposed chitosan beads and their eco-friendly synthesis method can be applied in cell therapy and tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A ferrite nano-particles based fully printed process for tunable microwave components

    KAUST Repository

    Ghaffar, Farhan A.; Vaseem, Mohammad; Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver

  15. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer 2 on the GCOM-W satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer 2 (AMSR2) was launched on 18 May 2012, onboard the Global Change Observation Mission - Water (GCOM-W) satellite developed...

  16. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  17. Electron-beam and combined e-b and microwave processing of dried food ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Martin, D.; Tirlea, A.; Badea, M.; Oproiu, C.

    1998-01-01

    Complete text of publication follows. There are summarized and presented the results on the irradiated dried food ingredients, as starches, flour, spices, enzymes, pigments. It has investigated the electron-beam and microwave processing to achieve the hygienic and microbiological quality requirements for these materials. There are presented the results regarding the e-b and microwave effects on the main specific parameters (nutritional; microbiological; physical and chemical) for each item. Irradiation has carried out to different electron accelerators, mainly to ALIN-7 linac (W e ∼6 MeV) and using a special designed microwave equipment (2.45 GHz magnetron of 850 W maximum output power). The samples have been irradiated up to 25 kGy (dose rate ∼ 2.0 kGy/min) and there were treated by microwaves (250 W-550 W) for different exposure time. There have analyzed and presented the influence of these two physical fields on some common physical, biochemical and microbiological properties (mainly the total germ count, CFU/g) of these food materials. The main technological and physical characteristics of the materials are preserved, under irradiation up to 10 kGy and microwave treatment in the case of satisfying the national requirements for food and food grade additives microbiological load. The combined treatment seems to be present a synergistic effect arising on non-thermal basis. From these results it could be pointed out that electron-beam and microwave treatment is feasible and represents an alternative to other hygienization techniques for the dried food ingredients. It should be considered that combined treatments lead to reducing irradiation dose without losing the microbicidal effects

  18. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  19. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    Science.gov (United States)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated

  20. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    Science.gov (United States)

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  1. Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification

    International Nuclear Information System (INIS)

    Ma, Lingling; Lv, Enmin; Du, Lixiong; Lu, Jie; Ding, Jincheng

    2016-01-01

    Highlights: • Microwave irradiation was employed for the esterification of acidified oil. • Optimization and modeling of the process was performed by RSM and ANN. • Both models have reliable prediction abilities but the ANN was superior over the RSM. • Membrane vapor permeation and in-situ dehydration were used to shift the equilibrium. • Two dehydration approaches improved the FFAs conversion rate by 20.0% approximately. - Abstract: The esterification of acidified oil with ethanol under microwave radiation was modeled and optimized using response surface methodology (RSM) and artificial neural network (ANN). The impacts of mass ratio of ethanol to acidified oil, catalyst loading, microwave power and reaction time are evaluated by Box-Behnken design (BBD) of RSM and multi-layer perceptron (MLP) of ANN. RSM combined with BBD shows the optimal conditions as catalyst loading of 5.85 g, mass ratio of ethanol to acidified oil of 0.35 (20.0 g acidified oil), microwave power of 328 W and reaction time of 98.0 min with the free fatty acids (FFAs) conversion of 78.57%. Both of the models are fitted well with the experimental data, however, ANN exhibits better prediction accuracy than RSM based on the statistical analyses. Furthermore, membrane vapor permeation and in-situ molecular sieve dehydration were investigated to enhance the esterification under the optimized conditions.

  2. Effectiveness evaluation of double-layered satellite network with laser and microwave hybrid links based on fuzzy analytic hierarchy process

    Science.gov (United States)

    Zhang, Wei; Rao, Qiaomeng

    2018-01-01

    In order to solve the problem of high speed, large capacity and limited spectrum resources of satellite communication network, a double-layered satellite network with global seamless coverage based on laser and microwave hybrid links is proposed in this paper. By analyzing the characteristics of the double-layered satellite network with laser and microwave hybrid links, an effectiveness evaluation index system for the network is established. And then, the fuzzy analytic hierarchy process, which combines the analytic hierarchy process and the fuzzy comprehensive evaluation theory, is used to evaluate the effectiveness of the double-layered satellite network with laser and microwave hybrid links. Furthermore, the evaluation result of the proposed hybrid link network is obtained by simulation. The effectiveness evaluation process of the proposed double-layered satellite network with laser and microwave hybrid links can help to optimize the design of hybrid link double-layered satellite network and improve the operating efficiency of the satellite system.

  3. The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2017-12-01

    Full Text Available This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.

  4. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    International Nuclear Information System (INIS)

    Tieliewuhan, E.; Ivannikov, A.; Zhumadilov, K.; Nalapko, M.; Tikunov, D.; Skvortsov, V.; Stepanenko, V.; Toyoda, S.; Tanaka, K.; Endo, S.; Hoshi, M.

    2006-01-01

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal

  5. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  6. Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs).

    Science.gov (United States)

    Visentin, Sonja; Medana, Claudio; Barge, Alessandro; Giancotti, Valeria; Cravotto, Giancarlo

    2010-05-21

    The application of microwaves as an efficient form of volumetric heating to promote organic reactions was recognized in the mid-1980 s. It has a much longer history in the food research and industry where microwave irradiation was studied in depth to optimize food browning and the development of desirable flavours from Maillard reactions. The microwave-promoted Maillard reaction is a challenging synthetic method to generate molecular diversity in a straightforward way. In this paper we present a new rapid and efficient one-pot procedure for the preparation of pentosidine and other AGEs under microwave irradiation.

  7. An improved interface to process GPR data by means of microwave tomography

    Science.gov (United States)

    Catapano, Ilaria; Affinito, Antonio; Soldovieri, Francesco

    2015-04-01

    Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools, which are worth being considered in civil engineering surveys since they allow to gather information on constructive materials and techniques of manmade structures as well as on the aging and risk factors affecting their healthiness. However, the practical use of GPR depends strictly on the availability of data processing tools, on one hand, capable of providing reliable and easily interpretable images of the probed scenarios and, on the other side, easy to be used by not expert users. In this frame, 2D and full 3D microwave tomographic approaches based on the Born approximation have been developed and proved to be effective in several practical conditions [1, 2]. Generally speaking, a GPR data processing chain exploiting microwave tomography is made by two main steps: the pre-processing and the data inversion. The pre-processing groups standard procedures like start time correction, muting and background removal, which are performed in time domain to remove the direct antennas coupling, to reduce noise and to improve the targets footprint. The data inversion faces the imaging as the solution of a linear inverse scattering problem in the frequency domain. Hence, a linear integral equation relating the scattered field (i.e. the data) to the unknown electric contrast function is solved by using the truncated Singular Value Decomposition (SVD) as a regularized inversion scheme. Pre-processing and the data inversion are linked by a Discrete Fourier Transform (DFT), which allows to pass from the time domain to the frequency domain. In this respect, a frequency analysis of the GPR signals (traces) is also performed to identify the actual frequency range of the data. Unfortunately, the adoption of microwave tomography is strongly subjected to the involvement of expert people capable of managing properly the processing chain. To overcome this drawback, a couple of years ago, an end

  8. Microwave based oxidation process for recycling the off-specification (U,Pu)O{sub 2} fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Singh, G., E-mail: gitendars@barctara.gov.in [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Khot, P.M. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India); Kumar, Pradeep [Integrated Fuel Fabrication Facility (IFFF), Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Bhatt, R.B.; Behere, P.G.; Afzal, Mohd [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre, Tarapur, 401 502 (India)

    2017-02-15

    This paper reports development of a process named MicroWave Direct Oxidation (MWDO) for recycling the off-specification (U,Pu)O{sub 2} mixed oxide (MOX) fuel pellets generated during fabrication of typical fast reactor fuels. MWDO is a two-stage, single-cycle process based on oxidative pulverisation of pellets using 2450 MHz microwave. The powder sinterability was evaluated by bulk density and BET specific surface area. The oxidised powders were analyzed for phases using XRD and stoichiometry by thermogravimetry. The sinterability was significantly enhanced by carrying out oxidation in higher oxygen partial pressure and by subjecting MOX to multiple micronisation-oxidation cycles. After three cycles, the recycled powder from (U,28%Pu)O{sub 2} resulted surface area >3 m{sup 2}/g and 100% re-used for MOX fabrication. The flow sheet was developed for maximum utilization of recycled powder describable by a parameter called Scrap Recycling Ratio (SRR). The process demonstrates smaller processing cycle, better powder properties and higher oxidative pulverisation over conventional method. - Highlights: • A process for recycling the off-specification (U,Pu)O{sub 2} sintered fuel pellets of fast reactors was demonstrated. • The method is a two-stage, single cycle process based on oxidative pulverization of MOX pellets using 2450 MHz microwave. • The process demonstrated utilization of recycled powder with SRR of 1.

  9. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  10. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process

    International Nuclear Information System (INIS)

    Liu Bo; Li Song; Zhao Yongjun; Wu Wenfei; Zhang Xuxiang; Gu Xueyuan; Li Ruihua; Yang Shaogui

    2010-01-01

    A microwave assisted zero-valent iron oxidation process was studied in order to investigate the synergetic effects of MW irradiation on Fe/EDTA system (Fe/EDTA/MW) treated 4-nitrophenol (4-NP) from aqueous solution. The results indicated that the thermal effect of microwave improved the removal effect of 4-NP and TOC through raising the temperature of the system, as well as the non-thermal effect generated by the interaction between the microwave and the Fe resulting in an increase in the hydrophobic character of Fe surface. During the degradation of 4-NP in Fe/EDTA/MW system, the optimum value for MW power, Fe, EDTA dosage was 400 W, 2 g and 0.4 mM, respectively. The possible pathway for degrading the 4-NP was proposed based on GC/MS and HPLC analysis of the degradation intermediates. The concentration change course of the main bio-refractory by-products, the aminophenol formed in the degradation of 4-NP suggested a more efficient degradation and mineralization in Fe/EDTA/MW system. Finally, BOD 5 /COD Cr of the solution increased from 0.237 to 0.635 after reaction for 18 min, indicating that the biodegradability of wastewater was greatly improved by Fe/EDTA/MW system and would benefit to further treatment by biochemical methods.

  11. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  12. Microwave photonics processing controlling the speed of light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Sales, Salvador

    2009-01-01

    We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like optoelect......We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like...

  13. Experimental and numerical modeling research of rubber material during microwave heating process

    Science.gov (United States)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  14. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    Science.gov (United States)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  15. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    Directory of Open Access Journals (Sweden)

    Rahul Vijay Kapoore

    2018-02-01

    Full Text Available The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.

  16. Microwave alkaline roasting-water dissolving process for germanium extraction from zinc oxide dust and its analysis by response surface methodology (RSM)

    Science.gov (United States)

    Wang, Wankun; Wang, Fuchun; Lu, Fanghai

    2017-12-01

    Microwave alkaline roasting-water dissolving process was proposed to improve the germanium (Ge) extraction from zinc oxide (ZnO) dust. The effects of important parameters were investigated and the process conditions were optimized using response surface methodology (RSM). The Ge extraction is consistent with the linear polynomial model type. Alkali-material ratio, microwave heating temperature and leaching temperature are the significant factors for this process. The optimized conditions are obtained as follows, alkali-material ratio of 0.9 kg/kg, aging time of 1.12 day, microwave heating at 658 K for 10 min, liquid-solid ratio of 4.31 L/kg, leaching temperature at 330 K, leaching time of 47 min with the Ge extraction about 99.38%. It is in consistence with the predictive value of 99.31%. Compared to the existed alkaline roasting process heated by electric furnace in literature, the alkaline roasting temperature and holding time. It shows a good prospect on leaching Ge from ZnO dust with microwave alkaline roasting-water dissolving process.

  17. Ceramic matrix composites by microwave assisted CVI

    International Nuclear Information System (INIS)

    Currier, R.P.; Devlin, D.J.

    1993-01-01

    Chemical vapor infiltration (CVI) processes for producing continuously reinforced ceramic composites are reviewed. Potential advantages of microwave assisted CVI are noted and numerical studies of microwave assisted CVI are reviewed. The models predict inverted thermal gradients in fibrous ceramic preforms subjected to microwave radiation and suggest processing strategies for achieving uniformly dense composites. Comparisons are made to experimental results on silicon-based composite systems. The role played by the relative ability of fiber and matrix to dissipate microwave energy is noted. Results suggest that microwave induced inverted gradients can be exploited to promote inside-out densification. 10 refs., 2 figs

  18. A Review of Microwave-Assisted Reactions for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Saifuddin Nomanbhay

    2017-06-01

    Full Text Available The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.

  19. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  20. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  1. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  2. A wafer-level multi-chip module process with thick photosensitive benzocyclobutene as the dielectric for microwave application

    International Nuclear Information System (INIS)

    Tang, Jiajie; Sun, Xiaowei; Luo, Le

    2011-01-01

    A wafer-level microwave multi-chip module (MMCM) packaging process is presented. Thick photosensitive-benzocyclobutene (photo-BCB) polymer (about 25 µm/layer) is used as the dielectric for its simplified process and the capability of obtaining desirable electrical, chemical and mechanical properties at high frequencies. The MMCM packaging structure contains a monolithic microwave integrated circuit (MMIC) chip embedded in a lossy-silicon wafer, a microwave band-pass filter (BPF) and two layers of BCB/Au interconnection. Key processes of fabrication are described in detail. The non-uniformity of BCB film and the sidewall angle of the via-holes for inter-layer connection are tested. Via-chains prepared by metal/BCB multilayer structures are tested through the Kelvin test structure to investigate the resistances of inter-layer connection. The average value is measured to be 73.5 mΩ. The electrical characteristic of this structure is obtained by a microwave transmission performance test from 15 to 30 GHz. The measurement results show good consistency between the bare MMIC die and the packaged die in the test frequency band. The gain of the MMIC chip after packaging is better than 18 dB within the designed operating frequency range (from 23 to 25 GHz). When the packaged MMIC chip is connected to a BPF, the maximum gain is still measured to reach 11.95 dB at 23.8 GHz

  3. Enhanced degradation of 4-nitrophenol by microwave assisted Fe/EDTA process

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bo, E-mail: yongboliu@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Li Song, E-mail: ls8214@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zhao Yongjun, E-mail: zyjun2007@126.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Life Science, Nanjing University, Nanjing 210093 (China); Wu Wenfei, E-mail: feibanana6@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zhang Xuxiang, E-mail: zhangxx@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Life Science, Nanjing University, Nanjing 210093 (China); Gu Xueyuan, E-mail: xygu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Li Ruihua, E-mail: liruihua@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Yang Shaogui, E-mail: ysg420@sina.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

    2010-04-15

    A microwave assisted zero-valent iron oxidation process was studied in order to investigate the synergetic effects of MW irradiation on Fe/EDTA system (Fe/EDTA/MW) treated 4-nitrophenol (4-NP) from aqueous solution. The results indicated that the thermal effect of microwave improved the removal effect of 4-NP and TOC through raising the temperature of the system, as well as the non-thermal effect generated by the interaction between the microwave and the Fe resulting in an increase in the hydrophobic character of Fe surface. During the degradation of 4-NP in Fe/EDTA/MW system, the optimum value for MW power, Fe, EDTA dosage was 400 W, 2 g and 0.4 mM, respectively. The possible pathway for degrading the 4-NP was proposed based on GC/MS and HPLC analysis of the degradation intermediates. The concentration change course of the main bio-refractory by-products, the aminophenol formed in the degradation of 4-NP suggested a more efficient degradation and mineralization in Fe/EDTA/MW system. Finally, BOD{sub 5}/COD{sub Cr} of the solution increased from 0.237 to 0.635 after reaction for 18 min, indicating that the biodegradability of wastewater was greatly improved by Fe/EDTA/MW system and would benefit to further treatment by biochemical methods.

  4. Using microwave Doppler radar in automated manufacturing applications

    Science.gov (United States)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  5. Non-self-sustained microwave discharge and the concept of a microwave air jet engine

    International Nuclear Information System (INIS)

    Batanov, G M; Gritsinin, S I; Kossyi, I A

    2002-01-01

    A new type of microwave discharge - near-surface non-self-sustained discharge (NSND) - has been realized and investigated. A physical model of this discharge is presented. For the first time NSND application for microwave air jet engines has been proposed. Measurements under laboratory conditions modelling the microwave air jet engine operation shows the qualitative agreement between the model of NSND and actual processes near the target irradiated by a powerful microwave beam. Characteristic dependences of recoil momentum of target on the background pressure and microwave pulse duration obtained in experiments are presented. Measured cost of thrust produced by the NSND is no more than 3.0 kW N -1 , which is close to the predicted values

  6. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    Science.gov (United States)

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Techniques for ceramic sintering using microwave energy

    International Nuclear Information System (INIS)

    Kimrey, H.D.; Janney, M.A.; Becher, P.F.

    1987-01-01

    The use of microwave energy for ceramic sintering offers exciting new possibilities for materials processing. Based on experience gathered in microwave processing associated with the heating of fusion plasmas, we have developed hardware and methods for uniformly heating ceramic parts of large volume and irregular shape to temperatures in excess of 1600 0 C, in vacuum or pressurized atmosphere. Microwave processing at 28 GHz yields enhanced densification rates with a corresponding reduction in sintering temperatures. 6 refs

  8. Microwave Inspection Nondestructive Imaging Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for advanced NDE sensor technologies for structural materials, Physical Optics Corporation (POC) proposes to develop a new Microwave...

  9. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    Souda, K.B.; Akyel, C.; Bilgen, E.

    1989-01-01

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  10. Methods for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B.

    2010-08-03

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  11. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  12. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  13. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  14. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  15. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  16. Microwave Pasteurization of Cooked Pasta: Effect of Process Parameters on Texture and Quality for Heat-and-Eat and Ready-to-Eat Meals.

    Science.gov (United States)

    Joyner Melito, Helen S; Jones, Kari E; Rasco, Barbara A

    2016-06-01

    Pasta presents a challenge to microwave processing due to its unique cooking requirements. The objective of this study was to determine the effects of microwave processing on pasta physicochemical and mechanical properties. Fettuccine pasta was parboiled for selected times, then pasteurized using a Microwave Assisted Pasteurization System and stored under refrigeration for 1 wk. Samples were analyzed using microscopy, mechanical testing, and chemical analyses after storage. While no significant differences were observed for free amylose among fresh samples, samples parboiled for ≤6 min had significantly higher free amylose, suggesting reduced starch retrogradation. Increased heat treatment increased degree of protein polymerization, observed in microstructures as increased gluten strand thickness and network density. Firmness and extensibility increased with increased parboil time; however, extension data indicated an overall weakening of microwave-treated pasta regardless of total cooking time. Overall, microwave pasteurization was shown to be a viable cooking method for pasta. © 2016 Institute of Food Technologists®

  17. Characterization of a microwave generated plasma

    International Nuclear Information System (INIS)

    Root, D.J.; Mahoney, L.; Asmussen, J.

    1986-01-01

    Recent experiments have demonstrated a microwave ion beam source without and with static magnetic fields in inert gases and in oxygen gases. This plasma generation configuration also has uses in the areas of plasma processing such as plasma etching, plasma assisted thin flim deposition and plasma assisted oxide growth. These ion beam and plasma processing applications have provided motivation to investigate microwave discharge properties, such as electron density, electron temperature, gas temperature, degree of ionization, etc., of the microwave generated plasma over a wide range of experimental operating conditions. This paper presents the results of experimental measurements which attempt to characterize the experimental microwave discharge in the absence of a static magnetic field. Measurements from a double probe, which is located in the plasma in a zero microwave field region, are presented in argon, xenon and oxygen gases. Variations of plasma density and electron temperature versus absorbed microwave power, gas pressure (0.2 m Torr to 200 m Torr) and discharge diffusion length are presented and compared to dc positive column discharge theory

  18. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  19. Multivariate analysis of sludge disintegration by microwave-hydrogen peroxide pretreatment process.

    Science.gov (United States)

    Ya-Wei, Wang; Cheng-Min, Gui; Xiao-Tang, Ni; Mei-Xue, Chen; Yuan-Song, Wei

    2015-01-01

    Microwave irradiation (with H2O2) has been shown to offer considerable advantages owing to its flexible control, low overall cost, and resulting higher soluble chemical oxygen demand (SCOD); accordingly, the method has been proposed recently as a means of improving sludge disintegration. However, the key factor controlling this sludge pretreatment process, pH, has received insufficient attention to date. To address this, the response surface approach (central composite design) was applied to evaluate the effects of total suspended solids (TSS, 2-20 g/L), pH (4-10), and H2O2 dosage (0-2 w/w) and their interactions on 16 response variables (e.g., SCODreleased, pH, H2O2remaining). The results demonstrated that all three factors affect sludge disintegration significantly, and no pronounced interactions between response variables were observed during disintegration, except for three variables (TCOD, TSSremaining, and H2O2 remaining). Quadratic predictive models were constructed for all 16 response variables (R(2): 0.871-0.991). Taking soluble chemical oxygen demand (SCOD) as an example, the model and coefficients derived above were able to predict the performance of microwave pretreatment (enhanced by H2O2 and pH adjustment) from previously published studies. The predictive models developed were able to optimize the treatment process for multiple disintegration objectives. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Microwave signal processing with photorefractive dynamic holography

    Science.gov (United States)

    Fotheringham, Edeline B.

    Have you ever found yourself listening to the music playing from the closest stereo rather than to the bromidic (uninspiring) person speaking to you? Your ears receive information from two sources but your brain listens to only one. What if your cell phone could distinguish among signals sharing the same bandwidth too? There would be no "full" channels to stop you from placing or receiving a call. This thesis presents a nonlinear optical circuit capable of distinguishing uncorrelated signals that have overlapping temporal bandwidths. This so called autotuning filter is the size of a U.S. quarter dollar and requires less than 3 mW of optical power to operate. It is basically an oscillator in which the losses are compensated with dynamic holographic gain. The combination of two photorefractive crystals in the resonator governs the filter's winner-take-all dynamics through signal-competition for gain. This physical circuit extracts what is mathematically referred to as the largest principal component of its spatio-temporal input space. The circuit's practicality is demonstrated by its incorporation in an RF-photonic system. An unknown mixture of unknown microwave signals, received by an antenna array, constitutes the input to the system. The output electronically returns one of the original microwave signals. The front-end of the system down converts the 10 GHz microwave signals and amplifies them before the signals phase modulate optical beams. The optical carrier is suppressed from these beams so that it may not be considered as a signal itself to the autotuning filter. The suppression is achieved with two-beam coupling in a single photorefractive crystal. The filter extracts the more intense of the signals present on the carrier-suppressed input beams. The detection of the extracted signal restores the microwave signal to an electronic form. The system, without the receiving antenna array, is packaged in a 13 x 18 x 6″ briefcase. Its power consumption equals that

  1. Influence of microwave heating on the stability of processed samn

    Directory of Open Access Journals (Sweden)

    Farag, Radwan S.

    1991-04-01

    Full Text Available Butter was converted to samn by microwave and conventional heating. The quality of the processed samn by the two methods was followed by determining the acid, peroxide and TBA values over a period of six weeks at 60°C. The fatty acid composition of samn samples was determined by gas-liquid chromatographic technique. The data show that butter conversion to samn by microwave heating was accomplished in about one half of the time that conventional heating requires. Microwave heating obviously increased the development of samn rancidity compared with the conventional heating. The parameters used for measuring lipid rancidity indicated that the main cause of samn rancidity under the present conditions is an oxidation mechanism.

    Mantequilla fue transformada en samn por calentamiento en microonda y convencional. La calidad del elaborado de samn por los dos métodos fue seguida mediante determinación de los índices de acidez, peróxido y TBA durante un período de seis semanas a 60°C. La composición en ácidos grasos de muestras de samn fue determinada por técnica cromatográfica gas-líquido. Los datos mostraron que la conversión de mantequilla a samn por calentamiento en microonda fue realizada en aproximadamente una vez y media el tiempo que exige el calentamiento convencional. El calentamiento en microonda, evidentemente, aumentó el desarrollo de la rancidez del samn comparado con el calentamiento convencional. Los parámetros usados para la medida de la rancidez lipídica indicaron que la causa principal de la rancidez del samn bajo las condiciones presentes es un mecanismo de oxidación.

  2. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    International Nuclear Information System (INIS)

    Chandra Babu Naidu, K.; Madhuri, W.

    2016-01-01

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni_1_−_xMg_xFe_2O_4 (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe_2O_4 giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  3. Microwave processed NiMg ferrite: Studies on structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Babu Naidu, K.; Madhuri, W., E-mail: madhuriw12@gmail.com

    2016-12-15

    Ferrites are magnetic semiconductors realizing an important role in electrical and electronic circuits where electrical and magnetic property coupling is required. Though ferrite materials are known for a long time, there is a large scope in the improvement of their properties (vice sintering and frequency dependence of electrical and magnetic properties) with the current technological trends. Forth coming technology is aimed at miniaturization and smart gadgets, electrical components like inductors and transformers cannot be included in integrated circuits. These components are incorporated into the circuit as surface mount devices whose fabrication involves low temperature co-firing of ceramics and microwave monolithic integrated circuits technologies. These technologies demand low temperature sinter-ability of ferrites. This article presents low temperature microwave sintered Ni–Mg ferrites of general chemical formula Ni{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} (x=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) for potential applications as transformer core materials. The series of ferrites are characterized using X-ray diffractometer, scanning electron microscopy, Fourier transform infrared and vibrating sample magnetometer for investigating structural, morphological and magnetic properties respectively. The initial permeability is studied with magnesium content, temperature and frequency in the temperature range of 308 K–873 K and 42 Hz–5 MHz. - Highlights: • First article on microwave processed NiMgFe{sub 2}O{sub 4} giving. • The article gives systematic magnetic studies. • Cation distribution is discussed based on magnetic moments from VSM. • Promising candidates for transformer core and soft magnet manufacturing.

  4. A Synthesizable Multicore Platform for Microwave Imaging

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Karlsson, Sven

    2014-01-01

    Active microwave imaging techniques such as radar and tomography are used in a wide range of medical, industrial, scientific, and military applications. Microwave imaging devices emit radio waves and process their reflections to reconstruct an image. However, data processing remains a challenge...

  5. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  6. Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, René; Leinse, Arne; Sales Maicas, Salvador; Capmany Francoy, José

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  7. Ultralow field emission from thinned, open-ended, and defected carbon nanotubes by using microwave hydrogen plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jian-Hua, E-mail: jhdeng1983@163.com [College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Cheng, Lin; Wang, Fan-Jie; Yu, Bin; Li, Guo-Zheng; Li, De-Jun [College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387 (China); Cheng, Guo-An [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2015-01-01

    Graphical abstract: Thinned, open-ended, and defected carbon nanotubes were prepared by using hydrogen plasma processing. The processed carbon nanotubes have far better field emission performance than that of the pristine ones. - Highlights: • CVD prepared CNT arrays were processed by microwave hydrogen plasma. • Thinned, open-ended, and defected CNTs were obtained. • Processed CNTs have far better field emission performance than the pristine ones. • Processed CNTs have applicable emission stability after being perfectly aged. - Abstract: Ultralow field emission is achieved from carbon nanotubes (CNTs) by using microwave hydrogen plasma processing. After the processing, typical capped CNT tips are removed, with thinned, open-ended, and defected CNTs left. Structural analyses indicate that the processed CNTs have more SP{sup 3}-hybridized defects as compared to the pristine ones. The morphology of CNTs can be readily controlled by adjusting microwave powers, which change the shape of CNTs by means of hydrogen plasma etching. Processed CNTs with optimal morphology are found to have an ultralow turn-on field of 0.566 V/μm and threshold field of 0.896 V/μm, much better than 0.948 and 1.559 V/μm of the as-grown CNTs, respectively. This improved FE performance is ascribed to the structural changes of CNTs after the processing. The thinned and open-ended shape of CNTs can facilitate electron tunneling through barriers and additionally, the increased defects at tube walls can serve as new active emission sites. Furthermore, our plasma processed CNTs exhibit excellent field emission stability at a large emission current density of 10.36 mA/cm{sup 2} after being perfectly aged, showing promising prospects in applications as high-performance vacuum electron sources.

  8. GHRSST Level 2P Gridded Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  9. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  10. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  11. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    Science.gov (United States)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  12. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)

    2016-05-15

    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  13. RAINLINK: Retrieval algorithm for rainfall monitoring employing microwave links from a cellular communication network

    Science.gov (United States)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2017-12-01

    The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a

  14. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  15. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  16. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Precipitation and Surface Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the JPSS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  17. Use of AMSR-E microwave satellite data for land surface characteristics and snow cover variation

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2016-12-01

    Full Text Available This data article contains data related to the research article entitled “Global land cover classification based on microwave polarization and gradient ratio (MPGR” [1] and “Microwave polarization and gradient ratio (MPGR for global land surface phenology” [2]. This data article presents land surface characteristics and snow cover variation information from sensors like EOS Advanced Microwave Scanning Radiometer (AMSR-E. This data article use the HDF Explorer, Matlab, and ArcGIS software to process the pixel latitude, longitude, snow water equivalent (SWE, digital elevation model (DEM and Brightness Temperature (BT information from AMSR-E satellite data to provide land surface characteristics and snow cover variation data in all-weather condition at any time. This data information is useful to discriminate different land surface cover types and snow cover variation, which is turn, will help to improve monitoring of weather, climate and natural disasters.

  18. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Scanning Microwave Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua Satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  19. Aspects of microwave-heating uniformity

    International Nuclear Information System (INIS)

    Ginsberg, T.; Makowitz, H.

    1983-01-01

    Interest has been shown in the field of nuclear reactor safety in the use of microwave heating to simulate the nuclear heat source. The objective of the investigation reported here was to evaluate the usefulness of microwave dielectric heating as a simulator of the nuclear heat source in experiments which simulate the process of boiling of molten mixtures of nuclear fuel and steel. This paper summarizes the results of studies of several aspects of energy deposition in dielectric liquid samples which are exposed to microwave radiation

  20. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  1. Microwave sintering of hydroxyapatite-based composites

    International Nuclear Information System (INIS)

    Fang, Y.; Roy, D.M.; Cheng, J.; Roy, R.; Agrawal, D.K.

    1993-01-01

    Composites of hydroxyapatite/partially stabilized zirconia (HAp/PSZ) and hydroxyapatite/silicon carbide whiskers (HAp/SiC) were sintered at 1100-1200 degrees C by microwave at 2.45 GHz. Characterization of the sintered composites was carried out by density, microstructure, phase composition, and fracture toughness measurements. The results show that although not yet fully densified, a much higher sintered density in the HAp/PSZ composite was achieved by microwave sintering than by conventional sintering at the same temperature. A relative density of 93% was achieved by 20 min. microwave processing at 1200 degrees C. Comparatively, 2 h conventional sintering of the same material at 1200 degrees C led to only 75.5% relative density. K IC of this microwave sintered HAp/PSZ of 93% density was found to be 3.88 MPa√m, which is 250% of the value for pure HAp of the same density. A further increase in K IC could be expected if full or nearly full densification was achieved. Sintering of PSZ particles in the HAp/PSZ composite was also observed in the microwave processed sample. Microwave sintering of HAp/SiC was not successful in the current study due to the oxidation of SiC in air at high temperature. 8 refs., 4 figs., 1 tab

  2. A study on microwave oxidation of landfill leachate—Contributions of microwave-specific effects

    International Nuclear Information System (INIS)

    Chou, Yu-Chieh; Lo, Shang-Lien; Kuo, Jeff; Yeh, Chih-Jung

    2013-01-01

    Highlights: ► pH has an insignificant effect on TOC removals and 550 W has a well performance. ► MOP has well removals of color, UV 254 , and TOC at 550 W/85 °C. ► TOC removals were higher at higher microwave setting (550 W vs. 128 W). ► The microwave-specific effects on TOC removal were usually synergistic in MOP. ► COD analyses showed persulfate decayed rapidly in either MOP or CHO treatment. -- Abstract: Microwave oxidation process (MOP) was evaluated for treatment of landfill leachate. The experimental parameters include pH, temperature, oxidant doses, microwave power setting, and irradiation time. The study explored the microwave-specific effects of the MOP. The contributions of pure thermal, persulfate oxidation and microwave irradiation on TOC removal were quantified. It was then found the combinations of them were usually synergistic in MOP except two of them were antagonistic (128 W/85 °C/1 M Na 2 S 2 O 8 and 128 W/85 °C/2 M Na 2 S 2 O 8 ). At the highest temperature tested (85 °C) in this study, microwave irradiation may cause generation and termination of oxidizing radicals at adverse rates. The study also found that persulfate decayed rapidly in either MOP or conventional heating oxidation (CHO) treatment of landfill leachate

  3. Advanced materials processing

    International Nuclear Information System (INIS)

    Giamei, A.F.

    1993-01-01

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni 3 Al and MoSi 2 . Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  4. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  5. Advances in modern sample preparation techniques using microwaves assisted chemistry for metal species determination (W1)

    International Nuclear Information System (INIS)

    Ponard, O.F.X.

    2002-01-01

    Full text: Sample preparation has long been the bottleneck of environmental analysis for both total and species specific analysis. Digestion, extraction and preparation of the analytes are relying on a series of chemical reactions. The introduction of microwave assisted sample preparation has first been viewed as a mean to accelerate the kinetics of digestion of the matrix for total elements and fast samples preparation procedures. However, the extensive development and success of microwave digestion procedures in total elemental analysis has now allowed to have a larger insight of the perspectives offered by this technique. Microwave technologies now offer to have a precise control of the temperature and indirectly control the reaction kinetics taking place during the sample preparation procedures. Microwave assisted chemistry permits to perform simultaneously the fundamental steps required for metal species extraction and derivatization. The number of sample preparation steps used for organotin or organomercury species have been reduced to one and the total time of sample preparation brought down for a few hours to some minutes. Further, the developments of GC/ICP/MS techniques allow to routinely use speciated isotopic dilution methods has internal probe of the chemical reactions. These new approaches allow us to use the addition of the labeled species for isotopic dilution as a mean to evaluate and follow the chemical processes taking place during the extraction procedure. These procedures will help us to understand and check for the stability of the analytes during the chemistry of the sample preparation procedure and bring some insights of the chemistry taking place during the extraction. Understanding the different mechanisms involved in the sample preparation steps will allow us in return to further improve all theses procedures and bring us to the horizon of 'on-line sample preparation and detection'. (author)

  6. Direct Synthesis of Microwave Waveforms for Quantum Computing

    Science.gov (United States)

    Raftery, James; Vrajitoarea, Andrei; Zhang, Gengyan; Leng, Zhaoqi; Srinivasan, Srikanth; Houck, Andrew

    Current state of the art quantum computing experiments in the microwave regime use control pulses generated by modulating microwave tones with baseband signals generated by an arbitrary waveform generator (AWG). Recent advances in digital analog conversion technology have made it possible to directly synthesize arbitrary microwave pulses with sampling rates of 65 gigasamples per second (GSa/s) or higher. These new ultra-wide bandwidth AWG's could dramatically simplify the classical control chain for quantum computing experiments, presenting potential cost savings and reducing the number of components that need to be carefully calibrated. Here we use a Keysight M8195A AWG to study the viability of such a simplified scheme, demonstrating randomized benchmarking of a superconducting qubit with high fidelity.

  7. Present and future applications of analogue microwave photonics

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2009-01-01

    Photonics may be even more suited for analog than for digital signal applications. Today, microwave photonics techniques are currently used in radio-over-fibre signal transmission and other commercial applications, but recent advances are widening the scope of application to new areas. The speakers...... will introduce present and emerging opportunities for analog photonics, among which microwave filters, arbitrary optical waveform control, THz radiation and UWB pulse generation. A panel discussion will contrast different views from company, academy and funding bodies, to identify the most promising ones...

  8. Expert systems and microwave communication systems alarms processing: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.; Goeltz, R.; Purucker, S.

    1987-07-01

    This report presents the results of a feasibility study conducted by Oak Ridge National Laboratory (ORNL) for the Bonneville Power Administration concerning the applicability of Artificial Intelligence (AI) technology to process alarms associated with Bonneville's Microwave Communication System (MCS). Specifically, the discussion focuses on the characteristics of a prototype expert system/database management system (DBMS) configuration capable of intelligently processing alarms, efficiently storing alarm-based historical data, and providing analysis and reporting tools. Such a system has the potential to improve response to critical alarms, increase the information content of a large volume of complicated data, free operators from performing routine analysis, and provide alarm information to operators, field personnel, and management through queries and automatically produced reports.

  9. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment.

    Science.gov (United States)

    Reid, Sable; Tam, Jason; Yang, Mingfan; Azimi, Gisele

    2017-11-10

    Some rare earth elements (REEs) are classified under critical materials, i.e., essential in use and subject to supply risk, due to their increasing demand, monopolistic supply, and environmentally unsustainable and expensive mining practices. To tackle the REE supply challenge, new initiatives have been started focusing on their extraction from alternative secondary resources. This study puts the emphasis on technospheric mining of REEs from bauxite residue (red mud) produced by the aluminum industry. Characterization results showed the bauxite residue sample contains about 0.03 wt% REEs. Systematic leaching experiments showed that concentrated HNO 3 is the most effective lixiviant. However, because of the process complexities, H 2 SO 4 was selected as the lixiviant. To further enhance the leaching efficiency, a novel process based on microwave pretreatment was employed. Results indicated that microwave pretreatment creates cracks and pores in the particles, enabling the lixiviant to diffuse further into the particles, bringing more REEs into solution, yielding of 64.2% and 78.7% for Sc and Nd, respectively, which are higher than the maximum obtained when HNO 3 was used. This novel process of "H 2 SO 4 leaching-coupled with-microwave pretreatment" proves to be a promising technique that can help realize the technological potential of REE recovery from secondary resources, particularly bauxite residue.

  10. Development of a process for co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder using microwave heating method

    International Nuclear Information System (INIS)

    Koizumi, Masumichi; Ohtsuka, Katsuyuki; Ohshima, Hirofumi; Isagawa, Hiroto; Akiyama, Hideo; Todokoro, Akio; Naruki, Kaoru

    1983-01-01

    For the complete nuclear fuel cycle, the development of a process for the co-conversion of Pu-U nitrate mixed solutions to mixed oxide powder has been performed along the line of non-proliferation policy of nuclear materials. A new co-conversion process using a microwave heating method has been developed and successfully demonstrated with good results using the test unit with a capacity of 2 kg MOX/d. Through the experiments and engineering test operations, several important data have been obtained concerning the feasibility of the test unit, powder characteristics and homogeneity of the product, and impurity pickups during denitration process. The results of these experimental operations show that the co-conversion process using a microwave heating method has many excellent advantages, such as good powder characteristics of the product, good homogeneity of Pu-U oxide, simplicity of the process, minimum liquid waste, no possibility of changing the Pu/U ratio and stable operability of the plant. Since August 1979, plutonium nitrate solution transported from the Tokai Reprocessing Plant has been converted to mixed oxide powder which has the Pu/U ratio = 1. The products have been processed to the ATR ''FUGEN'' reloading fuel. Based on the successful development of the co-conversion process, the microwave heating direct denitration facility with a 10 kg MOX/d capacity has been constructed adjacent to the reprocessing plant. This facility will come into hot operation by the fall of this year. For future development of the microwave heating method, a continuous direct denitration, a vitrification of high active liquid waste and a solidification of the plutonium-contaminated waste are investigated in Power Reactor and Nuclear Fuel Development Corp. (author)

  11. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  12. Development of novel high power-short time (HPST) microwave assisted commercial decontamination process for dried turmeric powder (Curcuma Longa L.).

    Science.gov (United States)

    Behera, G; Sutar, P P; Aditya, S

    2017-11-01

    The commercially available dry turmeric powder at 10.34% d.b. moisture content was decontaminated using microwaves at high power density for short time. To avoid the loss of moisture from turmeric due to high microwave power, the drying kinetics were modelled and considered during optimization of microwave decontamination process. The effect of microwave power density (10, 33.5 and 57 W g -1 ), exposure time (10, 20 and 30 s) and thickness of turmeric layer (1, 2 and 3 mm) on total plate, total yeast and mold (YMC) counts, color change (∆E), average final temperature of the product (T af ), water activity (a w ), Page model rate constant (k) and total moisture loss (ML) was studied. The perturbation analysis was carried out for all variables. It was found that to achieve more than one log reduction in yeast and mold count, a substantial reduction in moisture content takes place leading to the reduced output. The microwave power density significantly affected the YMC, T af and a w of turmeric powder. But the thickness of sample and microwave exposure time showed effect only on T af , a w and ML. The colour of turmeric and Page model rate constant were not significantly changed during the process as anticipated. The numerical optimization was done at 57.00 W g -1 power density, 1.64 mm thickness of sample layer and 30 s exposure time. It resulted into 1.6 × 10 7 CFU g -1 YMC, 82.71 °C T af , 0.383 a w and 8.41% (d.b.) final moisture content.

  13. Advanced microwave/millimeter-wave imaging technology

    International Nuclear Information System (INIS)

    Shen, Zuowei; Yang, Lu; Luhmann, N.C. Jr.

    2007-01-01

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources. (author)

  14. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  15. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

    Directory of Open Access Journals (Sweden)

    Sid-Ahmed Boukabara

    2018-04-01

    Full Text Available A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS on Suomi-National Polar-orbiting Partnership (SNPP, Special Sensor Microwave Imager/Sounder (SSMI/S on the Defense Meteorological Satellite Program (DMSP flight units, as well as to the Global Precipitation Mission (GPM Microwave Imager (GMI, to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance, but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice

  16. Developing Advanced Broadband Microwave Detectors for Next-Generation CMB Polarization Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The photons of the cosmic microwave background (CMB) stream toward us from the boundary of the observable universe and arrive with information about both their point...

  17. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192 (Japan); Kawamura, S.; Maitani, M. M.; Suzuki, E.; Wada, Y. [Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8522 (Japan); Mochizuki, D. [Interdisciplinary Cluster for Cutting Edge Research, Center for Energy and Environmental Science, Shinshu University, Ueda, Nagano 386-8567 (Japan)

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  18. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    Directory of Open Access Journals (Sweden)

    S. Fujii

    2015-12-01

    Full Text Available Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. The resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.

  19. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  20. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  1. Microwave Absorption Characteristics of Tire

    Science.gov (United States)

    Zhang, Yuzhe; Hwang, Jiann-Yang; Peng, Zhiwei; Andriese, Matthew; Li, Bowen; Huang, Xiaodi; Wang, Xinli

    The recycling of waste tires has been a big environmental problem. About 280 million waste tires are produced annually in the United States and more than 2 billion tires are stockpiled, which cause fire hazards and health issues. Tire rubbers are insoluble elastic high polymer materials. They are not biodegradable and may take hundreds of years to decompose in the natural environment. Microwave irradiation can be a thermal processing method for the decomposition of tire rubbers. In this study, the microwave absorption properties of waste tire at various temperatures are characterized to determine the conditions favorable for the microwave heating of waste tires.

  2. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  3. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  4. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  5. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  6. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  7. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  8. Apparatus with moderating material for microwave heat treatment of manufactured components

    Science.gov (United States)

    Ripley, Edward B [Knoxville, TN

    2011-05-10

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

  9. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  10. Microwave-enhanced folding and denaturation of globular proteins

    DEFF Research Database (Denmark)

    Bohr, Henrik; Bohr, Jakob

    2000-01-01

    It is shown that microwave irradiation can affect the kinetics of the folding process of some globular proteins, especially beta-lactoglobulin. At low temperature the folding from the cold denatured phase of the protein is enhanced, while at a higher temperature the denaturation of the protein from...... its folded state is enhanced. In the latter case, a negative temperature gradient is needed for the denaturation process, suggesting that the effects of the microwaves are nonthermal. This supports the notion that coherent topological excitations can exist in proteins. The application of microwaves...

  11. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  12. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  13. Diamond Windows for High Powered Microwave Transmission. Final Report

    International Nuclear Information System (INIS)

    Gat, R.

    2011-01-01

    This phase II SBIR developed technology for manufacturing diamond windows for use in high energy density photon transmission e.g. microwave or laser light photons. Microwave sources used in fusion research require microwave extraction windows with high thermal conductivity, low microwave absorption, and low resistance to thermal cracking. Newly developed, man made diamond windows have all three of these properties, but these windows are prohibitively expensive. This limits the natural progress of these important technologies to higher powers and slows the development of additional applications. This project developed a lower cost process for manufacturing diamond windows using microwave plasma. Diamond windows were deposited. A grinding process was used to provide optical smoothness for 2 cm diameter diamond windows that met the parallelism specifications for fusion beam windows. The microwave transmission performance (loss tangent) of one of the windows was measured at 95GHz to be less than 10-4, meeting specifications for utilization in the ITER tokamak.

  14. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  15. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  16. 20040217 NATO Advanced Research Workshop on Quasi-Optical Control of Intense Microwave Transmission Nizhny Novgorod, Russia 17 - 20 Feb 2004 2004 novgorod20040217 20040220

    CERN Document Server

    Hirshfield, Jay L

    2005-01-01

    This volume assembles the texts of presentations given at the NATO-sponsored Advanced Research Workshop on Quasi-Optical Transmission of High-Power Microwaves, held in Nizhny Novgorod, Russia in February 2004. The presentations bridge a wide range of technical areas, but share common tools of analysis and design. Applications of quasi-optics extend to the use of high-power microwaves—including millimeter-waves— for radar and communications (especially deep space millimeter-wave systems, space debris detection radar, and radar for the detection of small targets moving over heavy clutter); particle accelerators (especially for a future high-acceleration-gradient electron-positron collider); plasma research (especially for controlled nuclear fusion and waste decontamination); and material processing (in particular, ceramic sintering with millimeter-waves, and the coating of metal surfaces with protective dielectric films.). Scientists and engineers working in any of these areas should benefit significantly f...

  17. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  18. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    Science.gov (United States)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Final Comprehensive Performance Test Report, P/N 1331720-2TST, S/N 105/A1

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Final Comprehensive Performance Test (CPT) Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). This specification establishes the requirements for the CPT and Limited Performance Test (LPT) of the AMSU-1A, referred to here in as the unit. The sequence in which the several phases of this test procedure shall take place is shown.

  20. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  1. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  2. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaick, C.R.; Bostick, W.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or 'microwave melter' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  3. Microwave-induced torrefaction of rice husk and sugarcane residues

    International Nuclear Information System (INIS)

    Wang, M.J.; Huang, Y.F.; Chiueh, P.T.; Kuan, W.H.; Lo, S.L.

    2012-01-01

    This study utilized microwave irradiation to induce torrefaction (mild pyrolysis) of rice husk and sugarcane residues by varying different parameters, including microwave power level, processing time, water content, and particle size of biomass. Proper microwave power levels are suggested to be set between 250 and 300 W for the torrefaction of these two agricultural residues. With proper processing time, the caloric value can increase 26% for rice husk and 57% for sugarcane residue. Compared to dry rice husk, both maximum reaction temperature and mass reduction ratio increased with higher water content (not over 10%). Moreover, the particle size of biomass needs not to be very small. The mass reduction ratios were 65 wt.%, 69 wt.%, and 72 wt.%, when the sizes were 50/100 mesh, 100/200 mesh, and >200 mesh, respectively. Microwave-induced torrefaction reduces more oxygen/carbon ratio of biomass in comparison with traditional torrefaction. Microwave-induced torrefaction is considered as an efficient and promising technology with great potential. -- Highlights: ► Microwave-induced torrefaction is promising compared to conventional methods. ► Neither high microwave power nor small particle size is needed. ► High energy yield can be met under mild microwave power. ► Caloric value can increase up to about 60%.

  4. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I.

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities

  5. Microwave reactor for utilizing waste materials

    Directory of Open Access Journals (Sweden)

    M. Pigiel

    2010-01-01

    Full Text Available The paper presents a designed and manufactured, semi-industrial microwave reactor for thermal utilization of asbestos-bearing wastes. Presented are also semi-industrial tests of utilizing such wastes. It was found that microwave heating can be applied for utilizing asbestos with use of suitable wetting agents. The wetting agents should ensure continuous heating process above 600 °C, as well as uniform heat distribution in the whole volume of the utilized material. Analysis of the neutralization process indicates a possibility of presenting specific, efficient and effective process parameters of utilizing some asbestos-bearing industrial wastes.

  6. Microwave Cooking Practices in Minnesota Food Service Establishments.

    Science.gov (United States)

    Hedeen, Nicole; Reimann, David; Everstine, Karen

    2016-03-01

    Uneven cooking due to consumer use of microwave ovens to cook food products that have been prepared but are not ready to eat has been a documented risk factor in several foodborne disease outbreaks. However, the use of microwave ovens in restaurants and other food service establishments has not been well documented. The aim of this study was to describe the types of food service establishments that use microwave ovens, how these ovens are used, types of foods heated or cooked in these ovens, types of microwave ovens used in food service establishments, and the level of compliance with U.S. Food and Drug Administration (FDA) guidelines. From 2008 to 2009, the Minnesota Department of Health collected data from a convenience sample of 60 food establishments within the state. Facility types included fast-food restaurants, sit-down restaurants, school food service, nursing homes, hotels and motels, and daycare centers. Food preparation practices were classified as prep-serve, cookserve, or complex. Minnesota environmental health specialists administered a study questionnaire to managers during routine inspections. Establishments included in this study reported using microwave ovens primarily to warm commercial ready-to-eat products (67%) and to warm foods for palatability (50%). No minimum temperatures are required for these processes because these foods do not require pathogen destruction. However, food establishments using complex preparation practices more often reported using microwave ovens for multiple processes and for processes that require pathogen destruction. For establishments that did report microwave oven use for food requiring pathogen destruction, the majority of managers reported following most FDA recommendations for cooking and reheating for hot-holding potentially hazardous foods, but many did not report letting food stand for 2 min after cooking. Additional training on stand time after microwave cooking could be beneficial because of low reporting

  7. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  8. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan; Su, Yu-Chun; Chang, Chih-Yuan

    2010-01-01

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L -1 sorbed 82% of RB5 (100 mg L -1 ) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH 0 of 7, current density of 277 A m -2 , and NaCl of 1 g L -1 . However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L -1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L -1 , and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A 265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  9. Densification of LSGM electrolytes using activated microwave sintering

    Science.gov (United States)

    Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.

    Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).

  10. Report on achievements in fiscal 1998. Project of research and development of regional consortium (Development of energy saving type manufacturing process of smart material having electromagnetic wave absorbing function utilizing microwave-hydrothermal process); 1999 nendo micro ha - suinetsuho wo riyoshita denjiyha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present research is aimed at developing an energy saving manufacturing process of a smart material having electromagnetic wave absorbing function in conventionally undeveloped bands as high as 30 MHz to 60 GHz. The process is composed of design, synthesis and forming of hybrid electromagnetic wave absorbing materials in which such magnetically permeable substance and conductive substance as ferrite is covered on fabrics having large dielectric loss through controlling the particle diameters and membrane thickness by using the microwave-hydrothermal process. The following researches have been performed: (1) development of smart material design and hybrid process technology, (2) evaluation on the electromagnetic wave absorbing function, (3) development of a manufacturing process for a smart forming material, and (4) development of a process for processing fabric material surface utilizing ocean resources. In Item (1), electromagnetic wave shielding function of 30 dB or higher was found provided in 200 MHz to 2 GHz bands. Calcium silicate and ferrite were manufactured by using the microwave-hydrothermal process, and calcium silicate was formed with energy being saved by using the hydrothermal curing process. In Item (2), TR17301A made by the Advanced Corporation was used to structure a system to evaluate the field in the vicinity of electric field and magnetic field. In Item (3), a ferrite forming material manufacturing process was developed. In Item (4), an attempt was carried out on forming ferrite by using reactions of nickel salt and iron salt. (NEDO)

  11. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  12. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  13. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  14. The influence of microwave radiation on the failure of rocks

    Directory of Open Access Journals (Sweden)

    Lovás Michal

    2000-09-01

    Full Text Available The heating and processing of materials using microwaves becomes increasingly popular for industrial applications. Compared to conventional heating, microwave processing can provide a rapid, the production of materials with unique properties, and reductions in manufacturing costs and processing times.The positive influence of the microwave radiation on the faulting of the individual rocks is described. At the heating of the heterogeneous ores, the microwaves have an selective effect for individual mineral components. Owing to the different degree of to heating and thermal dilatation the stress and destructive attendants arise, which increase the faulting of rocks. The rate of the faulting has been investigated on the basis of measurement of the elastic waves motion velocity by the impulse-dynamic method.On the basis of the measured values of elastic wave motion in the observed rocks before and after their microwave heating the coefficient of faulting was computed according to the relation (1. Subsequently, from these coefficients the rate of faulting was determined for individual rocks according to Jaeger (Table 1.Various rate of rocks faulting caused by the radiation depend on their ability to absorb microwave power. High rate of faulting was observed in rocks with strong absorption of microwave power unlike from substances which weakly absorb the radiation. Particularly, a high rate of faulting after microwave heating was observed at samples of limestone (Rožòava-Jovice and magnesite (Haèava. Low rate of faulting was obtained in the case of granodiorite (Podhradová, granite (Hnilec, sandstone (Horelica, marble (Koelga and andesite (Hubošovce.The influence of microwave energy on the rate of rocks faulting was confirmed. The new knowledge can be applied for the intensification of the rock disintegration processes.

  15. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaich, C.R.; Bostick, T.L.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ''microwave melter'' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  16. Microwave bale moisture sensing: Field trial continued

    Science.gov (United States)

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  17. Measurement system of correlation functions of microwave single photon source in real time

    Science.gov (United States)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  18. A process to preserve valuable compounds and acquire essential oils from pomelo flavedo using a microwave irradiation treatment.

    Science.gov (United States)

    Liu, Zaizhi; Zu, Yuangang; Yang, Lei

    2017-06-01

    A microwave pretreatment method was developed to preserve pectin, naringin, and limonin contents in pomelo flavedo to allow for longer storage times and subsequent extraction of pomelo essential oil. In terms of the essential oil, microwave pretreatment performed better than hydrodistillation with respect to extraction efficiency (1.88±0.06% in 24min versus 1.91±0.08% in 240min), oxygenation fraction (48.59±1.32% versus 29.63±1.02%), energy consumption (0.15kWh versus 1.54kWh), and environmental impact (123.20g CO 2 versus 1232g CO 2 ). Microwave-pretreated samples retained higher amounts of pectin, naringin, and limonin compared with non-pretreated samples. No obvious change in the degree of pectin esterification was observed. This study shows that the proposed process is a promising methodology for both preserving valuable compounds in pomelo flavedo during storage and acquiring essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Phase 2 microwave concrete decontamination results

    International Nuclear Information System (INIS)

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-01-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm 2 /s and 4.9 cm 3 /S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard

  20. [Application of microwave irradiation technology to the field of pharmaceutics].

    Science.gov (United States)

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  1. Microwave power coupling in a surface wave excited plasma

    Directory of Open Access Journals (Sweden)

    Satyananda Kar

    2015-01-01

    Full Text Available In recent decades, different types of plasma sources have been used for various types of plasma processing, such as, etching and thin film deposition. The critical parameter for effective plasma processing is high plasma density. One type of high density plasma source is Microwave sheath-Voltage combination Plasma (MVP. In the present investigation, a better design of MVP source is reported, in which over-dense plasma is generated for low input microwave powers. The results indicate that the length of plasma column increases significantly with increase in input microwave power.

  2. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  3. Kinetic advantages of using microwaves in the emulsion polymerization of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Santos, A.F.; Fortuny, M. [Programa de Mestrado em Engenharia de Processos, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE (Brazil); Araujo, P.H.H. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Sayer, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil)], E-mail: csayer@enq.ufsc.br

    2009-03-01

    Microwave irradiation has been an interesting alternative for heating systems and several chemical reactions. In polymerization processes, microwaves can enhance reaction rates or improve specific characteristics of the formed polymer. In this work, the use of microwave irradiation in emulsion polymerization reactions has been studied, using a commercial microwave reactor, which is able to perform syntheses under controlled conditions of temperature and power. Methyl methacrylate emulsion polymerization reactions were faster, resulting in smaller polymer particles, in comparison to the conventional heating method (reactions in a jacketed reactor). Different effects were observed in the emulsion polymerization of butyl acrylate. To study the effect of high power microwave irradiation upon the emulsion polymerization, a pulsed irradiation strategy was developed, in which the samples were repeatedly heated within short intervals of time (about 27 s) at the maximum microwave power. A significant reduction of the total time of irradiation was observed in reactions carried out under the pulsed scheme, showing the kinetic advantages of using microwaves in emulsion polymerization processes.

  4. The healing process of intracorporeally and in situ devitalized distal femur by microwave in a dog model and its mechanical properties in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenwei Ji

    Full Text Available BACKGROUND: Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. METHODS: We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. FINDINGS: An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. CONCLUSION: Our results suggest that the

  5. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline

    Directory of Open Access Journals (Sweden)

    Luiza de Castro Folgueras

    2007-03-01

    Full Text Available It is a known fact that the adequate combination of components and experimental conditions may produce materials with specific requirements. This study presents the effect of carbon fiber fabric impregnation with polyaniline conducting polymer aiming at the radar absorbing material processing. The experiments consider the sample preparation with one and two impregnations. The prepared samples were evaluated by reflectivity measurements, in the frequency range of 8-12 GHz and scanning electron microscopy analyses. The correlation of the results shows that the quantity of impregnated material influences the performance of the processed microwave absorber. This study shows that the proposed experimental route provides flexible absorbers with absorption values of the incident radiation close to 87%.

  6. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  7. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Tests of Dec 1999/Jan 2000 (S/O 784077, OC-454)

    Science.gov (United States)

    Heffner, R.

    2000-01-01

    This is the Engineering Test Report, AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Test of Dec 1999/Jan 2000 (S/O 784077, OC-454), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  9. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. Effects of endocardial microwave energy ablation

    Directory of Open Access Journals (Sweden)

    Vicente Climent

    2005-07-01

    Full Text Available Until recently the treatment of atrial fibrillation (AF consisted primarily of palliation, mostly in the form of pharmacological intervention. However because of recent advances in nonpharmacologic therapies, the current expectation of patients and referring physicians is that AF will be cured, rather than palliated. In recent years there has been a rapid expansion in the availability and variety of energy sources and devices for ablation. One of these energies, microwave, has been applied clinically only in the last few years, and may be a promising technique that is potentially capable of treating a wide range of ventricular and supraventricular arrhythmias. The purpose of this study was to review microwave energy ablation in surgical treatment of AF with special interest in histology and ultrastructure of lesions produced by this endocardial ablation procedure.

  11. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  12. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    Science.gov (United States)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  13. Microwave based method of monitoring crack formation

    International Nuclear Information System (INIS)

    Aman, Sergej; Aman, Alexander; Majcherek, Soeren; Hirsch, Soeren; Schmidt, Bertram

    2014-01-01

    The formation of cracks in glass particles was monitored by application of linearly polarized microwaves. The breakage behavior of glass spheres coated with a thin gold layer of about 50 nm, i.e. a thickness that is lower than the microwave penetration depth, was tested. In this way the investigation of fracture behavior of electronic circuits was simulated. A shielding current was induced in the gold layer by the application of microwaves. During the crack formation the distribution of this current changed abruptly and a scattered microwave signal appeared at the frequency of the incident microwaves. The time behavior of the scattered signal reflects the microscopic processes occurring during the fracture of the specimen. The duration of the increasing signal corresponds to the crack formation time in the tested specimen. This time was estimated as particle size divided by crack development speed in glass. An intense emission of electrons occurs during the formation of cracks. Due to this, coherent Thomson scattering of microwaves by emitted electrons becomes significant with a delay of a few microseconds after the initial phase of crack formation. In this time the intensity of the microwave signal increases. (paper)

  14. Application of microwave heating to a polyesterification plant

    NARCIS (Netherlands)

    Komorowska-Durka, M.

    2015-01-01

    Utilizing microwave irradiation, a fundamentally different method of the energy transfer, to the chemical process units can potentially be advantageous compared to the conventional heating, inter alia due to the selective nature of interaction of the microwaves with the matter. This doctoral

  15. Effects of Microwave Radiation on Oil Recovery

    Science.gov (United States)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  16. Advanced Optical Processing of Microwave Signals

    Directory of Open Access Journals (Sweden)

    Miguel V. Andrés

    2005-06-01

    Full Text Available The authors present a review on the recent approaches proposed to implement transversal RF filters. Different tunable transversal filters consisting of wavelength tunable optical taps and those employing the tunability of dispersive devices are presented showing their high-performance characteristics. A comprehensive review of the fundamentals and a discussion on the main limitation of these structures are also included.

  17. Microwave energy for post-calcination treatment of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary

  18. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    Science.gov (United States)

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  19. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  20. Specific energy consumption in microwave drying of garlic cloves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.P. [Department of Processing and Food Engineering, College of Technology and Agricultural Engineering, Udaipur 313 001, Rajasthan (India); Prasad, Suresh [Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721 302 (India)

    2006-09-15

    The convective and microwave-convective drying of garlic cloves was carried out in a laboratory scale microwave dryer, which was developed for this purpose. The specific energy consumption involved in the two drying processes was estimated from the energy supplied to the various components of the dryer during the drying period. The specific energy consumption was computed by dividing the total energy supplied by amount of water removed during the drying process. The specific energy consumption in convective drying of garlic cloves at 70{sup o}C temperature and 1.0m/s air velocity was estimated as 85.45MJ/kg of water evaporated. The increase in air velocity increased the energy consumption. The specific energy consumption at 40W of microwave power output, 70{sup o}C air temperature and 1.0m/s air velocity was 26.32MJ/kg of water removed, resulting in about a 70% energy saving as compared to convective drying processes. The drying time increased with increase in air velocity in microwave-convective drying process; a trend reverse to what was observed in convective drying process of garlic cloves. (author)

  1. New concepts in microwave sources for e-e+ supercolliders

    International Nuclear Information System (INIS)

    Granatstein, V.L.; McAdoo, J.H.; Striffler, C.D.; Lawson, W.; Latham, P.E.; Reiser, M.

    1986-01-01

    The realization of e - e + supercolliders will require advances in tehnology including the development of x-band microwave amplifiers with pulse energy > 60 J. Candidate microwave amplifiers include klystrons, lasertrons, free electron lasers (FEL's), and gyrotrons; gyrotron amplifiers employing a multicavity gyroklystron configuration appear advantageous at λ ≅ 3 cm. Measurements on a 50 kW, 1 μs gyroklystron show phase jitter 0 indicating compatibility of this type of amplifier with collider requirements. The University of Maryland is currently developing an x-band, TE 0 01 mode gyroklystron driven by 500 keV, 160 A, 2 μs electron beam pulses; combining this tube with a TE 0 01 binary pulse compression circuit under development at SLAC could produce 475 MW, 120 ns microwave pulses which imply the feasibility of achieving linac accelerating fields in the range 100-200 MV/m

  2. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  3. [Study on the emission spectrum of microwave plasma in liquid].

    Science.gov (United States)

    Wang, Bo; Sun, Bing; Zhu, Xiao-Mei; Yan, Zhi-Yu; Liu, Yong-Jun; Liu, Hui

    2014-05-01

    After the technology of microwave discharge in liquid is realized for the first time in China, the basic physical phenomena and characteristic of microwave discharge in liquid is studied in order to lay a theoretical foundation of research on microwave discharge in liquid. In the present paper, the active particles generated by microwave discharge in liquid were detected using the emission spectrometer, and the statistical method of spectrum data of microwave discharge in liquid was also studied. The emission spectrometer and numerically controlled camera were used to detect synchronously the process of the initial discharge and stable discharge of microwave discharge in liquid. The results show that: the emission intensity of microwave plasma in liquid has a large fluctuation, and the spectrum intensity can be calculated using the average of 10 spectrum data points. The intensity of discharge is reflected by the plasma area in a certain extent, however, the variation gradient of the intensity of discharge is different from that of the plasma area. This is mainly because that, in the process of discharging, the discharge intensity is not only reflected by the plasma area, but also reflected by the brightness of the plasma.

  4. Greek “red mud” residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, Michail, E-mail: msamouhos@metal.ntua.gr [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Taxiarchou, Maria; Tsakiridis, Petros E. [School of Mining and Metallurgical Engineering, Laboratory of Metallurgy, National Technical University of Athens, 9, Iroon Polytechniou Street, 157 80 Zografou, Athens (Greece); Potiriadis, Konstantinos [Greek Atomic Energy Commission (GAEC), Patriarxou Grigoriou and Neapoleos, P.O. Box 60092, 15310 Agia Paraskevi, Athens (Greece)

    2013-06-15

    Highlights: • Microwave reduction of a red mud. •Measurement of real and imaginary permittivity of red mud–lignite mixture. •Red mud was subjected to reductive roasting and magnetic separation processes. •The optimum concentrate contains 31.6% iron with a 69.3% metallization degree. •{sup 226}Ra, {sup 228}Ra, {sup 238}U, {sup 228}Th, {sup 232}Th, {sup 40}K were detected in the magnetic concentrate. -- Abstract: The present research work is focused on the development of an alternative microwave reductive roasting process of red mud using lignite (30.15 wt.% C{sub fix}), followed by wet magnetic separation, in order to produce a raw material suitable for sponge or cast iron production. The reduction degree of iron was controlled by both the reductive agent content and the microwave heating time. The reduction followed the Fe{sub 2}O{sub 3} → Fe{sub 3}O{sub 4} → FeO → Fe sequence. The dielectric constants [real (ε′) and imaginary (ε″) permittivities] of red mud–lignite mixture were determined at 2.45 GHz, in the temperature range of 25–1100 °C. The effect of parameters such as temperature, intensity of reducing conditions, intensity of magnetic field and dispersing agent addition rate on the result of both processes was investigated. The phase's transformations in reduction process with microwave heating were determined by X-ray diffraction analysis (XRD) in combination with thermogravimetric/differential thermal analysis (TGA/DTA). The microstructural and morphological characterization of the produced calcines was carried out by scanning electron microscopy (SEM). At the optimum conditions a magnetic concentrate with total iron concentration of 35.15 and 69.3 wt.% metallization degree was obtained.

  5. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  6. Continuous microwave regeneration apparatus for absorption media

    Science.gov (United States)

    Smith, Douglas D.

    1999-01-01

    A method and apparatus for continuously drying and regenerating ceramic beads for use in process gas moisture drying operations such as glove boxes. A microwave energy source is coupled to a process chamber to internally heat the ceramic beads and vaporize moisture contained therein. In a preferred embodiment, the moisture laden ceramic beads are conveyed toward the microwave source by a screw mechanism. The regenerated beads flow down outside of the screw mechanism and are available to absorb additional moisture.

  7. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite

    International Nuclear Information System (INIS)

    Zhao, Wei; Chen, Jin; Chang, Xiaodong; Guo, Shenghui; Srinivasakannan, C.; Chen, Guo; Peng, Jinhui

    2014-01-01

    Highlights: • Microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite. • The mineral processing properties of microwave treated ilmenite were generally as good as or better than that of initial ilmenite. • The microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. - Abstract: The influences of microwave irradiation on the surface characteristics of Panzhihua ilmenite were systematically investigated. The crystal structures, surface morphology and surface chemical functional groups of ilmenite were characterized before and after microwave irradiation and magnetic separation for different microwave treatment times by using various methods, such as XRD, SEM, and FT-IR, respectively. XRD analysis showed that the microwave treated ilmenite has the strongest peaks of phase more than that of raw samples, indicates that the crystalline compound of ilmenite increased with the microwave irradiation time. SEM analysis showed the micro-cracking appeared at many grain boundaries of ilmenite after being pretreated by microwave treatment. The separations of ilmenite from gangue minerals were completed and the micro-fissure within ilmenite minerals were also formed, which could be attributed to the microwave selective heating characteristics of the different minerals and compounds, and the thermal stresses were caused by the uniform heat rate disturbed under microwave irradiation. The mineral processing results showed that the magnetic separation characteristics and properties of microwave treated ilmenite samples were better than that of microwave untreated ilmenite samples. It was concluded that microwave irradiation can be applied effectively and efficiently to the irradiation processes of Panzhihua ilmenite

  8. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production.

    Science.gov (United States)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa M; Aguilar, Cristóbal N; Garrote, Gil; Ruiz, Héctor A

    2017-11-01

    This work describes the application of two forms of heating for autohydrolysis pretreatment on isothermal regimen: conduction-convection heating and microwave heating processing using corn stover as raw material for bioethanol production. Pretreatments were performed using different operational conditions: residence time (10-50 min) and temperature (160-200°C) for both pretreatments. Subsequently, the susceptibility of pretreated solids was studied using low enzyme loads, and high substrate loads. The highest conversion was 95.1% for microwave pretreated solids. Also solids pretreated by microwave heating processing showed better ethanol conversion in simultaneous saccharification and fermentation process (92% corresponding to 33.8g/L). Therefore, microwave heating processing is a promising technology in the pretreatment of lignocellulosic materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Source analysis of spaceborne microwave radiometer interference over land

    Science.gov (United States)

    Guan, Li; Zhang, Sibo

    2016-03-01

    Satellite microwave thermal emissions mixed with signals from active sensors are referred to as radiofrequency interference (RFI). Based on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations from June 1 to 16, 2011, RFI over Europe was identified and analyzed using the modified principal component analysis algorithm in this paper. The X band AMSR-E measurements in England and Italy are mostly affected by the stable, persistent, active microwave transmitters on the surface, while the RFI source of other European countries is the interference of the reflected geostationary TV satellite downlink signals to the measurements of spaceborne microwave radiometers. The locations and intensities of the RFI induced by the geostationary TV and communication satellites changed with time within the observed period. The observations of spaceborne microwave radiometers in ascending portions of orbits are usually interfered with over European land, while no RFI was detected in descending passes. The RFI locations and intensities from the reflection of downlink radiation are highly dependent upon the relative geometry between the geostationary satellite and the measuring passive sensor. Only these fields of view of a spaceborne instrument whose scan azimuths are close to the azimuth relative to the geostationary satellite are likely to be affected by RFI.

  10. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Clerc, M.; Plurien, P.

    1986-01-01

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  11. Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean.

    Science.gov (United States)

    Zilić, Slađana; Mogol, Burçe Ataç; Akıllıoğlu, Gül; Serpen, Arda; Delić, Nenad; Gökmen, Vural

    2014-01-15

    The Maillard reaction indicators furosine, hydroxymethylfurfural (HMF), acrylamide and color were determined to evaluate heat effects induced during extrusion, infrared and microwave heating of soybean. In addition, the present paper aimed to study changes in the phenolic compounds, as well as in the overall antioxidant properties of different soybean products in relation to heating at 45-140 °C during the processes. Soybean proteins were highly sensible to Maillard reaction and furosine was rapidly formed under slight heating conditions during extrusion and infrared heating. Microwave heating at lower temperatures for a longer time yielded lower acrylamide levels in the final soybean products, as a result of its partial degradation. However, during infrared heating, acrylamide formation greatly increased with decreasing moisture content. After a short time of extrusion and infrared heating at 140 °C and microwave heating at 135 °C for 5 min, concentrations of HMF increased to 11.34, 26.21 and 34.97 µg g(-1), respectively. The heating conditions caused formation of acrylamide, HMF and furosine in high concentration. The results indicate that the complex structure of soybeans provides protection of phenolic compounds from thermal degradation, and that Maillard reaction products improved the antioxidant properties of heat-treated soybean. © 2013 Society of Chemical Industry.

  12. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  13. Study of the hydroxyl radical: Experimental advances in microwave spectroscopy, theoretical model and astrophysical consequences

    International Nuclear Information System (INIS)

    Destombes, Jean-Luc

    1978-01-01

    This research thesis mainly addresses the experimental and theoretical study of the hydroxyl radical, and the consequences of the obtained results in astrophysics which are studied with a model of pumping by the far infrared. After a recall of notions related to microwave spectroscopy and to molecular radio-astronomy, the author more particularly discusses different aspects of microwave spectroscopy in the interstellar environment and in laboratory. He also reviews different types of spectrometers for unsteady molecules. In the second part, he addresses issues related to the hydroxyl radical (OH): presentation of spectrometers, study of the reaction environment, study of the radical microwave spectrum, identification of transitions by frequency measurements. In the last parts, the author addresses some aspects of interstellar OH masers, and reports the application of some results to simple models of pumping by the far infra red

  14. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  15. On chip frequency discriminator for microwave photonics signal processing

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    Microwave photonics (MWP) techniques for the generation, distribution and pro- cessing of radio frequency (RF) signals have enjoyed a surge of interest in the last few years. The workhorse behind these MWP functionalities is a high performance MWP link. Such a link needs to fulfill several criteria

  16. Microwave-assisted extraction and antihyperlipidemic effect of total ...

    African Journals Online (AJOL)

    The process of microwave-assisted extraction (MAE) of total flavonoids from corn silk and the hypolipidemia in animal models were studied. Influence of solvent concentration, microwave power, extraction time and dose of solvent were investigated and then, the orthogonal experiments were performed. Animal models of ...

  17. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  18. The influence of double flask investing on tooth displacement in dentures processed by microwave irradiation.

    Science.gov (United States)

    Farias Neto, Arcelino; Sousa, Rodrigo L dos Santos; Rizzatti-Barbosa, Célia M

    2012-06-01

    This study evaluated the influence of the bimaxillary flask (BMF) and two different investing materials on first molar inclination in dentures processed by microwave irradiation. The BMF may minimise tooth displacement, saving time and improving occlusion. Forty pairs of dentures were randomised into four groups: stone wall in monomaxillary flask; silicone wall in BMF; stone wall in BMF; acrylic resin retentions and silicone in BMF. Dentures were processed by microwave irradiation. Two referential points were established on tooth surface. A microscope and a digital pachymeter were used to measure the distance between these points, and the angles α (right maxillary molar), β (left maxillary molar), α' (right mandibular molar) and β' (left mandibular molar) were calculated by the law of cosines. Data were submitted to Kruskal-Wallis (5% significance). No difference was observed among the groups (p > 0.05). In the intra-group analysis, α was significantly different for groups I, II and III; α', for groups II and IV; β, for all groups; β', for groups III and IV. First molar inclination was similar for monomaxillary and BMFs. The use of stone or silicone as investing materials presented the same effect on tooth inclination. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  19. On the existence of and mechanism for microwave-specific reaction rate enhancement.

    Science.gov (United States)

    Dudley, Gregory B; Richert, Ranko; Stiegman, A E

    2015-04-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of "selective heating" of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement.

  20. Microwave Ablation in Combination with Chemotherapy for the Treatment of Advanced Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhigang, E-mail: weizhigang321321@163.com; Ye, Xin, E-mail: yexintaian@aliyun.com; Yang, Xia, E-mail: yangxjinan@163.com; Zheng, Aimin, E-mail: am-zheng@163.com; Huang, Guanghui, E-mail: hgh3612@163.com; Li, Wenhong, E-mail: wenghong-li@163.com; Ni, Xiang, E-mail: asuka2521@hotmail.com; Wang, Jiao; Han, Xiaoying, E-mail: mylittlecarol@sina.com [Shandong Provincial Hospital Affiliated to Shandong University, Department of Oncology (China)

    2015-02-15

    PurposeTo verify whether microwave ablation (MWA) used as a local control treatment had an improved outcome regarding advanced non-small cell lung cancer (NSCLC) when combined with chemotherapy.MethodsThirty-nine patients with histologically verified advanced NSCLC and at least one measurable site other than the ablative sites were enrolled. Primary tumors underwent MWA followed by platinum-based doublet chemotherapy. Modified response evaluation criteria in solid tumors (mRECIST) and RECIST were used to evaluate therapeutic response. Complications were assessed using the National Cancer Institute Common Toxicity Criteria (version 3.0).ResultsMWA was administered to 39 tumors in 39 patients. The mean and median diameters of the primary tumor were 3.84 cm and 3.30 cm, respectively, with a range of 1.00–9.00 cm. Thirty-three (84.6 %) patients achieved a partial response. No correlation was found between MWA efficacy and clinicopathologic characteristics. For chemotherapy, 11 patients (28.2 %) achieved a partial response, 18 (46.2 %) showed stable disease, and 10 (25.6 %) had progressive disease. The overall objective response rate and disease control rate were 28.2 and 74.4 %, respectively. The median progression-free survival time was 8.7 months (95 % CI 5.5–11.9). The median overall survival time was 21.3 months (95 % CI 17.0–25.4). Complications were observed in 22 (56.4 %) patients, and grade 3 adverse events were observed in 3 (7.9 %) patients.ConclusionsPatients with advanced NSCLC could benefit from MWA in combination with chemotherapy. Complications associated with MWA were common but tolerable.

  1. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2016-01-01

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  2. Rock Crushing Using Microwave Pre-Treatment

    KAUST Repository

    Kim, Seunghee

    2016-08-11

    Crushing and grinding are primary contributors to a high energy demand in the mining industry, yet, both are surprisingly inefficient processes, often with efficiencies as low as 1%. We analyze size reductions during crushing and grinding operations and explore the potential of multiplying internal weaknesses in rock materials by non-mechanical means. In particular, when rock blocks (wet or even dry if polycrystalline) are exposed to microwaves, internal cracks can develop along grain boundaries via differential thermal expansion between grains and volumetric thermal expansion of water in pores. Brazilian tests conducted on granite and cement mortar specimens show that the tensile strength decreases proportional to the duration of microwave treatment. Thermal changes, excessive fluid pressure buildup and induced stresses are analyzed in the context of hydro-Thermo-mechanically coupled processes. Results confirm that both differential thermal expansion of mineral grains and volumetric thermal expansion of water can generate cracks upon microwave exposure. Optimal conditions are suggested to lower the combined consumption of electric and mechanical energy.

  3. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  4. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Glass formulation development and offgas analysis of microwave melter powder samples

    International Nuclear Information System (INIS)

    Semones, G.B.; Hoffman, C.R.; Phillips, J.A.

    1994-04-01

    Production of nuclear materials for defense applications has resulted in the accumulation of vast amounts of nuclear waste. This contaminated waste is in a variety of forms that require subsequent reprocessing to isolate and encapsulate the nuclear (e.g., uranium, plutonium, strontium, cesium, and americium) and toxic (e.g., lead, chromium, and cadmium) constituents. The encapsulating material must possess good chemical and mechanical durability to resist leaching of the nuclear and toxic constituents into the environment during permanent storage at a waste repository. Glass is an ideal encapsulating material because its open structure allows the introduction of different waste forms and the final vitreous product possesses a high degree of chemical stability. Microwave heating and melting is a relatively new advancement in glass processing which uses microwave radiation to heat the glass formers to adequate temperatures for sintering or melting. An advantage to this technique is that it enables more rapid heating than traditional heating mechanisms. This decrease in cycle time may help to limit exposure to workers encapsulating radioactive and/or toxic waste

  6. Studies of some elementary processes involving electrons in the gas phase by pulse-radiolysis microwave-cavity technique

    International Nuclear Information System (INIS)

    Sunagawa, Takeyoshi; Makita, Takeshi; Musasa, Hirofumi; Tatsumi, Yoshitsugu; Shimamori, Hiroshi

    1995-01-01

    The pulse radiolysis-microwave cavity technique has been employed for detection of free electrons in the gas phase. Presented are results of the observation of electron disappearance by attachment to molecules, the electron thermalization (energy loss) processes in the presence of an electron-attaching compound, and the formation of electrons by Penning ionization. (author)

  7. Possibilities of utilizing used moulding and core sands by microwave treatment

    Directory of Open Access Journals (Sweden)

    K. Granat

    2011-01-01

    Full Text Available The paper presents a semi-industrial reactor designed for microwave utilization of waste moulds and cores made of moulding sandsprepared in furane resin technology. It was found that a possibility exists of effective incinerating this way prepared residues of coresseparated from moulding sands or waste moulds left after casting. The preliminary tests evidenced that microwave heating is an effectiveway of disposing waste moulding sands and the applied apparatus permits effective control of the microwave heating process. The special structure permitting rotations of charge material and proper selection of the generators working cycles guarantee significant speeding-up the process and its full stabilisation. Application of microwave heating for utilization of waste moulds and cores containing synthetic resins as binders ensures significant and measurable economical benefits resulting from shorter process time.

  8. Numerical Analysis of Microwave Heating on Saponification Reaction

    Science.gov (United States)

    Huang, Kama; Jia, Kun

    2005-01-01

    Currently, microwave is widely used in chemical industry to accelerate chemical reactions. Saponification reaction has important applications in industry; some research results have shown that microwave heating can significantly accelerate the reaction [1]. But so far, no efficient method has been reported for the analysis of the heating process and design of an efficient reactor powered by microwave. In this paper, we present a method to study the microwave heating process on saponification reaction, where the reactant in a test tube is considered as a mixture of dilute solution. According to the preliminary measurement results, the effective permittivity of the mixture is approximately the permittivity of water, but the conductivity, which could change with the reaction, is derived from the reaction equation (RE). The electromagnetic field equation and reaction equation are coupled by the conductivity. Following that, the whole heating processes, which is described by Maxwell's equations, the reaction equation and heat transport equation (HTE), is analyzed by finite difference time domain (FDTD) method. The temperature rising in the test tube are measured and compared with the computational results. Good agreement can be seen between the measured and calculated results.

  9. Dehydration of sodium carbonate monohydrate with indirect microwave heating

    International Nuclear Information System (INIS)

    Seyrankaya, Abdullah; Ozalp, Baris

    2006-01-01

    In this study, dehydration of sodium carbonate monohydrate (Na 2 CO 3 .H 2 O) (SCM) in microwave (MW) field with silicon carbide (SiC) as an indirect heating medium was investigated. SCM samples containing up to 3% free moisture were placed in the microwave oven. The heating experiments showed that SCM is a poor microwave energy absorber for up to 6 min of irradiation at an 800 W of microwave power. The heat for SCM calcination is provided by SiC which absorbs microwave. The monohydrate is then converted to anhydrous sodium carbonate on the SiC plate by calcining, i.e. by removing the crystal water through heating of the monohydrate temperatures of over 120 deg. C. The calcination results in a solid phase recrystallization of the monohydrate into anhydrate. In the microwave irradiation process, dehydration of SCM in terms of indirect heating can be accelerated by increasing the microwave field power

  10. Dynamic of ozone formation in nanosecond microwave discharges

    International Nuclear Information System (INIS)

    Akhmedzhanov, R.A.; Vikharev, A.L.; Gorbachev, A.M.

    1995-01-01

    Nanosecond gas discharges are efficient sources of chemically active plasma. Studies of the nanosecond microwave discharge are interesting for remote modification of the chemical composition of the atmosphere in term of its purification, for diagnostics of impurities and ozone replenishment in the regions of local open-quotes ozone holesclose quotes. In this connection a study of plasma chemical processes in such a discharge seems appropriate, as well as modeling of ecological consequences of the effect of powerful microwave radiation on the atmosphere. The present paper contains generalized results of studying the process of ozone formation in a pulse-periodic freely localized nanosecond microwave discharge. The experiments were performed in a wide range of parameters: microwave radiation wavelength λ = 0.8 and 3cm, pulse duration τ = 6 and 500ns, pulse power P = 50kW and 20MW, pulse repetition rate F = 1-10 3 Hz. The working gases were air and oxygen under pressure P = 10-100Torr. As a source of the microwave radiation a pulse magnetron was used with a device for pulse compression based on the waveguide resonator, and a relativistic microwave generator. The discharge was produced in the focus of the parabolic mirror and had the form of homogeneous cylinder. The plasma chemical processes were studied in two cases. The discharge was created either in the quartz tube placed along the focal line of the mirror or in the free air. Dynamics of formation of ozone and nitrogen oxides in the discharge was studied by means of absorption spectroscopy in the regime of accumulation of the products of chemical reactions (in a closed volume) and their diffusion spreading

  11. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  12. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  13. Electromagnetic and thermal history during microwave heating

    International Nuclear Information System (INIS)

    Santos, T.; Valente, M.A.; Monteiro, J.; Sousa, J.; Costa, L.C.

    2011-01-01

    In microwave heating, the energy is directly introduced into the material resulting in a rapid and volumetric heating process with reduced thermal gradients, when the electromagnetic field is homogeneous. From those reasons, the microwave technology has been widely used in the industry to process dielectric materials. The capacity to heat with microwave radiation is related with the dielectric properties of the materials and the electromagnetic field distribution. The knowledge of the permittivity dependence with the temperature is essential to understand the thermal distribution and to minimize the non-homogeneity of the electromagnetic field. To analyse the history of the heating process, the evolution of the electromagnetic field, the temperature and the skin depth, were simulated dynamically in a ceramic sample. The evaluation of the thermal runaway has also been made. This is the most critical phenomenon observed in the sintering of ceramic materials because it causes deformations, or even melting on certain points in the material, originating the destruction of it. In our study we show that during the heating process the hot spot's have some dynamic, and at high temperatures most of the microwave energy is absorbed at the surface of the material. We also show the existence of a time-delay of the thermal response with the electromagnetic changes. - Highlights: → Electromagnetic field, the temperature and the skin depth were simulated dynamically. → The evaluation of the thermal runaway has been made. → A time-delay of the thermal response with the electromagnetic changes exists.

  14. Earth Observing System/Meteorological Satellite (EOS/METSAT). Advanced Microwave Sounding Unit-A (AMSU-A) Contamination Control Plan

    Science.gov (United States)

    Fay, M.

    1998-01-01

    This Contamination Control Plan is submitted in response the Contract Document requirements List (CDRL) 007 under contract NAS5-32314 for the Earth Observing System (EOS) Advanced Microwave Sounding Unit A (AMSU-A). In response to the CDRL instructions, this document defines the level of cleanliness and methods/procedures to be followed to achieve adequate cleanliness/contamination control, and defines the required approach to maintain cleanliness/contamination control through shipping, observatory integration, test, and flight. This plan is also applicable to the Meteorological Satellite (METSAT) except where requirements are identified as EOS-specific. This plan is based on two key factors: a. The EOS/METSAT AMSU-A Instruments are not highly contamination sensitive. b. Potential contamination of other EOS Instruments is a key concern as addressed in Section 9/0 of the Performance Assurance Requirements for EOS/METSAT Integrated Programs AMSU-A Instrument (MR) (NASA Specification S-480-79).

  15. Effects of microwave pulse-width damage on a bipolar transistor

    International Nuclear Information System (INIS)

    Ma Zhen-Yang; Chai Chang-Chun; Ren Xing-Rong; Yang Yin-Tang; Chen Bin; Zhao Ying-Bo

    2012-01-01

    This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves (HPMs) through the injection approach. The dependences of the microwave damage power, P, and the absorbed energy, E, required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method. A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out. By means of a two-dimensional simulator, ISE-TCAD, the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively. The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different, while only one hot spot exists under the injection of dc pulses. The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy, respectively. The dc pulse damage data may be useful as a lower bound for microwave pulse damage data. (interdisciplinary physics and related areas of science and technology)

  16. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nad, Shreya [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States); Gu, Yajun; Asmussen, Jes [Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824 (United States)

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  17. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  18. Soft Computing Methods for Microwave and Millimeter-Wave Design Problems

    CERN Document Server

    Chauhan, Narendra; Mittal, Ankush

    2012-01-01

    The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame.  Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This boo...

  19. Current Operational Use of and Future Needs for Microwave Imagery at NOAA

    Science.gov (United States)

    Goldberg, M.; McWilliams, G.; Chang, P.

    2017-12-01

    There are many applications of microwave imagery served by NOAA's operational products and services. They include the use of microwave imagery and derived products for monitoring precipitation, tropical cyclones, sea surface temperature under all weather conditions, wind speed, snow and ice cover, and even soil moisture. All of NOAA's line offices including the National Weather Service, National Ocean Service, National Marine Fisheries Service, and Office of Oceanic and Atmospheric Research rely on microwave imagery. Currently microwave imagery products used by NOAA come from a constellation of satellites that includes Air Force's Special Sensor Microwave Imager Sounder (SSMIS), the Japanese Advanced Microwave Scanning Radiometer (AMSR), the Navy's WindSat, and NASA's Global Precipitation Monitoring (GPM) Microwave Imager (GMI). Follow-on missions for SSMIS are very uncertain, JAXA approval for a follow-on to AMSR2 is still pending, and GMI is a research satellite (lacking high-latitude coverage) with no commitment for operational continuity. Operational continuity refers to a series of satellites, so when one satellite reaches its design life a new satellite is launched. EUMETSAT has made a commitment to fly a microwave imager in the mid-morning orbit. China and Russia have demonstrated on-orbit microwave imagers. Of utmost importance to NOAA, however, is the quality, access, and latency of the data This presentation will focus on NOAA's current requirements for microwave imagery data which, for the most part, are being fulfilled by AMSR2, SSMIS, and WindSat. It will include examples of products and applications of microwave imagery at NOAA. We will also discuss future needs, especially for improved temporal resolution which hopefully can be met by an international constellation of microwave imagers. Finally, we will discuss what we are doing to address the potential gap in imagery.

  20. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    Science.gov (United States)

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  1. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    International Nuclear Information System (INIS)

    Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simoes, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G.

    2008-01-01

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained

  2. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    Energy Technology Data Exchange (ETDEWEB)

    Volanti, D.P. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Keyson, D. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil)], E-mail: laeciosc@bol.com.br; Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Joya, M.R. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Longo, E.; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Souza, A.G. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil)

    2008-07-14

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained.

  3. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans

    International Nuclear Information System (INIS)

    Ranjbaran, M.; Zare, D.

    2013-01-01

    The performance of microwave-assisted fluidized bed drying of soybeans was simulated (using a previously validated mathematical model) and analyzed based on the first- and second law of thermodynamics. The energy and exergy analysis were carried out for several drying conditions. The effects of inlet air temperature, microwave power density, bed thickness and inlet air velocity on the efficiencies and inefficiencies of drying process have been simulated and discussed. Generally, application of microwave energy during fluidized bed drying enhanced the exergy efficiency of drying process. However, the results showed that it was more efficient not to apply microwave energy at the first stage of fluidized bed drying process. The application of higher levels of drying air temperature led in higher exergy efficiencies. The values of mean relative deviations for the predictions of efficiencies and inefficiencies of drying process were less than 14%, compared with those calculated using experimental data. - Highlights: • Introducing a mathematical model to predict the efficiency of microwave-assisted fluidized bed dryers. • Energy and exergy analysis in microwave-assisted fluidized bed drying of grains. • Providing practical recommendations for efficient use of microwave power during drying

  4. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  5. Microwave synthesis and sintering characteristics of CaCu 3 Ti 4 O 12

    Indian Academy of Sciences (India)

    CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2.45 GHz, 1.1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min.

  6. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    Science.gov (United States)

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microwave-assisted extraction kinetics of terpenes from caraway seeds

    NARCIS (Netherlands)

    Chemat, S.; Ait-Amar, H.; Lagha, A.; Esveld, D.C.

    2005-01-01

    The process conditions during the extraction of carvone and limonene from caraway seed (Carum carvi L.) with microwave-assisted extraction have been studied with respect to microwave power, radiation dose and extraction time in order to obtain the secondary metabolites selectively. Using classical

  8. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  9. Global Warming and the Microwave Background

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2009-04-01

    Full Text Available In the work, the importance of assigning the microwave background to the Earth is ad- dressed while emphasizing the consequences for global climate change. Climate mod- els can only produce meaningful forecasts when they consider the real magnitude of all radiative processes. The oceans and continents both contribute to terrestrial emis- sions. However, the extent of oceanic radiation, particularly in the microwave region, raises concerns. This is not only since the globe is covered with water, but because the oceans themselves are likely to be weaker emitters than currently believed. Should the microwave background truly be generated by the oceans of the Earth, our planet would be a much less efficient emitter of radiation in this region of the electromagnetic spectrum. Furthermore, the oceans would appear unable to increase their emissions in the microwave in response to temperature elevation, as predicted by Stefan’s law. The results are significant relative to the modeling of global warming.

  10. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on disappearance and gas production for feedlot cattle

    Directory of Open Access Journals (Sweden)

    Shin-ichi Tagawa

    2017-04-01

    Full Text Available Objective The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM disappearance (DMD, gas production and fermentation pH were investigated for feedlot cattle. Methods Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving and ENZ addition (0, 1, and 2 mg/g using dry-rolled barley and 2-mm ground barley. Results In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01. The DMD (g/kg DM of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05 than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm. In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01 and tended to increase (p = 0.09 gas production and decreased (p<0.01 fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH, but consistent with Experiment 2, ENZ addition increased (p<0.01 DMD and gas production, and decreased (p<0.05 fermentation pH of dry-rolled barley, but not ground barley. Conclusion We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed

  11. Pyrolysis of methane in flowing microwave plasma. Pt. 1, 2

    International Nuclear Information System (INIS)

    Carmi, U.; Inor, A.A.; Avni, R.; Nickel, H.

    1978-04-01

    The flowing microwave (2.45 G Hz) plasmas of methane and methane-argon mixtures were analyzed by the electrical double floating probe system (DFPS), along the flow stream. The measured electric variables of the microwave plasma were: current, current density, electric field strength, electron temperature, positive ion and electron concentrations. They indicate an irreversible process, of the polymerization of CH 4 and CH 4 +Ar mixtures, taking place in the plasma. The polymerization process reaches its maximum 'down stream'. after the position of the microwave cavity. The polymerization was correlated to the concentration of ions and electrons in the plasma. (orig.) [de

  12. Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, Svetlana; Mojovic, Ljiljana; Rakin, Marica [University of Belgrade, Faculty of Technology and Metallurgy, Belgrade (Serbia); Pejin, Dusanka; Pejin, Jelena [University of Novi Sad, Faculty of Technology, Novi Sad (Serbia)

    2011-08-15

    Bioethanol production by simultaneous saccharification and fermentation (SSF) of corn meal by Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system with prior ultrasound or microwave treatment was studied. The optimal duration of the pretreatments and the SSF process kinetics were assessed and determined. Also, the effect of ultrasound and microwave pretreatments on ethanol yield and productivity was investigated. An optimal duration of 5 min was determined for both pretreatments. Ultrasonic and microwave pretreatments effectively increased the glucose concentration obtained after liquefaction by 6.82 and 8.48%, respectively, compared to untreated control sample. Also, both pretreatments improved ethanol yield and productivity during the SSF process. Ultrasound and microwave pretreatments increased the maximum ethanol concentration produced in the SSF process by 11.15 and 13.40% (compared to the control sample), respectively. The application of microwave pretreatment resulted in higher glucose release during liquefaction and consequently in higher ethanol concentration, compared to ultrasound pretreatment. A maximum ethanol concentration of 9.91% (w/w) and percentage of theoretical ethanol yield of 92.27% were achieved after 44 h of the SSF process of corn meal with prior microwave treatment. (orig.)

  13. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  14. [Nursing process in advanced cardiopulmonary resuscitation].

    Science.gov (United States)

    Lucio Peña, Gerardo; Fuentes Leonardo, Ana María

    2002-01-01

    The process male nurse is a systematic and organized method to offer effective and efficient cares guided to the achievement of solving real problems of health, reducing the incidence and the duration. It is organized and systematic for that consists of five sequential and interrelated steps: Valuation, diagnostic, planning, execution and evaluation, in which are carried out interrelated actions, thought to maximize the long term results. The nurse process is based on the notion that the success of the cares is measured by the degree of effectiveness and the degree of satisfaction and the patient's progress. Applying this method in the Advanced Cardiac Live Support (ACLS) the identification of a cardiovascular or cardiopulmonary urgency was achieved that implies advanced treatment of the air road, defibrillation and appropriate medications to the circumstances. The ACLS challenges the nurses in charge from the patient's attention to make decisions quick low pressure and in dramatic scenes. Reason why it develops the flowing process male nurse in the advanced cardiopulmonary reanimation due to the incidence of these events in the National Institute of Cardiology Ignacio Chávez, which should guarantee the benefit of services in basic and advanced cardiopulmonary reanimation for personal with a high formation level in all the units of intensive cares and services of hospitalization in integrated form and stratified this way to avoid that it progresses to situations that cause the death or leave irreversible sequels since in the central nervous system the time it is a factor critical for the treatment of this events.

  15. An investigation of sugar extraction methods and the use of microwave power for date syrup processing: efficiency and color related considerations.

    Science.gov (United States)

    Fennir, M A; Landry, J A; Ramaswamy, H S; Raghavan, V G S

    2003-01-01

    This study investigates the effect of extraction methods on the color of date syrup and the potential use of microwave power for syrup processing. Sugar solutions were extracted from dates by boiling, soaking and blending. Color and sugar content of the extracted solutions were measured, and the percentage of sugar extracted form the total fruit sugar determined. Boiling was found to be the most efficient method of extraction whereby 74% of total samples sugar was extracted. In contrast, only 54.2% of fruit sugar was extracted by blending and 42% by soaking. In addition, solutions extracted by soaking and blending had a foaming problem in the subsequent concentration process. The extraction method had no effect on the product final color. The extracted solution was concentrated using two heating methods: conventional and microwave heating at a 600 W capacity and a frequency of 2450 MHz applied at three power levels: 10, 7, and 6. In the heating process, 180 minutes were needed to achieve a 77% degrees Brix using convective heating, while it took 81, 138, and 166 minutes of microwave heating at power level 10, 7, and 6, respectively to achieve the same concentration. Water activity of the syrup was measured within a sugar content range of 50 to 80% degrees Brix and the sugar concentration at which the product is shelf stable was determined at 76%.

  16. 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics

    CERN Document Server

    2015-01-01

    The Congress will provide a unique topical forum to share the latest results of the metamaterials research in Europe and worldwide and bring together the engineering, physics, and material science communities working on artificial materials and their applications from microwaves to optical frequencies, as well as in acoustics, mechanics, and thermodynamics.

  17. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Characterization of Orthorhombic α-MoO3 Microplates Produced by a Microwave Plasma Process

    International Nuclear Information System (INIS)

    Klinbumrung, A.; Thongtem, S.; Thongtem, T.; Thongtem, S.; Thongtem, T.

    2012-01-01

    Orthorhombic α-MoO 3 microplates were produced from (NH 4 ) 6 Mo 7 O 24 H 2 O solid powder by a 900 W microwave plasma for 40, 50, and 60?min. Phase, morphologies, and vibration modes were characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and Raman and Fourier transform infrared (FTIR) spectroscopy. Sixty min processing resulted in the best crystallization of the α-MoO 3 phase, with photoluminescence (PL) in a wavelength range of 430-440 nm.

  19. MEMS-based transmission lines for microwave applications

    Science.gov (United States)

    Wu, Qun; Fu, Jiahui; Gu, Xuemai; Shi, Huajuan; Lee, Jongchul

    2003-04-01

    This paper mainly presents a briefly review for recent progress in MEMS-based transmission lines for use in microwave and millimeterwave range. MEMS-based transmission lines including different transmission line structure such as membrane-supported microstrip line microstrip line, coplanar microshield transmission line, LIGA micromachined planar transmission line, micromachined waveguides and coplanar waveguide are discussed. MEMS-based transmission lines are characterized by low propagation loss, wide operation frequency band, low dispersion and high quality factor, in addition, the fabrication is compatible with traditional processing of integrated circuits (IC"s). The emergence of MEMS-based transmission lines provided a solution for miniaturizing microwave system and monolithic microwave integrated circuits.

  20. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  1. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.

    Science.gov (United States)

    Wray, Derek; Ramaswamy, Hosahalli S

    2015-12-01

    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. © 2015 Institute of Food Technologists®

  2. Conversion of Cassava Starch to Produce Glucose and Fructose by Enzymatic Process Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available In this study, variation of glycosidase enzyme concentration and saccharification time on enzymatic hydrolysis using microwave have been investigated. Concentration and kinetic parameters rate of glucose and fructose were analyzed. Cassava starch was liquefied and gelatinized by microwave at 80°C. The gelatinized starch was saccharified at 60°C using (0.2;0.4;0.6;0.8;1% (w/v glycosidase enzyme for 24, 48 and 72 hours. The glucose which has been saccharified with 1% glycosidase enzyme for 72 hours gave highest conversion 66.23 %. The optimization process by multilevel reaction gave the highest conversion at enzyme concentrations 0.88 %and saccharification time 29 hours that 68.82%. The highest conversion of glucose was isomerized to fructose. The fructose which has been isomerized for 180 minutes gave highest conversion 20.05 %. The kinetics enzymatic reaction was approached and determined by Michaelis - Menten equation, Km and Vmax of reaction for glucose 22.94 g/L; 2.70 g/L hours and for fructose 3.39 g/L; 0.38 g/L. min respectively.

  3. Design of a microwave calorimeter for the microwave tokamak experiment

    International Nuclear Information System (INIS)

    Marinak, M.

    1988-01-01

    The initial design of a microwave calorimeter for the Microwave Tokamak Experiment is presented. The design is optimized to measure the refraction and absorption of millimeter rf microwaves as they traverse the toroidal plasma of the Alcator C tokamak. Techniques utilized can be adapted for use in measuring high intensity pulsed output from a microwave device in an environment of ultra high vacuum, intense fields of ionizing and non-ionizing radiation and intense magnetic fields. 16 refs

  4. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  5. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    International Nuclear Information System (INIS)

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-01-01

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  6. DEHYDRATION OF CHEESE BY HOT AIR, MICROWAVE AND FREEZE-DRYING

    Directory of Open Access Journals (Sweden)

    ANA RITA C. PINHO

    2017-12-01

    Full Text Available The objective of this work was to study the dehydration of skim cheese through different methods, in particular by hot air, microwave and freeze-drying, in order to assess which of these methods would be more suitable for the development of a new product (cheese snack. For the three processes of dehydration, several temperatures, powers and times were used, respectively. The drying time was optimized to allow the water activity of the final product to be between 0.3 and 0.4. The color and texture of the product obtained by the three processes were evaluated, and the nutritional analysis (protein, lipids, ash of the product dried by hot air at 52 ºC and by microwave at 750 W and 850 W was performed. The sensory analysis of the microwave dehydrated products was also carried out. The results obtained revealed that the temperature played a relevant role in the drying time and the hardness of the product. In the dehydration by microwave, the power of 850 W resulted in a lower drying time and a better color preservation, but in a high hardness of the samples. Among the three processes studied, the microwave drying was the fastest for the water removal from the cheese.

  7. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  8. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC)

  9. Advanced parallel processing with supercomputer architectures

    International Nuclear Information System (INIS)

    Hwang, K.

    1987-01-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers

  10. Summary report for the Microwave Source Working Group

    International Nuclear Information System (INIS)

    Westenskow, G.A.

    1997-01-01

    This report summarizes the discussions of the Microwave Source Working Group during the Advanced Accelerator Concepts Workshop held October 13-19, 1996 in the Granlibakken Conference Center at Lake Tahoe, California. Progress on rf sources being developed for linear colliders is reviewed. Possible choices for high-power rf sources at 34 GHz and 94 GHz for future colliders are examined. 27 refs

  11. Summary report for the Microwave Source Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Westenskow, G.A.

    1997-01-01

    This report summarizes the discussions of the Microwave Source Working Group during the Advanced Accelerator Concepts Workshop held October 13-19, 1996 in the Granlibakken Conference Center at Lake Tahoe, California. Progress on rf sources being developed for linear colliders is reviewed. Possible choices for high-power rf sources at 34 GHz and 94 GHz for future colliders are examined. 27 refs.

  12. Advances in natural language processing.

    Science.gov (United States)

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.

  13. Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Thomas, Teena; Kanoth, Bipinbal P.; Nijas, C.M.; Joy, P.A.; Joseph, Joseph M.; Kuthirummal, Narayanan; Thachil, Eby T.

    2015-01-01

    Highlights: • Fe 3 O 4 nanoparticles (∼20 nm) were synthesised by co-precipitation method. • Nanoparticles were homogeneously distributed in natural rubber through latex stage processing. • Mechanical properties and magnetic properties of composites improved with loading Fe 3 O 4 nanoparticles. • Imaginary part of permeability increases with nanoparticle loading improving the microwave absorption characteristics. • Infrared spectra reveal strong interaction between NR and iron oxide nanoparticles. - Abstract: Magnetic Fe 3 O 4 nanoparticles (∼20 nm) were synthesized using the chemical co-precipitation method with a view of developing flexible and easily processable ferromagnetic materials with high mouldability to be used as microwave absorbers. The nanoparticles prepared were incorporated into natural rubber through latex stage processing. This novel processing method gives better dispersion of particles in the rubber matrix. The composites were characterized using XRD, SEM, vibrating sample magnetometer, dynamic mechanical analyzer, cavity perturbation, thermogravimetry (TGA), and Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). A notable improvement in the mechanical properties of composites was observed upon adding Fe 3 O 4 particles. Magnetic and microwave characteristics of the composites indicate the formation of a flexible ferromagnetic material with good microwave absorption characteristics

  14. Microwave-assisted extraction of pectin from cocoa peel

    Science.gov (United States)

    Sarah, M.; Hanum, F.; Rizky, M.; Hisham, M. F.

    2018-02-01

    Pectin is a polymer of d-galacturonate acids linked by β-1,4 glycosidic bond. This study isolates pectin from cocoa peel (Theobroma cacao) using citric acid as solvent by microwave-assisted extraction method. Cocoa peels (moisture content of 10%) with citric acid solution (pH of 1.5) irradiated by microwave energy at various microwave power (180, 300, 450 and 600 W) for 10, 15, 20, 25 and 30 minutes respectively. Pectin obtained from this study was collected and filtrated by adding 96% ethanol to precipitate the pectin. The best results obtained from extraction process using microwave power of 180 Watt for 30 minutes. This combination of power and time yielded 42.3% pectin with moisture content, ash content, weight equivalent, methoxyl content and galacturonate levels were 8.08%, 5%, 833.33 mg, 6.51% and 58,08%, respectively. The result finding suggested that microwave-assisted extraction method has a great potency on the commercial pectin production.

  15. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a lineari......This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process...... on pilot plant equipment on the department of Chemical Engineering DTU Lyngby....

  16. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Moslehi, M.M.; Davis, C.

    1989-01-01

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/Ge x Si 1 - x /Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  17. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching.......Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  18. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  19. A comparison study on the densification behavior and mechanical properties of gelcast vs conventionally formed B4C sintered conventionally and by microwaves

    International Nuclear Information System (INIS)

    Menchhofer, P.A.; Kiggans, J.O.; Morrow, M.S.; Schechter, D.E.

    1996-01-01

    The utilization of microwave energy for reaching high temperatures necessary to densify B 4 C powder is compared with conventional means of sintering by evaluating the mechanical properties after densification. Microwave energy has been shown to be an effective means for achieving high sintered densities, even though temperatures of ∼ 2,250 C are required. In this study, green preforms of B 4 C specimens were sintered by both conventional and microwave heating. This study also utilized an advanced forming method called ''Gelcasting'' developed at ORNL. Gelcasting is a fluid forming process whereby high solids suspensions of powders containing dissolved monomers are cast into a mold, then polymerized or ''gelled'' in situ. This investigation compares microstructures and mechanical properties of both Gelcast B 4 C and ''conventionally'' die-pressed B 4 C. The microstructures and final mechanical properties of B 4 C specimens are discussed

  20. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  1. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  2. Optimization of continuous and intermittent microwave extraction of pectin from banana peels.

    Science.gov (United States)

    Swamy, Gabriela John; Muthukumarappan, Kasiviswanathan

    2017-04-01

    Continuous and intermittent microwave-assisted extractions were used to extract pectin from banana peels. Extraction parameters which were employed in the continuous process were microwave power (300-900W), time (100-300s), pH (1-3) and in the intermittent process were microwave power (300-900W), pulse ratio (0.5-1), pH (1-3). The independent factors were optimized with the Box-Behnken response surface design (BBD) (three factor three level) with the desirability function methodology. Results indicate that the independent factors have substantial effect on the pectin yield. Optimized solutions for highest pectin yield (2.18%) from banana peels were obtained with microwave power of 900W, time 100s and pH 3.00 in the continuous method while the intermittent process yielded the highest pectin content (2.58%) at microwave power of 900W, pulse ratio of 0.5 and pH of 3.00. The optimized conditions were validated and close agreement was observed with the validation experiment and predicted value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  4. Live demonstration: Screen printed, microwave based level sensor for automated drug delivery

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    Level sensors find numerous applications in many industries to automate the processes involving chemicals. Recently, some commercial ultrasound based level sensors are also being used to automate the drug delivery process [1]. Some of the most desirable features of level sensors to be used for medical use are their non-intrusiveness, low cost and consistent performance. In this demo, we will present a completely new method of sensing the liquid level using microwaves. It is a common stereotype to consider microwaves sensing mechanism as being expensive. Unlike usual expensive, intrusive and bulky microwave methods of level sensing using guided radars, we will present an extremely low cost printed, non-intrusive microwave sensor to reliably sense the liquid level.

  5. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  6. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  7. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  8. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-01-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  9. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, Bunkyo-ku 113-8656 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-08-14

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  10. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  11. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  12. Malachite green adsorption onto natural zeolite and reuse by microwave irradiation

    International Nuclear Information System (INIS)

    Han Runping; Wang Yu; Sun Qing; Wang Lulu; Song Jiyun; He Xiaotian; Dou Chanchan

    2010-01-01

    Natural zeolite was used for the removal of malachite green (MG) from aqueous solution in batch mode and reused by microwave irradiation. The isotherm data were analyzed by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan isotherm model. The better fit for the equilibrium process was Koble-Corrigan model. The kinetic studies indicated that the adsorption followed the pseudo-second-order kinetic. Thermodynamic calculations showed that the adsorption was spontaneous and endothermic process. Spent zeolite was treated by microwave irradiation and it was found that yield of regeneration was 85.8% in the case of microwave irradiated time 10 min at 160 W.

  13. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  14. Progress in CPI Microwave Tube Development

    Science.gov (United States)

    Wright, Edward L.; Bohlen, Heinz

    2006-01-01

    CPI continues its role as a leading supplier of state-of-the-art, high-power microwave tubes; from linear beam, velocity- and density-modulated devices, to high frequency gyro-devices. Klystrons are the device-of-choice for many high-power microwave applications, and can provide multi-megawatts to multi-kilowatts of power from UHF to W-band, respectively. A number of recent and on-going developments will be described. At UHF frequencies, the inductive output tube (IOT) has replaced the klystron for terrestrial NTSC and HDTV broadcast, due to its high efficiency and linearity, and is beginning to see use in scientific applications requiring 300 kW or less. Recent advances have enabled use well into L-band. CPI has developed a number of multiple-beam amplifiers. The VKL-8301 multiple-beam klystron (MBK) was built for the TESLA V/UV and x-ray FEL projects, and is a candidate RF source for the International Linear Collider (ILC). We have also contributed to the development of the U.S. Naval Research Laboratory (NRL) high-power fundamental-mode S-band MBK. The VHP-8330B multiple-beam, high-order mode (HOM) IOT shows great promise as a compact, CW UHF source for high power applications. These topics will be discussed, along with CPI's development capabilities for new and novel applications. Most important is our availability to provide design and fabrication services to organizations requiring CPI's manufacturing and process control infrastructure to build and test state-of-the-art devices.

  15. Microwave heating and the fast ADOR process for preparing zeolites

    Czech Academy of Sciences Publication Activity Database

    Navarro, M.; Morris, S. A.; Mayoral, A.; Čejka, Jiří; Morris, R. E.

    2017-01-01

    Roč. 5, č. 17 (2017), s. 8037-8043 ISSN 2050-7488 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : membranes * zeolites * microwave heating Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 8.867, year: 2016

  16. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  17. Hybrid Microwave Technology

    International Nuclear Information System (INIS)

    Wicks, G.G.

    2001-01-01

    A team associated with a Federal Laboratory, academia, and industry has been actively developing new microwave technology for treatment and remediation of a variety of potentially hazardous materials for almost a decade. This collaboration has resulted in unique equipment and processes with potential applicability to many fields, including disposition of electronic circuitry and components, medical wastes, radioactive materials and recycling of used tires

  18. Shielding analysis of the advanced voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Park, J. J.; Lee, J. W.; Shin, J. M.; Park, G. I.; Song, K. C

    2008-09-15

    This report deals describes how much a shielding benefit can be obtained by the Advanced Voloxidation process. The calculation was performed with the MCNPX code and a simple problem was modeled with a spent fuel source which was surrounded by a concrete wall. The source terms were estimated with the ORIGEN-ARP code and the gamma spectrum and the neutron spectrum were also obtained. The thickness of the concrete wall was estimated before and after the voloxidation process. From the results, the gamma spectrum after the voloxidation process was estimated as a 67% reduction compared with that of before the voloxidation process due to the removal of several gamma emission elements such as cesium and rubidium. The MCNPX calculations provided that the thickness of the general concrete wall could be reduced by 12% after the voloxidation process. And the heavy concrete wall provided a 28% reduction in the shielding of the source term after the voloxidation process. This can be explained in that there lots of gamma emission isotopes still exist after the advanced voloxidation process such as Pu-241, Y-90, and Sr-90 which are independent of the voloxidation process.

  19. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    Directory of Open Access Journals (Sweden)

    Adam Figiel

    2016-12-01

    Full Text Available The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  20. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    Science.gov (United States)

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  1. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  2. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  3. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  4. MODIFIKASI ASAM SUKSINAT - GELOMBANG PENDEK UNTUK\tPRODUKSI TAPIOKA SUKSINAT Succinic Acid-Microwave Modification to Produce Succinic Tapioca

    Directory of Open Access Journals (Sweden)

    Heny Herawati

    2012-05-01

    Full Text Available Indonesia as tropical country has great cassava potency. The great chance of cassava product development could be increased its added value through modified tapioca processing. One of modified starch that could be implemented as a food additive is succinic starch. The tapioca succinilation processed through combination process of reacting tapioca with succinic acid and microwave treatment. The research method was conducted by factorial design with 3 factors: substrate concentration (30 %, 40 %, succinic acid concentration (1 %, 3 %, 5 %, and drying method (oven and microwave. Succinic tapioca was analyzed both physical and chemical characteristics, while optimal product was fur- ther analyzed for nutrition contents and surface microstructure using SEM. Succinic acid and microwave modification influenced to the physical and chemical succinic tapioca, except ash content. The highest substitution degree value was 0.929 which was obtained by combination of substrate concentration 40 %, succinic acid added 5 % and microwave processed. The change of granule size was not significant, just the distribution among granule correlated with the tapi- oca modification. The succinic tapioca granule size ranged 5.35 µm until 17.20 µm with average 11.15 µm. Succinic tapioca characteristic hopefully could be advanced food implementation. ABSTRAK Indonesia merupakan negara tropis yang memiliki potensi produksi ubi kayu yang cukup besar. Peluang pengem- bangan produk berbasis ubi kayu di Indonesia masih cukup besar diantaranya yaitu peningkatan nilai tambah ubi kayu melalui proses modifikasi tapioka. Salah satu potensi pati termodifikasi yang dapat dipergunakan untuk bahan tambahan makanan yaitu pati suksinat. Pada penelitian ini proses suksinilasi tapioka dilakukan dengan cara mereak- sikan asam suksinat yang dikombinasikan dengan mempergunakan microwave. Metodologi penelitian yang dilakukan menggunakan rancangan faktorial dengan 3 faktor, yaitu konsentrasi

  5. A Review of Microwave Thermography Nondestructive Testing and Evaluation

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-05-01

    Full Text Available Microwave thermography (MWT has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  6. A Review of Microwave Thermography Nondestructive Testing and Evaluation.

    Science.gov (United States)

    Zhang, Hong; Yang, Ruizhen; He, Yunze; Foudazi, Ali; Cheng, Liang; Tian, Guiyun

    2017-05-15

    Microwave thermography (MWT) has many advantages including strong penetrability, selective heating, volumetric heating, significant energy savings, uniform heating, and good thermal efficiency. MWT has received growing interest due to its potential to overcome some of the limitations of microwave nondestructive testing (NDT) and thermal NDT. Moreover, during the last few decades MWT has attracted growing interest in materials assessment. In this paper, a comprehensive review of MWT techniques for materials evaluation is conducted based on a detailed literature survey. First, the basic principles of MWT are described. Different types of MWT, including microwave pulsed thermography, microwave step thermography, microwave pulsed phase thermography, and microwave lock-in thermography are defined and introduced. Then, MWT case studies are discussed. Next, comparisons with other thermography and NDT methods are conducted. Finally, the trends in MWT research are outlined, including new theoretical studies, simulations and modelling, signal processing algorithms, internal properties characterization, automatic separation and inspection systems. This work provides a summary of MWT, which can be utilized for material failures prevention and quality control.

  7. Microwave components for cellular portable radiotelephone

    Science.gov (United States)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  8. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  9. Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle.

    Science.gov (United States)

    Tagawa, Shin-Ichi; Holtshausen, Lucia; McAllister, Tim A; Yang, Wen Zhu; Beauchemin, Karen Ann

    2017-04-01

    The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (pgas production and decreased (pgas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

  10. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  11. Evolution of Monolithic Technology for Wireless Communications: GaN MMIC Power Amplifiers For Microwave Radios

    Directory of Open Access Journals (Sweden)

    Vittorio Camarchia

    2014-09-01

    Full Text Available This paper presents the progress of monolithic technology for microwaveapplication, focusing on gallium nitride technology advances in the realization of integratedpower amplifiers. Three design examples, developed for microwave backhaul radios, areshown. The first design is a 7 GHz Doherty developed with a research foundry, while thesecond and the third are a 7 GHz Doherty and a 7–15 GHz dual-band combined poweramplifiers, both based on a commercial foundry process. The employed architectures, themain design steps and the pros and cons of using gallium nitride technology are highlighted.The measured performance demonstrates the potentialities of the employed technology, andthe progress in the accuracy, reliability and performance of the process.

  12. HERMA-Heartbeat Microwave Authentication

    Science.gov (United States)

    Lux, James Paul (Inventor); Chow, Edward (Inventor); McKee, Michael Ray (Inventor); Haque, Salman-ul Mohammed (Inventor); Tkacenko, Andre (Inventor)

    2018-01-01

    Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.

  13. Accelerated staining technique using kitchen microwave oven

    Directory of Open Access Journals (Sweden)

    Archana Mukunda

    2015-01-01

    Full Text Available Introduction: Histopathological diagnosis of specimens is greatly dependent on good sample preparation and staining. Both of these processes is governed by diffusion of fluids and dyes in and out of the tissue, which is the key to staining. Diffusion of fluids can be accelerated by the application of heat that reduces the time of staining from hours to the minute. We modified an inexpensive model of kitchen microwave oven for staining. This study is an attempt to compare the reliability of this modified technique against the tested technique of routine staining so as to establish the kitchen microwave oven as a valuable diagnostic tool. Materials and Methods: Sixty different tissue blocks were used to prepare 20 pairs of slides for 4 different stains namely hematoxylin and eosin, Van Gieson′s, 0.1% toluidine blue and periodic acid-Schiff. From each tissue block, two bits of tissues were mounted on two different slides. One slide was stained routinely, and the other stained inside a microwave. A pathologist evaluated the stained slides and the results so obtained were analyzed statistically. Results: Microwave staining considerably cut down the staining time from hours to seconds. Microwave staining showed no loss of cellular and nuclear details, uniform-staining characteristics and was of excellent quality. Interpretation and Conclusion: The cellular details, nuclear details and staining characteristics of microwave stained tissues were better than or equal to the routine stained tissue. The overall quality of microwave-stained sections was found to be better than the routine stained tissue in majority of cases.

  14. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  15. Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Teena; Kanoth, Bipinbal P. [Department of Polymer Science & Rubber Technology, Cochin University of Science & Technology, Cochin, 682022, Kerala (India); Nijas, C.M. [Department of Electronics, Cochin University of Science & Technology, Cochin, 682022, Kerala (India); Joy, P.A. [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Joseph, Joseph M. [Inter University Centre for Nanomaterials and Devices, Cochin University of Science & Technology, Cochin 682022, Kerala (India); Kuthirummal, Narayanan, E-mail: kuthirummaln@cofc.edu [Department of Physics and Astronomy, College of Charleston, Charleston, SC 29424 (United States); Thachil, Eby T., E-mail: ethachil@gmail.com [Department of Polymer Science & Rubber Technology, Cochin University of Science & Technology, Cochin, 682022, Kerala (India)

    2015-10-15

    Highlights: • Fe{sub 3}O{sub 4} nanoparticles (∼20 nm) were synthesised by co-precipitation method. • Nanoparticles were homogeneously distributed in natural rubber through latex stage processing. • Mechanical properties and magnetic properties of composites improved with loading Fe{sub 3}O{sub 4} nanoparticles. • Imaginary part of permeability increases with nanoparticle loading improving the microwave absorption characteristics. • Infrared spectra reveal strong interaction between NR and iron oxide nanoparticles. - Abstract: Magnetic Fe{sub 3}O{sub 4} nanoparticles (∼20 nm) were synthesized using the chemical co-precipitation method with a view of developing flexible and easily processable ferromagnetic materials with high mouldability to be used as microwave absorbers. The nanoparticles prepared were incorporated into natural rubber through latex stage processing. This novel processing method gives better dispersion of particles in the rubber matrix. The composites were characterized using XRD, SEM, vibrating sample magnetometer, dynamic mechanical analyzer, cavity perturbation, thermogravimetry (TGA), and Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). A notable improvement in the mechanical properties of composites was observed upon adding Fe{sub 3}O{sub 4} particles. Magnetic and microwave characteristics of the composites indicate the formation of a flexible ferromagnetic material with good microwave absorption characteristics.

  16. Microwave generation and complex microwave responsivity measurements on small Dayem bridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O; Mygind, Jesper

    1977-01-01

    Measurements of the active properties of a Dayem micro-bridge at X-band frequencies is described. The bridge was mounted in a microwave cavity designed to match the bridge properly and the microwave output from the cavity was detected using a sensitive X-band spectrometer. Microwave power...

  17. PETI-298 Prepared by Microwave Synthesis: Neat Resin and Composite Properties

    Science.gov (United States)

    Smith, Joseph G.; Connell, John W.; Li, Chao-Jun; Wu, Wei; Criss, Jim M., Jr.

    2004-01-01

    PETI-298 is a high temperature/high performance matrix resin that is processable into composites by resin transfer molding (RTM), resin infusion and vacuum assisted RTM techniques. It is typically synthesized in a polar aprotic solvent from the reaction of an aromatic anhydride and a combination of diamines and endcapped with phenylethynylphthalic anhydride. Microwave synthesis of PETI-298 was investigated as a means to eliminate solvent and decrease reaction time. The monomers were manually mixed and placed in a microwave oven for various times to determine optimum reaction conditions. The synthetic process was subsequently scaled-up to 330g. Three batches were synthesized and combined to give 1 kg of material that was characterized for thermal and rheological properties and compared to PETI-298 prepared by the classic solution based synthetic method. The microwave synthesized PETI-298 was subsequently used to fabricate flat laminates on T650 carbon fabric by RTM. The composite panels were analyzed and mechanical properties determined and compared with those fabricated from PETI-298 prepared by the classic solution method. The microwave synthesis process and characterization of neat resin and carbon fiber reinforced composites fabricated by RTM will be presented. KEY WORDS: Resin Transfer Molding, High Temperature Polymers, Phenylethynyl Terminated Imides, Microwave Synthesis

  18. Microwave-assisted efficient conjugation of nanodiamond and paclitaxel.

    Science.gov (United States)

    Hsieh, Yi-Han; Liu, Kuang-Kai; Sulake, Rohidas S; Chao, Jui-I; Chen, Chinpiao

    2015-01-01

    Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Engineering Topological Many-Body Materials in Microwave Cavity Arrays

    Directory of Open Access Journals (Sweden)

    Brandon M. Anderson

    2016-12-01

    Full Text Available We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry-breaking (nonreciprocal flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the α=1/4 Hofstadter model. To induce photon-photon interactions, the cavities are coupled to superconducting qubits; we find these interactions are sufficient to stabilize a ν=1/2 bosonic Laughlin puddle. Exact diagonalization studies demonstrate that this architecture is robust to experimentally achievable levels of disorder. These advances provide an exciting opportunity to employ the quantum circuit toolkit for the exploration of strongly interacting topological materials.

  20. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1977-01-01

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  1. Electron processing of fibre-reinforced advanced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko

    1996-01-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author)

  2. Electron processing of fibre-reinforced advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL`s 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author).

  3. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    International Nuclear Information System (INIS)

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-01-01

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  4. Microwave Irradiation

    Indian Academy of Sciences (India)

    Way to Eco-friendly, Green Chemistry. Rashmi ... The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; ... of microwave heating in organic synthesis since the first contri-.

  5. Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables

    Directory of Open Access Journals (Sweden)

    Carmelo Gentile

    2009-12-01

    Full Text Available Recent advances in radar techniques and systems have favoured the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. The paper addresses the application of microwave remote sensing to the measurement of the vibration response in the stay-cables of cable-stayed bridges. The reliability and accuracy of the proposed technique were investigated by comparing the natural frequencies (and the cable tensions predicted from natural frequencies identified from radar data and the corresponding quantities obtained using more conventional techniques. The investigation, carried out on the cables of two different cable-stayed bridges, clearly highlights: (a the accuracy of the results provided by the microwave remote sensing; (b the simplicity of use of the radar technique (especially when compared with conventional approaches and its effectiveness to simultaneously measuring the dynamic response of all the stay-cables of an array.

  6. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes

    Directory of Open Access Journals (Sweden)

    Miguel A. Hurtado

    2011-02-01

    Full Text Available This study evaluates the pre-treatment of cellulose from kenaf plant to yield sugar precursors for the production of ethanol or butanol for use as biofuel additives. In order to convert the crystalline cellulosic form to the amorphous form that can undergo enzymatic hydrolysis of the glycosidic bond to yield sugars, kenaf pulp samples were subjected to two different pre-treatment processes. In the acid pre-treatment, the pulp samples were treated with 37.5% hydrochloric acid in the presence of FeCl3 at 50 °C or 90 °C whereas in the alkaline method, the pulp samples were treated with 25% sodium hydroxide at room temperature and with 2% or 5% sodium hydroxide at 50 °C. Microwave-assisted NaOH-treatment of the cellulose was also investigated and demonstrated to be capable of producing high glucose yield without adverse environmental impact by circumventing the use of large amounts of concentrated acids i.e., 83–85% phosphoric acid employed in most digestion processes. The treated samples were digested with the cellulase enzyme from Trichoderma reesei. The amount of glucose produced was quantified using the QuantichromTM glucose bioassay for assessing the efficiency of glucose production for each of the treatment processes. The microwave-assisted alkaline pre-treatment processes conducted at 50 °C were found to be the most effective in the conversion of the crystalline cellulose to the amorphous form based on the significantly higher yields of sugar produced by enzymatic hydrolysis compared to the untreated sample.

  7. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  8. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Tseng-Hsing; Lu, Shin

    2013-06-01

    The effective production of xylooligosaccharides (XOS) from wheat bran was investigated. Wheat bran contains rich hemicellulose which can be hydrolyzed by enzyme; the XOS were obtained by microwave assisted enzymatic hydrolysis. To improve the productivity of XOS, repeated microwave assisted enzymatic hydrolysis and activated carbon adsorption method was chosen to eliminate macromolecules in the XOS. On the basis of experimental data, an industrial XOS production process consisting of pretreatment, repeated microwave assisted enzymatic treatment and purification was designed. Using the designed process, 3.2g dry of purified XOS was produced from 50 g dry wheat bran powder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  10. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  11. Effects of Snow/ Soil Interface on Microwave Backscatter of Terrestrial Snowpack at X- and Ku- Band

    Science.gov (United States)

    Kang, D. H.; Tan, S.; Zhu, J.; Gu, W.; Tsang, L.; Kim, E. J.

    2017-12-01

    Recent advances in monitoring and modeling capabilities to support remote sensing of terrestrial snow is encouraging to develop satellite mission concept in monitoring cold-region hydrological processes on global scales. However, it is still challenging to link back the active microwave backscattering signals to physical snowpack parameters. One of the limitations resides in the ignorance of the vegetation and soil conditions beneath the snowpack in the microwave scattering/ emission modeling and the snow water equivalent (SWE) retrieval algorithm. During the SnowEx 2017 winter campaign in Grand Mesa, CO, a particular effort has been made on comprehensive measurements of the underlying vegetation and soil characteristics from the snowpit measurements. Besides conducting standard snow core sampling, we have made additional protocols to record the background information beneath the snowpack. Recent works on active SWE retrieval algorithm using backscatters at X- (9.6 GHz) and Ku- (17.2 GHz) band suggest the significant signals from the background scattering characterization. The background scattering arising from the rough snow/ soil interface and the buried vegetation inside and beneath the snowpack modifies the sensitivity of the total backscatter to SWE. In this paper, we summarize the snow/ soil interface conditions as observed in the SnowEx campaign. We also develop standards for future in-situ snowpit measurements to include regular snow/ soil interface observations to accommodate the interpretation of microwave backscatter both for modeling and observation of microwave signatures. These observations first provide inputs to the microwave scattering models to predict the backscattering contribution from background, which is one of the key factors to be included to improve the SWE retrieval performance.

  12. Microwave technology for waste management applications including disposition of electronic circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.; Folz, D.C.

    1995-01-01

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse

  13. IDENTIFYING THE RADIO BUBBLE NATURE OF THE MICROWAVE HAZE

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Gregory, E-mail: dobler@kitp.ucsb.edu [Kavli Institute for Theoretical Physics, University of California, Santa Barbara Kohn Hall, Santa Barbara, CA 93106 (United States)

    2012-11-20

    Using seven-year data from the Wilkinson Microwave Anisotropy Probe, I identify a sharp 'edge' in the microwave haze at high southern Galactic latitude (-55 Degree-Sign < b < -35 Degree-Sign ) that is spatially coincident with the southern edge of the 'Fermi haze/bubbles'. This finding proves conclusively that the edge in the gamma rays is real (and not a processing artifact), demonstrates explicitly that the microwave haze and the gamma-ray bubbles are indeed the same structure observed at multiple wavelengths, and strongly supports the interpretation of the microwave haze as a separate component of Galactic synchrotron (likely generated by a transient event) as opposed to a simple variation of the spectral index of disk synchrotron. In addition, combining these data sets allows for the first determination of the magnetic field within a radio bubble using microwaves and gamma rays by taking advantage of the fact that the inverse Compton gamma rays are primarily generated by scattering of cosmic microwave background photons at these latitudes, thus minimizing uncertainty in the target radiation field. Assuming uniform volume emissivity, I find that the magnetic field within the southern Galactic microwave/gamma-ray bubble is {approx}5 {mu}G above 6 kpc off of the Galactic plane.

  14. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  15. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  16. Gyrocons and magnicons: Microwave generators with circular deflection of the electron beam

    International Nuclear Information System (INIS)

    Nezhevenko, O.A.

    1994-01-01

    A new class of microwave power amplifiers is presented in this paper. In these amplifiers, the beam is modulated by varying its spatial position by means of circular deflection. Today, this class consists of two devices: the gyrocon and its advanced version--the magnicon. This paper outlines the theory and the results of experimental research for both the gyrocon and the magnicon. The possibility of obtaining high power and high efficiency in both the decimeter and centimeter-wave ranges shows that these devices (the magnicon especially) may turn into one of the main microwave energy sources for future particle accelerators

  17. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  18. Optimization of microwave-assisted extraction of polysaccharide from Psidium guajava L. fruits.

    Science.gov (United States)

    Amutha Gnana Arasi, Michael Antony Samy; Gopal Rao, Manchineela; Bagyalakshmi, Janardanan

    2016-10-01

    This study deals with the optimization of microwave assisted extraction of polysaccharide from Psidium guajava L. fruit using Response surface methodology. To evaluate the effect of three independent variables, Water to plant material ratio, microwave power used for extraction and Irradiation time, central composite design has been employed. The yield is considered as dependent variable. The design model estimated the optimum yield of 6.81677% at 200W microwave power level, 3:1 water to plant material ratio and 20min of irradiation time. Three factors three levels Central composite design coupled with RSM was used to model the extraction process. ANOVA was performed to find the significance of the model. The polysaccharide extracted using microwave assisted extraction process was analyzed using FTIR Spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Control of plasma profile in microwave discharges via inverse-problem approach

    Directory of Open Access Journals (Sweden)

    Yasuyoshi Yasaka

    2013-12-01

    Full Text Available In the manufacturing process of semiconductors, plasma processing is an essential technology, and the plasma used in the process is required to be of high density, low temperature, large diameter, and high uniformity. This research focuses on the microwave-excited plasma that meets these needs, and the research target is a spatial profile control. Two novel techniques are introduced to control the uniformity; one is a segmented slot antenna that can change radial distribution of the radiated field during operation, and the other is a hyper simulator that can predict microwave power distribution necessary for a desired radial density profile. The control system including these techniques provides a method of controlling radial profiles of the microwave plasma via inverse-problem approach, and is investigated numerically and experimentally.

  20. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  1. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  2. Characteristics of Microwave Vacuum Baking and Drying of Oolong and Its Kinetic Model

    OpenAIRE

    Rongchuan Lin; Hetong Lin; Qingjiao Lin

    2013-01-01

    This paper studies the characteristics of microwave vacuum baking and drying of oolong and analyzes the influence of microwave power and vacuum degree in the drying process on the moisture in the tea. According to the variation law of moisture, it explores the relationship between time and wet base moisture contents under different microwave powers and vacuum degrees, as well as the kinetic mathematical model of vacuum drying for oolong using the microwave. Based on the energy balance between...

  3. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation

    International Nuclear Information System (INIS)

    Tolga Demirtaş, T.; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe

    2015-01-01

    Microwave-assisted methods have been frequently used in many processes owing to their numerous advantages such as performing fast, efficient and homogenous processes and reducing side reactions. In view of these benefits, in this study it was purposed to produce bone-like hydroxyapatite (HA) by inducing biomimetic process with microwave-irradiation. This is why, concentrated body fluid (SBF) i.e. 10×SBF-like solution was used and it was precipitated in different microwave powers i.e. 90 W, 360 W, 600 W, and 1200 W and in different exposure times. For comparison, precipitation process was also carried out at room temperature for 6 h and at 80 °C for 1 h. The obtained HA structures were characterized by appropriate instrumental techniques. As a result, microwave-induced precipitation at 600 W for 9 times 30 s was determined as the optimum condition for the production of HA which has similar properties to the cortical bone. At this condition, B-type HA with 9.22% (wt.) carbonate content, 1.61 Ca/P molar ratio and amorphous structure was obtained easily, rapidly and efficiently. So, this is the first time microwave technology has been used to precipitate HA from SBF solution. - Highlights: • Simple, rapid and efficient method was developed to produce bone-like HA. • Microwave radiation and biomimetic approach via 10×SBF-like solution were combined. • Microwave irradiation at 600 W for 9 × 30 s was determined as the optimum condition. • B-type HA (carbonate content: 9.22%; 1.61 Ca/P:1.61; amorph) was produced. • This method may be employed for the effective HA coating of 3D bone scaffolds

  4. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tolga Demirtaş, T.; Kaynak, Gökçe [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Gümüşderelioğlu, Menemşe, E-mail: menemse@hacettepe.edu.tr [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Chemical Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-01

    Microwave-assisted methods have been frequently used in many processes owing to their numerous advantages such as performing fast, efficient and homogenous processes and reducing side reactions. In view of these benefits, in this study it was purposed to produce bone-like hydroxyapatite (HA) by inducing biomimetic process with microwave-irradiation. This is why, concentrated body fluid (SBF) i.e. 10×SBF-like solution was used and it was precipitated in different microwave powers i.e. 90 W, 360 W, 600 W, and 1200 W and in different exposure times. For comparison, precipitation process was also carried out at room temperature for 6 h and at 80 °C for 1 h. The obtained HA structures were characterized by appropriate instrumental techniques. As a result, microwave-induced precipitation at 600 W for 9 times 30 s was determined as the optimum condition for the production of HA which has similar properties to the cortical bone. At this condition, B-type HA with 9.22% (wt.) carbonate content, 1.61 Ca/P molar ratio and amorphous structure was obtained easily, rapidly and efficiently. So, this is the first time microwave technology has been used to precipitate HA from SBF solution. - Highlights: • Simple, rapid and efficient method was developed to produce bone-like HA. • Microwave radiation and biomimetic approach via 10×SBF-like solution were combined. • Microwave irradiation at 600 W for 9 × 30 s was determined as the optimum condition. • B-type HA (carbonate content: 9.22%; 1.61 Ca/P:1.61; amorph) was produced. • This method may be employed for the effective HA coating of 3D bone scaffolds.

  5. Improved Microwave Photonic Links via Receive-Side Nonlinear Signal Processing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to significantly enhance the state-of-the-art of photonically-assisted microwave measurement and distribution systems by incorporating a highly efficient...

  6. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    Sani, Mohd Shafie; Aziz, Faieza Abdul

    2013-01-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  7. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    Science.gov (United States)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  8. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  9. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  10. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  11. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  12. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  13. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    International Nuclear Information System (INIS)

    Benito, P.; Labajos, F.M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-01

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27 Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al 3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M 2+ /M 3+ ratio and consequent modification of the cell parameters. - Graphical Abstract: The influence of the nature of the interlayer anion during the ageing process of carboxylate-intercalated (TA and ox) hydrotalcite-like compounds (HTlcs) is studied. Well crystallized for TA-containing compounds were obtained. However, the non-desired side-reaction of ox with the aluminum of the layers is enhanced by the microwaves and a partial destruction of the structure takes place

  14. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  15. Microwave-Assisted Extraction of Essential Oil from Eucalyptus: Study of the Effects of Operating Conditions

    Directory of Open Access Journals (Sweden)

    A.A. Saoud

    2006-12-01

    Full Text Available Classical extraction of essential oil such as Soxhlet and steam distillation is still a formidable and time-solvent consuming. Microwave assisted process (MAP is used to accelerate the extraction process of target compounds. It can be used for the extraction of compounds from various plants and animal tissues, or the extraction of undesirable components from raw materials. The investigation of microwave extraction of eucalyptus (globules essential oil using ethanol as solvent was carried out. The influence of material (eucalyptus/solvent (ethanol ratio, required doses of microwave, and time of microwave exposure on extraction efficiency, was studied.

  16. Technical evaluation of the direct denitration process to obtain ceramic-grade UO2 powders using microwaves

    International Nuclear Information System (INIS)

    Lorenzo, Viviana J.; Marchi, Daniel E.; Menghini, Jorge E.

    1999-01-01

    The direct denitration process to obtain ceramic-grade UO 2 powders using microwaves has been studied and developed at laboratory scale. Conditions were given to obtain powders apt for fuel pellets fabrication within the required specifications, where mechanical treatments before pressing are not necessary. This work describes the equipment used in the process, evaluates the necessary supply and waste generation and describes the characteristics of the product obtained, as well as the conditions for its fabrication. Results show that this method allows to reduce the volume of liquid wastes generated due to their partial re-utilization, simplifying their final disposal treatment, which, in addition to their operational advantages, make this method attractive from the economical point of view. (author)

  17. Experimental progress on virtual-cathode very high power microwave source development

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1987-01-01

    The evolution of rf accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing electron sources can produce microwave powers at the gigawatt level and have demonstrated operation from 800 MHz to 40 GHz. Pulse length appears to be limited by electron-beam diode closure, and reflexing electron devices have been operated in a repetitively pulsed mode. An experiment is under way to investigate concepts to stabilize the frequency of the virtual cathode source. If one can successfully frequency and phase lock this source to an external signal, then this source can operate as a very high power microwave amplifier making it practical for accelerator applications. The progress on an experiment to test these concepts will be discussed

  18. Characterization of Donut-Like SrMoO4 Produced by Microwave-Hydrothermal Process

    Directory of Open Access Journals (Sweden)

    Surangkana Wannapop

    2013-01-01

    Full Text Available SrMoO4 hierarchical nanostructures were successfully produced by a one step of 270 W microwave-hydrothermal process of one of the solutions containing three strontium salts [Sr(NO32, Sr(CH3CO22, and SrCl2·6H2O] and (NH46Mo7O24·4H2O for different lengths of time. The as-produced products were characterized by X-ray diffraction, electron microscopy, and spectroscopy. In this research, they were primitive tetragonal structured donut-like SrMoO4, with the main 881 cm−1  ν1(Ag symmetric stretching vibration mode of [MoO4]2− units and 3.92 eV energy gap.

  19. Microwave and conventional preparation of Zinc borate glass: Eu3+ ion as luminescent probe

    International Nuclear Information System (INIS)

    Mandal, Ashis K.; Balaji, S.; Sen, Ranjan

    2014-01-01

    Highlights: • IR transparent Zinc borate glass is prepared using microwave heating. • Glass transition temperature of microwave melted glass is found higher than that of glass prepared in conventional melting. • Low OH concentration in glass can be prepared in microwave heating. • We report higher reduction of Eu 3+ to Eu 2+ in microwave processing of Zinc borate glass. - Abstract: Transparent Zinc borate glass is melted using microwave energy as an alternative heating route to conventional resistive heating. A comparative study of the properties of the glasses prepared by both the methods is conducted by adopting X-ray diffraction (XRD), Differential scanning calorimetry (DSC), UV–VIS–NIR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Refractive Indices (RI). Amorphous nature of samples is confirmed by X-ray diffraction study. Glass transition temperature (T g ) of microwave melted glass is found ∼7–9 °C higher than that of glass prepared in conventional melting. OH content is found less than 250 ppm in microwave melted glass whereas it is above 330 ppm in conventional melted glasses. Photoluminescence study of Eu 2 O 3 doped glass prepared in microwave heating indicates higher reduction of Eu 3+ → Eu 2+ than the glass melted in conventional route. Thus, microwave processing can be an alternative energy efficient, time saving, environmental friendly glass preparation method

  20. Design, fabrication, operation and modification of a glove box adaptable microwave heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Gautam, V K; Shivashankaran, G; Behere, P G; Mohan, Anand; Bhargava, V K; Kamath, H S [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur (India)

    1999-01-01

    The microwave heating techniques have enormous potential to improve the processing conditions for many radiochemical and radio-metallurgical processes. An update review on the various aspects of development and fabrication of an indigenous microwave heating system and its adaptation to the glove box has been reported in this paper. (author) 3 refs.

  1. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  2. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    Science.gov (United States)

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  3. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  4. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  5. Optical technology for microwave applications IV; Proceedings of the Meeting, Orlando, FL, Mar. 28, 29, 1989

    Science.gov (United States)

    Yao, Shi-Kay

    Among the topics discussed at the meeting are high-speed laser and electrooptical technologies, detectors and detector arrays, microwave delay lines, and photon-microwave interactions. In addition, optical link applications are discussed, along with electronic warfare receivers and acoustooptical signal processing. Emphasis is placed on laser diode technology, direct modulation of laser diodes, external electrooptical laser modulation techniques, and microwave fiber-optic delay lines. Attention is given to such optical link applications as multigigahertz links as well as to signal processing for phased-array antennas and channelized microwave receiver technologies.

  6. Entanglement transfer from microwaves to diamond NV centers

    Science.gov (United States)

    Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis

    2014-03-01

    Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.

  7. Advancing the Assessment of Dynamic Psychological Processes.

    Science.gov (United States)

    Wright, Aidan G C; Hopwood, Christopher J

    2016-08-01

    Most commonly used clinical assessment tools cannot fully capture the dynamic psychological processes often hypothesized as core mechanisms of psychopathology and psychotherapy. There is therefore a gap between our theories of problems and interventions for those problems and the tools we use to understand clients. The purpose of this special issue is to connect theory about clinical dynamics to practice by focusing on methods for collecting dynamic data, statistical models for analyzing dynamic data, and conceptual schemes for implementing dynamic data in applied settings. In this introductory article, we argue for the importance of assessing dynamic processes, highlight recent advances in assessment science that enable their measurement, review challenges in using these advances in applied practice, and adumbrate the articles in this issue.

  8. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  9. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  10. Advanced exergetic analysis of five natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Vatani, Ali; Mehrpooya, Mehdi; Palizdar, Ali

    2014-01-01

    Highlights: • Advanced exergetic analysis was investigated for five LNG processes. • Avoidable/unavoidable and endogenous/exogenous irreversibilities were calculated. • Advanced exergetic analysis identifies the potentials for improving the system. - Abstract: Conventional exergy analysis cannot identify portion of inefficiencies which can be avoided. Also this analysis does not have ability to calculate a portion of exergy destruction which has been produced through performance of a component alone. In this study advanced exergetic analysis was performed for five mixed refrigerant LNG processes and four parts of irreversibility (avoidable/unavoidable) and (endogenous/exogenous) were calculated for the components with high inefficiencies. The results showed that portion of endogenous exergy destruction in the components is higher than the exogenous one. In fact interactions among the components do not affect the inefficiencies significantly. Also this analysis showed that structural optimization cannot be useful to decrease the overall process irreversibilities. In compressors high portion of the exergy destruction is related to the avoidable one, thus they have high potential to improve. But in multi stream heat exchangers and air coolers, unavoidable inefficiencies were higher than the other parts. Advanced exergetic analysis can identify the potentials and strategies to improve thermodynamic performance of energy intensive processes

  11. Microwave therapy for cutaneous human papilloma virus infection.

    Science.gov (United States)

    Bristow, Ivan; Lim, Wen Chean; Lee, Alvin; Holbrook, Daniel; Savelyeva, Natalia; Thomson, Peter; Webb, Christopher; Polak, Marta; Ardern-Jones, Michael R

    2017-10-01

    Human papilloma virus (HPV) infects keratinocytes of the skin and mucous membranes, and is associated with the induction of cutaneous warts and malignancy. Warts can induce significant morbidity and disability but most therapies, including cryotherapy, laser, and radiofrequency devices show low efficacy and induce discomfort through tissue destruction. Microwaves are readily capable of passing through highly keratinised skin to deliver energy and induce heating of the tissue in a highly controllable, uniform manner. To determine the effects of microwave on cutaneous HPV infection. We undertook a pilot study of microwave therapy to the skin in 32 consecutive individuals with 52 recalcitrant long-lived viral cutaneous warts. Additionally, we undertook a molecular characterisation of the effects of microwaves on the skin. Tissue inflammation was minimal, but 75.9% of lesions cleared which compares favourably with previous studies showing a clearance rate of 23-33% for cryotherapy or salicylic acid. We show that microwaves specifically induce dendritic cell cross-presentation of HPV antigen to CD8+ T cells and suggest that IL-6 may be important for DC IRF1 and IRF4 modulation to enhance this process. Keratinocyte-skin dendritic cell cross-talk is integral to host defence against HPV infections, and this pilot study supports the concept of microwave induction of anti-HPV immunity which offers a promising approach for treatment of HPV-induced viral warts and potentially HPV-related cancers.

  12. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  13. Laser diagnostics and modelling of microwave plasmas

    NARCIS (Netherlands)

    Carbone, E.A.D.

    2013-01-01

    Microwave induced plasmas are applied in many fabrication processes such as the deposition of SiO2 for the production of optical fibers and the deposition of Si to make solar cells. To control these deposition processes a good understanding of the plasma kinetics is required. Experimental

  14. 1st International Conference on Computational Advancement in Communication Circuits and Systems

    CERN Document Server

    Dalapati, Goutam; Banerjee, P; Mallick, Amiya; Mukherjee, Moumita

    2015-01-01

    This book comprises the proceedings of 1st International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2014) organized by Narula Institute of Technology under the patronage of JIS group, affiliated to West Bengal University of Technology. The conference was supported by Technical Education Quality Improvement Program (TEQIP), New Delhi, India and had technical collaboration with IEEE Kolkata Section, along with publication partner by Springer. The book contains 62 refereed papers that aim to highlight new theoretical and experimental findings in the field of Electronics and communication engineering including interdisciplinary fields like Advanced Computing, Pattern Recognition and Analysis, Signal and Image Processing. The proceedings cover the principles, techniques and applications in microwave & devices, communication & networking, signal & image processing, and computations & mathematics & control. The proceedings reflect the conference’s emp...

  15. Effect of alkaline microwaving pretreatment on anaerobic digestion and biogas production of swine manure

    OpenAIRE

    Tao Yu; Yihuan Deng; Hongyu Liu; Chunping Yang; Bingwen Wu; Guangming Zeng; Li Lu; Fumitake Nishimura

    2017-01-01

    Microwave assisted with alkaline (MW-A) condition was applied in the pretreatment of swine manure, and the effect of the pretreatment on anaerobic treatment and biogas production was evaluated in this study. The two main microwaving (MW) parameters, microwaving power and reaction time, were optimized for the pretreatment. Response surface methodology (RSM) was used to investigate the effect of alkaline microwaving process for manure pretreatment at various values of pH and energy input. Resul...

  16. Microwave-driven asbestos treatment and its scale-up for use after natural disasters.

    Science.gov (United States)

    Horikoshi, Satoshi; Sumi, Takuya; Ito, Shigeyuki; Dillert, Ralf; Kashimura, Keiichiro; Yoshikawa, Noboru; Sato, Motoyasu; Shinohara, Naoki

    2014-06-17

    Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.

  17. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  18. Noise and correlations in a microwave-mechanical-optical transducer

    Science.gov (United States)

    Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.

    Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  19. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  20. Application of microwave ablation in treatment of solid space-occupying lesions in the liver

    Directory of Open Access Journals (Sweden)

    DU Lei

    2017-10-01

    Full Text Available With the development of science and technology, many therapies for hepatic space-occupying lesions have emerged, such as surgical operation, chemotherapy, intervention, and biological therapy. In recent years, microwave technique for the treatment of hepatic space-occupying lesions has attracted more and more attention because of its small trauma, low expense, marked clinical effect, and few complications. This article reviews the advances in the application of microwave in the treatment of liver cancer, hepatic hemangioma, hepatic alveolar echinococcosis, and other benign hepatic space-occupying lesions.

  1. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  2. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    Science.gov (United States)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  3. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  4. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  5. A single cell model for pretreatment of wood by microwave explosion

    Science.gov (United States)

    Xianjun Li; Yongdong Zhou; Yonglin Yan; Zhiyong Cai; Fu Feng

    2010-01-01

    A theoretical model was developed to better understand the process of microwave explosion treatment of wood cells. The cell expansion and critical conditions concerning pressure and temperature of ray parenchyma cells in Eucalyptus urophylla were simulated during microwave pretreatment. The results indicate that longitudinal and circumferential stresses were generated...

  6. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  7. Optical technology for microwave applications V; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Yao, Shi-Kay

    Consideration is given to light modulation technologies, wideband optical links, phased array antenna applications, radar and EW applications, and novel optoelectronic devices and technologies. Particular attention is given to wideband nonlinear optical organic external modulators, ultra-linear electrooptic modulators for microwave fiber-optic communications, coherent optical modulation for antenna remoting, a hybrid optical transmitter for microwave communication, a direct optical phase shifter for phased array systems, acoustooptic architectures for multidimensional phased-array antenna processing, generalized phased-array Bragg interaction in anisotropic crystals, analog optical processing of radio frequency signals, a wideband acoustooptic spectrometer, ring resonators for microwave optoelectronics, optical techniques for microwave monolithic circuit characterization, microwave control using a high-gain bias-free optoelectronic switch, and A/D conversion of microwave signals using a hybrid optical-electronic technique. (For individual items see A93-25727 to A93-25758)

  8. ADVANCED OXIDATION PROCESSES (AOX) TEXTILE WASTEWATER

    OpenAIRE

    Salas C., G.

    2014-01-01

    Advanced Oxidation Processes (AOX) are based on the in situ generation of hydroxyradicals (·OH), which have a high oxidation potential. In the case of Fenton processes !he generation of hydroxy radicals takes place by the combination of an oxidation agent (H202) with a catalyst (Fe(II)). These radicals are not selective and they react very fast with the organic matter,being able to oxidize a high variety of organic compounds. This property allows the degradation of pollutants into more biodeg...

  9. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  10. Development of microwave-enhanced spark-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-01-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  11. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  12. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    Science.gov (United States)

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency-division mult......This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency...... the structure of the receiver with the hope that the resulting heuristic architecture will exhibit the desired behavior and performance. On the other hand, one can employ analytical frameworks to pose the problem as the optimization of a global objective function subject to certain constraints. This work...

  14. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  15. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  16. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  17. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  18. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    International Nuclear Information System (INIS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-01-01

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10 8 and a field-effect mobility of 0.3 cm 2  V −1  s −1 . These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs

  19. Improvement of a microwave ECR plasma source for the plasma immersion ion implantation and deposition process

    International Nuclear Information System (INIS)

    Wu Hongchen; Zhang Huafang; Peng Liping; Jiang Yanli; Ma Guojia

    2004-01-01

    The Plasma Immersion Ion Implantation and Deposition (PIII and D) process has many advantages over the pure plasma immersion ion implantation or deposition. It can compensate for or eliminate the disadvantages of the shallow modification layer (for PIII) and increase the bond strength of the coating (of deposition). For this purpose, a new type of microwave plasma source used in the PIII and D process was developed, composed of a vacuum bend wave guide and a special magnetic circuit, so that the coupling window was protected from being deposited with a coating and bombarded by high-energy particles. So the life of the window is increased. To enhance the bonding between the coating and substrate a new biasing voltage is applied to the work piece so that the implantation and deposition (or hybrid process) can be completed in one vacuum cycle

  20. The construction and application of the AMSR-E global microwave emissivity database

    International Nuclear Information System (INIS)

    Lijuan, Shi; Wenbo, Wu; Yubao, Qiu; Jingjing, Niu

    2014-01-01

    Land surface microwave emissivity is an important parameter to describe the characteristics of terrestrial microwave radiation, and is the necessary input amount for inversion various geophysical parameters. We use brightness temperature of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and synchronous land surface temperature and atmospheric temperature-humidity profile data obtained from the MODIS which aboard on satellite AQUA the same as AMSR-E, to retrieved microwave emissivity under clear sky conditions. After quality control, evaluation and design, the global microwave emissivity database of AMSR-E under clear sky conditions is established. This database include 2002–2011 years, different regions, different surface coverage, dual-polarized, 6.9,10.65, 18.7, 23.8, 36.5 and 89GHz, ascending and descending orbit, spatial resolution 25km, global 0.05 degrees, instantaneous and half-month averaged emissivity data. The database can provide the underlying surface information for precipitation algorithm, water-vapor algorithm, and long-resolution mode model (General Circulation Model (GCM) etc.). It also provides underlying surface information for the satellite simulator, and provides basic prior knowledge of land surface radiation for future satellite sensors design. The emissivity database or the fast emissivity obtained can get ready for climate model, energy balance, data assimilation, geophysical model simulation, inversion and estimates of the physical parameters under the cloud cover conditions