WorldWideScience

Sample records for advanced lithium titanate

  1. Crystal structure of advanced lithium titanate with lithium oxide additives

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki, 311-1393 (Japan)], E-mail: hoshino.tsuyoshi@jaea.go.jp; Sasaki, Kazuya [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Tsuchiya, Kunihiko; Hayashi, Kimio [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki, 311-1393 (Japan); Suzuki, Akihiro [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata-Shirane, Ibaraki, 319-1188 (Japan); Hashimoto, Takuya [Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University, 3-8-1 Sakurajousui, Setagaya-ku, Tokyo, 156-8550 (Japan); Terai, Takayuki [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-04-30

    Li{sub 2}TiO{sub 3} is one of the most promising candidates among solid breeder materials proposed for fusion reactors. However, the mass of Li{sub 2}TiO{sub 3} was found to decrease with time in the sweep gas mixed with hydrogen. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti{sup 4+} to Ti{sup 3+}. In the present paper, the crystal structure and the non-stoichiometry of Li{sub 2}TiO{sub 3} added with Li{sub 2}O have been extensively investigated by means of X-ray diffraction (XRD) and thermogravimetry. In the case of the Li{sub 2}TiO{sub 3} samples used in the present study, LiO-C{sub 2}H{sub 5} or LiO-i-C{sub 3}H{sub 7} and Ti(O-i-C{sub 3}H{sub 7}){sub 4} were mixed in the proportion corresponding to the molar ratio Li{sub 2}O/TiO{sub 2} of either 2.00 or 1.00. In thermogravimetry, the mass of this sample decreased with time due to lithium deficiency, where no presence of oxygen deficiency was indicated.

  2. Crystal structure of advanced lithium titanate with lithium oxide additives

    International Nuclear Information System (INIS)

    Li2TiO3 is one of the most promising candidates among solid breeder materials proposed for fusion reactors. However, the mass of Li2TiO3 was found to decrease with time in the sweep gas mixed with hydrogen. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti4+ to Ti3+. In the present paper, the crystal structure and the non-stoichiometry of Li2TiO3 added with Li2O have been extensively investigated by means of X-ray diffraction (XRD) and thermogravimetry. In the case of the Li2TiO3 samples used in the present study, LiO-C2H5 or LiO-i-C3H7 and Ti(O-i-C3H7)4 were mixed in the proportion corresponding to the molar ratio Li2O/TiO2 of either 2.00 or 1.00. In thermogravimetry, the mass of this sample decreased with time due to lithium deficiency, where no presence of oxygen deficiency was indicated.

  3. New synthesis method of advanced lithium titanate with Li4TiO4 additives for ITER-TBM

    International Nuclear Information System (INIS)

    Lithium titanate (Li2TiO3) is one of the most promising candidates among the proposed solid breeder materials for fusion reactors. Addition of H2 to inert sweep gas has been proposed for enhancing the release of bred tritium from breeder material. However, the mass of Li2TiO3 has been found to decrease with time in the hydrogen atmosphere. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti4+ to Ti3+. Development of Li2TiO3 with Li4TiO4 additive is expected to be effective in control the mass change at the time of high temperature use. In the present paper, synthetic methods of advance lithium titanate (Li2TiO3 added with Li4TiO4) have been extensively investigated by solid state reaction. The crystal structure of the sample was analyzed by means of inductively coupled plasma atomic emission spectrometry (ICP-AES) and X-ray diffraction (XRD). The molar ratios Li2O/TiO2 of samples after the reaction were in good agreement with the values at the time of mixing LiOH.H2O and H2TiO3. The overall results suggest that the solid state reaction of LiOH.H2O and H2TiO3 is one of the most appropriate synthesis methods for advanced lithium titanate with Li4TiO4 in prospect of mass production technology for the test blanket module (TBM) of International Thermonuclear Experimental Reactor (ITER).

  4. Complex spinel titanate as an advanced anode material for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Li2Zn0.5Cu0.5Ti3O8 was prepared by a simple solid state reaction. • Li2Zn0.5Cu0.5Ti3O8 shows better electrochemical property than Li2CuTi3O8 and Li2ZnTi3O8. • Li2Zn0.5Cu0.5Ti3O8 can deliver a reversible capacity of 162 mA h g−1 after 50 cycles. - Abstract: In this work, complex spinel titanates Li2MTi3O8 (M = Zn, Cu, Zn0.5Cu0.5) have been synthesized by a simple solid state reaction route. Their crystal structures are described and verified by Rietveld refinement. Electrochemical results exhibit that Li2CuTi3O8 has a highest lithium storage capacity of 242 mA h g−1 and Li2ZnTi3O8 displays the lowest initial charge capacity of 190 mA h g−1 among all the three samples. However, both Li2CuTi3O8 and Li2ZnTi3O8 show poor capacity retention and low reversible capacity after 50 cycles. Li2Zn0.5Cu0.5Ti3O8 shows higher structural and cycling stability than that of Li2ZnTi3O8 and Li2CuTi3O8. As a result, Li2Zn0.5Cu0.5Ti3O8 can deliver a reversible capacity of 162 mA h g−1 after 50 cycles with capacity retention of 74%

  5. New synthesis method of advanced lithium titanate with Li{sub 4}TiO{sub 4} additives for ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki, 311-1393 (Japan)], E-mail: hoshino.tsuyoshi@jaea.go.jp; Kato, Kenichi; Natori, Yuri; Nakamura, Mutsumi [Kaken Co. Ltd., 1044, Hori, Mito-city, Ibaraki, 310-0903 (Japan); Sasaki, Kazuya [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan); Hayashi, Kimio [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki, 311-1393 (Japan); Terai, Takayuki [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan); Tatenuma, Katsuyoshi [Kaken Co. Ltd., 1044, Hori, Mito-city, Ibaraki, 310-0903 (Japan)

    2009-06-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the most promising candidates among the proposed solid breeder materials for fusion reactors. Addition of H{sub 2} to inert sweep gas has been proposed for enhancing the release of bred tritium from breeder material. However, the mass of Li{sub 2}TiO{sub 3} has been found to decrease with time in the hydrogen atmosphere. This mass change indicates that the oxygen content of the sample decreased, suggesting the change from Ti{sup 4+} to Ti{sup 3+}. Development of Li{sub 2}TiO{sub 3} with Li{sub 4}TiO{sub 4} additive is expected to be effective in control the mass change at the time of high temperature use. In the present paper, synthetic methods of advance lithium titanate (Li{sub 2}TiO{sub 3} added with Li{sub 4}TiO{sub 4}) have been extensively investigated by solid state reaction. The crystal structure of the sample was analyzed by means of inductively coupled plasma atomic emission spectrometry (ICP-AES) and X-ray diffraction (XRD). The molar ratios Li{sub 2}O/TiO{sub 2} of samples after the reaction were in good agreement with the values at the time of mixing LiOH.H{sub 2}O and H{sub 2}TiO{sub 3}. The overall results suggest that the solid state reaction of LiOH.H{sub 2}O and H{sub 2}TiO{sub 3} is one of the most appropriate synthesis methods for advanced lithium titanate with Li{sub 4}TiO{sub 4} in prospect of mass production technology for the test blanket module (TBM) of International Thermonuclear Experimental Reactor (ITER)

  6. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L.; Lagos, S.; Jimenez, J.; Saravia, E. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  7. Lithium titanate pebbles reprocessing by wet chemistry

    International Nuclear Information System (INIS)

    An original dissolution method for irradiated Li2TiO3 in aqueous H2O2 was developed. One could easily obtain fine Li2TiO3 powders from the solution through drying and calcination. Li2TiO3 pebbles (size ∼0.6 mm, above 90% TD) were obtained from the 'reprocessed' powders. These solutions were also suitable for the formation of a sol emulsion in 2-ethyl-hexanol-1, from which gelled microspheres of lithium titanate could be obtained. Locally prepared Li2TiO3 reprocessed and supplied pebble batches were tested for tritium release by temperature programmed desorption (TPD) methods in He + 0.1%H2 (R-gas) after their short irradiations in a thermal neutron flux. The relative TPD data were compared. A qualitative correlation was developed between peak characteristics and pebble microstructure

  8. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  9. Reprocessing of lithium titanate pebbles by graphite bed method

    International Nuclear Information System (INIS)

    Lithium titanate enriched by 6Li isotope is considered as a candidate of tritium breeding materials for fusion reactors due to its excellent performance. The reuse of burned Li2TiO3 pebbles is an important issue because of the high costs of 6Li-enriched materials and waste considerations. For this purpose, reprocessing of Li2TiO3 pebbles by graphite bed method was developed. Simulative Li2TiO3 pebbles with low-lithium content according to the expected lithium burn-up were fabricated. After that, Li2TiO3 pebbles were re-fabricated with lithium carbonate as lithium additives, in order to gain the composition of lithium titanate with a Li/Ti ratio of 2. The process was optimized to obtain reprocessed Li2TiO3 pebbles that were suitable for reuse as ceramic breeder. Density, porosity, grain size and crushing load of the reprocessed pebbles were characterized. This process did not deteriorate the properties of the reprocessed pebbles and was almost no waste generation

  10. Lithium Titanate Confined in Carbon Nanopores for Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhao, Enbo; Qin, Chuanli; Jung, Hong-Ryun; Berdichevsky, Gene; Nese, Alper; Marder, Seth; Yushin, Gleb

    2016-04-26

    Porous carbons suffer from low specific capacitance, while intercalation-type active materials suffer from limited rate when used in asymmetric supercapacitors. We demonstrate that nanoconfinement of intercalation-type lithium titanate (Li4Ti5O12) nanoparticles in carbon nanopores yielded nanocomposite materials that offer both high ion storage density and rapid ion transport through open and interconnected pore channels. The use of titanate increased both the gravimetric and volumetric capacity of porous carbons by more than an order of magnitude. High electrical conductivity of carbon and the small size of titanate crystals allowed the composite electrodes to achieve characteristic charge and discharge times comparable to that of the electric double-layer capacitors. The proposed composite synthesis methodology is simple, scalable, and applicable for a broad range of active intercalation materials, while the produced composite powders are compatible with commercial electrode fabrication processes. PMID:26950509

  11. Thermal analysis and management of lithium-titanate batteries

    Science.gov (United States)

    Giuliano, Michael R.; Advani, Suresh G.; Prasad, Ajay K.

    2011-08-01

    Battery electric vehicles and hybrid electric vehicles demand batteries that can store large amounts of energy in addition to accommodating large charge and discharge currents without compromising battery life. Lithium-titanate batteries have recently become an attractive option for this application. High current thresholds allow these cells to be charged quickly as well as supply the power needed to drive such vehicles. These large currents generate substantial amounts of waste heat due to loss mechanisms arising from the cell's internal chemistry and ohmic resistance. During normal vehicle operation, an active cooling system must be implemented to maintain a safe cell temperature and improve battery performance and life. This paper outlines a method to conduct thermal analysis of lithium-titanate cells under laboratory conditions. Thermochromic liquid crystals were implemented to instantaneously measure the entire surface temperature field of the cell. The resulting temperature measurements were used to evaluate the effectiveness of an active cooling system developed and tested in our laboratory for the thermal management of lithium-titanate cells.

  12. Preparation of lithium titanate by sol-gel method

    International Nuclear Information System (INIS)

    Medium sized spherical particles of Li2TiO3 (with diameters below 100 μm) can be prepared from peroxy lithium titanate solution (stabilized with citric acid) by a modified INCT variant of the sol-gel process. The process consists of the following steps: (I) formation of aqueous phase emulsion in 2-ethylhexanol-1 containing the surfactants 1v/o SPAN-80 and 1v/o Ethomen S-15 (EH); (II) gelation of emulsion drops by extraction of water with partially dehydrated EH; (III) filtration and washing with carbon tetrachloride or acetone; (IV) non-destructive thermal treatment. The tritium release from sol-gel process preparation of Li2TiO3 micro-spheres was found very close to that observed for other traditional material however, the new process is more efficient than other processes because of the morphology of the sintered specimens. (author)

  13. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sonak, Sagar, E-mail: sagarsonak@gmail.com [Fusion Reactor Materials Section, Bhabha Atomic Research Centre Mumbai 400085 (India); Rakesh, R. [Metallic Fuel Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Jain, Uttam; Mukherjee, Abhishek; Kumar, Sanjay; Krishnamurthy, Nagaiyar [Fusion Reactor Materials Section, Bhabha Atomic Research Centre Mumbai 400085 (India)

    2014-11-15

    Highlights: • Li{sub 2}TiO{sub 3} powder is synthesized by the gel combustion route. • Activation energy of reduction of Li{sub 2}TiO{sub 3} by H{sub 2} found out to be 27.45 kJ/mol H{sub 2}. • Non-stoichiometric phase of Li{sub 2}TiO{sub 3} is formed in hydrogen atmosphere. • One-dimensional diffusion appears to be the most probable mechanism of reduction. - Abstract: The lithium titanate powder was synthesized by gel-combustion route. The mechanism and the kinetics of hydrogen interaction with lithium titanate powder were studied using non-isothermal thermogravimetric technique. Lithium titanate underwent reduction in hydrogen atmosphere which led to the formation of oxygen deficient non-stoichiometric compound in lithium titanate. One-dimensional diffusion appeared to be the most probable reaction mechanism. The activation energy for reduction of lithium titanate under hydrogen atmosphere was found to be 27.4 kJ/mol/K. Structural changes after hydrogen reduction in lithium titanate were observed in X-ray diffraction analysis.

  14. Numerical study on lithium titanate battery thermal response under adiabatic condition

    International Nuclear Information System (INIS)

    Highlights: • The thermal behavior of lithium titanate battery during cycling was investigated. • The temperature rate in charging was less than that of discharging in the cycling. • The temperature difference was less than 0.02 °C at 0.5 C in adiabatic condition. • The temperature distribution and thermal runaway of the battery were predicted. - Abstract: To analyze the thermal behavior of 945 mA h lithium titanate battery during charging and discharging processes, the experimental and numerical studies are performed in this work. The cathode and anode of the 945 mA h lithium titanate soft package battery are the lithium nickel–cobalt–manganese-oxide and lithium titanate, respectively. In the experiment, an Accelerating Rate Calorimeter combined with battery cycler is employed to investigate the electrochemical–thermal behavior during charge–discharge cycling under the adiabatic condition. In numerical simulation, one electrochemical-thermal model is adopted to predict the thermal response and validated with the experimental results. From both experimental and simulated results, the profile of potential and current, the heat generation, the temperature, the temperature changing rate and the temperature distribution in the cell are obtained and thermal runaway is predicted. The analysis of the electrochemical and thermal behavior is beneficial for the commercial application of lithium titanate battery in the fields of electric vehicles and hybrid electric vehicles

  15. The metal-to-insulator transition in disordered lithium titanate

    Science.gov (United States)

    Fazileh, Farhad

    The electronic and magnetic properties of the superconducting spinel lithium titanate have attracted substantial interest during the last three decades. This compound is one of the four spinel systems among more than 300 known spinel compounds that exhibit superconducting properties at low temperatures. It is still an open question whether electronic correlations have any significant role in the electronic and superconducting properties of this material. In this thesis, we provide some supporting evidence for the presence and importance of strong electronic correlations in this compound by studying the composition-induced metal-insulator transitions in Li1+ xTi2-xO4 and LiAlyTi2-yO 4 systems. In this study, first we introduce a one electron model for the conducting electrons, a so-called quantum site percolation (QSP) model. Experimentally, the non-stoichiometric compounds of lithium titanate, Li1+xTi2-x O4 and LiAlyTi 2-yO4, show metal-to-insulator transitions at critical doping concentrations of xc = 0.15 and yc = 0.33. We performed systematic numerical calculations based on the above-mentioned quantum site percolation model on a corner-sharing tetrahedral lattice, and our numerical results led to predictions for the critical doping concentrations of xc = 0.32 and yc = 0.83, more than twice the experimental values. Thus, this discrepancy indirectly supports the idea that perhaps electronic correlations are important, and their omission is the source of this discrepancy. The hypothesis that the screened Coulomb potentials of the doping cations could explain this disagreement was also rejected by our detailed study of this effect. We showed that this effect can only slightly change the critical doping concentrations of the metal-to-insulator transition. In the final part of our study we take into account the electronic interactions in a real-space Hartree-Fock approximation. In this model the QSP disorder is treated exactly, but the interactions are included in a

  16. Nanoscale Porous Lithium Titanate Anode for Superior High Temperature Performance.

    Science.gov (United States)

    Alaboina, Pankaj K; Ge, Yeqian; Uddin, Md-Jamal; Liu, Yang; Lee, Dongsuek; Park, Seiung; Zhang, Xiangwu; Cho, Sung-Jin

    2016-05-18

    In this work, nanoscale porous lithium titanate (LTO) anode material was synthesized by using aqueous spray drying method after ball milling. The size of the LTO nanoparticles was optimized to 200 nm because of its considerable moisture absorption levels for stable performance and its cooperation to make good quality electrodes found with testing. The electrochemical performance of the synthesized LTO nanoparticles was found to be very stable at high operating temperature (50 °C) and high current rate (5 C) which was worth noticing than its usual unfavorable behaviors (gas generation and surface phase transitions) at higher temperatures. In the postanalysis on the aged LTO cells, high-resolution-transmission electron microscope (HRTEM) and fast Fourier transform (FFT) measurements reveal that the LTO phase transitions are maintained to very thin surface level (3-5 nm) even after 500 cycles at 50 °C. Moreover, the synthesized LTO material showed stable cycling with a high capacity of 138.74 mA h g(-1) at 1 C rate and 111.53 mA h g(-1) at 5 C rate. Furthermore, high columbic efficiency and excellent capacity retention over 500 cycles at 50 °C was achieved. The enhanced electrochemical properties can be attributed to the increase in surface area and shortened Li(+) diffusion lengths because of the nanoscale primary particles and porous structure of the synthesized LTO particles. PMID:27135524

  17. Dielectric properties of piezoelectric 3–0 composites of lithium ferrite/barium titanate

    Indian Academy of Sciences (India)

    P Sarah; S V Suryanarayana

    2003-12-01

    Piezoelectric 3–0 composite ceramics are prepared from a mixture of barium titanate and lithium ferrite phase constituents. Dielectric properties of composites are affected by a number of parameters that include electrical properties, size, shape and amount of constituent phases. The frequency dependent measurements can provide additional insight into mechanisms controlling electrical response. Frequency dependence of dielectric constant plots of lithium ferrite/barium titanate composites will be given and the relevance of trends seen in them will be discussed. Connectivity in composites developed is studied.

  18. Performance Model for High-Power Lithium Titanate Oxide Batteries based on Extended Characterization Tests

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan;

    2015-01-01

    Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...... model for a commercially available 13Ah high-power lithium titanate oxide battery cell based on laboratory-performed extended characterization tests....

  19. Deuterium desorption behavior of solid tritium breeding material, lithium titanate

    International Nuclear Information System (INIS)

    Several types of blanket module, solid breeder/water or helium cooling, LiPb breeder/helium cooling, liquid LiN and Flibe, have been developed toward both ITER and a demonstration reactor in Japan. In the solid breeder blanket cooled by water, pellets of Li2TiO3 will be employed as tritium breeding material. Structure material in this blanket is low activation ferritic steel, F82H. The operation temperature is limited below approximately 820 K owing to swelling caused by neutron irradiation. Tritium produced by fusion neutrons in this breeding material has to be desorbed under a blanket operation for tritium recovery to be easy. The blanket module, however, has a spatial distribution of temperature. Thus, the tritium desorption behavior has to be clarified in order to make a scheme for tritium recovery. In the present study, a solid breeding material, Li2TiO3, was irradiated by 1.7 keV deuterium ions, and an amount of retained deuterium and deuterium desorption behavior were investigated using a thermal desorption. Dependence of deuterium fluence on amount of retained deuterium was also obtained. In order to examine trapping mechanisms of deuterium in Li2TiO3, similar experiments were conducted for Li and Ti. Deuterium implanted to Li2TiO3 desorbed in forms of HD, D2, HDO and D2O. The amount of deuterium desorbed in form of HD was a few times larger than those of other gas species. The desorption peak appeared at 600 K, but significant desorption up to 900 K was observed. The range of temperature in the lithium titanate of the blanket module is assumed from 550 K to 1200 K. These results suggest that the tritium produced in the blanket is partly not desorbed. Thus, the spatial distribution of temperature in the blanket has to be controlled for the tritium to be desorbed during the operation. The desorption spectra of deuterium in Li2TiO3 were similar to those of Li. This suggests that most of implanted deuterium is trapped in forms of Li-D and Li-OD. Based upon the

  20. Low temperature tritium release experiment from lithium titanate breeder material

    International Nuclear Information System (INIS)

    Engineering data of neutron irradiation performance are needed to design a fusion blanket. Of the engineering data, tritium release characteristic is one of the most important data. Therefore, tritium release experiments of the tritium breeding materials were carried out to evaluate the effects of various parameters, i.e. sweep-gas flow rate, irradiation temperature, hydrogen content in sweep gas and so on, on tritium release. Lithium titanate (Li2TiO3) is a candidate tritium breeding material for the blanket design of International Thermonuclear Experimental Reactor (ITER). As for the shape of the breeder material, a small spherical form is preferred to enhance tritium release from the breeder and to reduce the induced thermal stress in the breeder. Li2TiO3 pebbles with a diameter of 1mm and a total weight of ∼134g have been fabricated, and a pebble-pac assembly of the Li2TiO3 pebbles was irradiated in the Japan Materials Testing Reactor (JMTR), for 3 cycles (about 75 days). The tritium generated in breeder, and released from the breeder was swept downstream by the sweep gas for on-line analysis of tritium content. The total concentration and gaseous concentration of tritium released from the Li2TiO3 pebbles were measured, and HT/(HT+HTO) ratio was evaluated. The sweep-gas flow rate was changed from 10 to 1,000cm3/min, and hydrogen concentration in the sweep gas was changed from 100 to 10,000 ppm. The irradiation temperature of the outer region of the pebble-pac assembly was held below 450degC. The results showed that tritium release from the Li2TiO3 pebbles was started between 100 and 140degC and that the amount of released with increasing the irradiation temperature. The sweep-gas flow rate did not have an effect on tritium release from the Li2TiO3 pebble bed in the steady state. On the other hand, the hydrogen content in the sweep gas had an effect on the tritium release from the Li2TiO3 pebble bed. (author)

  1. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    International Nuclear Information System (INIS)

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g−1 and 293.5 mA cm−3), outstanding rate capability (155.7 mAh g−1 at 10C) and intriguing cycling stability (97

  2. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    OpenAIRE

    Man Chen; Qiujuan Sun; Yongqi Li; Ke Wu; Bangjin Liu; Peng Peng; Qingsong Wang

    2015-01-01

    Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstra...

  3. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  4. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  5. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    Science.gov (United States)

    Mandal, D.

    2013-09-01

    In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3

  6. Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Haifang Ni; Weili Song; Lizhen Fan n

    2016-01-01

    Spinel lithium titanate (Li4Ti5O12) has the advantages of structural stability, however it suffers the dis-advantages of low lithium-ion diffusion coefficient as well as low conductivity. In order to solve issues, we reported a simple method to prepare carbon-coated Li4Ti5O12/CNTs (C@Li4Ti5O12/CNTs) using stearic acid as surfactant and carbon source to prepare carbon coated nanosized particles. The obtained Li4Ti5O12 particles of 100 nm in size are coated with the carbon layers pyrolyzed from stearic acid and dispersed in CNTs matrix homogeneously. These results show that the synthesized C@Li4Ti5O12/CNTs material used as anode materials for lithium ion batteries, presenting a better high-rate performance (147 mA h g ? 1 at 20 C). The key factors affecting the high-rate properties of the C@Li4Ti5O12/CNTs composite may be re-lated to the synergistic effects of the CNTs matrix and the carbon-coating layers with conductivity en-hancement. Additionally, the amorphous carbon coating is an effective route to ameliorate the rate capability of Li4Ti5O12/CNTs.

  7. Compatibility of SiC/SiCfibre composites with lithium silicate and lithium titanate in fusion relevant conditions

    International Nuclear Information System (INIS)

    The compatibility of SiC/SiCfibre composite with Li4SiO4 or Li2TiO3 solid pebbles beds has been investigated. The experimental parameters were chosen to fall within the range of fusion relevant conditions, typically 800 deg. C in flowing He containing 1000 ppm H2. Six cells were installed with the aim to evaluate the processes involved and their kinetics by analysing samples before and after 216, and 1000 hours of exposure. Dimensions, weight, density, elastic properties and thermal diffusivity have been measured and no substantial changes detected, apart from the damping constant whose values increased by a factor 5-6 after 1000 hours exposure to lithium titanate. In addition the evolution of the mechanical properties of the composite has been investigated and no changes detected within the experimental error. (authors)

  8. Tracing the gas composition of Titan's atmosphere with Herschel : Advances and Discoveries

    Science.gov (United States)

    Rengel, Miriam; Moreno, Raphael; Courtin, Régis; Lellouch, Emmanuel; Sagawa, Hideo; Hartogh, Paul; Swinyard, Bruce; Lara, Luisa; Feuchtgruber, Helmut; Jarchow, Christopher; Fulton, Trevor; Cernicharo, José; Bockelée-Morvan, Dominique; Biver, Nicolás; Banaszkiewicz, Marek; González, Armando

    2014-11-01

    The nitrogen-dominated atmosphere of Titan exhibits a great diversity and complexity of molecules and high organic material abundances. The origin of Titan atmosphere is poorly understood and its chemistry is rather complicated. In the framework of the Herschel guaranteed time key programme "Water and Related Chemistry in the Solar System" (Hartogh et al 2009), we carried out observations of the atmosphere of Titan with HIFI, PACS and SPIRE onboard Herschel (Rengel et al. 2014; Courtin et al. 2011, Moreno et al. 2011, 2012). Here we will review key results and discoveries on the atmosphere of Titan obtained with Herschel:-an inventory of species detected including some isotopes from a new survey between 51 and 671 microns.-the determination of the abundance of trace constituents and comparisons with previous efforts.-the unexpected detection of hydrogen isocyanide (HNC), a specie not previously identified in Titan's atmosphere, and the measurement of 16O/18O ratio in CO in Titan for the first time published.-the determination of the vertical profile of water vapor over the 100-450 km altitude range, distribution which does not follow previous predictions and allows to strength an Enceladus' activity as the source for the current water on Titan.With the advent of Herschel, these advances and discoveries allow a further characterization of the complex atmosphere of Titan and help to advance the study of the abundance distribution and the investigation of a variety of processes in Titan atmosphere.

  9. Recent tritium breeding experiments with lithium titanate mock-ups irradiated with DT neutrons

    International Nuclear Information System (INIS)

    Experiments with breeding blanket mock-ups composed of layers of beryllium, ferritic steel F82H and 6Li enriched lithium titanate, Li2TiO3 are currently under investigation at Fusion Neutronics Source (FNS) of JAERI. Pellets of Li2TiO3 were used as detectors for the tritium production rate inside the tritium breeding layer. A method for direct measurement of low concentrations of tritium in Li2TiO3 was developed. After irradiation, the pellets were dissolved in concentrated hydrochloric acid and the tritium activity in the sample solution was measured by liquid scintillation counting. This method was applied to several mock-up experiments and the experiments analyzed with three-dimensional Monte Carlo calculations. In some cases the tritium production rate was found to be overestimated by the calculations. (author)

  10. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  11. Accomplishment of highly porous-lithium lanthanum titanate through microwave treatment

    Science.gov (United States)

    Lakshmi, D.; Nalini, B.; Abhilash, K. P.; Selvin, P. Christopher

    2016-05-01

    Perovskite structured (ABO3) lithium lanthanum titanate (LLTO) is a successful electrolyte reported by several scientists in the recent past. It is believed that intercalation and de-intercalation of Li ions inside solid electrolyte can be improved by increasing the porosity of the material. Hence in this research work, an attempt is made to increase the porosity of the LLTO electrolyte by rapid-microwave synthesis route. The microwave prepared LLTO is compared with the sol-gel synthesized LLTO. The prepared samples are analyzed with XRD, SEM, PL and cyclic Voltammetry studies. Morphological analysis proves that microwave synthesized LLTO contains much pores compared to the Sol-gel LLTO. A remarkable difference in its electrochemical property is also demonstrated and analysed with cyclic voltammetric studies and the results are presented.

  12. Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate.

    Science.gov (United States)

    Wang, Pengfei; Qian, Shangshu; Yi, Ting-Feng; Yu, Haoxiang; Yan, Lei; Li, Peng; Lin, Xiaoting; Shui, Miao; Shu, Jie

    2016-04-27

    Via Li(+), Cu(2+), Y(3+), Ce(4+), and Nb(5+) dopings, a series of Na-site-substituted Na1.9M0.1Li2Ti6O14 are prepared and evaluated as lithium storage host materials. Structural and electrochemical analyses suggest that Na-site substitution by high-valent metal ions can effectively enhance the ionic and electronic conductivities of Na2Li2Ti6O14. As a result, Cu(2+)-, Y(3+)-, Ce(4+)-, and Nb(5+)-doped samples reveal better electrochemical performance than bare Na2Li2Ti6O14, especially for Na1.9Nb0.1Li2Ti6O14, which can deliver the highest reversible charge capacity of 259.4 mAh g(-1) at 100 mA g(-1) among all samples. Even when cycled at higher rates, Na1.9Nb0.1Li2Ti6O14 still can maintain excellent lithium storage capability with the reversible charge capacities of 242.9 mAh g(-1) at 700 mA g(-1), 216.4 mAh g(-1) at 900 mA g(-1), and 190.5 mAh g(-1) at 1100 mA g(-1). In addition, ex situ and in situ observations demonstrate that the zero-strain characteristic should also be responsible for the outstanding lithium storage capability of Na1.9Nb0.1Li2Ti6O14. All of this evidence indicates that Na1.9Nb0.1Li2Ti6O14 is a high-performance anode material for rechargeable lithium ion batteries. PMID:27052633

  13. Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode

    International Nuclear Information System (INIS)

    In order to overcome the poor cyclability of lithium-ion batteries with spinel lithium titanate (Li4Ti5O12), methylene methanedisulfonate (MMDS) is evaluated as electrolyte additive. The linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) indicate that MMDS participates in the formation process of the solid electrolyte interface (SEI) film above 1 V, which is due to the interfacial reaction between the electrode and electrolyte: Li4Ti5O12 anodes are previously considered free from SEI films when cycled between 1 and 3 V. The stable SEI film around Li4Ti5O12 is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the Li4Ti5O12 surface. In addition, the results of electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrate that a thin and good conductive film can be formed on the Li4Ti5O12 surface ascribed to MMDS additive, which resulting the improvement of conductivity and a good ability of Li+ migration. - Highlights: • MMDS used as additive to improve cycling performance of the Li4Ti5O12/Li cells. • A SEI film can be formed using MMDS in the electrolyte above 1 V. • Sulfur-containing species is the main component of the SEI formed by MMDS

  14. Evaluation of the electrochemical characteristics of silicon/lithium titanate composite as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Si/Li2TiO3 nanocomposite is prepared by sol–gel method. • A buffer matrix of Li–Ti–O ternary phase ensures good cyclic performance. • The lithiation and delithiation behaviors at different potentials are investigated. • Si/Li2TiO3 composite indicates excellent electrochemical performance than pure Si. - Abstract: Silicon/lithium titanate (Si/Li2TiO3) nanocomposite is successfully prepared through the combination of a sol–gel approach with a high-temperature treatment as well as a high energy ball milling process. The structure and morphology of the composite are characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis reveals Si particles are coated by the uniform disordered Li2TiO3 layer with a thickness of about 5 nm. The investigation in cycling performances demonstrates that Si/Li2TiO3 exhibits the improved cycling stability, with specific capacity of 471.0 mA h g−1 after 50 cycles and the capacity retention is 31.5%, much higher than pure Si. Compared with pure Si, Si/Li2TiO3 shows better rate-capability, a reversible capacity of 315.2 mA h g−1 at 0.8 A g−1 is maintained. The higher ionic conductivity of Li2TiO3 is responsible for the improved rate performance. In addition, the results derived from XRD, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicate that lithium ions could react reversibly with Si, and electrochemically less active Li2TiO3 turns into the Li–Ti–O ternary phase, which acts as a buffer matrix in the Si/Li2TiO3 composite, thus improving the reversibility of electrode

  15. Enhanced electrochemical properties of lithium cobalt titanate via lithium-site substitution with sodium

    International Nuclear Information System (INIS)

    Highlights: • A series of Li2−xNaxCoTi3O8 is prepared for the first time by solid state route. • Na-doping improves the lithium ion diffusion coefficient within Li2CoTi3O8. • Na-doping changes the disorder degree of cation locations in the structure. • Li1.90Na0.10CoTi3O8 shows the best electrochemical property. • Reversible structural evolution of Li1.90Na0.10CoTi3O8 is proved by in-situ XRD. - Abstract: Na-doped Li2CoTi3O8 is prepared via Li-site substitution with Na for the purpose of improving its cycle performance as an anode. Upon Na-doping, Rietveld refinement result reveals that Na takes the tetrahedral sites (8c) shared with Li and Co in the structure. Due to the larger ionic radius of Na than Li, an increased disorder degree of ion locations in the structure is induced by Na doping. Furthermore, the lithium ion diffusion tunnel is also expanded after Na doping. Galvanostatic charge/discharge tests denote that Li1.90Na0.10CoTi3O8 displays better cycling property and higher reversible capacity than pristine Li2CoTi3O8 and other Li2−xNaxCoTi3O8 materials. It can be found that Li1.90Na0.10CoTi3O8 can maintain a reversible capacity of 268.9 mAh g−1 at a current density of 100 mA g−1 (0.14 C) after 50 cycles, corresponding to 90.6% of the initial charge capacity. Even cycled at a high current density of 1426 mA g−1 (2 C), Li1.90Na0.10CoTi3O8 can also maintain a reversible capacity of 179.2 mAh g−1 after 80 cycles. Besides, the reversible structural changes of Na-doped Li2CoTi3O8 are also proved by various in-situ and ex-situ observations. The significant improvements at cycling and rate performances demonstrate that Li1.90Na0.10CoTi3O8 is a promising anode material for rechargeable lithium-ion batteries

  16. Study of the temperature dependent transport properties in nanocrystalline lithium lanthanum titanate for lithium ion batteries

    Science.gov (United States)

    Abhilash, K. P.; Christopher Selvin, P.; Nalini, B.; Somasundaram, K.; Sivaraj, P.; Chandra Bose, A.

    2016-04-01

    The nano-crystalline Li0.5La0.5TiO3 (LLTO) was prepared as an electrolyte material for lithium-ion batteries by the sol-gel method. The prepared LLTO material is characterized by structural, morphological and electrical characterizations. The LLTO shows the cubic perovskite structure with superlattice formation. The uniform distribution of LLTO particles has been analyzed by the SEM and TEM analysis of the sample. Impedance measurements at various temperatures were carried out and the temperature dependent conductivity of as prepared LLTO nanopowders at different temperatures from room temperature to 448 K has been analyzed. The transport mechanism has been analyzed using the dielectric and modulus analysis of the sample. Maximum grain conductivity of the order of 10-3 S cm-1 has been obtained for the sample at higher temperatures.

  17. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yinzheng [Department of Textile Materials Science and Product Design, College of Textile, Donghua University, Shanghai, 201620 (China); Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27695-8301 (United States); Ji, Liwen; Guo, Bingkun; Lin, Zhan; Yao, Yingfang; Li, Ying; Alcoutlabi, Mataz; Zhang, Xiangwu [Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27695-8301 (United States); Qiu, Yiping [Department of Textile Materials Science and Product Design, College of Textile, Donghua University, Shanghai, 201620 (China)

    2011-01-01

    Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 x 10{sup -3} S cm{sup -1}. Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF{sub 6}/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g{sup -1} and good cycling performance at 0.2 C rate at room temperature. (author)

  18. Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renheng; Li, Xinhai; Zhang, Bao, E-mail: 123501032@csu.edu.cn; Wang, Zhixing; Guo, Huajun

    2015-11-05

    In order to overcome the poor cyclability of lithium-ion batteries with spinel lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}), methylene methanedisulfonate (MMDS) is evaluated as electrolyte additive. The linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) indicate that MMDS participates in the formation process of the solid electrolyte interface (SEI) film above 1 V, which is due to the interfacial reaction between the electrode and electrolyte: Li{sub 4}Ti{sub 5}O{sub 12} anodes are previously considered free from SEI films when cycled between 1 and 3 V. The stable SEI film around Li{sub 4}Ti{sub 5}O{sub 12} is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the Li{sub 4}Ti{sub 5}O{sub 12} surface. In addition, the results of electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrate that a thin and good conductive film can be formed on the Li{sub 4}Ti{sub 5}O{sub 12} surface ascribed to MMDS additive, which resulting the improvement of conductivity and a good ability of Li{sup +} migration. - Highlights: • MMDS used as additive to improve cycling performance of the Li{sub 4}Ti{sub 5}O{sub 12}/Li cells. • A SEI film can be formed using MMDS in the electrolyte above 1 V. • Sulfur-containing species is the main component of the SEI formed by MMDS.

  19. A new strategy for synthesis of lithium zinc titanate as an anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Li2ZnTi3O8 has been firstly synthesized via a molten-salt method. • Li2ZnTi3O8 can be synthesized by sintering for only 1 h via molten-salt method. • Li2ZnTi3O8 delivers large specific capacities. - Abstract: Lithium zinc titanate (Li2ZnTi3O8) anode materials have been firstly synthesized via a molten-salt method using 0.38LiOH·H2O–0.62LiNO3 as eutectic molten salts. The effects of sintering temperature and sintering time on the structures and physicochemical properties of the Li2ZnTi3O8 materials are also studied in detail. It is found that Li2ZnTi3O8 obtained by sintering at 700 °C for 3 h exhibits a typical cubic spinel structure with P4332 space group. Nano-sized particles are presented and the particles are homogeneous for the Li2ZnTi3O8 prepared by sintering at 700 °C for 3 h. Electrochemical tests demonstrate that the sample possesses large capacities. The largest capacities of 167.8 and 142.4 mAh g−1 are delivered at 2 and 3 A g−1, respectively. 137.8 and 113.3 mAh g−1 are kept for the sample at the 100th cycle at the two current densities, respectively. The large discharge specific capacities may be attributed to the good crystallinity, small particle size and low charge-transfer resistance of Li2ZnTi3O8

  20. Low frequency and Microwave Magnetoelectric Effects in Thick Film Heterostructures of Lithium Zinc Ferrite and Lead Zirconate Titanate

    OpenAIRE

    G. Srinivasan; Hayes, R; M. I. Bichurin

    2003-01-01

    Magnetoelectric (ME) coupling at low frequencies and at x-band have been investigated in layered samples containing zinc substituted lithium ferrite and lead zirconate titanate (PZT). Multilayers of Li0.5-x/2ZnxFe2.5-x/2O4 (LZFO) (x=0-0.4) and PZT were prepared by lamination and sintering of thick films. At low frequencies (10-1000 Hz), the ME voltage coefficient for transverse fields is higher than for longitudinal fields. With Zn substitution in the ferrite, transverse coupling increases to...

  1. Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating

    International Nuclear Information System (INIS)

    Highlights: ► Microwave-assisted Zn layers onto Li4Ti5O12 crystals serves as superior anode materials. ► Microwave heating is capable of depositing Zn layers over the surface of spinel Li4Ti5O12 within 6 min. ► The thickness of Zn layer is an increasing function of zinc nitrate concentration. ► The deposition of Zn coating shows a positive effect on the rate-capability improvement of anodes. - Abstract: In this study, the deposition of microwave-assisted Zn layers onto spinel lithium titanate (Li4Ti5O12) crystals as superior anode materials for Li-ion batteries has been investigated. Microwave heating is capable of rapidly depositing Zn layers over the surface of spinel Li4Ti5O12 within 6 min. The thickness of Zn layer (i.e., 1–10 nm) is an increasing function of zinc nitrate concentration under the microwave irradiation. The charge–discharge curve of Zn–Li4Ti5O12 anode still maintains the plateau at 1.5 V, contributing to the major portion in the overall specific capacity. The presence of Zn coating significantly facilitates the capacity retention (78.1% at 10 C/0.2 C) of the composite anodes with high Coulombic efficiency (>99.9%), indicating an excellent reversibility of insertion/de-insertion of Li ions. This can be ascribed to the fact that well-dispersed Zn layer offers an electronic pathway over the Li4Ti5O12 powder, thus imparting electronic conduction and reducing cell polarization. Accordingly, the deposition of Zn coating, prepared by the rapid microwave heating, shows a positive effect on the rate-capability improvement of Li4Ti5O12 anodes.

  2. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    Science.gov (United States)

    Wen, Wei; Wu, Jin-Ming; Jiang, Yin-Zhu; Yu, Sheng-Lan; Bai, Jun-Qiang; Cao, Min-Hua; Cui, Jie

    2015-07-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers.

  3. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  4. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  5. Advances in lithium-ion batteries

    CERN Document Server

    van Schalkwijk, Walter

    2007-01-01

    From the reviews:""The book does serve as a guide for future development for most aspects of the chemistry lithium-ion system and is definitely a valuable snapshot of the state-of-the-by-no-means-finished-art of lithium-ion batteries.""(John B. Kerr, Lawrence Berkeley National Laboratory in Journal of the American Chemical Society, 125:12, 2003)

  6. Improvement of rate capability of spinel lithium titanate anodes using microwave-assisted zinc nanocoating

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Bi-Sheng; Lin, Jia-Yi; Juang, Ruey-Shin [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Microwave-assisted Zn layers onto Li{sub 4}Ti{sub 5}O{sub 12} crystals serves as superior anode materials. Black-Right-Pointing-Pointer Microwave heating is capable of depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. Black-Right-Pointing-Pointer The thickness of Zn layer is an increasing function of zinc nitrate concentration. Black-Right-Pointing-Pointer The deposition of Zn coating shows a positive effect on the rate-capability improvement of anodes. - Abstract: In this study, the deposition of microwave-assisted Zn layers onto spinel lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}) crystals as superior anode materials for Li-ion batteries has been investigated. Microwave heating is capable of rapidly depositing Zn layers over the surface of spinel Li{sub 4}Ti{sub 5}O{sub 12} within 6 min. The thickness of Zn layer (i.e., 1-10 nm) is an increasing function of zinc nitrate concentration under the microwave irradiation. The charge-discharge curve of Zn-Li{sub 4}Ti{sub 5}O{sub 12} anode still maintains the plateau at 1.5 V, contributing to the major portion in the overall specific capacity. The presence of Zn coating significantly facilitates the capacity retention (78.1% at 10 C/0.2 C) of the composite anodes with high Coulombic efficiency (>99.9%), indicating an excellent reversibility of insertion/de-insertion of Li ions. This can be ascribed to the fact that well-dispersed Zn layer offers an electronic pathway over the Li{sub 4}Ti{sub 5}O{sub 12} powder, thus imparting electronic conduction and reducing cell polarization. Accordingly, the deposition of Zn coating, prepared by the rapid microwave heating, shows a positive effect on the rate-capability improvement of Li{sub 4}Ti{sub 5}O{sub 12} anodes.

  7. Advanced lithium battery chemistries for sustainable transportation

    OpenAIRE

    Monaco, Simone

    2014-01-01

    The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first i...

  8. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  9. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    A lithium titanate (Li4Ti5O12)/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H2/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li4Ti5O12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g−1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg−1 and 1.5 kW kg−1, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li4Ti5O12/graphene composite was fabricated with a one-pot sol–gel method. • The Li4Ti5O12/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li4Ti5O12/graphene based hybrid supercapacitor exhibited higher energy and power densities

  10. Sorption and desorption behavior of tritiated water on lithium titanate with additional Li

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kashimura, Hideaki [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hoshino, Tsuyoshi [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 2-166, Oaza-Obuchi-Aza-Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Takeishi, Toshiharu [Faculty of Engineering, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Matsuda, Shohei; Nishikawa, Masabumi; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2013-10-15

    Tritium sorption capacity is an important parameter to evaluate tritium behavior on lithium ceramic breeder materials. In the present study, sorption and desorption behavior of tritiated water on Li{sub 2}TiO{sub 3} with additional Li, which is in a developmental stage in Japan Atomic Energy Agency as an advanced tritium breeder materials, was observed at 20, 300, 600, and 900 °C. Tritium sorption capacity on Li{sub 2}TiO{sub 3} with additional Li is larger than that on Li{sub 2}TiO{sub 3}. At 600 and 900 °C, the sorption capacity approximately agrees with the sum of physical adsorption capacity and chemical adsorption capacity, but at 20 and 300 °C it is smaller than that. The overall mass transfer coefficient for tritium sorption increases with temperature in the range from 20 to 600 °C but it decreases considerably at 900 °C. The sorption capacity and the mass transfer coefficient at 600 °C for the sample once used in sorption and desorption experiment at 900 °C are smaller than that for original ones.

  11. Development of advanced tritium breeding material with added lithium for ITER-TBM

    International Nuclear Information System (INIS)

    Lithium titanate (Li2TiO3) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li2TiO3 decreased with time in a hydrogen atmosphere by the reduction of Ti and Li evaporation. In order to prevent the mass decrease at high temperatures, advanced tritium breeding material with added Li (Li2+xTiO3+y) should be developed. For this purpose, an advanced Li2TiO3 with added Li was synthesized from proportionally mixed LiOH.H2O and H2TiO3 with a Li/Ti ratio of 2.2. The results of X-ray diffraction measurement showed that this advanced tritium breeding material existed as the non-stoichiometric compound Li2+xTiO3+y. The desired molar ratio of Li/Ti was achieved by appropriate mixing of LiOH.H2O and H2TiO3. Therefore, synthesis by mixing LiOH.H2O and H2TiO3 is a promising mass production method for the advanced tritium breeding material with added Li for the test blanket module of ITER.

  12. Study of Water-Based Lithium Titanate Electrode Processing: The Role of pH and Binder Molecular Structure

    Directory of Open Access Journals (Sweden)

    Diogo Vieira Carvalho

    2016-08-01

    Full Text Available This work elucidates the manufacturing of lithium titanate (Li4Ti5O12, LTO electrodes via the aqueous process using sodium carboxymethylcellulose (CMC, guar gum (GG or pectin as binders. To avoid aluminum current collector dissolution due to the rising slurries’ pH, phosphoric acid (PA is used as a pH-modifier. The electrodes are characterized in terms of morphology, adhesion strength and electrochemical performance. In the absence of phosphoric acid, hydrogen evolution occurs upon coating the slurry onto the aluminum substrate, resulting in the formation of cavities in the coated electrode, as well as poor cohesion on the current collector itself. Consequently, the electrochemical performance of the coated electrodes is also improved by the addition of PA in the slurries. At a 5C rate, CMC/PA-based electrodes delivered 144 mAh·g−1, while PA-free electrodes reached only 124 mAh·g−1. When GG and pectin are used as binders, the adhesion of the coated layers to the current collector is reduced; however, the electrodes show comparable, if not slightly better, electrochemical performance than those based on CMC. Full lithium-ion cells, utilizing CMC/PA-made Li[Ni0.33Mn0.33Co0.33]O2 (NMC cathodes and LTO anodes offer a stable discharge capacity of ~120 mAh·g−1(NMC with high coulombic efficiencies.

  13. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation

    International Nuclear Information System (INIS)

    Amorphous lithium lanthanum titanate (LLTO) solid electrolyte thin-films have been fabricated by e-beam evaporation. The effect of different e-beam power on the physical properties and electrical performance of LLTO thin-film is investigated. Higher e-beam power is a key factor to obtain good quality LLTO thin-film which has higher ionic conductivity. X-ray diffraction patterns, X-ray photoelectron spectra, scanning electron microscopy and impedance spectroscopy are used to characterize their physical and electrical properties. An all-solid-state of Li/LiPON/LLTO/LiCoO2 cell using LLTO thin-film as solid electrolyte exhibits the first discharge capacity of about 50 μA h/cm2-μm and the capacity fading is about 0.5% per cycles after 100 discharge-charge cycles at discharge current of 7 μA/cm2, demonstrating the promise of e-beam evaporation deposition for the fabrication of LLTO thin-film for all-solid-state thin-film rechargeable lithium batteries

  14. Physical and electrochemical characterization of amorphous lithium lanthanum titanate solid electrolyte thin-film fabricated by e-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Li Chilin [Department of Chemistry and Laser Chemistry Institute, Shanghai Key laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433 (China); Zhang Bin [Department of Chemistry and Laser Chemistry Institute, Shanghai Key laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433 (China); Fu Zhengwen [Department of Chemistry and Laser Chemistry Institute, Shanghai Key laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433 (China)]. E-mail: zhengwen@sh163.net

    2006-12-05

    Amorphous lithium lanthanum titanate (LLTO) solid electrolyte thin-films have been fabricated by e-beam evaporation. The effect of different e-beam power on the physical properties and electrical performance of LLTO thin-film is investigated. Higher e-beam power is a key factor to obtain good quality LLTO thin-film which has higher ionic conductivity. X-ray diffraction patterns, X-ray photoelectron spectra, scanning electron microscopy and impedance spectroscopy are used to characterize their physical and electrical properties. An all-solid-state of Li/LiPON/LLTO/LiCoO{sub 2} cell using LLTO thin-film as solid electrolyte exhibits the first discharge capacity of about 50 {mu}A h/cm{sup 2}-{mu}m and the capacity fading is about 0.5% per cycles after 100 discharge-charge cycles at discharge current of 7 {mu}A/cm{sup 2}, demonstrating the promise of e-beam evaporation deposition for the fabrication of LLTO thin-film for all-solid-state thin-film rechargeable lithium batteries.

  15. An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12)

    International Nuclear Information System (INIS)

    While there are numerous studies examining the performance of lithium titanate spinel (LTS) as a lithium-ion battery, little is known about the surface chemistry of this material. In this paper, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy spectroscopy was used to study the type of surface groups present on LTS as a function of temperature. The surface was found to contain isolated and hydrogen-bonded TiOH groups and the dehydroxylation behavior with thermal treatment was similar to that of TiO2. In addition, hexamethyldisilazane (HMDZ) and pyridine were used to probe the reactivity of surface hydroxyl groups and the presence of Lewis acid sites, respectively. The reaction of HMDZ occurred with both LiOH and TiOH groups to form Li-O-Si and Ti-O-Si. In addition, the reaction of gaseous CO2 with the Li+ ions resulted in the formation of surface carbonate ions. The carbonate ions are removed by heating at 400 deg. C in air

  16. Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries

    Science.gov (United States)

    Ghosh, Swatilekha; Kee, Yongho; Okada, Shigeto; Barpanda, Prabeer

    2015-11-01

    Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650-750 °C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sonochemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-à-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh·g-1 acting as a 1.3 V anode for Li-ion batteries.

  17. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel;

    2015-01-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase....... electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.......The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase....... Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine...

  18. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  19. Lithium-cooled blankets for advanced tokamaks

    International Nuclear Information System (INIS)

    The main objective of the Tokamak Power System Studies (TPSS) at Argonne National Lab. during fiscal year 1985 was to explore innovative design concepts that have the potential for significant enhancement of the attractiveness of a tokamak-based power plant. Activities in the area of plasma engineering resulted in a reference reactor concept, which served as a model for the impurity control and first-wall/blanket/shield studies. The liquid-metal-cooled first-wall/blanket/shield design activity was centered around the vanadium alloy structure and liquid-lithium coolant leading blanket concept as identified by the Blanket Comparison and Selection Study (BCSS). A ferritic steel structure and a LiPb breeder were considered as backup options. The magnetohydrodynamics (MHD) effects associated with self-cooled liquid-metal blanket/first-wall systems are substantially reduced by the lower magnetic fields required for higher plasmas, the lower neutron wall loading resulting from reduced power output, and the smaller reactor size of the TPSS model reactor. Therefore, improved performance characteristics of self-cooled liquid-metal blanket concepts are achievable mainly because the design constraints are more relaxed compared to the BCSS guidelines. Key aspects of the designs evaluated in the current study include the following: (1) design simplicity; (2) use of the first wall as an impurity control device; (3) modular first-wall/blanket/reflector/shield construction; and (4) integrated first-wall/blanket/reflector/shield

  20. Recent Advances in the Photorefraction of Doped Lithium Niobate Crystals

    OpenAIRE

    Yongfa Kong; Jingjun Xu; Shiguo Liu

    2012-01-01

    The recent advances in the photorefraction of doped lithium niobate crystals are reviewed. Materials have always been the main obstacle for commercial applications of photorefractive holographic storage. Though iron-doped LiNbO3 is the mainstay of holographic data storage efforts, several shortcomings, especially the low response speed, impede it from becoming a commercial recording medium. This paper reviews the photorefractive characteristics of different dopants, especially tetravalent ion...

  1. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    Science.gov (United States)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  2. Recent advances in inorganic solid electrolytes for lithium batteries

    Directory of Open Access Journals (Sweden)

    Can eCao

    2014-06-01

    Full Text Available The review presents an overview of the recent advances in inorganic solid lithium ion conductors, which are of great interest as solid electrolytes in all-solid-state lithium batteries. It is focused on two major categories: crystalline electrolytes and glass-based electrolytes. Important systems such as thio-LISICON Li10SnP2S12, garnet Li7La3Zr2O12, perovskite Li3xLa(2/3-xTiO3, NASICON Li1.3Al0.3Ti1.7(PO43 and glass-ceramic xLi2S•(1-xP2S5 and their progress are described in great detail. Meanwhile, the review discusses different on-going strategies on enhancing conductivity, optimizing electrolyte/electrode interface and improving cell performance.

  3. Chitosan oligosaccharides: A novel and efficient water soluble binder for lithium zinc titanate anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Physical properties of chitosan oligosaccharides binder are researched. • Electrodes with COS and PVDF binder systems are fabricated to compare physical and electrochemical properties. • Li2ZnTi3O8 electrode with COS binder system shows improved electrochemical performance. - Abstract: Chitosan oligosaccharides (COS) as a new, environmentally and water-based organic compound, is firstly applied as the electrode binder for Li2ZnTi3O8 electrode in lithium-ion batteries. Compared with conventional polyvinylidene fluoride (PVDF) binder, the COS binder is used for Li2ZnTi3O8 electrode significantly improves the electrochemical performances in terms of the first Columbic efficiency, cycling behavior, rate capability and long life cycle. At 0.1 A g−1, the initial discharge capacity of 215.6 mAh g−1 can be obtained for Li2ZnTi3O8 with COS binder system and the Columbic efficiency is as high as 93.6%, which are apparently better than PVDF binder system. Moreover, 66.1 mAh g−1 can be remained after 1000 cycles and the retention is 33.6% for COS binder system, while the PVDF binder system has only 37.9 mAh g−1 (22.8%). In addition, the cycling stability of Li2ZnTi3O8 electrode has been improved after using COS as binder. The elevated electrochemical performances of Li2ZnTi3O8 electrode with COS binder system can be ascribed to the characters of COS binder, which not only provide numerous hydroxyl groups formed strong hydrogen binds with both active materials and copper current collector, but also suppress swelling of electrode with electrolyte solution

  4. Non-destructive compositional analysis of sol-gel synthesized lithium titanate (Li2TiO3) by particle induced gamma-ray emission and instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lithium titanate, one of the important tritium breeding materials in D-T based fusion reactor under ITER programme, was synthesized through sol-gel route. For chemical quality control of finished product, it was necessary to quantify the lithium and titanium contents. As this ceramic sample is difficult to dissolve, non-destructive analytical methods are preferred for compositional analysis. In the present work, two non-destructive nuclear analytical methods namely particle induced gamma-ray emission (PIGE) using proton beam and instrumental neutron activation analysis (INAA) using reactor neutrons were standardized for the determination of lithium and titanium concentrations, respectively and applied to eleven samples of lithium titanate. To the best of our knowledge, Li quantification in lithium titanate sample is being reported for the first time using PIGE. For quantifications of Li and Ti, 478 keV prompt gamma-ray from 7Li (p, p'γ) 7Li and 320 keV gamma-ray from 50Ti (n,γ) 51Ti were measured, respectively, by high resolution gamma-ray spectrometry. The PIGE and INAA methods were validated using several synthetic samples containing lithium and titanium, respectively. Concentrations of lithium and titanium and Li/Ti mole ratios were evaluated and compared with the stoichiometric concentration of Li2TiO3. (author)

  5. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  6. Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons

    International Nuclear Information System (INIS)

    Highlights: • Breeding benchmark experiment on LLCB TBM in ITER was performed. • Nuclear responses measured are TPR and reaction rate of 115In(n, n′)115mIn reaction. • Measured responses are compared with calculations by MCNP and FENDL 2.1 library. • TPR measurements agree with calculations in the estimated error bar. • Measured 115In(n, n′)115mIn reaction rates are underestimated by the calculations. - Abstract: Experiments were conducted with breeding blanket mock-up consisting of two layers of breeder material lithium titanate pebbles and three layers of pure lead as neutron multiplier. The radial dimensions of breeder, neutron multiplier and structural material layers are similar to the current design of the Indian Lead–Lithium cooled Ceramic Breeder (LLCB) blanket. The mock-up assembly was irradiated with 14 MeV neutrons from DT neutron generator. The local tritium production rates (TPR) from 6Li and 7Li in breeder layers were measured with the help of two different compositions of Li isotopes (60.69% 6Li and 7.54% 6Li) in Li2CO3. Tritium production in the multiplication layers were also measured with above mentioned two types of pellets to compare the experimental tritium production with calculations. TPR from 6Li at one location in the breeder layer was also measured by direct online measurement of tritons from 6Li(n, t)4He reaction using silicon surface barrier detector and 6Li to triton converter. Additional verification of neutron spectra (En > 0.35 MeV) in the mock-up zones were obtained by measuring 115In(n, n′)115mIn reaction rate and comparing it with calculated values in all five layers of mock-up. All the measured nuclear responses were compared with transport calculations using code MCNP with FENDL2.1 and FENDL3.0 cross-section libraries. The average C/E ratio for tritium production in enriched Li2CO3 pellets was 1.11 in first breeder zone and 1.09 in second breeder zone with uncertainty 8.3% at 1σ level. The experimental details

  7. Tritium breeding mock-up experiments containing lithium titanate ceramic pebbles and lead irradiated with DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Jakhar, Shrichand; Abhangi, M.; Tiwari, S. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Makwana, R. [Department of Physics, MS University, Vadodara (India); Chaudhari, V.; Swami, H.L.; Danani, C.; Rao, C.V.S.; Basu, T.K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Mandal, D.; Bhade, Sonali; Kolekar, R.V.; Reddy, P.J. [Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Bhattacharyay, R.; Chaudhuri, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2015-06-15

    Highlights: • Breeding benchmark experiment on LLCB TBM in ITER was performed. • Nuclear responses measured are TPR and reaction rate of {sup 115}In(n, n′){sup 115m}In reaction. • Measured responses are compared with calculations by MCNP and FENDL 2.1 library. • TPR measurements agree with calculations in the estimated error bar. • Measured {sup 115}In(n, n′){sup 115m}In reaction rates are underestimated by the calculations. - Abstract: Experiments were conducted with breeding blanket mock-up consisting of two layers of breeder material lithium titanate pebbles and three layers of pure lead as neutron multiplier. The radial dimensions of breeder, neutron multiplier and structural material layers are similar to the current design of the Indian Lead–Lithium cooled Ceramic Breeder (LLCB) blanket. The mock-up assembly was irradiated with 14 MeV neutrons from DT neutron generator. The local tritium production rates (TPR) from {sup 6}Li and {sup 7}Li in breeder layers were measured with the help of two different compositions of Li isotopes (60.69% {sup 6}Li and 7.54% {sup 6}Li) in Li{sub 2}CO{sub 3}. Tritium production in the multiplication layers were also measured with above mentioned two types of pellets to compare the experimental tritium production with calculations. TPR from {sup 6}Li at one location in the breeder layer was also measured by direct online measurement of tritons from {sup 6}Li(n, t){sup 4}He reaction using silicon surface barrier detector and {sup 6}Li to triton converter. Additional verification of neutron spectra (E{sub n} > 0.35 MeV) in the mock-up zones were obtained by measuring {sup 115}In(n, n′){sup 115m}In reaction rate and comparing it with calculated values in all five layers of mock-up. All the measured nuclear responses were compared with transport calculations using code MCNP with FENDL2.1 and FENDL3.0 cross-section libraries. The average C/E ratio for tritium production in enriched Li{sub 2}CO{sub 3} pellets was 1

  8. Integral experiments for verification of tritium production on the beryllium/lithium titanate blanket mock-up with a one-breeder layer

    International Nuclear Information System (INIS)

    The first series of integral experiments on the blanket mock-up with a one breeder layer was performed in support of the concept of the solid breeding blanket cooled with water, proposed by JAERI for application in the DEMO reactor. The mock-up for the first series of experiments was designed to be as simple as possible within the proposed blanket concept. Key objectives of the experiments were: to check how correctly the tritium production rate can be predicted in the breeder layer closest to the first wall, since this particular location is greatly affected by changes of incoming neutron spectra; to validate the modified experimental techniques for measurements of tritium production rate in conditions of quick gradient thermal neutron field inside the lithium titanate layer. The mock-up contains F82H, lithium titanate and beryllium layers, with respective thicknesses of 16 mm, 12 mm and 203 mm. An additional tungsten layer was installed in front of the first layer in order to simulate armor material. The mock-up, being placed inside the SS316 cylindrical enclosure, is shaped as a pseudo-cylindrical slab with an area-equivalent diameter of 628 mm. Integral experiments on the blanket mock-up irradiated by neutrons from the D-T source with and without the source reflector were executed. A detailed description of experimental results and an example of calculation analysis are presented. (author)

  9. FABRICATION AND TESTING OF MICROWAVE SINTERED SOL-GEL SPRAY-ON BISMUTH TITANATE-LITHIUM NIOBATE BASED PIEZOELECTRIC COMPOSITE FOR USE AS A HIGH TEMPERATURE (>500 deg. C) ULTRASONIC TRANSDUCER

    International Nuclear Information System (INIS)

    Bismuth titanate-lithium niobate based ultrasonic transducers have been fabricated using a sol-gel spray-on deposition technique. These transducers were then tested to determine their potential as high temperature ultrasonic transducers. Fabricated transducers were capable of operating to 1000 deg. C in pulse-echo mode; however, the exposure to such extreme temperatures appears to be destructive to the transducers.

  10. Advance of lithium ion batteries: The 16th International Meeting on Lithium Batteries%锂离子电池及材料发展前瞻——第16届国际锂电会议评述

    Institute of Scientific and Technical Information of China (English)

    张剑波; 连芳; 高学平; 李建刚; 范丽珍; 何向明

    2012-01-01

    每两年举行一次的国际锂电会议(IMLB)旨在促进国际合作和交流,为在锂离子电池领域工作的科学家和工程师提供一个讨论锂电基础研究和技术革新的论坛.本文总结了2012年6月17~22日在韩国济州岛召开的第16届国际锂电会议的学术报告情况.具有较好安全性的磷酸铁锂正极材料和具有较高倍率特性和较好循环性能的纳米电极材料依然是研究热点;同时可以看到,富锂锰基材料、钛酸锂材料、5V尖晶石材料和纳米硅负极材料成为新的研究热点;而锂硫电池、锂空气电池和超级电容器等新电池体系正在引起大家的兴趣和关注.%The International Meeting on Lithium Batteries (IMLB), which are held every two years, promotes international collaboration and cooperation and provides a forum for scientists and engineers to discuss fundamentals, innovations and applications in the field of lithium ion batteries. Meanwhile the meeting provides an opportunity for exchanging new ideas and latest results and sharing inspirations. Advance of lithium ion batteries reported in the 16th International Meeting on Lithium Batteries (The IMLB-16, Jeju, Korea, June 17 to 22, 2012) is summarized in this paper. Lithium-rich manganese-based materials, lithium titanate material, 5V spinel materials and nano-silicon anode materials become new hotspots for research. The improvement of silicon anode material and the polymer electrolyte are key areas to further improve safety and energy density of lithium-ion batteries. The lithium-sulfur batteries, lithium-air batteries and super capacitors are research areas of increasing importance.

  11. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  12. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  13. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    OpenAIRE

    Alexandros Nikolian; Yousef Firouz; Rahul Gopalakrishnan; Jean-Marc Timmermans; Noshin Omar; Peter Van den Bossche; Joeri van Mierlo

    2016-01-01

    In this paper, advanced equivalent circuit models (ECMs) were developed to model large format and high energy nickel manganese cobalt (NMC) lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests), ECM topologies (1st and 2nd Order Thévenin model), state of charge (SoC) estimation techniques (Coulomb counting and extended Kalman filtering) and validation profiles (dynamic discharge pulse test (DDPT) and world harmonized light v...

  14. Recent Advances in the Photorefraction of Doped Lithium Niobate Crystals

    Directory of Open Access Journals (Sweden)

    Yongfa Kong

    2012-10-01

    Full Text Available The recent advances in the photorefraction of doped lithium niobate crystals are reviewed. Materials have always been the main obstacle for commercial applications of photorefractive holographic storage. Though iron-doped LiNbO3 is the mainstay of holographic data storage efforts, several shortcomings, especially the low response speed, impede it from becoming a commercial recording medium. This paper reviews the photorefractive characteristics of different dopants, especially tetravalent ions, doped and co-doped LiNbO3 crystals, including Hf, Zr and Sn monodoped LiNbO3, Hf and Fe, Zr and Fe doubly doped LiNbO3, Zr, Fe and Mn, Zr, Cu and Ce triply doped LiNbO3, Ru doped LiNbO3, and V and Mo monodoped LiNbO3. Among them, Zr, Fe and Mn triply doped LiNbO3 shows excellent nonvolatile holographic storage properties, and V and Mo monodoped LiNbO3 has fast response and multi-wavelength storage characteristics.

  15. Lithium

    Science.gov (United States)

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with ... depression, episodes of mania, and other abnormal moods). Lithium is in a class of medications called antimanic ...

  16. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  17. Rational design of high-rate lithium zinc titanate anode electrode by modifying Cu current collector with graphene and Au nanoparticles

    Science.gov (United States)

    Li, Xinxi; Wang, Lijuan; Li, Chengfei; Chen, Baokuan; Zhao, Qiang; Zhang, Guoqing

    2016-03-01

    Lithium zinc titanate (Li2ZnTi3O8) is a desirable anode material for lithium ion batteries (LIBs) due to its low cost, non-toxicity and high safety. However, the low electronic conductivity and not perfect rate capability hinder the commercial application of Li2ZnTi3O8. Here, a facile and effective strategy is developed to fabricate the Li2ZnTi3O8 electrode using the Cu foil with grown graphene and deposited Au nanoparticles as the current collector. The graphene and Au nanoparticles greatly enhance the electrical conductivity of the current collector. The structured Cu current collector has rough interface which can strengthen the adhesion between the Li2ZnTi3O8 active material layer and the current collector, providing an excellent electron transport network and reducing the internal resistance of LIBs. The Li2ZnTi3O8 material supported on the unique structured Cu current collector demonstrates outstanding Li+ storage properties with the reversible capacity of 172.2 mAh g-1 after 100 cycles at high current density of 4 A g-1. Even at 6 A g-1, 148.4 mAh g-1 can be delivered. The improved rate capability of the structured Li2ZnTi3O8 electrode makes it a promising anode candidate for high performance LIBs.

  18. High Energy Density Lithium Battery System with an Integrated Low Cost Heater Sub-System for Missions on Titan. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project seeks to develop a 500 Wh/kg Lithium primary battery for intended application as the primary power source on landers and probes for future...

  19. Advancing High Energy Lithium-Sulfur Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-Ion batteries have been a main source of energy for many aerospace applications over the past decade. Future space missions are facing a number of...

  20. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  1. Sodium titanate cuboid as advanced anode material for sodium ion batteries

    Science.gov (United States)

    Zhang, Yan; Hou, Hongshuai; Yang, Xuming; Chen, Jun; Jing, Mingjun; Wu, Zhibin; Jia, Xinnan; Ji, Xiaobo

    2016-02-01

    Sodium titanate (Na2Ti6O13) cuboid is successfully prepared and employed for anode electrode materials in sodium-ion batteries (SIBs). Their sodium storage properties are presented by undertaking polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC) as different binders. At a current density of 0.1 C, the sodium titanate cuboid with CMC and PVDF exhibits discharge capacity of 269.5 mAh g-1 and 251.0 mAh g-1, respectively. At the 200th charge/discharge cycle, the reserved discharge capacity for Sodium titanate cuboid electrode with CMC binder is 173.6 mAh g-1, amounting to a capacity retention of 94.4%, much higher than that employing PVDF as binder (the discharge capacity of 69.3 mAh g-1 and the capacity retention of 54.1%). The rate capability test and the Coulombic efficiency data also manifest that the Sodium titanate cuboid utilizing CMC as binder is superior to the ones with PVDF. These enhanced electrochemical performance mainly derive from the strong cohesive strength of CMC binder and the swellability of PVDF binder, verifying the importance of a binder to the optimization of sodium storage behavior.

  2. Lithium

    Science.gov (United States)

    ... bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal moods). Lithium ... Lithium is also sometimes used to treat depression, schizophrenia (a mental ... emotions), disorders of impulse control (inability to resist the urge ...

  3. Compositional characterization of lithium titanate ceramic samples by determining Li, Ti and O concentrations simultaneously using PIGE at 8 MeV proton beam

    International Nuclear Information System (INIS)

    Lithium titanate is a proposed tritium breeding blanket material in D-T based fusion reactor under International Thermonuclear Experimental Reactor programme. For optimization of sol-gel preparation method and chemical quality control, compositional characterization of Li2TiO3 was carried out by particle induced gamma-ray emission using 8 MeV proton beam at BARC-TIFR pelletron facility. For the first time, a non-destructive method has been standardized for simultaneous determination of Li, Ti and O in this ceramic sample, which is otherwise difficult by various wet-chemical as well as radio-analytical methods. Thick targets of samples, synthetic samples and standards prepared in graphite matrix were used for the experiment. Rutherford backscattering spectrometry method was used for beam current monitoring using a thin Au foil. The gamma-rays at 478, 983 and 6129 keV from 7Li(p, p'γ)7Li, 48Ti(p, p'γ)48Ti and 16O(p, p'γ)16O nuclear reactions, respectively, were measured using high resolution gamma-ray spectrometry and corresponding peak areas were used for concentration calculations by relative method. (author)

  4. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    OpenAIRE

    Wen, Wei; Wu, Jin-Ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate o...

  5. "Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-01

    A technology developed at the National Renewable Energy Laboratory has sparked a start-up company that has attracted funding from the Advanced Projects Research Agency-Energy (ARPA-E). Planar Energy, Inc. has licensed NREL's "buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so, they could provide a significant boost to the emerging market for electric and plug-in hybrid vehicles.

  6. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  7. The effect of diethylenetriamine on the solvothermal reactions of polyethyleneimine-graphene oxide/lithium titanate nanocomposites for lithium battery anode

    Science.gov (United States)

    Rajagopalan, Balasubramaniyan; Oh, Eun Suok; Chung, Jin Suk

    2015-02-01

    A simple preparation of N-doped graphene/Li4Ti5O12-TiN (NG/LTO-TiN) from the polyethyleneimine-graphene oxide/Li4Ti5O12 (PEI-GO/LTO) is achieved through a solvothermal reaction in the presence of diethylenetriamine (DETA). The solvothermal reaction converts PEI-GO/LTO into corresponding NG/LTO-TiO2, which could be simultaneously converted into NG/LTO-TiN via reacting with DETA as an N source. It is proposed that the electrically conductive titanium nitride (TiN) is formed at the interface between the surfaces of Li4Ti5O12 (LTO) and nitrogen doped graphene (NG). When used as an anode material for lithium ion battery (LIB), the NG/LTO-TiN exhibited superior rate capability in comparison to LTO, reduced GO/Li4Ti5O12-TiO2 (RGO/LTO-TiO2) and NG/LTO-TiO2 nanocomposites, with excellent cyclic stability up to 100 cycles. Moreover, the ionic diffusion coefficient is 3.6 × 10-12 cm2 s-1 for NG/LTO-TiN-94.3%, which is a higher value than that of the LTO (8.85 × 10-13 cm2 s-1), RGO/LTO-TiO2-93.5% (1.48 × 10-12 cm2 s-1), and NG/LTO-TiO2-94.2% (2.51 × 10-12 cm2 s-1) nanocomposites studied.

  8. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  9. Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion

    Directory of Open Access Journals (Sweden)

    Alexandros Nikolian

    2016-05-01

    Full Text Available In this paper, advanced equivalent circuit models (ECMs were developed to model large format and high energy nickel manganese cobalt (NMC lithium-ion 20 Ah battery cells. Different temperatures conditions, cell characterization test (Normal and Advanced Tests, ECM topologies (1st and 2nd Order Thévenin model, state of charge (SoC estimation techniques (Coulomb counting and extended Kalman filtering and validation profiles (dynamic discharge pulse test (DDPT and world harmonized light vehicle profiles have been incorporated in the analysis. A concise state-of-the-art of different lithium-ion battery models existing in the academia and industry is presented providing information about model classification and information about electrical models. Moreover, an overview of the different steps and information needed to be able to create an ECM model is provided. A comparison between begin of life (BoL and aged (95%, 90% state of health ECM parameters (internal resistance (Ro, polarization resistance (Rp, activation resistance (Rp2 and time constants (τ is presented. By comparing the BoL to the aged parameters an overview of the behavior of the parameters is introduced and provides the appropriate platform for future research in electrical modeling of battery cells covering the ageing aspect. Based on the BoL parameters 1st and 2nd order models were developed for a range of temperatures (15 °C, 25 °C, 35 °C, 45 °C. The highest impact to the accuracy of the model (validation results is the temperature condition that the model was developed. The 1st and 2nd order Thévenin models and the change from normal to advanced characterization datasets, while they affect the accuracy of the model they mostly help in dealing with high and low SoC linearity problems. The 2nd order Thévenin model with advanced characterization parameters and extended Kalman filtering SoC estimation technique is the most efficient and dynamically correct ECM model developed.

  10. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    Science.gov (United States)

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  11. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties

  12. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  13. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  14. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  15. Witnessing Springtime on Titan

    Science.gov (United States)

    Kohler, Susanna

    2016-02-01

    Have you ever wondered what springtime is like on Saturns largest moon, Titan? A team of researchers has analyzed a decade of data from the Cassini spacecraft to determine how Titans gradual progression through seasons has affected its temperatures.Observing the Saturn SystemThough Titan orbits Saturn once every ~16 days, it is Saturns ~30-year march around the Sun that sets Titans seasons: each traditional season on Titan spans roughly 7.5 years. Thus, when the Cassini spacecraft first arrived at Saturn in 2004 to study the giant planet and its ring system and moons, Titans northern hemisphere was in early winter. A decade later, the season in the northern hemisphere had advanced to late spring.A team scientists led by Donald Jennings (Goddard Space Flight Center) has now used data from the Composite Infrared Spectrometer (CIRS) on board Cassini to analyze the evolution of Titans surface temperature between 2004 and 2014.Changing of SeasonsSurface brightness temperatures (with errors) on Titan are shown in blue for five time periods between 2004 and 2014. The location of maximum temperature migrates from 19S to 16N over the decade. Two climate models are also shown in green (high thermal inertia) and red (low thermal inertia). [Jennings et al. 2016]CIRS uses the decreased opacity of Titans atmosphere at 19 m to detect infrared emission from Titans surface at this wavelength. From this data, Jennings and collaborators determine Titans surface temperature for five time intervals between 2004 and 2014. They bin the data into 10 latitude bins that span from the south pole (90S) to the north pole (90N).The authors find that the maximum temperature on the moon stays stable over the ten-year period at 94 K, or a chilly -240F). But as time passes, the latitude with the warmest temperature shifts from 19S to 16N, marking the transition from early winter to late spring. Over the decade of monitoring, the surface temperature near the south pole decreased by ~2 K, and that

  16. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.

  17. A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.

    Science.gov (United States)

    Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X

    2015-02-01

    A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST. PMID:25725839

  18. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  19. Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries.

    Science.gov (United States)

    Li, Xuemin; Wolden, Colin A; Ban, Chunmei; Yang, Yongan

    2015-12-30

    This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1-5 μm). Electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency. PMID:26633238

  20. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S

    OpenAIRE

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edström, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteri...

  1. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    International Nuclear Information System (INIS)

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report

  2. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  3. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S

    DEFF Research Database (Denmark)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik;

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3–4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable...... combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium–metal (Li–metal), lithium–oxygen (Li–O2), and...... lithium–sulfur (Li–S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability....

  4. Latest advances in the manufacturing of 3D rechargeable lithium microbatteries

    Science.gov (United States)

    Ferrari, Stefania; Loveridge, Melanie; Beattie, Shane D.; Jahn, Marcus; Dashwood, Richard J.; Bhagat, Rohit

    2015-07-01

    Recent advances in micro- and nano-electromechanical systems (MEMS/NEMS) technology have led to a niche industry of diverse small-scale devices that include microsensors, micromachines and drug-delivery systems. For these devices, there is an urgent need to develop Micro Lithium Ion Batteries (MLIBs) with dimensions on the scale 1-10 mm3 enabling on-board power delivery. Unfortunately, power limitations are inherent in planar 2D cells and only the advent of 3D designs and microarchitectures will lead to a real breakthrough in the microbattery technology. During the last few years, many efforts to optimise MLIBs were discussed in literature, both in the planar and 3D configurations. This review highlights the importance of 3D microarchitectured electrodes to fabricate batteries that can be device-integrated with exceptionally high specific power density coupled with exquisite miniaturisation. A wide literature overview is provided and recent advances in manufacturing routes to 3D-MLIBs comprising materials synthesis, device formulation, device testing are herein discussed. The advent of simple, economic and easily scalable fabrication processes such as 3D printing will have a decisive role in the growing field of micropower sources and microdevices.

  5. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  6. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    International Nuclear Information System (INIS)

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70 C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells

  7. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    International Nuclear Information System (INIS)

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70 C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells

  8. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    Science.gov (United States)

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries. PMID:24844948

  9. Nitrogen-Doped Carbon Embedded MoS2 Microspheres as Advanced Anodes for Lithium- and Sodium-Ion Batteries.

    Science.gov (United States)

    Xie, Dong; Xia, Xinhui; Wang, Yadong; Wang, Donghuang; Zhong, Yu; Tang, Wangjia; Wang, Xiuli; Tu, Jiangping

    2016-08-01

    Rational design and synthesis of advanced anode materials are extremely important for high-performance lithium-ion and sodium-ion batteries. Herein, a simple one-step hydrothermal method is developed for fabrication of N-C@MoS2 microspheres with the help of polyurethane as carbon and nitrogen sources. The MoS2 microspheres are composed of MoS2 nanoflakes, which are wrapped by an N-doped carbon layer. Owing to its unique structural features, the N-C@MoS2 microspheres exhibit greatly enhanced lithium- and sodium-storage performances including a high specific capacity, high rate capability, and excellent capacity retention. Additionally, the developed polyurethane-assisted hydrothermal method could be useful for the construction of many other high-capacity metal oxide/sulfide composite electrode materials for energy storage. PMID:27355199

  10. Fatigue-crack propagation in advanced aerospace materials: Aluminum-lithium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1988-10-01

    Characteristics of fatigue-crack propagation behavior are reviewed for recently developed commercial aluminum-lithium alloys, with emphasis on the underlying micromechanisms associated with crack advance and their implications to damage-tolerant design. Specifically, crack-growth kinetics in Alcoa 2090-T8E41, Alcan 8090 and 8091, and Pechiney 2091 alloys, and in certain powder-metallurgy alloys, are examined as a function of microstructure, plate orientation, temperature, crack size, load ratio and loading sequence. In general, it is found that growth rates for long (> 10 mm) cracks are nearly 2--3 orders of magnitude slower than in traditional 2000 and 7000 series alloys at comparable stress-intensity levels. In additions, Al-Li alloys shown enhanced crack-growth retardations following the application of tensile overloads and retain superior fatigue properties even after prolonged exposure at overaging temperatures; however, they are less impressive in the presence of compression overloads and further show accelerated crack-growth behavior for microstructurally-small (2--1000 {mu}m) cracks (some three orders of magnitude faster than long cracks). These contrasting observations are attributed to a very prominent role of crack-tip shielding during fatigue-crack growth in Al-Li alloys, promoted largely by the tortuous and zig-zag nature of the crack-path morphologies. Such crack paths result in locally reduced crack-tip stress intensities, due to crack deflection and consequent crack wedging from fracture-surface asperities (roughness-induced crack closure); however, such mechanisms are far less potent in the presence of compressive loads, which act to crush the asperities, and for small cracks, where the limited crack wake severely restricts the shielding effect. 50 refs., 21 figs.

  11. Titan Mare Explorer (TiME) : A Discovery Mission to Titan's Hydrocarbon Seas

    Science.gov (United States)

    Lorenz, Ralph D.; Stofan, Ellen; T. H. E. Time Team

    2010-05-01

    The discovery of lakes in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability of Titan's lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan's methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  12. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests--short-circuit tests

    International Nuclear Information System (INIS)

    The shutdown function of a separator is an important factor in the safety of advanced lithium-ion batteries (ALB). When a separator without proper shutdown function is used, battery safety would depend on the thermal stability of electrode materials. Results show that thermal stability of a battery, contributed from both the anode and cathode, decreases noticeably after cycling. DSC shows that exothermicity from SEI decomposition and the reaction of the lithiated graphite and electrolyte around 140 deg. C increases as cycle number increase; main reason is the gradual thickening of passivation film, observed through three-electrode ac impedance measurements. DSC also shows a similar trend of exothermicity for LixCoO2 cathode. The lesser the amount of lithium (x-value) in LixCoO2, the larger the exothermicity and the lower the decomposition temperature. Using a three-electrode system to observe the changes of open-circuit potential in LixCoO2 cathode, thermal instability is a consequence of decreased lithium content as cycle increases

  13. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  14. Manufacturing of advanced Li(NiMnCo)O2 electrodes for lithium-ion batteries

    Science.gov (United States)

    Smyrek, P.; Pröll, J.; Rakebrandt, J.-H.; Seifert, H. J.; Pfleging, W.

    2015-03-01

    Lithium-ion batteries require an increase in cell life-time as well as an improvement in cycle stability in order to be used as energy storage systems, e.g. for stationary devices or electric vehicles. Nowadays, several cathode materials such as Li(NiMnCo)O2 (NMC) are under intense investigation to enhanced cell cycling behavior by simultaneously providing reasonable costs. Previous studies have shown that processing of three-dimensional (3D) micro-features in electrodes using nanosecond laser radiation further increases the active surface area and therefore, the lithium-ion diffusion cell kinetics. Within this study, NMC cathodes were prepared by tape-casting and laser-structured using nanosecond laser radiation. Furthermore, laser-induced breakdown spectroscopy (LIBS) was used in a first experimental attempt to analyze the lithium distribution in unstructured NMC cathodes at different state-of-charges (SOC). LIBS will be applied to laser-structured cathodes in order to investigate the lithium distribution at different SOC. The results will be compared to those obtained for unstructured electrodes to examine advantages of 3D micro-structures with respect to lithium-ion diffusion kinetics.

  15. Titan Aerial Daughtercraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saturn's giant moon Titan has become one of the most fascinating bodies in the Solar System. Titan is the richest laboratory in the solar system for studying...

  16. Titan Haze

    Science.gov (United States)

    Anderson, Carrie M.; West, Robert; Lavvas, Panayotis

    2011-01-01

    The Titan haze exerts a dominating influence on surface visibility and atmospheric radiative heating at optical and near-infrared wavelengths and our desire to understand surface composition and atmospheric dynamics provides a strong motivation to study the properties of the haze. Prior to the Cassini/Huygens missions the haze was known to be global in extent, with a hemispheric contrast asymmetry, with a complicated structure in the polar vortex region poleward of about 55 deg latitude, and with a distinct layer near 370 km altitude outside of the polar vortex at the time of the Voyager 2 flyby. The haze particles measured by the Pioneer and Voyager spacecraft were both highly polarizing and strongly forward scattering, a combination that seems to require an aggregation of small (several tens of nm radius) primary particles. These same properties were seen in the Cassini orbiter and Huygens Probe data. The most extensive set of optical measurements were made inside the atmosphere by the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens Probe. At the probe location as determined by the DISR measurements the average haze particle contained about 3000 primary particles whose radius is about 40 nm. Three distinct vertical regions were seen in the DISR data with differing particle properties. Refractive indices of the particles in the main haze layer resemble those reported by Khare et al. between O.3S and about 0.7 micron but are more absorbing than the Khare et al. results between 0.7 micron and the long-wavelength limit of the DISR spectra at 1.6 micron. These and other results are described by Tomasko et al., and a broader summary of results was given by Tomasko and West,. New data continue to stream in from the Cassini spacecraft. New data analyses and new laboratory and model results continue to move the field forward. Titan's 'detached' haze layer suffered a dramatic drop in altitude near equinox in 2009 with implications for the circulation

  17. Si composite electrode with Li metal doping for advanced lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  18. The Climate of Titan

    Science.gov (United States)

    Mitchell, Jonathan L.; Lora, Juan M.

    2016-06-01

    Over the past decade, the Cassini-Huygens mission to the Saturn system has revolutionized our understanding of Titan and its climate. Veiled in a thick organic haze, Titan's visible appearance belies an active, seasonal weather cycle operating in the lower atmosphere. Here we review the climate of Titan, as gleaned from observations and models. Titan's cold surface temperatures (˜90 K) allow methane to form clouds and precipitation analogously to Earth's hydrologic cycle. Because of Titan's slow rotation and small size, its atmospheric circulation falls into a regime resembling Earth's tropics, with weak horizontal temperature gradients. A general overview of how Titan's atmosphere responds to seasonal forcing is provided by estimating a number of climate-related timescales. Titan lacks a global ocean, but methane is cold-trapped at the poles in large seas, and models indicate that weak baroclinic storms form at the boundary of Titan's wet and dry regions. Titan's saturated troposphere is a substantial reservoir of methane, supplied by deep convection from the summer poles. A significant seasonal cycle, first revealed by observations of clouds, causes Titan's convergence zone to migrate deep into the summer hemispheres, but its connection to polar convection remains undetermined. Models suggest that downwelling of air at the winter pole communicates upper-level radiative cooling, reducing the stability of the middle troposphere and priming the atmosphere for spring and summer storms when sunlight returns to Titan's lakes. Despite great gains in our understanding of Titan, many challenges remain. The greatest mystery is how Titan is able to retain an abundance of atmospheric methane with only limited surface liquids, while methane is being irreversibly destroyed by photochemistry. A related mystery is how Titan is able to hide all the ethane that is produced in this process. Future studies will need to consider the interactions between Titan's atmosphere, surface

  19. High capacity tin-iron oxide-carbon nanostructured anode for advanced lithium ion battery

    Science.gov (United States)

    Verrelli, Roberta; Hassoun, Jusef

    2015-12-01

    A novel nanostructured Sn-Fe2O3-C anode material, prepared by high-energy ball milling, is here originally presented. The anode benefits from a unique morphology consisting in Fe2O3 and Sn active nanoparticles embedded in a conductive buffer carbon matrix of micrometric size. Furthermore, the Sn metal particles, revealed as amorphous according to X-ray diffraction measurement, show a size lower than 10 nm by transmission electron microscopy. The optimal combination of nano-scale active materials and micrometric electrode configuration of the Sn-Fe2O3-C anode reflects into remarkable electrochemical performances in lithium cell, with specific capacity content higher than 900 mAh g-1 at 1C rate (810 mA g-1) and coulombic efficiency approaching 100% for 100 cycles. The anode, based on a combination of lithium conversion, alloying and intercalation reactions, exhibits exceptional rate-capability, stably delivering more than 400 mAh g-1 at the very high current density of 4 A g-1. In order to fully confirm the suitability of the developed Sn-Fe2O3-C material as anode for lithium ion battery, the electrode is preliminarily studied in combination with a high voltage LiNi0.5Mn1.5O4 cathode in a full cell stably and efficiently operating with a 3.7 V working voltage and a capacity exceeding 100 mAh g-1.

  20. Activation and waste disposal of the TITAN RFP reactors

    International Nuclear Information System (INIS)

    The TITAN-I lithium self-cooled and TITAN-II aqueous lithium nitrate solution-cooled fusion reactors are based on the reversed-field-pinch (RFP) toroidal confinement concept and operate at high power density with an 18.1 MW/m2 neutron wall loading. These designs were analyzed to study the activation and waste disposal aspects of such high-power density reactors. It was found that because of the use of V-3Ti-1Si (TITAN-I) and reduced activation ferritic steel (TITAN-II) as structural alloys for the first wall, blanket, reflector, and shield components, all the TITAN components except the divertor collector plates can be classified as shallow-land burial (10CFR61 Class C or better) nuclear waste for disposal, provided that the impurity elements, niobium and molybdenum, can be controlled below about 1 and 0.3 appm levels, respectively. The average annual disposal masses were estimated to be 150 and 96 tonne, respectively, for the 1000 MW electric TITAN-I and TITAN-II reactors. This corresponds to about 11% of the total mass in the fusion power core of both reactors. The divertor collector plates are fabricated with W-Re(26 wt%) alloy because of its low particle sputtering properties. The waste disposal ratings of the divertor collector plates in the TITAN-I and TITAN-II reactors, however, are estimated to be factors of 10 and 2, respectively, higher than allowed for Class C disposal. The annual disposal mass of this non-Class C waste is 0.35 tonne, less than 0.4% of the average annual discharge mass for both TITAN-I and TITAN-II reactors. An additional 74 m3 annual discharge of Class C waste containing 14C may be needed for the TITAN-II reactor because of the use of nitrate salt in the aqueous coolant as the tritium breeder. The conclusions derived from the TITAN reactor study are general, and provide strong indications that Class C waste disposal can be achieved for other high-power density approaches to fusion, for example, the tokamak. (orig.)

  1. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  2. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  3. Conductive Polymer-Coated VS4 Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries.

    Science.gov (United States)

    Zhou, Yanli; Li, Yanlu; Yang, Jing; Tian, Jian; Xu, Huayun; Yang, Jian; Fan, Weiliu

    2016-07-27

    VS4 as an electrode material in lithium-ion batteries holds intriguing features like high content of sulfur and one-dimensional structure, inspiring the exploration in this field. Herein, VS4 submicrospheres have been synthesized via a simple solvothermal reaction. However, they quickly degrade upon cycling as an anode material in lithium-ion batteries. So, three conductive polymers, polythiophene (PEDOT), polypyrrole (PPY), and polyaniline (PANI), are coated on the surface to improve the electron conductivity, suppress the diffusion of polysulfides, and modify the interface between electrode/electrolyte. PANI is the best in the polymers. It improves the Coulombic efficiency to 86% for the first cycle and keeps the specific capacity at 755 mAh g(-1) after 50 cycles, higher than the cases of naked VS4 (100 mAh g(-1)), VS4@PEDOT (318 mAh g(-1)), and VS4@PPY (448 mAh g(-1)). The good performances could be attributed to the improved charge-transfer kinetics and the strong interaction between PANI and VS4 supported by theoretical simulation. The discharge voltage ∼2.0 V makes them promising cathode materials. PMID:27377263

  4. Future Titan Missions

    Science.gov (United States)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  5. Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Graphical abstract: A semi-interpenetrating polymer network (Semi-IPN) gel polymer electrolyte (GPE) membrane based on the cross-linked PEGDA-co-PVC and linear PVDF-HFP has been prepared by UV-cured technology. It exhibits excellent interface stability to lithium metal electrode, superior thermal stability and mechanical properties. Its use in Li/LiFePO4 cell shows superior cycling stability and rate performance. - Highlights: • A new type of Semi-IPN GPE was prepared via UV-cured technology. • This electrolyte shows superior thermal stability and good mechanical properties. • The GPE membrane has excellent interface stability toward Li electrode. • Li/LiFePO4 cell using GPE membrane displays excellent electrochemical behavior. - Abstract: A new type of semi-interpenetrating polymer network (Semi-IPN) gel polymer electrolyte (GPE) membrane based on the cross-linked poly(ethylene glycol) diacrylate-co-poly(vinylene carbonate) P(EGDA-co-VC) and PVDF-HFP linear polymer is successfully synthesized by UV-cured technology. The cross-linked P(EGDA-co-VC) can accommodate a large amount of liquid electrolyte inside the non-porous membrane via its strong interaction with Li+ and solvents, which avoids the liquid electrolyte leakage. The ionic conductivity of the Semi-IPN GPE reaches 1.49 × 10−3 S cm−1 at 25 °C and the electrochemical stability window up to 4.2 V (versus Li/Li+). It demonstrates excellent interface stability to lithium metal electrode, superior thermal stability and good mechanical properties. A symmetric Li/Li cell with the above electrolyte displays a lower voltage polarization and longer valid cycle life than that based on conventional liquid electrolyte. Moreover, the Li/LiFePO4 cells using the Semi-IPN GPE show superior cycling stability and rate performance comparable to the cell based on conventional liquid electrolyte. This Semi-IPN GPE is promising for rechargeable lithium batteries with high safety and energy density

  6. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    Science.gov (United States)

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  7. Advanced Small Rechargeable Batteries

    Science.gov (United States)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  8. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    Science.gov (United States)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  9. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. PMID:27120336

  10. The UC Davis Emerging Lithium Battery Test Project

    OpenAIRE

    Burke, Andy; Miller, Marshall

    2009-01-01

    This report is concerned with the testing and evaluation of various battery chemistries for use in PHEVs. Test data are presented for lithium-ion cells and modules utilizing nickel cobalt, iron phosphate, and lithium titanate oxide in the electrodes. Cells with NiCoO2 (nickelate) in the positive electrode have the highest energy density being in the range of 100-170 Wh/kg. Cells using iron phosphate in the positive have energy density between 80-110 Wh/kg and those using lithium titanate oxid...

  11. Solid state detectors based on point defects in lithium fluoride for advanced proton beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ambrosini, F.; Ampollini, A.; Carpanese, M.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M.A.; Montereali, R.M.

    2014-12-15

    Proton beams of 3 and 7 MeV energies, produced by a linear accelerator, were used to irradiate lithium fluoride crystals and thermally evaporated LiF thin films in the fluence range of 10{sup 11}–10{sup 15} protons/cm{sup 2}. The irradiation induces the formation of stable colour centres, mainly the primary F centre and the aggregate F{sub 2} and F{sub 3}{sup +} defects. By optical pumping in the blue spectral region, the F{sub 2} and F{sub 3}{sup +} centres emit broad photoluminescence bands in the visible spectral range. By conventional fluorescence microscopy, the integrated photoluminescence intensity was carefully measured in LiF crystals and thin films as a function of the irradiation fluence: a linear optical response was obtained in a large range of fluence, which is dependent on the used LiF samples and the selected beam energy. It was possible to record the transversal proton beam intensity profile by acquiring the photoluminescence image of the irradiated spots on LiF films by a standard optical microscope. Using LiF films grown on silicon substrates irradiated in a particular geometry, the same optical reading microscopy technique allowed one to measure the distribution of colour centres photoluminescence along the depth and direct imaging the Bragg peak position, which gives a rough estimation of the initial proton beam energy. - Highlights: • Photoluminescence of color centres in LiF can be used for proton beam imaging. • Photoluminescence is linear over several orders of magnitude of H{sup +} fluence range. • Photoluminescence behaviour in crystals and thin films at two energies is discussed. • LiF thin films can directly image the Bragg peak to estimate proton beam energy. • LiF crystals and thin films are promising for proton dosimetry by photoluminescence.

  12. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M. [ENEA, C.R. Frascati, UTAPRAD, Technical Unit for Development and Applications of Radiations, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ambrosini, F. [University Sapienza-Roma I, Piazzale Aldo Moro 5, 00185 Rome (Italy); Nichelatti, E. [ENEA, C.R. Casaccia, UTTMAT, Technical Unit for Materials Technologies, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  13. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    International Nuclear Information System (INIS)

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping

  14. Titan Mare Explorer (time): A Discovery Mission To A Titan Sea

    Science.gov (United States)

    Stofan, Ellen R.; Lunine, J.; Lorenz, R.; Aharonson, O.; Bierhaus, E.; Clark, B.; Kirk, R.; Kantsiper, B.; Morse, B.

    2009-09-01

    The discovery of lakes and seas in Titan's high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes and seas fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan's methane cycle, along with the prebiotic chemistry and implications for habitability, make the lakes and seas of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a sea on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan sea to constrain Titan's methane cycle; determine the depth of a Titan sea; characterize physical properties of liquids; determine how the local meteorology over the seas ties to the global cycling of methane; and analyze the morphology of sea surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes and seas. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  15. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  16. The TITAN Reversed-Field Pinch fusion reactor study

    International Nuclear Information System (INIS)

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m2; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings

  17. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    Science.gov (United States)

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs. PMID:27015357

  18. Titans of Service

    OpenAIRE

    Lindberg-Repo, Kirsti Helena; Dube, Apramey

    2014-01-01

    TITANS OF SERVICE combines theory with practical insights, examples and references from experts. Bringing together 14 service experts, this book offers the most up-to-date knowledge from this field of academia in the U.S., Europe and Asia. In addition to offering theoretical insights, practical guidance and examples, this book also gives an overview of the current and future role of services. Titans of Service provides a framework for thinking about ways in which new knowledge on services is ...

  19. Titan's surface and atmosphere

    Science.gov (United States)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  20. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures

  1. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: overview of titan-2 design; titan-2 fusion-power-core engineering; titan-2 divertor engineering; titan-2 tritium systems; titan-2 safety design and radioactive-waste disposal; and titan-2 maintenance procedures.

  2. Weather on Titan

    Science.gov (United States)

    Griffith, C. A.; Hall, J. L.; Geballe, T. R.

    2000-10-01

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200% on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9% of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering <=1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection governs their evolutions. Their short lives point to the presence of rain. C. A. Griffith and J. L. Hall are supported by the NASA Planetary Astronomy Program NAG5-6790.

  3. Processing science of barium titanate

    Science.gov (United States)

    Aygun, Seymen Murat

    barium titanate phase formation. The exhaust gases emitted during the firing of barium titanate films were monitored using a residual gas analyzer (RGA) to investigate the effects of ramp rate and oxygen partial pressure. The dielectric properties including capacitor yield were correlated to the RGA data and microstructure. This information was used to tailor a thermal profile to obtain the optimum dielectric response. A ramp rate of 20°C/min and a pO2 of 10-13 atm resulted in a permittivity of 1500, a loss tangent of 0.035 and a 90% capacitor yield in 0.5 mm dot capacitors. Yield values above 90% represent a significant advantage over preexisting reports and can be attributed to an improved ability to control final porosity. Finally, the dramatic enhancement in film density was demonstrated by understanding the processing science relationships between organic removal, crystallization, and densification in chemical solution deposition. The in situ gas analysis was used to develop an each-layer-fired approach that provides for effective organic removal, thus pore elimination, larger grain sizes, and superior densification. The combination of large grain size and high density enabled reproducing bulk-like dielectric properties in a thin film. A room temperature permittivity of 3000, a 5 muF/cm2 capacitance density, and a dielectric tunability of 15:1 were achieved. By combining the data sets generated in this thesis with those of comparable literature reports, we were able to broadly rationalize scaling effects in polycrystalline thin films. We show that the same models successfully applied to bulk ceramic systems are appropriate for thin films, and that models involving parasitic interfacial layers are not needed. Developing better models for scaling effects were made possible solely by advancing our ability to synthesize materials thus eliminating artifacts and extrinsic effects.

  4. Analysis of Harrell Monosodium Titanate Lot #46000824120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L.

    2013-01-23

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot #46000824120 qualification and the 16 verification samples failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids.

  5. Analysis of Harrell Monosodium Titanate Lot #46000908120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. M.L.

    2013-01-23

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot #46000908120 qualification and the 16 verification samples failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids.

  6. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  7. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    A novel in situ electrochemical cell for 57Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe0.5Mn1.5O4, LiFeTiO4, or LiFe0.25Ni0.75O2, for the lithium-ion batteries.

  8. Lithium-Associated Kidney Microcysts

    OpenAIRE

    Jennifer Tuazon; David Casalino; Ehteshamuddin Syed; Daniel Batlle

    2008-01-01

    Long-term lithium therapy is associated with impairment in concentrating ability and, occasionally, progression to advanced chronic kidney disease from tubulointerstitial nephropathy. Biopsy findings in patients with lithium-induced chronic tubulointerstitial nephropathy include tubular atrophy and interstitial fibrosis interspersed with tubular cysts and dilatations. Recent studies have shown that cysts are seen in 33––62.5% of the patients undergoing lithium therapy. MR imaging is highly ca...

  9. Lithium Intoxication

    OpenAIRE

    Kesebir, Sermin; Üstündağ, Mehmet Fatih; Kavzoğlu, Semine Özdoğan

    2011-01-01

    Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose...

  10. Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission

    Science.gov (United States)

    Cupples, Michael

    2007-01-01

    Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.

  11. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries.

    Science.gov (United States)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-05-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge-discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both as binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g(-1) with 75% coulombic efficiency), stable cycle performance (988 mA h g(-1) after 100 cycles), and good rate capability (800 mA h g(-1) at 1 A g(-1) rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries. PMID:25865463

  12. Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    Science.gov (United States)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-04-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge-discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both as binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.

  13. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  14. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    OpenAIRE

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    The use of ultracapacitors in plug-in hybrid vehicles (PHEVs) with high energy density lithium-ion and zinc-air batteries is studied. Simulations were performed for various driving cycles with the PHEVs operating in the charge depleting and charge sustaining modes. The effects of the load leveling of the power demand from the batteries using the ultracapacitors are evident. The average and the peak currents from the batteries are lower by a factor of 2-3.

  15. Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Amorphous ZnSnO3-C hollow microcubes were prepared for the first time. • ZnSnO3-C hollow microcubes exhibit greatly enhanced lithium storage properties. • The reason for the superior electrochemical properties is proposed. - Abstract: Amorphous ZnSnO3-C hollow microcubes have been produced by calcination of the pre-synthesized ZnSn(OH)6 hollow microcubes in argon, followed by the surface decoration of carbon. The calcination temperature plays an important role in the phase and morphology of the obtained products. ZnSnO3-C hollow microcubes have an average edge length of about 1.0 μm with the shell thickness of approximate 145 nm. When adopted as the anode materials for lithium ion batteries, amorphous ZnSnO3-C hollow microcubes manifest greatly enhanced electrochemical properties compared to amorphous ZnSnO3 hollow and solid counterparts. After 50th cycles, a high reversible capacity of 703 mA h g−1 can be obtained for amorphous ZnSnO3-C hollow microcubes at the current density of 100 mA g−1. The superior lithium storage properties of ZnSnO3-C are due to its unique hollow structure with large specific surface area, the modification of carbon and the amorphous characteristic

  16. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    Science.gov (United States)

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications. PMID:27225061

  17. Simulations of Titan's paleoclimate

    CERN Document Server

    Lora, Juan M; Russell, Joellen L; Hayes, Alexander G

    2014-01-01

    We investigate the effects of varying Saturn's orbit on the atmospheric circulation and surface methane distribution of Titan. Using a new general circulation model of Titan's atmosphere, we simulate its climate under four characteristic configurations of orbital parameters that correspond to snapshots over the past 42 kyr, capturing the amplitude range of long-period cyclic variations in eccentricity and longitude of perihelion. The model, which covers pressures from the surface to 0.5 mbar, reproduces the present-day temperature profile and tropospheric superrotation. In all four simulations, the atmosphere efficiently transports methane poleward, drying out the low- and mid-latitudes, indicating that these regions have been desert-like for at least tens of thousands of years. Though circulation patterns are not significantly different, the amount of surface methane that builds up over either pole strongly depends on the insolation distribution; in the present-day, methane builds up preferentially in the no...

  18. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  19. Titan's Eccentricity Tides

    Science.gov (United States)

    Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.

    2011-12-01

    The large eccentricity (e=0.03) of Titan's orbit causes significant variations in the tidal field from Saturn and induces periodic stresses in the satellite body at the orbital period (about 16 days). Peak-to-peak variations of the tidal field (from pericenter to apocenter) are about 18% (6e). If Titan hosts a liquid layer (such as an internal ocean), the gravity field would exhibit significant periodic variations. The response of the body to fast variations of the external, perturbing field is controlled by the Love numbers, defined for each spherical harmonic as the ratio between the perturbed and perturbing potential. For Titan the largest effect is by far on the quadrupole field, and the corresponding Love number is indicated by k2 (assumed to be identical for all degree 2 harmonics). Models of Titan's interior generally envisage a core made up of silicates, surrounded by a layer of high pressure ice, possibly a liquid water or water-ammonia ocean, and an ice-I outer shell, with variations associated with the dehydration state of the core or the presence of mixed rock-ice layers. Previous analysis of Titan's tidal response [1] shows that k2 depends crucially on the presence or absence of an internal ocean. k2 was found to vary from about 0.03 for a purely rocky interior to 0.48 for a rigid rocky core surrounded by an ocean and a thin (20 km) ice shell. A large k2 entails changes in the satellite's quadrupole coefficients by a few percent, enough to be detected by accurate range rate measurements of the Cassini spacecraft. So far, of the many Cassini's flybys of Titan, six were used for gravity measurements. During gravity flybys the spacecraft is tracked from the antennas of NASA's Deep Space Network using microwave links at X- and Ka-band frequencies. A state-of-the-art instrumentation enables range rate measurements accurate to 10-50 micron/s at integration times of 60 s. The first four flybys provided the static gravity field and the moment of inertia factor

  20. Landscape Evolution of Titan

    Science.gov (United States)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  1. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  2. Overview of the TITAN-I fusion-power core

    International Nuclear Information System (INIS)

    The TITAN reactor is a compact (major radius of 3.9m and plasma minor radius of 0.6m), high neutron wall loading (∼18 MW/m2) fusion energy system based on the reversed-field pinch (RFP) confinement concept. The reactor thermal power is 2,918 MWt resulting in net electric output of 960 MWe and a mass power density of 700 kWe/tonne. The TITAN-I fusion power core (FPC) is a lithium, self-cooled design with vanadium alloy (V-3Ti-1Si) structural material. The surface heat flux incident on the first wall is ∼4.5 MW/m2. The magnetic field topology of the RFP is favorable for liquid metal cooling. In the TITAN-I design, the first wall and blanket consist of single pass, poloidal flow loops aligned with the dominant poloidal magnetic field. A unique feature of the TITAN-I design is the use of the integrated-blanket-coil (IBC) concept. With the IBC concept the poloidal flow lithium circuit is also the electrical conductor of the toroidal-field and divertor coils. Three dimensional neutronics analysis yields a tritium breeding ratio of 1.18 and a molten salt extraction technique is employed for the tritium extraction system. Almost every FPC component would qualify for Class C waste disposal. The compactness of the design allows the use of single-piece maintenance of the FPC. This maintenance procedure is expected to increase the plant availability. The entire FPC operates inside a vacuum tank, which is surrounded by an atmosphere of inert argon gas to impede the flow of air in the system in case of an accident. The top-side coolant supply and return virtually eliminate the possibility of a complete LOCA occurring in the FPC. The peak temperature during a LOFA is 991 degrees C. 9 refs., 2 figs., 1 tab

  3. Activation and waste disposal of the TITAN RFP [reversed-field-pinch] reactors

    International Nuclear Information System (INIS)

    The TITAN-I lithium self-cooled and TITAN-II aqueous lithium nitrate solution-cooled fusion reactors are based on the reversed-field-pinch (RFP) toroidal confinement concept and operate at high power density with an 18.1 MW/m2 neutron wall loading. These designs were analyzed to study the activation and waste disposal aspects of such high-power density reactors. It was found that because of the use of V-3Ti-1Si (TITAN-I) and reduced activation ferritic steel (TITAN-II) as structural alloys for the first wall, blanket, reflector, and shield components, all the TITAN components except the divertor collector plates can be classified as shallow-land burial (10CFR61 Class C or better) nuclear waste for disposal, provided that the impurity elements, niobium and molybdenum, can be controlled below about 1 and 0.3 appm levels, respectively. The average annual disposal masses were estimated to be 150 and 96 tonnes, respectively, for the 1,000 MW TITAN-I and TITAN-II reactors. This corresponds to about 11% of the total mass in the fusion power core of both reactors. The divertor collector plates are fabricated with tungsten because of its low particle sputtering properties. These divertor collector plates in the TITAN-I reactor will be qualified as Class C waste after 18.1 MW-y/m2 operation. The waste disposal rating of the divertor collector plates in the TITAN-II reactor, however, is estimated to be a factor of 4 higher than allowed for Class C disposal, because of the soft neutron spectrum in the beryllium environment. The annual disposal mass of this non-Class C waste is 0.35 tons, about 0.04% of the average annual discharge mass for the TITAN-II reactor. An additional 74 m3 annual discharge of Class C waste containing 14C may be needed for the TITAN-II reactor because of the use of nitrate salt in the aqueous coolant as the tritium breeder. 13 refs., 6 tabs

  4. Synthesis of nanosized sodium titanates

    Science.gov (United States)

    Hobbs, David T.; Taylor-Pashow, Kathryn M. L.; Elvington, Mark C.

    2015-09-29

    Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.

  5. Study of high temperature transformation of titanate nanotubes

    Czech Academy of Sciences Publication Activity Database

    Brunátová, T.; Matěj, Z.; Oleynikov, P.; Daniš, S.; Popelková, Daniela; Kužel, R.

    Aveiro : Center for Mechanical Technology & Automation, Department of Mechanical Engineering, University of Aveiro, 2014. s. 312. [International Conference on Advanced Nanomaterials /5./. 02.07.2014-04.07.2014, Aveiro] Institutional support: RVO:61389013 Keywords : titanate nanotubes * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  7. Titan Airship Surveyor

    Science.gov (United States)

    Kerzhanovich, V.; Yavrouian, A.; Cutts, J.; Colozza, A.; Fairbrother, D.

    2001-01-01

    Saturn's moon Titan is considered to be one of the prime candidates for studying prebiotic materials - the substances that precede the formation of life but have disappeared from the Earth as a result of the evolution of life. A unique combination of a dense, predominantly nitrogen, atmosphere (more than four times that of the Earth), low gravity (six times less than on the Earth) and small temperature variations makes Titan the almost ideal planet for studies with lighter-than-air aerial platforms (aerobots). Moreover, since methane clouds and photochemical haze obscure the surface, low-altitude aerial platforms are the only practical means that can provide global mapping of the Titan surface at visible and infrared wavelengths. One major challenge in Titan exploration is the extremely cold atmosphere (approx. 90 K). However, current material technology the capability to operate aerobots at these very low temperatures. A second challenge is the remoteness from the Sun (10 AU) that makes the nuclear (radioisotopic) energy the only practical source of power. A third challenge is remoteness from the Earth (approx. 10 AU, two-way light-time approx. 160 min) which imposes restrictions on data rates and makes impractical any meaningful real-time control. A small-size airship (approx. 25 cu m) can carry a payload approximately 100 kg. A Stirling engine coupled to a radioisotope heat source would be the prime choice for producing both mechanical and electrical power for sensing, control, and communications. The cold atmospheric temperature makes Stirling machines especially effective. With the radioisotope power source the airship may fly with speed approximately 5 m/s for a year or more providing an excellent platform for in situ atmosphere measurements and a high-resolution remote sensing with unlimited access on a global scale. In a station-keeping mode the airship can be used for in situ studies on the surface by winching down an instrument package. Floating above the

  8. Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells

    International Nuclear Information System (INIS)

    In this work, a LiFePO4/graphite lithium-ion pouch cell with a rated capacity of 45Ah has been used and a two dimensional thermal model is developed to predict the cell temperature distribution over the surface of the battery, this model requires less input parameters and still has high accuracy. The used input parameters are the heat generation and thermal properties. The ANSYS FLUENT software has been used to solve the models. In addition, a new estimation tool has been developed for estimation of the thermal model parameters. Furthermore, the thermal behavior of the proposed battery has been investigated at different environmental conditions as well as during the abuse conditions. Thermal runaway is investigated in depth by the model

  9. Preparation of Advanced Carbon Anode Materials from Mesocarbon Microbeads for Use in High C-Rate Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Ming-Dar Fang

    2015-06-01

    Full Text Available Mesophase soft carbon (MSC and mesophase graphite (SMG, for use in comparative studies of high C-rate Lithium Ion Battery (LIB anodes, were made by heating mesocarbon microbeads (MCMB at 1300 °C and 3000 °C; respectively. The crystalline structures and morphologies of the MSC, SMG, and commercial hard carbon (HC were investigated by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. Additionally, their electrochemical properties, when used as anode materials in LIBs, were also investigated. The results show that MSC has a superior charging rate capability compared to SMG and HC. This is attributed to MSC having a more extensive interlayer spacing than SMG, and a greater number of favorably-oriented pathways when compared to HC.

  10. Touchdown on Titan

    Science.gov (United States)

    Morring, Frank, Jr.

    2004-01-01

    Europe's Huygens probe is on target for a Dec. 25 separation from the Cassini Saturn orbiter that has carried it like a baby for more than seven years. The probe will spend three weeks coasting to a plunge into Titan's thick atmosphere on the morning of Jan. 14. If all goes as planned, the 349-kg. Huygens will spend more than 2 hr. descending by parachute to the mysterious surface of the planet-sized moon, and hopefully devote yet more time to broadcasting data after it lands. Before the day is over, Huygens is programmed to beam about 30 megabytes of data - including some 1,100 images-back to Earth through Cassini, a trip that will take some 75 min. to complete over the 1- billion-km. distance that separates the two planets. Within that data should be answers to questions that date back to 1655, when Dutch astronomer Christiaan Huygens found the moon with a homemade telescope and named it for the family of giants the ancient Greeks believed once ruled the earth. In the Solar System, there is no other world like Titan, with a nitrogen and methane atmospheric and a cold, hidden surface darker than Earth under the full Moon.

  11. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  12. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G;

    2016-01-01

    function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...... supratherapeutic drug concentrations to clinical toxicity such as confusion, ataxia, or seizures. Lithium poisoning has a low mortality rate; however, chronic lithium poisoning can require a prolonged hospital length of stay from impaired mobility and cognition and associated nosocomial complications. Persistent...... or the duration of toxicity in high-risk exposures. There is disagreement in the literature regarding factors that define patients most likely to benefit from treatments that enhance lithium elimination, including specific plasma lithium concentration thresholds. In the case of extracorporeal treatments...

  13. Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Kennedy, Tadhg; Brandon, Michael; Ryan, Kevin M

    2016-07-01

    Li-alloying materials such as Si and Ge nanowires have emerged as the forerunners to replace the current, relatively low-capacity carbonaceous based Li-ion anodes. Since the initial report of binder-free nanowire electrodes, a vast body of research has been carried out in which the performance and cycle life has significantly progressed. The study of such electrodes has provided invaluable insights into the cycling behavior of Si and Ge, as the effects of repeated lithiation/delithiation on the material can be observed without interference from conductive additives or binders. Here, some of the key developments in this area are looked at, focusing on the problems encountered by Li-alloying electrodes in general (e.g., pulverization, loss of contact with current collector etc.) and how the study of nanowire electrodes has overcome these issues. Some key nanowire studies that have elucidated the consequences of the alloying/dealloying process on the morphology of Si and Ge are also considered, in particular looking at the impact that effects such as pore formation and lithium-assisted welding have on performance. Finally, the challenges for the practical implementation of nanowire anodes within the context of the current understanding of such systems are discussed. PMID:26855084

  14. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    Science.gov (United States)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  15. Seasonal Changes in Titan's Meteorology

    Science.gov (United States)

    Turtle, E. P.; DelGenio, A. D.; Barbara, J. M.; Perry, J. E.; Schaller, E. L.; McEwen, A. S.; West, R. A.; Ray, T. L.

    2011-01-01

    The Cassini Imaging Science Subsystem has observed Titan for 1/4 Titan year, and we report here the first evidence of seasonal shifts in preferred locations of tropospheric methane clouds. South \\polar convective cloud activity, common in late southern summer, has become rare. North \\polar and northern mid \\latitude clouds appeared during the approach to the northern spring equinox in August 2009. Recent observations have shown extensive cloud systems at low latitudes. In contrast, southern mid \\latitude and subtropical clouds have appeared sporadically throughout the mission, exhibiting little seasonality to date. These differences in behavior suggest that Titan s clouds, and thus its general circulation, are influenced by both the rapid temperature response of a low \\thermal \\inertia surface and the much longer radiative timescale of Titan s cold thick troposphere. North \\polar clouds are often seen near lakes and seas, suggesting that local increases in methane concentration and/or lifting generated by surface roughness gradients may promote cloud formation. Citation

  16. Integrated-blanket-coil (IBC) applications to the TITAN reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been adopted for use in the toroidal field and divertor coil systems of the TITAN-I lithium/vanadium design. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils into a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch (RFP) reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (-- 0.36 T) leads to relatively low coil currents. Examination of nuclear, magnetic, thermal-hydraulic, electrical and design integration issues indicates that the IBC coils are a viable and attractive option for the TITAN reactor

  17. Titan atmospheric models intercomparison

    Science.gov (United States)

    Pernot, P.

    2008-09-01

    Several groups over the world have developed independently models of the photochemistry of Titan. The Cassini mission reveals daily that the chemical complexity is beyond our expectations e. g. observation of heavy positive and negative ions..., and the models are updated accordingly. At this stage, there is no consensus on the various input parameters, and it becomes increasingly difficult to compare outputs form different models. An ISSI team of experts of those models will be gathered shortly to proceed to an intercomparison, i.e. to assess how the models behave, given identical sets of inputs (collectively defined). Expected discrepancies will have to be elucidated and reduced. This intercomparison will also be an occasion to estimate explicitly the importance of various physicalchemical processes on model predictions versus observations. More robust and validated models are expected from this study for the interpretation of Titanrelated data.

  18. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    T K Kundu; A Jana; P Barik

    2008-06-01

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.

  19. The TITAN magnet configuration

    International Nuclear Information System (INIS)

    The TITAN study uses copper-alloy ohmic-heating coils (OHC) to startup inductively a reversed-field-pinch (RFP) fusion reactor. The plasma equilibrium is maintained with a pair of superconducting equilibrium-field coils (EFCs). A second pair of copper EFCs provides the necessary trimming of the equilibrium field during plasma transients. A compact toroidal-field-coil (TFC) set is provided by an integrated blanket/coil (IBC). The IBC concept also is applied to the toroidal-field divertor coils. Steady-state operation is achieved with oscillating-field current drive, which oscillates at low amplitude and frequency the OHCs, EFCs, the TFCs, and divertor coils about their steady-state currents. An integrated magnet design, which uses low-field, low technology coils, and the related design basis is given. 18 refs

  20. The TITAN reversed-field-pinch fusion reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures.

  1. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This report discusses research on the titan-1 fusion power core. The major topics covered are: titan-1 fusion-power-core engineering; titan-1 divertor engineering; titan-1 tritium systems; titan-1 safety design and radioactive-waste disposal; and titan-1 maintenance procedures

  2. Lithium nephrotoxicity.

    Science.gov (United States)

    Azab, Abed N; Shnaider, Alla; Osher, Yamima; Wang, Dana; Bersudsky, Yuly; Belmaker, R H

    2015-12-01

    Reports of toxic effects on the kidney of lithium treatment emerged very soon after lithium therapy was introduced. Lithium-induced nephrogenic diabetes insipidus is usually self-limiting or not clinically dangerous. Some reports of irreversible chronic kidney disease and renal failure were difficult to attribute to lithium treatment since chronic kidney disease and renal failure exist in the population at large. In recent years, large-scale epidemiological studies have convincingly shown that lithium treatment elevates the risk of chronic kidney disease and renal failure. Most patients do not experience renal side effects. The most common side effect of polyuria only weakly predicts increasing creatinine or reduced kidney function. Among those patients who do experience decrease in creatinine clearance, some may require continuation of lithium treatment even as their creatinine increases. Other patients may be able to switch to a different mood stabilizer medication, but kidney function may continue to deteriorate even after lithium cessation. Most, but not all, evidence today recommends using a lower lithium plasma level target for long-term maintenance and thereby reducing risks of severe nephrotoxicity. PMID:26043842

  3. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Wang, Nana; Yue, Jie; Chen, Liang; Qian, Yitai; Yang, Jian

    2015-05-20

    Rational design and delicate control on the component, structure, and surface of electrodes in lithium ion batteries are highly important to their performances in practical applications. Compared with various components and structures for electrodes, the choices for their surface are quite limited. The most widespread surface for numerous electrodes, a carbon shell, has its own issues, which stimulates the desire to find another alternative surface. Here, hydrogenated TiO2 is exemplified as an appealing surface for advanced anodes by the growth of ultrathin hydrogenated TiO2 branches on Mn3O4 nanorods. High theoretical capacity of Mn3O4 is well matched with low volume variation (∼4%), enhanced electrical conductivity, good cycling stability, and rate capability of hydrogenated TiO2, as demonstrated in their electrochemical performances. The proof-of-concept reveals the promising potential of hydrogenated TiO2 as a next-generation material for the surface in high-performance hybrid electrodes. PMID:25928277

  4. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. To better plan this mission and create a...

  5. Titan Montgolfiere Terrestrial Test Bed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the Titan Saturn System Mission, NASA is proposing to send a Montgolfiere balloon to probe the atmosphere of Titan. In order to better plan this mission and...

  6. Phase 1 Final Report: Titan Submarine

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of

  7. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  8. 锂离子电池电极材料Li1+xV3O8研究进展%Research advances in Li1+xV3O8 for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    刘黎; 焦丽芳; 袁华堂; 王先友

    2011-01-01

    钒酸锂(Li1+xV3O8)具有比容量大的优点,可用作传统锂离子电池正极材料及水溶液锂离子电池负极材料,是一种重要的锂离子电池活性材料.Li1+xV3O8作为传统锂离子电池正极材料已被广泛研究,近年来Li1+xV3O8作为水溶液锂离子电池负极材料的研究备受瞩目,成为了锂离子电池研究领域的热点与前沿.本文综述了Li1+xV3O8作为传统锂离子电池正极材料的研究现状,从结构与充放电机理、合成方法及改性等方面进行了讨论,此外,综述了Li1+xV3O8作为水溶液锂离子电池负极材料的研究现状并指出了其发展趋势.%Li1+xV3O8 is an important electrode material for lithium ion batteries, which can be used as cathode material for traditional lithium ion batteries and anode material for aqueous rechargeable lithium batteries. It has been researched extensively as cathode material for traditional lithium ion batteries. Besides this, the application of Li1+xV3O8 anode material in aqueous rechargeable lithium batteries has attracted much attention. The research advances in Li1+xV3O8 as active material for traditional lithium ion batteries and aqueous rechargeable lithium batteries are reviewed. The development trends of Li1+xV3O8 are pointed out.

  9. Structure of Titan's evaporites

    Science.gov (United States)

    Cordier, D.; Cornet, T.; Barnes, J. W.; MacKenzie, S. M.; Le Bahers, T.; Nna-Mvondo, D.; Rannou, P.; Ferreira, A. G.

    2016-05-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties - chemical composition, thickness, stratification - are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier, D., Barnes, J.W., Ferreira, A.G. [2013b]. Icarus 226(2),1431-1437), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model predicts the existence of chemically trimodal "bathtub rings" which is consistent with what it is observed at the south polar lake Ontario Lacus. This work also provides plausible explanations to the lack of evaporites in the south polar region and to the high radar reflectivity of dry lakebeds.

  10. Structure of Titan's evaporites

    CERN Document Server

    Cordier, D; Barnes, J W; MacKenzie, S M; Bahers, T Le; Nna-Mvondo, D; Rannou, P; Ferreira, A G

    2015-01-01

    Numerous geological features that could be evaporitic in origin have been identified on the surface of Titan. Although they seem to be water-ice poor, their main properties -chemical composition, thickness, stratification- are essentially unknown. In this paper, which follows on a previous one focusing on the surface composition (Cordier et al., 2013), we provide some answers to these questions derived from a new model. This model, based on the up-to-date thermodynamic theory known as "PC-SAFT", has been validated with available laboratory measurements and specifically developed for our purpose. 1-D models confirm the possibility of an acetylene and/or butane enriched central layer of evaporitic deposit. The estimated thickness of this acetylene-butane layer could explain the strong RADAR brightness of the evaporites. The 2-D computations indicate an accumulation of poorly soluble species at the deposit's margin. Among these species, HCN or aerosols similar to tholins could play a dominant role. Our model pre...

  11. Large Particle Titanate Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  12. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team

  13. Optimized antimicrobial and antiproliferative activities of titanate nanofibers containing silver

    Directory of Open Access Journals (Sweden)

    Su YH

    2011-08-01

    Full Text Available Yong Hua Su*, Zi Fei Yin*, Hai Liang Xin, Hui Qing Zhang, Jia Yu Sheng, Yan Long Yang, Juan Du, Chang Quan LingDepartment of Traditional Chinese Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, People’s Republic of China*These authors contributed equallyAbstract: Titanate nanofibers containing silver have been demonstrated through the experiments reported herein to have effective antifungal and antiproliferative activities in the presence of UV light. The titanate nanofibers containing silver can be fabricated by means of ion exchange followed by a topochemical process in an environment suitable for reductive reactions. Excellent antibacterial, antifungal, and antiproliferative activities could be demonstrated by both Ag2Ti5O11 · xH2O and Ag/titanate (UV light irradiation due to their unique structures and compositions, which have photocatalytic activities to generate reactive oxygen species and capabilities to continuously release the silver ions. Therefore these materials have the potential to produce a membrane for the treatment of superficial malignant tumor, esophageal cancer, or cervical carcinoma. They may also hold utility if incorporated into a coating on stents in moderate and advanced stage esophageal carcinoma or for endoscopic retrograde biliary drainage. These approaches may significantly reduce infections, inhibit tumor growth, and importantly, improve quality of life and prolong survival time for patients with tumors.Keywords: silver, titanate, photocatalytic, antiproliferative, antimicrobial

  14. Improvements to TITAN's Mass Measurement and Decay Spectroscopy Capabilities

    CERN Document Server

    Lascar, D; Chowdhury, U; Finlay, A; Gallant, A T; Good, M; Klawitter, R; Kootte, B; Leach, K G; Lennarz, A; Leistenschneider, E; Schultz, B E; Schupp, R; Short, D A; Andreoiu, C; Dilling, J; Gwinner, G

    2015-01-01

    The study of nuclei farther from the valley of $\\beta$-stability goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their more stable counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS Conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's electron beam ion trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity and opens the door to access, via in-trap decay and recapture, isotope...

  15. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  16. Ion cyclotron waves at Titan

    Science.gov (United States)

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  17. The Titan Saturn System Mission

    Science.gov (United States)

    Coustenis, A.; Lunine, J.; Lebreton, J.; Matson, D.; Erd, C.; Reh, K.; Beauchamp, P.; Lorenz, R.; Waite, H.; Sotin, C.; Tssm Jsdt, T.

    2008-12-01

    A mission to return to Titan after Cassini-Huygens is a high priority for exploration. Recent Cassini-Huygens discoveries have revolutionized our understanding of the Titan system, rich in organics, containing a vast subsurface ocean of liquid water, surface repositories of organic compounds, and having the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds an important second target in the Saturn system. The mission concept consists of a NASA-provided orbiter and an ESA-provided probe/lander and a Montgolfiere. The mission would launch on an Atlas 551 around 2020, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn about 9.5 years later. The flight system would go into orbit around Saturn for about 2 years. During the first Titan flyby, the orbiter would release the lander to target a large northern polar sea, Kraken Mare, and the balloon system to a mid latitude region. During the tour phase, TSSM will perform Saturn system and Enceladus science, with at least 5 Enceladus flybys. Instruments aboard the orbiter will map Titan's surface at 50 m resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface, sample complex organics, provide detailed observations of the atmosphere, and quantify the interaction of Titan with the Saturn magnetosphere. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon will acquire high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, will permit sensitive detection of induced or intrinsic fields

  18. Analysis Of Harrell Monosodium Titanate Lot 120111

    International Nuclear Information System (INIS)

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot No.120111 qualification and the first 12 verification samples met all the requirements in the specification indicating the material is acceptable for use in the process. Analyses of Pail 125 verification sample fails the criteria for solids content and has measurably lower pH, density, and total bottle weight. The verification sample for Pail 125 was retested for weight percent solids after checking that all of the solids had been suspended. The sample again failed to meet acceptance criteria. SRNL recommends accepting Pails 1 through 120. Pails 121 through 125 should be rejected and returned to the vendor.

  19. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT 46000908120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.

    2014-04-09

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The original Harrell Industries Lot #46000908120 qualification and 16 verification samples received in October 2012 failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids. The lot was returned to the vendor, and in February 2014 a new qualification sample and set of 16 verification samples were received from this lot. The new lot met each of the selected specification requirements that were tested and, consequently, the material is acceptable for use in the ARP process.

  20. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT 46000824120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.

    2014-04-09

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The original Harrell Industries Lot #46000824120 qualification and 16 verification samples received in September 2012 failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids. The lot was returned to the vendor, and in February 2014 a new qualification sample and set of 14 verification samples were received from this lot. The new lot met each of the selected specification requirements that were tested and, consequently, the material is acceptable for use in the ARP process.

  1. Improvements to TITAN's mass measurement and decay spectroscopy capabilities

    Science.gov (United States)

    Lascar, D.; Kwiatkowski, A. A.; Alanssari, M.; Chowdhury, U.; Even, J.; Finlay, A.; Gallant, A. T.; Good, M.; Klawitter, R.; Kootte, B.; Li, T.; Leach, K. G.; Lennarz, A.; Leistenschneider, E.; Mayer, A. J.; Schultz, B. E.; Schupp, R.; Short, D. A.; Andreoiu, C.; Dilling, J.; Gwinner, G.

    2016-06-01

    The study of nuclei farther from the valley of β -stability than ever before goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their less exotic counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's Electron Beam Ion Trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity, and open the door to access isotopes not available from the ISOL method via in-trap decay and recapture. This was recently demonstrated during TITAN's mass measurement of 30 Al. The EBIT's decay spectroscopy setup was commissioned with a successful branching ratio and half-life measurement of 124 Cs. Charge breeding in the EBIT increases the energy spread of the ion bunch sent to the Penning trap for mass measurement, so a new Cooler PEnning Trap (CPET), which aims to cool highly charged ions with an electron plasma, is undergoing offline commissioning. Already CPET has demonstrated the trapping and self-cooling of a room-temperature electron plasma that was stored for several minutes. A new detector has been installed inside the CPET magnetic field which will allow for in-magnet charged particle detection.

  2. Hubble Observes Surface of Titan

    Science.gov (United States)

    1994-01-01

    Scientists for the first time have made images of the surface of Saturn's giant, haze-shrouded moon, Titan. They mapped light and dark features over the surface of the satellite during nearly a complete 16-day rotation. One prominent bright area they discovered is a surface feature 2,500 miles across, about the size of the continent of Australia.Titan, larger than Mercury and slightly smaller than Mars, is the only body in the solar system, other than Earth, that may have oceans and rainfall on its surface, albeit oceans and rain of ethane-methane rather than water. Scientists suspect that Titan's present environment -- although colder than minus 289 degrees Fahrenheit, so cold that water ice would be as hard as granite -- might be similar to that on Earth billions of years ago, before life began pumping oxygen into the atmosphere.Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory and his team took the images with the Hubble Space Telescope during 14 observing runs between Oct. 4 - 18. Smith announced the team's first results last week at the 26th annual meeting of the American Astronomical Society Division for Planetary Sciences in Bethesda, Md. Co-investigators on the team are Mark Lemmon, a doctoral candidate with the UA Lunar and Planetary Laboratory; John Caldwell of York University, Canada; Larry Sromovsky of the University of Wisconsin; and Michael Allison of the Goddard Institute for Space Studies, New York City.Titan's atmosphere, about four times as dense as Earth's atmosphere, is primarily nitrogen laced with such poisonous substances as methane and ethane. This thick, orange, hydrocarbon haze was impenetrable to cameras aboard the Pioneer and Voyager spacecraft that flew by the Saturn system in the late 1970s and early 1980s. The haze is formed as methane in the atmosphere is destroyed by sunlight. The hydrocarbons produced by this methane destruction form a smog similar to that found over large cities, but is much thicker

  3. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  4. Introduction and synopsis of the TITAN reversed-field-pinch fusion-reactor study

    International Nuclear Information System (INIS)

    The TITAN reversed-field-pinch (RFP) fusion-reactor study aims to determine the technical feasibility and key developmental issues for an RFP fusion reactor operating at high power density; and to determine the potential economic, operational, safety and environmental features of high mass-power-density fusion-reactor systems. Mass power density (MPD) is defined as the ratio of net electric output to the mass of the fusion power core (FPC). The FPC includes the plasma chamber, first wall, blanket, shield, magnets, and related structure. Two different detailed designs TITAN-I and TITAN-II, have been produced. TITAN-I is a self-cooled lithium design with a vanadium-alloy structure. TITAN-II is a self-cooled aqueous loop-in-pool design with 9-C ferritic steel as the structural material. Both designs use RFP plasmas operating with essentially the same parameters. Both conceptual reactors are based on the DT fuel cycle, have a net electric output of about 1000 MWe, are compact, and have a high MPD of 800 kWe per tonne of FPC. The inherent physical characteristics of the RFP confinement concept make possible compact fusion reactors with such a high MPD. The TITAN designs would meet the U.S. criteria for the near-surface disposal of radioactive waste (Class C, 10CFR61) and would achieve a high Level of Safety Assurance with respect to FPC damage by decay afterheat and radioactivity release caused by accidents. Very importantly, a 'single-piece' FPC maintenance appears feasible for both designs. The design window for such compact RFP reactors would include machines with neutron wall loadings in the range of 10-20 MW/m2 with a shallow minimum COE at about 18 MW/m2. Even though operation at the lower end of this range of wall loading (10-12 MW/m2) is possible, and may be preferable, the TITAN study adopted the design point at the upper end (18 MW/m2) in order to quantify and assess the technical feasibility and physics limits for such high-MPD reactors. From this work, key

  5. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free

  6. Titan Science with the James Webb Space Telescope (JWST)

    CERN Document Server

    Nixon, Conor A; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon L; Cornet, Thomas; Hayes, Alexander G; Lellouch, Emmanuel; Lemmon, Mark T; Lopez-Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas A; Turtle, Elizabeth P; West, Robert A

    2015-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $\\mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly fas...

  7. Sources of Pressure in Titan's Plasma Environment

    CERN Document Server

    Achilleos, N; Bertucci, C; Guio, P; Romanelli, N; Sergis, N

    2013-01-01

    In order to analyze varying plasma conditions upstream of Titan, we have combined a physical model of Saturn's plasmadisk with a geometrical model of the oscillating current sheet. During modeled oscillation phases where Titan is furthest from the current sheet, the main sources of plasma pressure in the near-Titan space are the magnetic pressure and, for disturbed conditions, the hot plasma pressure. When Titan is at the center of the sheet, the main source is the dynamic pressure associated with Saturn's cold, subcorotating plasma. Total pressure at Titan (dynamic plus thermal plus magnetic) typically increases by a factor of five as the current sheet center is approached. The predicted incident plasma flow direction deviates from the orbital plane of Titan by < 10 deg. These results suggest a correlation between the location of magnetic pressure maxima and the oscillation phase of the plasmasheet.

  8. Titan Science with the James Webb Space Telescope

    Science.gov (United States)

    Nixon, Conor A.; Achterberg, Richard K.; Ádámkovics, Máté; Bézard, Bruno; Bjoraker, Gordon L.; Cornet, Thomas; Hayes, Alexander G.; Lellouch, Emmanuel; Lemmon, Mark T.; López-Puertas, Manuel; Rodriguez, Sébastien; Sotin, Christophe; Teanby, Nicholas A.; Turtle, Elizabeth P.; West, Robert A.

    2016-01-01

    The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 μm). In this paper, we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam, and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (1) surface (2) tropospheric clouds (3) tropospheric gases (4) stratospheric composition, and (5) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities, and limitations of the instrument suite and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors—sufficient to encompass Titan, but with significantly faster readout times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five- to ten-year expected lifetime for the observatory, for example, monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA, and next-generation ground-based telescopes (TMT, GMT, EELT).

  9. The lakes and seas of Titan: outstanding questions and future exploration

    Science.gov (United States)

    Stofan, Ellen R.; Lunine, Jonathan; Lorenz, Ralph

    2010-04-01

    More than 400 lakes have been identified near Titan's north pole, with sizes that range from a few km2 to seas in excess of 100,000 km2. The lakes and seas fill through rainfall and/or intersection with the subsurface liquid methane table, and provide the first evidence for an active condensable-liquid cycle on another planetary body. Many aspects of Titan's seas are unknown, including their composition, depth, and shoreline characteristics, but are key to understanding Titan's hydrological cycle. In addition to ethane, methane and nitrogen, Titan's seas will likely contain dissolved amounts of many other compounds. It is possible that further chemistry may take place, yielding prebiotic molecules impossible to form in the gas phase. It has even been suggested that autocatalytic chemical cycles might yield far-from-equilibrium abundance patterns or mimic the functionality of biological systems. The Titan Mare Explorer (TiME) is a Discovery-class mission to a Titan sea that provides in situ measurements to constrain Titan's active methane cycle as well as its intriguing prebiotic organic chemistry. The target for TiME is Ligeia Mare, at 78°N, 250°W, one of the largest seas identified on Titan. TiME would test the Advanced Stirling Radioisotope Generators (ASRGs), and would pioneer low-cost, outer solar system missions. Science objectives for TiME include measuring the chemistry of the sea to determine their role as a source and sink of methane and its chemical products, determining the depth of the sea to help constrain organic inventory, ascertaining marine processes including the nature of the sea surface and sea circulation, and determining sea surface meteorology. TiME science is fundamental, and will provide the first in situ exploration of an extraterrestrial sea, the first in situ measurements of an active liquid cycle beyond Earth, and aid in understanding the limits of life in our solar system.

  10. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  11. TiME - The Titan Mare Explorer

    Science.gov (United States)

    Stofan, E.; Lorenz, R.; Lunine, J.; Bierhaus, E. B.; Clark, B.; Mahaffy, P. R.; Ravine, M.

    The Titan Mare Explorer (TiME) is a Discovery-class mission concept that underwent a detailed Phase A study in 2011-2012. The mission would splashdown a capsule on Titan's ethane sea Ligeia Mare as early as the summer of 2023, and would spend multiple Titan days performing science measurements and transmitting data directly back to Earth. This paper reviews briefly the mission concept.

  12. Amino acidis derived from Titan tholins

    Science.gov (United States)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  13. Enhanced polysulphide redox reaction using a RuO2 nanoparticle-decorated mesoporous carbon as functional separator coating for advanced lithium-sulphur batteries.

    Science.gov (United States)

    Balach, J; Jaumann, T; Mühlenhoff, S; Eckert, J; Giebeler, L

    2016-06-21

    A multi-functional RuO2 nanoparticle-embedded mesoporous carbon-coated separator is used as an electrocatalytic and adsorbing polysulphide-net to enhance the redox reaction of migrating polysulphides, to improve active material utilization and boost the electrochemical performance of lithium-sulphur batteries. PMID:27270267

  14. Titan Montgolfiere Buoyancy Modulation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is ideally suited for balloon exploration due to its low gravity and dense atmosphere. Current NASA mission architectures baseline Montgolfiere balloon...

  15. The Global Energy Balance of Titan

    Science.gov (United States)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  16. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    Science.gov (United States)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  17. Titan from Cassini-Huygens

    CERN Document Server

    Brown, Robert H; Waite, J. Hunter

    2010-01-01

    This book reviews our current knowledge of Saturn's largest moon Titan featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses Titan’s origin and evolution, internal structure, surface geology, the atmosphere and ionosphere as well as magnetospheric interactions. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  18. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  19. TSSM: An International Mission to Titan and the Saturn System

    Science.gov (United States)

    Lunine, J. I.; Lebreton, J. P.; Coustenis, A.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    A mission to return to Titan after Cassini- Huygens is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, the ESA Cosmic Visions competition, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, contains a vast subsurface ocean of liquid water, surface repositories of methane, ethane and other organic compounds, and has the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. One of the mission concepts would consist of a NASA-provided 1600 kg orbiter with ESA-provided 180 kg Mare Explorer and 588 kg Montgolfière Balloon. The mission would launch on an Atlas 551 in the 2018-2020 timeframe, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn approximately 8.5 years later. The SEP stage would be released approximately 5.8 years after launch well in advance of Saturn approach. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting approximately 2 years. During the first Titan flyby (~100 days after SOI), the orbiter would release the lander (Mare Explorer) to target one of the two large northern polar seas, probably Kraken Mare, and the Montgolfiere

  20. Lithium literature review: lithium's properties and interactions

    International Nuclear Information System (INIS)

    The lithium literature has been reviewed to provide a better understanding of the effects of lithium spills that might occur in magnetic fusion energy (MFE) facilities. Lithium may be used as a breeding blanket and reactor coolant in these facilities. Physical and chemical properties of lithium as well as the chemical interactions of lithium with various gases, metals and non-metals have been identified. A preliminary assessment of lithium-concrete reactions has been completed using differential thermal analysis. Suggestions are given for future studies in areas where literature is lacking or limited

  1. TITAN program and direct cycle fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yasuyoshi; Yoshizawa, Yoshio; Nitawaki, Takeshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    2000-07-01

    In December 1999, the Research Laboratory for Nuclear Reactors of the Tokyo Institute of Technology (TIT) started a new program for the development of advanced nuclear reactors with small and medium size. TITAN is the acronym for the program. A novel concept of a carbon dioxide cooled direct cycle fast reactor with a Rankin cycle has been proposed as the advanced nuclear reactors and evaluated for an alternative option to liquid metal cooled fast reactors (LMFRs). The use of carbon dioxide as coolant eliminates major safety related problems of sodium cooled fast reactors: positive sodium void reactivity, hazardous reaction between sodium and water or air. The decay heat is passively removed by allocating a storage tank of liquidized carbon dioxide between the regenerator and the condenser, and by introducing naturally the carbon dioxide vaporized from the tank into the core in the event of the depressurization accident. The direct cycle results in considerable simplification of the heat transport system owing to the absence of intermediate cooling and water-steam loops comparing with the LMFRs. The thermal efficiency of the direct cycle is evaluated as 34.3 %, which is slightly higher than those in the current BWRs and PWRs. (author)

  2. Lithium-Associated Kidney Microcysts

    Directory of Open Access Journals (Sweden)

    Jennifer Tuazon

    2008-01-01

    Full Text Available Long-term lithium therapy is associated with impairment in concentrating ability and, occasionally, progression to advanced chronic kidney disease from tubulointerstitial nephropathy. Biopsy findings in patients with lithium-induced chronic tubulointerstitial nephropathy include tubular atrophy and interstitial fibrosis interspersed with tubular cysts and dilatations. Recent studies have shown that cysts are seen in 33––62.5% of the patients undergoing lithium therapy. MR imaging is highly capable of defining renal morphological features and has been demonstrated to be superior to US and CT scan for the visualization of small renal cysts. The microcysts are found in both cortex and medulla, particularly in the regions with extensive atrophy and fibrosis, and can be multiple and bilateral. They tend to be sparse and do not normally exceed 1–2 mm in diameter. The renal microcysts in the image here reported are subtle, but consistent with lithium-induced chronic nephropathy. An MRI of the kidneys provides noninvasive evidence that strengthens the diagnosis of lithium-induced nephropathy.

  3. Titan Submarine: Exploring The Depths of Kraken Mare

    Science.gov (United States)

    Oleson, Steven R.; Lorenz, Ralph D.; Paul, Michael V.

    2015-01-01

    The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase I for 2014. The effort investigated what science a submarine for Titan's liquid hydrocarbon approximately 93 Kelvin (-180 degrees Centigrade) seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (approximately100 kilograms) it was found that a submersible platform can accomplish extensive and exciting science both above and below the surface of the Kraken Mare The submerged science includes mapping using side looking sonar, imaging and spectroscopy of the sea at all depths, as well as sampling of the sea's bottom and shallow shoreline. While surfaced the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 kilometers inland. This imaging requirement pushed the landing date to Titan's next summer period (approximately 2047) to allow for continuous lighted conditions, as well as direct-to-Earth (DTE) communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid/sediment/chemical interactions. An estimated 25 megabits of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system. This paper discusses the results of Phase I as well as the plans for Phase II.

  4. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    OpenAIRE

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enh...

  5. Activity and stability studies of titanates and titanate-carbon nanotubes supported Ag anode catalysts for direct methanol fuel cell

    Science.gov (United States)

    Mohamed, Mohamed Mokhtar; Khairy, M.; Eid, Salah

    2016-02-01

    Titanate-SWCNT; synthesized via exploiting the interaction between TiO2 anatase with oxygen functionalized SWCNT, supported Ag nanoparticles and Ag/titanate are characterized using XRD, TEM-EDX-SAED, N2 adsorption, Photoluminescence, Raman and FTIR spectroscopy. These samples are tested for methanol electrooxidation via using cyclic voltammetry (CV) and impedance measurements. It is shown that Ag/titanate nanotubes exhibited superior electrocatalytic performance for methanol oxidation (4.2 mA cm-2) than titanate-SWCNT, Ag/titanate-SWCNT and titanate. This study reveals the existence of a strong metal-support interaction in Ag/titanate as explored via formation of Ti-O-Ag bond at 896 cm-1 and increasing surface area and pore volume (103 m2 g-1, 0.21 cm3 g-1) compared to Ag/titanate-SWCNT (71 m2 g-1, 0.175 cm3 g-1) that suffers perturbation and defects following incorporation of SWCNT and Ag. Embedding Ag preferably in SWCNT rather than titanate in Ag/titanate-SWCNT disturbs the electron transfer compared to Ag/titanate. Charge transfer resistance depicted from Nyquist impedance plots is found in the order of titanate > Ag/titanate-SWCNT > titanate-SWCNT > Ag/titanate. Accordingly, Ag/titanate indicates a slower current degradation over time compared to rest of catalysts. Conductivity measurements indicate that it follows the order Ag/titanate > Ag/titanate-SWCNT > titanate > titanate-SWCNT declaring that SWCNT affects seriously the conductivity of Ag(titanate) due to perturbations caused in titanate and sinking of electrons committed by Ago through SWCNT.

  6. The Lakes and Seas of Titan

    Science.gov (United States)

    Hayes, Alexander G.

    2016-06-01

    Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

  7. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    Science.gov (United States)

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  8. Titan as the Abode of Life

    Science.gov (United States)

    Mckay, Christopher P.

    2016-01-01

    Titan is the only world we know other than Earth that has a liquid on its surface. It has a thick atmosphere composed of nitrogen and methane with a thick organic haze. There are lakes, rain, and clouds of methane and ethane. Here, we address the question of carbon-based life living in Titan liquids. Photochemically produced organics, particularly acetylene, in Titan's atmosphere could be a source of biological energy when reacted with atmospheric hydrogen. Light levels on the surface of Titan are more than adequate for photosynthesis but the biochemical limitations due to the few elements available in the environment may lead only to simple ecosystems that only consume atmospheric nutrients. Life on Titan may make use of the trace metals and other inorganic elements produced by meteorites as they ablate in the atmosphere. It is conceivable that H2O molecules on Titan could be used in a biochemistry that is rooted in hydrogen bonds in a way that metals are used in enzymes by life on Earth. Previous theoretical work has shown possible membrane structures in Titan liquids, azotosomes, composed of small organic nitrogen compounds, such as acrylonitrile. The search for a plausible information molecule for life in Titan liquids remains an open research topic - polyethers have been considered and shown to be insoluble at Titan temperatures. Possible search strategies for life on Titan include looking for unusual concentrations of certain molecules reflecting biological selection. Homochirality is a special and powerful example of such biology selection. Environmentally, a depletion of hydrogen in the lower atmosphere may be a sign of metabolism. A discovery of life in liquid methane and ethane would be our first compelling indication that the Universe is full of diverse and wondrous life forms.

  9. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  10. Aerosol growth in Titan's ionosphere.

    Science.gov (United States)

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  11. Exploring the depths of Kraken Mare - Power, thermal analysis, and ballast control for the Saturn Titan submarine

    Science.gov (United States)

    Hartwig, J. W.; Colozza, A.; Lorenz, R. D.; Oleson, S.; Landis, G.; Schmitz, P.; Paul, M.; Walsh, J.

    2016-03-01

    To explore the depths of the hydrocarbon rich seas on the Saturn moon Titan, a conceptual design of an unmanned submarine concept was recently developed for a Phase I NASA Innovative Advanced Concept (NIAC) study. Data from Cassini Huygens indicates that the Titan polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature around 93 K. To meet science exploration objectives, the submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed at pressures up to 10 atm, traverse large distances with limited energy, hover at the surface and at any depth within the sea, and be capable of tolerating multiple different concentration levels of hydrocarbons. Therefore Titan presents many cryogenic design challenges. This paper presents the trade studies with emphasis on the preliminary design of the power, thermal, and ballast control subsystems for the Saturn Titan submarine.

  12. Titan's Obliquity as evidence for a subsurface ocean?

    OpenAIRE

    Baland, Rose-Marie; Van Hoolst, Tim; Yseboodt, Marie; Karatekin, Ozgur

    2011-01-01

    On the basis of gravity and radar observations with the Cassini spacecraft, the moment of inertia of Titan and the orientation of Titan's rotation axis have been estimated in recent studies. According to the observed orientation, Titan is close to the Cassini state. However, the observed obliquity is inconsistent with the estimate of the moment of inertia for an entirely solid Titan occupying the Cassini state. We propose a new Cassini state model for Titan in which we assume the presence of ...

  13. Ferroelectric domain pattern in barium titanate single crystals studied by means of digital holographic microscopy

    Science.gov (United States)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Doleček, Roman; Vápenka, David; Lédl, Vít

    2016-06-01

    In this article, we report on the observation of a ferroelectric domain pattern in the whole volume of the ferroelectric barium titanate single crystal by means of digital holographic microscopy (DHM). Our particular implementation of DHM is based on the Mach–Zehnder interferometer and the numerical processing of data employs the angular spectrum method. A modification of the DHM technique, which allows a fast and accurate determination of the domain walls, i.e. narrow regions separating the antiparallel domains, is presented. Accuracy and sensitivity of the method are discussed. Using this approach, the determination of important geometric parameters of the ferroelectric domain patterns (such as domain spacing or the volume fraction of the anti-parallel domains) is possible. In addition to the earlier DHM studies of domain patterns in lithium niobate and lithium tantalate, our results indicate that the DHM is a convenient method to study a dynamic evolution of ferroelectric domain patterns in all perovskite single crystals.

  14. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  15. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    Science.gov (United States)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  16. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    Science.gov (United States)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural

  17. Analysis Of Harrell Monosodium Titanate LOT 03031

    International Nuclear Information System (INIS)

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot 030311 qualification and 9 verification samples met all the requirements in the specification indicating the material is acceptable for use in the process. Harrell Industries is under contract with Savannah River Remediation to provide MST for use in the Actinide Removal Process (ARP). A 500-mL qualification sample for Lot 030311 was sent to the Savannah River National Laboratory (SRNL) to confirm the material meets the requirements specified in the purchase specification. The vendor is also obligated to send verification samples from ∼10% or more of the pails of MST product for each lot (distributed roughly evenly through the entire lot of pails). For the verification of this lot, Harrell Industries sent 9 samples, one each from pails 1, 5, 15, 20, 25, 30, 40, 45, and 55 of 59 total pails.

  18. Analysis Of Harrell Monosodium Titanate Lot 081811

    International Nuclear Information System (INIS)

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The Harrell Industries Lot No.081811 qualification and 12 verification samples met all the requirements in the specification, with the possible exception of the geometric standard deviation for particle size. Two subsamples from the qualification sample were analyzed, giving results of 3.82 and 3.28, respectively, for the geometric standard deviation. The specification is (le)3.5. The results for both samples met the remaining particle size specifications, i.e. <10 vol% below 0.8 μm and <1 vol% above 37 μm. Filtration behavior of the current batch is expected to be near that of recent batches. SRNL recommends acceptance of this material. SRNL also recommends performing a statistical review of particle size data for the MST lots from this vendor to assess whether an improved material specification is appropriate.

  19. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  20. Titan the earth-like moon

    CERN Document Server

    Coustenis, Athena

    1999-01-01

    This is the first book to deal with Titan, one of the most mysterious bodies in the solar system. The largest satellite of the giant planet Saturn, Titan is itself larger than the planet Mercury, and is unique in being the only known moon with a thick atmosphere. In addition, its atmosphere bears a startling resemblance to the Earth's, but is much colder.The American and European space agencies, NASA and ESA, have recently combined efforts to send a huge robot spacecraft to orbit Saturn and land on Titan. This book provides the background to this, the greatest deep space venture of our time, a

  1. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. TSSM: The in situ exploration of Titan

    Science.gov (United States)

    Coustenis, A.; Lunine, J. I.; Lebreton, J. P.; Matson, D.; Reh, K.; Beauchamp, P.; Erd, C.

    2008-09-01

    The Titan Saturn System Mission (TSSM) mission was born when NASA and ESA decided to collaborate on two missions independently selected by each agency: the Titan and Enceladus mission (TandEM), and Titan Explorer, a 2007 Flagship study. TandEM, the Titan and Enceladus mission, was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call. The mission concept is to perform remote and in situ investigations of Titan primarily, but also of Enceladus and Saturn's magentosphere. The two satellites are tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TSSM will study Titan as a system, including its upper atmosphere, the interactions with the magnetosphere, the neutral atmosphere, surface, interior, origin and evolution, as well as the astrobiological potential of Titan. It is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini- Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time for Titan, several close flybys of Enceladus). One overarching goal of the TSSM mission is to explore in situ the atmosphere and surface of Titan. In the current mission architecture, TSSM consists of an orbiter (under NASA's responsibility) with a large host of instruments which would perform several Enceladus and Titan flybys before stabilizing in an orbit around Titan alone, therein delivering in situ elements (a Montgolfière, or hot air balloon, and a probe/lander). The latter are being studied by ESA. The balloon will circumnavigate Titan above the equator at an altitude of about 10 km for several months. The

  4. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    Science.gov (United States)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. PMID:26781747

  5. Facile synthesis of porous NiCo2O4 microflowers as high-performance anode materials for advanced lithium-ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: - Abstract: Porous NiCo2O4 microflowers having very high Brunner-Emmett-Teller (BET) surface area (∼109.283 m2/g) are fabricated by a facile solvothermal method followed by calcinating the Co-Ni hydroxides precursor in air. The as-prepared porous NiCo2O4 microflowers exhibit excellent cycling stability (952 mA h g−1 at a current density of 100 mA g−1 after 60 cycles and 720 mA h g−1 at a current density of 500 mA g−1 after 100 cycles). This outstanding electrochemical performance is attributed to the unique hierarchical structure and high porosity, which can provide enough space to buffer the volume expansion during the discharge and charge processes, increase the contact area between the electrode and electrolyte, and reduce the transport lengths of both lithium ions and electrons. The porous NiCo2O4 microflowers show great potential in high-capacity anode materials for next-generation lithium-ion batteries

  6. High Cycle Life, Low Temperature Lithium Ion Battery for Earth Orbiting and Planetary Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires development of advanced rechargeable electrochemical battery systems for lithium ion batteries to support orbiting spacecraft and planetary missions....

  7. Titan's Atmospheric Dynamics and Meteorology

    Science.gov (United States)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  8. Cyanide Soap? Dissolved material in Titan's Seas

    Science.gov (United States)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  9. Titanic või turist? / Karin Paulus

    Index Scriptorium Estoniae

    Paulus, Karin, 1975-

    2006-01-01

    Tallinnas Tartu maanteel asuva endise Turisti poe (arhitektid Peep Jänes, Henno Sepmann) asemele tahavad hoone omanikud ehitada kõrghoone nimega Titanic. Hoone ajutine võtmine muinsuskaitse alla on põhjustanud kohtuvaidluse

  10. Huygens will soon set off for Titan

    Science.gov (United States)

    1997-09-01

    When it parachutes slowly down to the surface of Titan, in November 2004, Huygens will unmask the most enigmatic object in the Solar System. Baffled and tantalized, space scientists don't know how this moon of Saturn acquired a dense atmosphere, which is rich in nitrogen like the Earth's air but also possesses many carbon compounds. The scientists can't say whether the surface of Titan is solid or liquid, or a bit of each. But many are convinced that Titan offers them their best chance of discovering what the Earth and its chemistry were like, before life began. A heat shield will protect Huygens as it slams into Titan's atmosphere at 20,000 kilometres per second. A succession of parachutes will adjust Titan's speed of descent through the atmosphere. Radio signals from the probe will convey the results to the Cassini orbiter, for relaying tothe Earth, and will also reveal how Huygens and its parachute are blown about by the winds of Titan, during the descent. Huygens carries six sets of instruments devised by multinational teams of scientists in Europe and the USA. They will analyse the chemical composition of the haze that hides Titan's surface. They will gauge the weather of Titan during Huygens' descent, and image the clouds and the surface. A surface science package will report the true nature of Titan's surface. A televised launch Cassini-Huygens will be launched by a NASA Titan IVB rocket from the Cape Canaveral Air Station in Florida. The earliest launch date is 6 October, but this is now likely to slip, to allow for the repair of minor damage to insulation within the Huygens probe (see ESA Press Release Nr 27-97). Provided the launch occurs before 4 November, there will be no delay in the arrival at Saturn and Titan. ESA will provide a live TV transmission, free of charge, for European news organizations and other organizations wishing to receive it. Live pictures of the launch will be accompanied by interviews with scientists and engineers of ESA's Huygens

  11. Parallel contingency statistics with Titan.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David C.; Pebay, Philippe Pierre

    2009-09-01

    This report summarizes existing statistical engines in VTK/Titan and presents the recently parallelized contingency statistics engine. It is a sequel to [PT08] and [BPRT09] which studied the parallel descriptive, correlative, multi-correlative, and principal component analysis engines. The ease of use of this new parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; however, the very nature of contingency tables prevent this new engine from exhibiting optimal parallel speed-up as the aforementioned engines do. This report therefore discusses the design trade-offs we made and study performance with up to 200 processors.

  12. Cassini UVIS observations of Titan nightglow spectra

    OpenAIRE

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; Mcclintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-01-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluor...

  13. Co2 On Titan's Surface

    Science.gov (United States)

    McCord, Thomas B.; Combe, J.; Hayne, P.; Hansen, G. B.

    2007-10-01

    Evidence is reported for the presence of CO2 on the surface of Titan from the Cassini VIMS (an imaging visual and IR spectrometer) data (McCord et al., 2006, 2007). CO2 can be expected on Titan from basic planetary evolution models. It was also suggested as a plausible spectral component for bright material near the Huygens landing site (Rodriguez et al., 2006), based on structure in the 1.59-µm region. Hartung et al. (2006) searched for CO2 in one hemisphere, but they were able only to set an upper limit on the possible spatial coverage by pure CO2. Barnes et al., (2006) suggested CO2 as a possible candidate material for a 5-µm-bright region, named Tsegihi, based on the high 5-µm reflectance. However, these results are not inconsistent with our report. The evidence we report is three-fold: 1) A weak absorption near 4.9 µm in the 5-µm methane window for the Tui Regio region; 2) The spectral contrast between the 2.7- and 2.8-µm methane subwindows for the regions exhibiting the 4.9-µm absorption, with stronger absorption correlating with stronger contrast; and 3) the overall shape of the CO2 spectrum (for several grain-sizes) is consistent with the spectrum of one of the fundamental surface spectral components, as deduced by spectral mixture analysis modeling. The Tui Regio feature exhibits the strongest evidence in all three categories. Studies of this feature's morphology and albedo markings have suggested to some that it may be an active cryovolcanic feature (Barnes et al., 2006). If so, CO2 could be erupting and depositing as a frost. This likely happened elsewhere and at other times. Thus, CO2 could be a major constituent of the surface, but over time it may be mixed with other constituents, such as spectrally neutral organics raining from the atmosphere, thereby reducing the strength of its spectral signature.

  14. The Chemical Evolution of Titan's Atmosphere

    Science.gov (United States)

    Kaiser, Ralf I.

    2010-11-01

    Astrochemistry or Astrochemical Dynamics presents a newly emerging, interdisciplinary and innovative field comprising scientists in chemistry, physics, biology, astronomy, and planetary chemistry. The prime directive of Astrochemical Dynamics is to understand the origin and chemical evolution of the interstellar medium and of our Solar System. Here, the arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and thick atmosphere - in 2004 opened up a new chapter in the history of Solar System exploration. Titan's most prominent optically visible features are the aerosol-based haze layers, which give Titan its orange-brownish color. However, the underlying chemical processes, which initiate the haze formation, have been the least understood to date. This talk reviews recent laboratory studies on the role of polyacetylenes (polyynes) and (hetero)aromatic molecules like the phenyl radical, benzene, and pyridine in the formation of Titan's organic haze layers utilizing crossed molecular beam experiments. Those investigations provide key concepts on the formation mechanisms of unsaturated hydrocarbon molecules - in particular polyynes and aromatic compounds - together with their hydrogen deficient precursors from the "bottom up" in the atmosphere of Saturn's moon Titan. A brief outline to future research directions tackling also the heterogeneous chemistry on Titan and in hydrocarbon-rich atmospheres in the outer Solar System in general will also be presented.

  15. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-04-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g-1 at 0.2 C), good repeatability/rate capability (even >900 mAh g-1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances.

  16. Evaluation of tritium release properties of advanced tritium breeders

    International Nuclear Information System (INIS)

    Demonstration power plant (DEMO) fusion reactors require advanced tritium breeders with high thermal stability. Lithium titanate (Li2TiO3) advanced tritium breeders with excess Li (Li2+xTiO3+y) are stable in a reducing atmosphere at high temperatures. Although the tritium release properties of tritium breeders are documented in databases for DEMO blanket design, no in situ examination under fusion neutron (DT neutron) irradiation has been performed. In this study, a preliminary examination of the tritium release properties of advanced tritium breeders was performed, and DT neutron irradiation experiments were performed at the fusion neutronics source (FNS) facility in JAEA. Considering the tritium release characteristics, the optimum grain size after sintering is <5 μm. From the results of the optimization of granulation conditions, prototype Li2+xTiO3+y pebbles with optimum grain size (<5 μm) were successfully fabricated. The Li2+xTiO3+y pebbles exhibited good tritium release properties similar to the Li2TiO3 pebbles. In particular, the released amount of HT gas for easier tritium handling was higher than that of HTO water. (authors)

  17. Interconnected hollow carbon nanospheres for stable lithium metal anodes.

    Science.gov (United States)

    Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng; Lee, Hyun-Wook; Yan, Kai; Yao, Hongbin; Wang, Haotian; Li, Weiyang; Chu, Steven; Cui, Yi

    2014-08-01

    For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g(-1)) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm(-2). The Coulombic efficiency improves to ∼ 99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes. PMID:25064396

  18. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.T.; Jeong, S.S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. [Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster (Germany)

    2011-02-15

    This manuscript reports on the development of a safe and green lithium-ion battery containing sodium salt of CarboxyMethylCellulose (CMC) as binder, lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}) as anodic active material, lithium iron phosphate (LiFePO{sub 4}) as cathodic active material and an electrolytic solution based on the ionic liquid N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR{sub 14}FSI). The battery showed, at room temperature, a very stable specific capacity of 140 mAh g{sup -1} constant for more than 150 cycles. This indicated that the introduction of low cost and environmentally benign binders, like CMC, and non-flammable electrolytes, such as PYR{sub 14}FSI, represents a viable strategy for the development of new, greener and safer lithium-ion batteries. (author)

  19. Exploring the Seas of Titan: The Titan Mare Explorer (TiME) Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Waite, H.; Zarnecki, J.

    2010-03-01

    The Titan Mare Explorer (TiME) is a Discovery-class mission that would constrain Titan’s active methane cycle as well as its intriguing prebiotic organic chemistry by providing in situ measurements from the surface of a Titan sea.

  20. Constraining the Role of Seas and Lakes in Titan's Climate: The Titan Mare Explorer Mission

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A. M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.; Hayes, A.

    2012-06-01

    Lakes and seas on Titan provide the first evidence for an extraterrestrial active liquid cycle and play a key role in its climate. Constraints on Titan's methane cycle, analogous to Earth’s hydrologic cycle, can be made through in situ measurements.

  1. Lithium and Pregnancy

    Science.gov (United States)

    ... best live chat Live Help Fact Sheets Share Lithium and Pregnancy Saturday, 20 September 2014 In every ... risk. This sheet talks about whether exposure to lithium may increase the risk for birth defects over ...

  2. Novel Electrolytes for -1000C Lithium Battery Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires advanced high power primary lithium batteries for ultra low temperature applications. The key component that limits the performance at low temperature...

  3. Dissolution on Titan and on Earth: Towards the age of Titan's karstic landscapes

    CERN Document Server

    Cornet, Thomas; Bahers, Tangui Le; Bourgeois, Olivier; Fleurant, Cyril; Mouélic, Stéphane Le; Altobelli, Nicolas

    2015-01-01

    Titan's polar surface is dotted with hundreds of lacustrine depressions. Based on the hypothesis that they are karstic in origin, we aim at determining the efficiency of surface dissolution as a landshaping process on Titan, in a comparative planetology perspective with the Earth as reference. Our approach is based on the calculation of solutional denudation rates and allow inference of formation timescales for topographic depressions developed by chemical erosion on both planetary bodies. The model depends on the solubility of solids in liquids, the density of solids and liquids, and the average annual net rainfall rates. We compute and compare the denudation rates of pure solid organics in liquid hydrocarbons and of minerals in liquid water over Titan and Earth timescales. We then investigate the denudation rates of a superficial organic layer in liquid methane over one Titan year. At this timescale, such a layer on Titan would behave like salts or carbonates on Earth depending on its composition, which mea...

  4. The Dynamics of Titan's Convective Clouds

    Science.gov (United States)

    Rafkin, S. C.

    2012-12-01

    Titan's deep convective clouds are the most dynamic phenomena known to operate within the atmosphere of the moon. Previous studies have focused primarily on the control of these storms by the large scale thermodynamic environment, especially methane abundance, which determines the amount of convective available potential energy (CAPE). This study looks at factors in addition to the thermodynamic environment that may have a first order impact on the evolution and structure of Titan's deep convective clouds. To the extent that thunderstorms on Earth provide a reasonable analog to the storms on Titan, it is well established that CAPE alone is insufficient to determine the structure and behavior of deep convection. Wind shear—both directional and speed—is also known to exert a first order effect. The influence of both CAPE and wind speed shear is typically expressed as the ratio of the two parameters in the form of the Bulk Richardson Number. On Earth, for a fixed value of CAPE, the addition of wind speed shear (i.e., the reduction of the Bulk Richardson Number) will tend to produce storms that are longer lived, tilted upshear with height, and multi-cellular in nature. These multi-cellular storms also tend to be more violent than storms generated in low wind speed shear environments: strong winds and large hail are common. The addition of directional shear (i.e., helicity) can transform the multi-cell storms into single, intense supercell storms. These are the storms associated typically associated with tornadoes. With respect to Titan, if there is a similar dependence on the Bulk Richardson Number, then this would have implications for how long Titan's storms live, how much precipitation they can produce, the area they cover, and the strength and duration of winds. A series of numerical simulations of Titan's deep convective clouds from the Titan Regional Atmospheric Modeling System are presented. A reasonable sweep of the parameter space of CAPE and shear for

  5. Nondestructive testing of ampoules with lithium ceramics designed for blanket of thermonuclear reactor

    International Nuclear Information System (INIS)

    Full text: There are carried out prolonged radiation tests on research reactor WWR-K of ceramic materials made of lithium titanate Li2Ti03 with enrichment 36Li to 90 % manufactured in the form of sintered small balls and cylinder tablets put in experimental assembles (ampoules). At the present time tritium titanate is considered as one of the possible candidates of tritium production zone for demonstration international thermonuclear reactor blanket. Before feeding into the reactor experimental assemblages with Li2TiO3 were exposed to nondestructive control on horizontal channel of reactor with 'Agava' plant use by the neutron radiography method. The purpose of this work is on the one hand feeding quality control of tablets and small balls of lithium ceramics into experimental assembles, on the other hand the efficiency test of neutron radiography plant work after long stoppage of WWR-K reactor and the geometry change of irradiative channels and active zone of reactor

  6. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    OpenAIRE

    Burke, Andrew; Miller, Marshall

    2009-01-01

    This paper is concerned with the testing and evaluation of various battery chemistries for use in PHEVs. Test data are presented for lithium-ion cells and modules utilizing nickel cobalt, iron phosphate, and lithium titanate oxide in the electrodes. The energy density of cells using NiCo (nickelate) in the positive electrode have the highest energy density being in the range of 100-170 Wh/kg. Cells using iron phosphate in the positive have energy density between 80-110 Wh/kg and those using l...

  7. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  8. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    International Nuclear Information System (INIS)

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m2) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately

  9. The Lithium Plateau Enigma

    OpenAIRE

    Charbonnel, C.; Vauclair, S.

    1998-01-01

    Why is the lithium abundance constant in the so-called lithium plateau while all predictions suggest that it should vary from star to star? Can we find a "lithium attractor" which would remain stable in halo stars while fundamental parameters (M_*, Teff, [Fe/H]) vary?

  10. Aqueous salt blanket tritium systems for the TITAN-II reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    TITAN is a high-power-density reversed-field pinch reactor design. The TITAN-II concept is based on an aqueous lithium salt blanket immersed in a loop-in-pool design to provide a high level of passive safety. The blanket uses 50 Ci/kg water in the primary heat transport circuit, and 0.4 Ci/kg in the cold water pool. The main coolant stream is treated by a 5-stage Vapor Phase Catalytic Exchange process, followed by Cryogenic Distillation. Water Distillation is used to process the cold pool. The design uses proven technologies (although on a ten times larger scale), and takes advantage of features of light water tritium recovery. Tritium losses are controlled to 50 Ci/d by leak-tight design, tritium release trapping by the cold pool, lower pressure in the primary system relative to the steam system, and air driers

  11. 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries

    Science.gov (United States)

    Hou, Yang; Li, Jianyang; Gao, Xianfeng; Wen, Zhenhai; Yuan, Chris; Chen, Junhong

    2016-04-01

    Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior electrochemical performance, including a large reversible capacity of 1328 mA h g-1 in the first cycle, excellent cycling stability (maintaining a reversible capacity of 647 mA h g-1 at 0.2 C after 300 cycles) with nearly 100% Coulombic efficiency, and a high rate capability of 512 mA h g-1 at 8 C for 30 cycles, which is among the best reported rate capabilities.Although lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical specific energy and low cost, their practical applications have been severely hindered by poor cycle life, inadequate sulfur utilization, and the insulating nature of sulfur. Here, we report a rationally designed Li-S cathode with a dual-confined configuration formed by confining sulfur in 2D carbon nanosheets with an abundant porous structure followed by 3D graphene aerogel wrapping. The porous carbon nanosheets act as the sulfur host and suppress the diffusion of polysulfide, while the graphene conductive networks anchor the sulfur-adsorbed carbon nanosheets, providing pathways for rapid electron/ion transport and preventing polysulfide dissolution. As a result, the hybrid electrode exhibits superior

  12. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  13. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.xbatteries containing the electrodes.

  14. Electrolytes for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    There is growing interest in high specific energy lithium rechargeable batteries with improved discharge/charge cycles. Some of the promising battery systems under development are Li/CoO2, Li/V2O5 and Li/MnO2. A major factor that controls the specific performance of these batteries is the electrolyte. Recent advances made in the liquid electrolyte area for lithium high energy cathode systems are reviewed. Experimental work on the processing of solid thin film polymer electrolytes using plasticizers such as polyethylene glycol dimethoxy ether (PEGDME) and the properties such as conductivity and differential scanning calorimetry of polymer film electrolytes are presented. The advantages and the disadvantages of polymer thin film electrolytes are discussed

  15. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  16. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode

    Science.gov (United States)

    Tian, Ran; Zhang, Yangyang; Chen, Zhihang; Duan, Huanan; Xu, Biyi; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-01-01

    3D annealed SnO2/graphene sheet foams (ASGFs) are synthesized by in situ self-assembly of graphene sheets prepared by mild chemical reduction. L-ascorbyl acid is used to effectively reduce the SnO2 nanoparticles/graphene oxide colloidal solution and form the 3D conductive graphene networks. The annealing treatment contributes to the formation of the Sn-O-C bonds between the SnO2 nanoparticles and the reduced graphene sheets, which improves the electrochemical performance of the foams. The ASGF has features of typical aerogels: low density (about 19 mg cm-3), smooth surface and porous structure. The ASGF anodes exhibit good specific capacity, excellent cycling stability and superior rate capability. The first reversible specific capacity is as high as 984.2 mAh g-1 at a specific current of 200 mA g-1. Even at the high specific current of 1000 mA g-1 after 150 cycles, the reversible specific capacity of ASGF is still as high as 533.7 mAh g-1, about twice as much as that of SGF (297.6 mAh g-1) after the same test. This synthesis method can be scaled up to prepare other metal oxides particles/ graphene sheet foams for high performance lithium-ion batteries, supercapacitors, and catalysts, etc.

  17. Titan Submarine : AUV Design for Cryogenic Extraterrestrial Seas of Hydrocarbons

    Science.gov (United States)

    Lorenz, Ralph D.; Oleson, Steven; Colozza, Tony; Hartwig, Jason; Schmitz, Paul; Landis, Geoff; Paul, Michael; Walsh, Justin

    2016-04-01

    Saturn's moon Titan has three seas, apparently composed predominantly of liquid methane, near its north pole. The largest of these, Ligeia Mare and Kraken Mare, span about 400km and 1000km respectively, and are linked by a narrow strait. Radar measurements from the Cassini spacecraft (currently in orbit around Saturn) show that Ligeia at least is 160m deep, Kraken perhaps deeper. Titan has a nitrogen atmosphere somewhat denser than Earth's, and gravity about the same as the Earth's moon, and its surface temperature is about 92K ; the seas are liquid under conditions rather similar to those of liquified natural gas (LNG) a commodity with familiar engineering properties. We report a NASA Innovative Advanced Concepts (NIAC) study into a submersible vehicle able to explore these seas, to survey shoreline geomorphology, investigate air-sea exchange processes, measure composition to evaluate stratification and mixing, and map the seabed. The Titan environment poses unique thermal management and buoyancy control challenges (the temperature-dependent solubility of nitrogen in methane leads to the requirement to isolate displacement gas from liquid in buoyancy control tanks, and may result in some effervescence due to the heat dissipation into the liquid from the vehicle's radioisotope power supply, a potential noise source for sonar systems). The vehicle must also be delivered from the air, either by parachute extraction from or controlled ditching of a slender entry system, and must communicate its results back to Earth. Nominally the latter function is achieved with a large dorsal phased-array antenna, operated while surfaced, but solutions using an orbiting relay spacecraft and even communication while submerged, are being examined. While these aspects seem fantastical, in many respects the structural, propulsion and navigation/autonomy challenges of such a vehicle are little different from terrestrial autonomous underwater vehicles. We discuss the results of the study

  18. Experience and technical issues of liquid lithium application as plasma facing material in tokamaks

    International Nuclear Information System (INIS)

    The following critical issues of liquid lithium used in tokamak conditions are considered: major physical properties of lithium, physico-chemical aspects of lithium interaction and compatibility with structural materials of fusion reactors. Lithium capillary-porous system (CPS) is considered as advanced plasma facing material for power fusion reactor and its main properties are presented. Review of plasma facing element (PFE) structures based on lithium CPS and tests results in T-11M, T-10 and FTU tokamaks are included. Brief review of projects of lithium limiter of FTU with active system for thermal stabilization and module of lithium divertor for KTM tokamak with liquid metal (Na-K) cooling system based on the lithium CPS use are presented.

  19. Einfluss von Titan auf den Entwurf von Unterwasserfahrzeugen

    OpenAIRE

    Malletschek, Andreas

    2011-01-01

    Die Dissertation zum „Einfluss von Titan auf den Entwurf von Unterwasserfahrzeugen“ beschäftigt sich sowohl mit der Erarbeitung der werkstoffseitigen Grundlagen für die allgemeine Integration von Titan in der Meerestechnik als auch mit der konkreten Analyse und Bewertung der Anwendung von Titan in verschiedenen schiffstechnischen Systeme eines Unterwasserfahrzeugs.

  20. ISO observations of Titan with SWS/grating

    Science.gov (United States)

    Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.

    1997-01-01

    The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.

  1. Titan's atmosphere (clouds and composition): new results

    Science.gov (United States)

    Griffith, C. A.

    Titan's atmosphere potentially sports a cycle similar to the hydrologic one on Earth with clouds, rain and seas, but with methane playing the terrestrial role of water. Over the past ten years many independent efforts indicated no strong evidence for cloudiness until some unique spectra were analyzed in 1998 (Griffith et al.). These surprising observations displayed enhanced fluxes of 14-200 % on two nights at precisely the wavelengths (windows) that sense Titan's lower altitude where clouds might reside. The morphology of these enhancements in all 4 windows observed indicate that clouds covered ~6-9 % of Titan's surface and existed at ~15 km altitude. Here I discuss new observations recorded in 1999 aimed to further characterize Titan's clouds. While we find no evidence for a massive cloud system similar to the one observed previously, 1%-4% fluctuations in flux occur daily. These modulations, similar in wavelength and morphology to the more pronounced ones observed earlier, suggest the presence of clouds covering ≤1% of Titan's disk. The variations are too small to have been detected by most prior measurements. Repeated observations, spaced 30 minutes apart, indicate a temporal variability observable in the time scale of a couple of hours. The cloud heights hint that convection might govern their evolution. Their short lives point to the presence of rain.

  2. High Resolution Camera for Mapping Titan Surface

    Science.gov (United States)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  3. Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission

    Science.gov (United States)

    Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.

    2016-03-01

    Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.

  4. Titan's night-glow mechanisms

    Science.gov (United States)

    Lavvas, P.; West, R. A.; Gronoff, G.

    2014-04-01

    Observations of Titan's emissions during its 2009 eclipse by Saturn revealed a weak airglow around the moon, as well as a brighter emission from its disk (Fig.1). We explore here the potential mechanisms that could generate these emissions and more specifically the role of magnetospheric plasma and cosmic rays in the upper and lower atmosphere, respectively [2]. We consider excitation of N2 by these energy sources and calculate the resulting emissions through a detailed model of N2 airglow [3](Fig.2), followed by careful radiation transfer of the emitted photons through the atmosphere, and into the UVIS and ISS instruments (Figs 3 & 4). Our results indicate that the observed limb emissions are consistent with magnetospheric plasma energy input, while emissions instigated by cosmic ray excitation deep in the atmosphere are strongly attenuated by the haze and can not explain the observed disk emissions [4](Tables 1 & 2). We discuss possible contributions from other sources that could potentially explain the disk observations. These include airglow from other species, chemiluminescence, aerosol particle fluorescence, and scattered light from the stellar background.

  5. Oxygen octahedral rotation mapping in calcium titanate/strontium titanate superlattices by transmission electron microscopy

    Science.gov (United States)

    Stone, Greg; Ciston, Jim; Haislmaier, Ryan; Vanleeuwen, Brian; Alem, Nasim; Schlom, Darrell; Gopalan, Venkatraman

    2014-03-01

    We report the investigation of oxygen octahedral rotation mapping in calcium titanate/barium titanate superlattices epitaxially grown on LSAT (001) with transmission electron microscopy. Analysis of the images shows induced antiphase rotations of the oxygen octahedral the strontium titanate layers that is absent in the bulk material at room temperature. These rotations play a key role in breaking the centrosymmetry of the material leading to polar properties as seen by second harmonic generation. We also map the local position of the cations to provide a complete picture of any relative local displacements and the oxygen-cation-oxygen bond angles.

  6. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    International Nuclear Information System (INIS)

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C6H6/CH4/N2 via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH4/N2. Our results show that even a trace amount of C6H6 (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH4, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  7. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  8. Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles

    International Nuclear Information System (INIS)

    Sophisticated data of the experimental DCV (discharging/charging voltage) of a lithium-ion battery is required for high-accuracy SOC (state-of-charge) estimation algorithms based on the state-space ECM (electrical circuit model) in BMSs (battery management systems). However, when sensing noisy DCV signals, erroneous SOC estimation (which results in low BMS performance) is inevitable. Therefore, this manuscript describes the design and implementation of a DWT (discrete wavelet transform)-based denoising technique for DCV signals. The steps for denoising a noisy DCV measurement in the proposed approach are as follows. First, using MRA (multi-resolution analysis), the noise-riding DCV signal is decomposed into different frequency sub-bands (low- and high-frequency components, An and Dn). Specifically, signal processing of the high frequency component Dn that focuses on a short-time interval is necessary to reduce noise in the DCV measurement. Second, a hard-thresholding-based denoising rule is applied to adjust the wavelet coefficients of the DWT to achieve a clear separation between the signal and the noise. Third, the desired de-noised DCV signal is reconstructed by taking the IDWT (inverse discrete wavelet transform) of the filtered detailed coefficients. Finally, this signal is sent to the ECM-based SOC estimation algorithm using an EKF (extended Kalman filter). Experimental results indicate the robustness of the proposed approach for reliable SOC estimation. - Highlights: • Sophisticated data of the experimental DCV is required for high-accuracy SOC. • DWT (discrete wavelet transform)-based denoising technique is newly investigated. • Three steps for denoising a noisy DCV measurement in this work are implemented. • Experimental results indicate the robustness of the proposed work for reliable SOC

  9. Titan interaction with the supersonic solar wind

    CERN Document Server

    Bertucci, C; Kurth, W S; Hospodarsky, G; Mitchell, D; Sergis, N; Edberg, N J T; Dougherty, M K

    2014-01-01

    After 9 years in the Saturn system, the Cassini spacecraft finally observed Titan in the supersonic solar wind. These unique observations reveal that Titan interaction with the solar wind is in many ways similar to un-magnetized planets Mars and Venus in spite of the differences in the properties of the solar plasma in the outer solar system. In particular, Cassini detected a collisionless, supercritical bow shock and a well-defined induced magnetosphere filled with mass-loaded interplanetary magnetic field lines, which drape around Titan ionosphere. Although the flyby altitude may not allow the detection of an ionopause, Cassini reports enhancements of plasma density compatible with plasma clouds or streamers in the flanks of its induced magnetosphere or due to an expansion of the induced magnetosphere. Because of the upstream conditions, these observations are also relevant for unmagnetized bodies in the outer solar system such as Pluto, where kinetic processes are expected to dominate.

  10. Titan's transport-driven methane cycle

    CERN Document Server

    Mitchell, Jonathan L

    2012-01-01

    The strength of Titan's methane cycle, as measured by precipitation and evaporation, is key to interpreting fluvial erosion and other indicators of the surface-atmosphere exchange of liquids. But the mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A gobal- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or $\\sim$0.04 W/m$^2$, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations that allow atmospheric motion indicate a robust methane cycle with substantial cloud formation and/or precipitation. We argue the top-of-atmosphere radiative imbalance -- a readily observable quantity -- is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constr...

  11. First Observations Of Titan With Herschel Spire

    Science.gov (United States)

    Courtin, Regis D.; Swinyard, B. M.; Fulton, T.; Lellouch, E.; Moreno, R.; Hartogh, P.; Jarchow, C.; Rengel, M.; HssO Team

    2010-10-01

    A Titan spectrum was recorded on June 22, 2010 with the SPIRE instrument of the Herschel Space Observatory as part of the guaranteed time key programme "Water and related chemistry in the Solar System" (KP-GT HssO). This initial spectrum, corresponding to an exposure time of 1322s, was designed as a test of the full 10h Titan observation performed on July 16, 2010. It covers the 14.6-51.8 cm-1 interval with a unapodized spectral resolution of 0.04 cm-1. Despite the limited integration time, numerous transitions are detected, notably those of CH4, CO, HCN, and of the isotopologues 13CO, C18O, H13CN, and HC15N. The analysis of this set of observations will provide new determinations of the abundances of these species, and hence new contraints on the isotopic ratios 12C/13C, 14N/15N and 16O/18O in Titan's atmosphere.

  12. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    International Nuclear Information System (INIS)

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or ∼0.04 W m–2, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is ∼0.5-1 W m–2 in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  13. Volatile products controlling Titan's tholins production

    KAUST Repository

    Carrasco, Nathalie

    2012-05-01

    A quantitative agreement between nitrile relative abundances and Titan\\'s atmospheric composition was recently shown with a reactor simulating the global chemistry occurring in Titan\\'s atmosphere (Gautier et al. [2011]. Icarus, 213, 625-635). Here we present a complementary study on the same reactor using an in situ diagnostic of the gas phase composition. Various initial N 2/CH 4 gas mixtures (methane varying from 1% to 10%) are studied, with a monitoring of the methane consumption and of the stable gas neutrals by in situ mass spectrometry. Atomic hydrogen is also measured by optical emission spectroscopy. A positive correlation is found between atomic hydrogen abundance and the inhibition function for aerosol production. This confirms the suspected role of hydrogen as an inhibitor of heterogeneous organic growth processes, as found in Sciamma-O\\'Brien et al. (Sciamma-O\\'Brien et al. [2010]. Icarus, 209, 704-714). The study of the gas phase organic products is focussed on its evolution with the initial methane amount [CH 4] 0 and its comparison with the aerosol production efficiency. We identify a change in the stationary gas phase composition for intermediate methane amounts: below [CH 4] 0=5%, the gas phase composition is mainly dominated by nitrogen-containing species, whereas hydrocarbons are massively produced for [CH 4] 0>5%. This predominance of N-containing species at lower initial methane amount, compared with the maximum gas-to solid conversion observed in Sciamma-O\\'Brien et al. (2010) for identical methane amounts confirms the central role played by N-containing gas-phase compounds to produce tholins. Moreover, two protonated imines (methanimine CH 2NH and ethanamine CH 3CHNH) are detected in the ion composition in agreement with Titan\\'s INMS measurements, and reinforcing the suspected role of these chemical species on aerosol production. © 2012 Elsevier Inc.

  14. Tidal Response of Titan's Lakes and Seas

    Science.gov (United States)

    Karatekin, O.; Demain, C.; Deleersnijder, E.

    2011-12-01

    The Cassini spacecraft has revealed a vast set of lakes/seas filled or partially filled with liquid hydrocarbons and empty lake basins in the high latitudes of Titan. The seas and lakes of Titan provide an opportunity to explore an exciting aqueous environment whose characteristics are very different from what we know on Earth. The lakes appear in various shapes and sizes and are filled with liquid hydrocarbons, primarily methane and ethane. Recently, the Cassini spacecraft provided observations suggesting for the first time temporal variations in lake surfaces. The variation in the shorelines can be explained by different hypothesis including evaporation and tides. During Titan's 16 day orbital period around Saturn, the time-dependent tidal response of the lakes may affect the shorelines. Although the estimated tidal amplitudes by theoretical consideration yield smaller than the observed depth changes on Ontario Lacus, tides can have more significant effects of other lakes/seas with tidal amplitudes up to several meters. In the present study, besides Ontario Lacus we also consider Ligeia Mare, one of three large methane seas discovered by Cassini in the northern hemisphere of Titan and the target for the discovery mission of Titan Mare Explorer (TiME). The tidal response of Titan's lakes an seas are investigated by means of two- dimensional nonlinear shallow water equations The governing partial differential equations on the sphere are solved using SLIM (Second-generation Louvain- la- Neuve Ice-Ocean Model - http://www.climate.be/SLIM). SLIM is a hydrodynamical model based on finite element method. As all general circulation models, it uses primitive variables as prognostic quantities. Partial differential equations are discretized on curved surfaces using triangular meshes. The mesh is generated from recursive subdivisions of the faces of an icosahedron using GMSH software.. The code has a wetting-drying algorithm. The simulations can take into account several

  15. Future Exploration of Titan -Astrobiological Aspects

    Science.gov (United States)

    Lorenz, Ralph

    The only known chemical systems sophisticated enough to execute the functions of life are those made from carbon-based compounds. Saturn's moon Titan presents us with an extensive and rich inventory of complex organics, and is therefore of great astrobiological interest. Astrobiology at Titan has two principal facets. First is the prospect of an internal water ocean (like other icy satellites, albeit perhaps with a higher concentration of ammonia and organics) and related aqueous chemistry that may occur in transient surface exposures of water in impact melt sheets or cryovolcanic flows. The other is chemistry that may occur in the nonpolar solvents ethane and methane that form Titan's polar lakes and seas. The astrobiological potential of the latter systems is essentially unknown, although the environments are more accessible to affordable exploration. Recent studies have identified many mission possibilities within the framework of a Flagship-class mission, including orbiters, landers on (organic) dunefields, landers in lakes, and aerial platforms such as Montgolfiere balloons acting in a coordinated, synergistic manner. However, such a mission is not likely to take place until circa 2030. More modest missions, that might consider one of these elements on a standalone basis, could be considered under PI-led mission categories such as New Frontiers or Discovery. A lake lander, for example, could carry a mass spectrometer to analyze the detailed composition of a lake. Even the earliest of these possibilities, the Titan Mare Explorer (TiME) Discovery proposal presently being considered, would not arrive until 2022-2023. In the meantime, the recent approval by NASA of the Cassini Solstice Mission (until 2017) will enable many new findings at Titan, in particular with regard to Titan's interior, and seasonal changes in its organic lakes.

  16. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  17. Statistics of Titan's South Polar Tropospheric Clouds

    OpenAIRE

    Bouchez, Antonin H.; Brown, Michael E.

    2005-01-01

    We present the first long-term study of the behavior of the sporadically observed tropospheric clouds recently discovered near Titan's south pole. We find that one or more small individual cloud systems is present in the 70°-80° south region during every night of observation. These clouds account for 0.5%-1% of Titan's 2.0 μm flux, consistent with a global cloud cover fraction of 0.2%-0.6%. Clouds observed over multiple-night observing periods remained nearly fixed in brightness and position ...

  18. Discovery of Temperate Latitude Clouds on Titan

    OpenAIRE

    Roe, H. G.; Bouchez, A. H.; Trujillo, C. A.; Schaller, E. L.; Brown, M E

    2005-01-01

    Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by...

  19. Printed Barium Strontium Titanate capacitors on silicon

    International Nuclear Information System (INIS)

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography

  20. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  1. Constraints on Titan rotation from Cassini radar

    Science.gov (United States)

    Bills, B. G.; Stiles, B. W.; Kirk, R. L.

    2014-12-01

    We give an update on efforts to model the rotation of Titan, subject to constraints from Cassini radar observations. The data we are currently using includes 670 tie-points, each of which is a pair of inertial positions of a single surface point, relative to the center of mass of Titan, and the corresponding pair of observation times. The positional accuracy is of order 1 km, in each Cartesian component. A reasonably good fit to the observations is obtained with a simple model which has a fixed spin pole and a rotation rate which is a sum of a constant value and a single sinusoidal oscillation. A better fit is obtained if we insist that Titan should behave as a synchronous rotator, in the dynamical sense of keeping its axis of least inertia oriented toward Saturn. At the level of accuracy required to fit the Cassini radar data, synchronous rotation is notably different than having a uniform rate of rotation. In this case, we need to model time variations in the orbital mean longitude, which is the longitude of periapse, plus the mean anomaly. That angle varies on a wide range of times scales, including Titan's periapse precession period (703 years), Saturn's heliocentric orbital period (29.47 years), perturbations from relatively large satellites Iapetus (79.3 days), and a 4:3 mean motion resonant interaction with Hyperion (640 and 6850 days), and a linear increase at Titan's mean orbital period (15.9455 day). Our rotation model for Titan has 4 free parameters. Two of them specify the orientation of the fixed spin pole, and the other two are the effective free libration period and viscous damping time. Our dynamical model includes a damped forced longitudinal libration, in which gravitational torques attempt to align the axis of least inertia with the instantaneous direction to Saturn. For a rigid tri-axial body, with Titan's moments of inertia, the free oscillation period for longitudinal librations would be 850 days. For a decoupled elastic shell, the effective

  2. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  3. The Titan Mare Explorer Mission (TiME): A Discovery mission to a Titan sea

    Science.gov (United States)

    Stofan, E. R.; Lunine, J. I.; Lorenz, R. D.; Aharonson, O.; Bierhaus, E.; Boldt, J.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Turtle, E.; Waite, H.; Yelland, M.; Zarnecki, J.

    2011-10-01

    The Titan Mare Explorer (TiME) is a Discovery class mission to Titan, and would be the first in situ exploration of an extraterrestrial sea. The mission is one of three recently chosen by NASA for a Phase A study; one mission will be downselected for launch in the summer of 2012. TiME is a lake lander, which would float on the surface of a sea, performing chemical, meteorological and visual observations.

  4. Toxicity of materials used in the manufacture of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  5. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, C.D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  6. Science opportunities at Titan from an aerocaptured Cassini/Huygens follow-on mission

    Science.gov (United States)

    Spilker, T.; Titan Aerocapture Systems Analysis Team

    2003-04-01

    The planetary science community eagerly awaits the first close-up, high-resolution observations of Titan by Cassini/Huygens (C/H). From those observations we expect significant advances in our knowledge of all aspects of Titan, we expect surprises, and the knowledge we gain will allow better optimization of instruments for a follow-on mission. Thus after 2005 we expect strong motivation for a follow-on mission that focuses on Titan. Since late 2000 JPL and other NASA centers have studied options for a Titan-focused C/H follow-on mission. Initial studies in late 2000 and 2001 by a team at JPL (R. Kakuda, team lead) examined post-Cassini/Huygens science objectives, and high-level design parameters of a mission to address those objectives. Though the study concentrated mostly on a Titan orbiter, it included a black-box "in situ element", which could be a simple lander or a balloon, blimp, or some other form of instrumented mobile platform, needing telecommunications relay by the orbiter. In 2002 studies by a team consisting of experts from several NASA centers and lead by M.K. Lockwood of NASA's Langley Research Center, detailed the system design, configuration, and performance of an aerocaptured orbiter that also delivers an in situ element. This team made fairly conservative assumptions concerning materials, equipment, and software, so implementation of its design would not require a huge technology development program. Current and future studies will focus on the in situ element, taking it from a black box with an allocated mass to a system design for the chosen platform, with instruments. This paper will summarize results of the 2002 studies, and describe potential science opportunities and advantages of the aerocaptured mission. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the United States' National Aeronautics and Space Administration, and at multiple NASA Centers.

  7. Titan Mare Explorer (TiME): A Discovery Mission to Titan’s Hydrocarbon Lakes

    Science.gov (United States)

    Lorenz, R. D.; Stofan, E. R.; Lunine, J. I.; Kirk, R. L.; Mahaffy, P. R.; Bierhaus, B.; Aharonson, O.; Clark, B. C.; Kantsiper, B.; Ravine, M. A.; Waite, J. H.; Harri, A.; Griffith, C. A.; Trainer, M. G.

    2009-12-01

    The discovery of lakes in Titan’s high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan’s methane cycle, along with the prebiotic chemistry and implications for habitability of Titan’s lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan’s methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.

  8. Detection of Propene in Titan's Stratosphere

    CERN Document Server

    Nixon, Conor A; Bezard, Bruno; Vinatier, Sandrine; Teanby, Nicholas A; Sung, Keeyoon; Ansty, Todd M; Irwin, Patrick G J; Gorius, Nicolas; Cottini, Valeria; Coustenis, Athena; Flasar, F Michael

    2013-01-01

    The Voyager 1 flyby of Titan in 1980 gave a first glimpse of the chemical complexity of Titan's atmosphere, detecting many new molecules with the infrared spectrometer (IRIS). These included propane (C3H8) and propyne (CH3C2H), while the intermediate-sized C3Hx hydrocarbon (C3H6) was curiously absent. Using spectra from the Composite Infrared Spectrometer (CIRS) on Cassini, we show the first positive detection of propene (C3H6) in Titan's stratosphere (5-sigma significance), finally filling the three-decade gap in the chemical sequence. We retrieve a vertical abundance profile from 100-250 km, that varies slowly with altitude from ~2 ppbv at 100 km, to ~5 ppbv at 200 km. The abundance of C3H6 is less than both C3H8 and CH3C2H, and we remark on an emerging paradigm in Titan's hydrocarbon abundances whereby: alkanes > alkynes > alkenes within the C2Hx and C3Hx chemical families in the lower stratosphere. More generally, there appears to be much greater ubiquity and relative abundance of triple-bonded species th...

  9. Impurities in barium titanate posistor ceramics

    Czech Academy of Sciences Publication Activity Database

    Korniyenko, S. M.; Bykov, I. P.; Glinchuk, M. J.; Laguta, V. V.; Belous, A. G.; Jastrabík, Lubomír

    2000-01-01

    Roč. 239, - (2000), s. 1209-1218. ISSN 0015-0193 Institutional research plan: CEZ:AV0Z1010914 Keywords : barium titanate phase transition * ESR * positive temperature coefficient of resistivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.547, year: 2000

  10. Bismuth titanate ceramics obtained by hot forging

    International Nuclear Information System (INIS)

    In this work, bismuth titanate samples were obtained from powder calcined at 800 deg C for 24 h through conventional sintering (OF) and hot-forging (HF) methods. The plate-like morphology grains were observed in ceramics obtained in both process. Samples produced by HF showed higher grain orientation, ≅ 90%. (author)

  11. Ceria and strontium titanate based electrodes

    DEFF Research Database (Denmark)

    2010-01-01

    A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate, ...

  12. Cassini-Huygens results on Titan's surface

    Institute of Scientific and Technical Information of China (English)

    Athena Coustenis; Mathieu Hirtzig

    2009-01-01

    Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.

  13. Mountains on Titan observed by Cassini Radar

    Science.gov (United States)

    Radebaugh, J.; Lorenz, R.D.; Kirk, R.L.; Lunine, J.I.; Stofan, E.R.; Lopes, R.M.C.; Wall, S.D.

    2007-01-01

    The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term "mountains." Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37?? and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years. ?? 2007 Elsevier Inc. All rights reserved.

  14. Dunes on Titan observed by Cassini Radar

    Science.gov (United States)

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; The Cassini Radar Team

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  15. Cassini-Huygens results on Titan's surface

    International Nuclear Information System (INIS)

    Our understanding of Titan, Saturn's largest satellite, has recently been considerably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In particular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface. (invited reviews)

  16. Evolution of an Early Titan Atmosphere: Comment

    CERN Document Server

    Johnson, Robert E; Volkov, Alexey N

    2015-01-01

    Escape of an early atmosphere from Titan, during which time NH3 could be converted by photolysis into the present N2 dominated atmosphere, is an important problem in planetary science. Recently Gilliam and Lerman (2014) estimated escape driven by the surface temperature and pressure, which we show gave loss rates that are orders of magnitude too large. Their model, related to Jeans escape from an isothermal atmosphere, was used to show that escape driven only by surface heating would deplete the atmospheric inventory of N for a suggested Titan accretion temperature of ~355 K. Therefore, they concluded that the accretion temperature must be lower in order to retain the present Titan atmosphere. Here we show that the near surface atmospheric temperature is essentially irrelevant for determining the atmospheric loss rate from Titan and that escape is predominantly driven by solar heating of the upper atmosphere. We also give a rough estimate of the escape rate in the early solar system (~10^4 kg/s) consistent wi...

  17. Low-Latitude Ethane Rain on Titan

    Science.gov (United States)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  18. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    International Nuclear Information System (INIS)

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations

  19. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frefer, Abdulbaset Ali; Raddad, Bashir S. [Department of Mechanical and Industrial Engineering/Tripoli University, Tripoli (Libya); Abosdell, Alajale M. [Department of Mechanical Engineering/Mergeb University, Garaboli (Libya)

    2013-12-16

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations.

  20. Geomorphology of Titan's Polar Regions

    Science.gov (United States)

    Birch, S. P.; Hayes, A. G., Jr.; Dietrich, W. E.; Malaska, M. J.; Kirk, R. L.; Lucas, A.

    2014-12-01

    Numerous lakes and seas have been observed in Titan's polar regions (Stofan et al., 2007), primarily at the north pole (Hayes et al., 2008), while evidence for channelized fluid flow has been found at all latitudes (Lorenz et al., 2008), though primarily at the poles as well. We construct a geomorphologic map of both poles at latitudes higher than 600 using a combination of the Cassini Synthetic Aperture Radar images along with topographic data in the form of SARTopo (Stiles et al., 2009) and sparsely distributed Digital Terrain Models. Utilizing data from flybys Ta through T98, we define five governing morphologic units: plains, small depressions, large seas, mountains and ridge and valley networks. These units are subdivided according to their radar properties (bright or dark, uniformity), morphologies (degree of dissection, undulation, curvature and organization, regional slope), relative elevations and contact relations. These units are systematically mapped in a repeatable, quantitative manner along with various structural features such as remnant ridges, channels, alluvial fans and scarps. In combining SAR imagery with topographic data, our geomorphic map reveals a stratigraphic sequence from which we can infer processes. We find that the North Pole is dominated by an elevated, radar-dark plains unit, embedded by numerous filled, wet and dry small depressions with a sparse number of channels. The dark-plains unit transitions into a highly dissected radar-bright, lowland unit closer to the mare. A high density of radar-dark remnant ridges, channels and alluvial fans characterizes this unit. The South Pole is markedly different from the North, having far fewer lakes, no large filled seas, larger elevation gradients and a greater number of mountain regions while also being dominated by an organized ridge and valley network. Our work suggests the South Pole is not a drier version of the North. Rather the observed dichotomy between the two poles is likely the

  1. Hydrothermal synthesis map of bismuth titanates

    International Nuclear Information System (INIS)

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO3·2H2O and anatase TiO2 in concentrated NaOH solution at 240 °C is shown to produce perovskite and sillenite phases Na0.5Bi0.5TiO3 and Bi12TiO20, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi1.43Ti2O6(OH)0.29(H2O)0.66 is formed. The use of a mixture of HNO3 and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi4Ti3O12. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi LIII-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO3·2H2O and TiO2 as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: ► NaBiO3 and TiO2 under hydrothermal conditions allow formation of bismuth titanates. ► Synthesis of four distint phases has been mapped. ► Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. ► A new hydrated bismuth titanate pyrochlore has been isolated

  2. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  3. Waves and horizontal structures in Titan's thermosphere

    Science.gov (United States)

    Müller-Wodarg, I. C. F.; Yelle, R. V.; Borggren, N.; Waite, J. H.

    2006-12-01

    The Ion Neutral Mass Spectrometer (INMS) on board the Cassini spacecraft carried out in situ measurements of neutral gas composition above 1025 km altitude in Titan's atmosphere during its flybys in October 2004 (TA) and April 2005 (T5). Strong perturbations are present in the N2 and CH4 densities which we interpret as vertically propagating waves. Typical vertical wavelengths range from 170 to 360 km with density and pressure amplitudes reaching 4-12% of the background values and temperature amplitudes of 5-10 K. Amplitudes over our sampled height range, 1025 (T5) or 1176 (TA) to 1600 km, remain roughly constant, implying that the exponential increase in wave amplitudes with height due to the decrease of density is offset by damping. This finding allows us to constrain the wave periods to values in the order of hours. Estimates of wave-induced acceleration of the background thermosphere suggest that the waves we observe could deposit considerable momentum in Titan's thermosphere, thereby coupling the dynamics of the upper atmosphere with that of the middle atmosphere. In addition, we infer latitudinal structures in Titan's thermosphere with a factor of 3-4 increase of mass densities from pole to equator in the northern hemisphere. A preliminary evaluation of local time variations suggests densities and thermospheric temperatures to be largest near dusk, contradicting expectations for a thermosphere driven energetically and dynamically primarily by solar EUV. From the latitudinal density gradients we derived zonal wind speeds of around 245 ± 50 ms-1, implying that Titan's thermosphere, like its stratosphere, could be superrotating. Our analyses were based on the TA and TS flybys only, and future Cassini Titan flybys could either support or invalidate our findings.

  4. A review of lithium and non-lithium based solid state batteries

    Science.gov (United States)

    Kim, Joo Gon; Son, Byungrak; Mukherjee, Santanu; Schuppert, Nicholas; Bates, Alex; Kwon, Osung; Choi, Moon Jong; Chung, Hyun Yeol; Park, Sam

    2015-05-01

    Conventional lithium-ion liquid-electrolyte batteries are widely used in portable electronic equipment such as laptop computers, cell phones, and electric vehicles; however, they have several drawbacks, including expensive sealing agents and inherent hazards of fire and leakages. All solid state batteries utilize solid state electrolytes to overcome the safety issues of liquid electrolytes. Drawbacks for all-solid state lithium-ion batteries include high resistance at ambient temperatures and design intricacies. This paper is a comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research. The paper exhaustively studies lithium based solid state batteries, as they are the most prevalent, but also considers non-lithium based systems. Non-lithium based solid state batteries are attaining widespread commercial applications, as are also lithium based polymeric solid state electrolytes. Tabular representations and schematic diagrams are provided to underscore the unique characteristics of solid state batteries and their capacity to occupy a niche in the alternative energy sector.

  5. A Comparative Study of Lithium Ion to Lead Acid Batteries for use in UPS Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan;

    2014-01-01

    Uninterruptible power supply (UPS) systems have incorporated in their structure an electrochemical battery which allows for smooth power supply when a power failure occurs. In general, UPS systems are based on lead acid batteries; mainly a valve regulated lead acid (VRLA) battery. Recently, lithium...... ion batteries are getting more and more attention for their use in the back-up power systems and UPSs, because of their superior characteristics, which include increased safety and higher gravimetric and volumetric energy densities. This fact allows them to be smaller in size and weight less than VRLA......, lithium iron phosphate (LFP) and lithium titanate oxide (LTO) were compared with lead acid batteries, in terms of their basics characteristics (e.g. capacity, internal resistance) and their dependence on the operating conditions....

  6. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators

    International Nuclear Information System (INIS)

    Preparatory work on the EU advanced dual coolant (A-DC) blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators has been carried out at the Forschungszentrum Karlsruhe in co-operation with CEA (SiCf/SiC composite-related issues) as a conceptual design proposal to the EU fusion power plant study planned to be launched in 2001 within the framework of the EU fusion programme having the main objective of specifying the characteristics of an attractive and viable commercial D-T fusion power plant. The basic principles and the study method for the A-DC blanket concept are presented in this report. The results of this study show that the A-DC blanket concept has a high potential for further development due to its high thermal efficiency and its simple concept solution

  7. Lithium Battery Power Delivers Electric Vehicles to Market

    Science.gov (United States)

    2008-01-01

    Hybrid Technologies Inc., a manufacturer and marketer of lithium-ion battery electric vehicles, based in Las Vegas, Nevada, and with research and manufacturing facilities in Mooresville, North Carolina, entered into a Space Act Agreement with Kennedy Space Center to determine the utility of lithium-powered fleet vehicles. NASA contributed engineering expertise for the car's advanced battery management system and tested a fleet of zero-emission vehicles on the Kennedy campus. Hybrid Technologies now offers a series of purpose-built lithium electric vehicles dubbed the LiV series, aimed at the urban and commuter environments.

  8. Redox shuttles for safer lithium-ion batteries

    International Nuclear Information System (INIS)

    Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

  9. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  10. Lithium and autophagy.

    Science.gov (United States)

    Motoi, Yumiko; Shimada, Kohei; Ishiguro, Koichi; Hattori, Nobutaka

    2014-06-18

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer's disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington's disease and Parkinson's disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium's autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  11. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    2004-01-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  12. Human Missions to Europa and Titan - Why Not?

    Science.gov (United States)

    Finarelli, Margaret G.

    2004-04-01

    This report describes a long-term development plan to enable human exploration of the outer solar system, with a focus on Europa and Titan. These are two of the most interesting moons of Jupiter and Saturn, respectively, because they are the places in the solar system with the greatest potential for harboring extraterrestrial life. Since human expeditions to these worlds are considered impossible with current capabilities, the proposal of a well-organized sequence of steps towards making this a reality was formulated. The proposed Development Plan, entitled Theseus, is the outcome of a recent multinational study by a group of students in the framework of the Master of Space Studies (MSS) 2004 course at the International Space University (ISU). The Theseus Program includes the necessary development strategies in key scientific and technological areas that are essential for identifying the requirements for the exploration of the outer planetary moons. Some of the topics that are analysed throughout the plan include: scientific observations at Europa and Titan, advanced propulsion and nuclear power systems, in-situ resource utilization, radiation mitigation techniques, closed life support systems, habitation for long-term spaceflight, and artificial gravity. In addition to the scientific and technological aspects of the Theseus Program, it was recognized that before any research and development work may begin, some level of program management must be established. Within this chapter, legal issues, national and international policy, motivation, organization and management, economic considerations, outreach, education, ethics, and social implications are all considered with respect to four possible future scenarios which enable human missions to the outer solar system. The final chapter of the report builds upon the foundations set by Theseus through a case study. This study illustrates how such accomplishments could influence a mission to Europa to search for evidence

  13. Role of fluids in the tectonic evolution of Titan

    Science.gov (United States)

    Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Rupper, Summer

    2016-05-01

    Detailed analyses of slopes and arcuate planform morphologies of Titan's equatorial mountain ridge belts are consistent with formation by contractional tectonism. However, contractional structures in ice require large stresses (4-10 MPa), the sources of which are not likely to exist on Titan. Cassini spacecraft imagery reveals a methane-based hydrological cycle on Titan that likely includes movement of fluids through the subsurface. These crustal liquids may enable contractional tectonic features to form as groundwater has for thrust belts on Earth. In this study, we show that liquid hydrocarbons in Titan's near subsurface can lead to fluid overpressures that facilitate contractional deformation at smaller stresses (reducing the shear strength of materials. Titan's crustal conditions with enhanced pore fluid pressures favor the formation of thrust faults and related folds in a contractional stress field. Thus, surface and near-surface hydrocarbon fluids made stable by a thick atmosphere may play a key role in the tectonic evolution of Titan.

  14. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Libao Chen

    2013-01-01

    Full Text Available Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  15. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Libao Chen; Ming Zhang; Weifeng Wei

    2013-01-01

    Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  16. Remember the Titans: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Rameca Leary

    2013-06-01

    Full Text Available This paper addresses a pivotal time in American history, when a 1971 Supreme Court mandate required southern school districts to end segregation (Daugherity, 2011. In Alexandria, Virginia, the merger of three rival high schools yielded a racially diverse football team and coaching staff. Beforehand, blacks and whites had their own schools. Many wondered how the new T.C. Williams Titans football team would fare. This paper takes an in-depth look at the film, Remember the Titans, which is based on this story. It analyzes the film using Gordon Allport’s (1954 Intergroup Contact Theory to assess how people from different backgrounds interact within group settings. It explores how communication barriers and the absence of knowledge can lead to ignorance. A 21st century legacy is also discussed, including ideas for further research.

  17. Access of energetic particles to Titan's exobase

    Science.gov (United States)

    Regoli, L.; Roussos, E.; Feyerabend, M.; Jones, G.; Krupp, N.; Coates, A.; Simon, S.; Motschmann, U.

    2015-10-01

    In this contribution we use a particle tracing code to trace energetic particles close to Titan in the specific magnetospheric conditions of the Cassini T9 flyby. The particles simulated are H+and O+ions with energies ranging from 1 keV to 1 MeV and the background electromagnetic field is represented by the output of the A.I.K.E.F. hybrid code for that specific flyby. These tools are used to generate 2D maps showing the access of the particles to the moon's exobase and those maps are subsequently used to normalize the fluxes measured by the Cassini MIMI/CHEMS instrument and estimate the energy deposition at specific positions around the moon.With this, we are able to estimate the importance that the asymmetries in the access of particles to the exobase has in the dynamics of Titan's ionosphere.

  18. Titan's Xanadu region: Geomorphology and formation scenario

    Science.gov (United States)

    Langhans, Migrjam; Lunine, Jonathan I.; Mitri, Giuseppe

    2013-04-01

    Based on comprehensive mapping of the region, the recent theories of Xanadu's origin are examined and a chronology of geologic processes is proposed. The geologic history of Titan's Xanadu region is different from that of the other surface units on Saturn's moon. A previously proposed origin of western Xanadu from a giant impact in the early history of the moon is difficult to confirm given the scarcity of morphologic indications of an impact basin. The basic topographic structure of the landscape is controlled by tectonic processes that date back to the early history of Titan. More recently, the surface is intensely reworked and resurfaced by fluvial processes, which seem to have leveled out and compensated height differences. Although the surface age seems young at first view, the underlying processes that created this surface and the topographic structure appear to be ancient.

  19. Remember the Titans: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Rameca Leary

    2013-06-01

    Full Text Available This paper addresses a pivotal time in American history, when a 1971 Supreme Court mandate required southern school districts to end segregation (Daugherity, 2011. In Alexandria, Virginia, the merger of three rival high schools yielded a racially diverse football team and coaching staff. Beforehand, blacks and whites had their own schools. Many wondered how the new T.C. Williams Titans football team would fare. This paper takes an in-depth look at the film, Remember the Titans, which is based on this story. It analyzes the film using Gordon Allport’s (1954 Intergroup Contact Theory to assess how people from different backgrounds interact within group settings. It explores how communication barriers and the absence of knowledge can lead to ignorance. A 21st century legacy is also discussed, including ideas for further research. 

  20. Preparation and structure of titanate nanotubes

    Czech Academy of Sciences Publication Activity Database

    Králová, Daniela; Pavlova, Ewa; Šlouf, Miroslav; Kužel, R.

    2008-01-01

    Roč. 15, č. 1 (2008), s. 41-45. ISSN 1211-5894. [Colloquium of the Czech and Slovak Crystallographic Association (Struktura 2007). Dvůr Králové, 18.06.2007-21.6.2007] R&D Projects: GA ČR GA203/07/0717 Institutional research plan: CEZ:AV0Z40500505 Keywords : TiO2 * titanate nanoparticles * nanotubes Subject RIV: CD - Macromolecular Chemistry

  1. Quantitative evaluation of the aluminium titanate formation

    International Nuclear Information System (INIS)

    Samples of aluminium titanate were obtained under isothermal sintering condition in equimolar Al2 O3 Ti O2 powder mixtures at different soaking time intervals. The formation of Al2 Ti O5 and the effect of Si O2 additive in the reaction and densification were analysed. Quantitative evaluation of Al2 Ti O5 was performed by the Rietveld method and by using an internal standard. Both methods were considered appropriated for the presented purpose. (author)

  2. Wind-Induced Atmospheric Escape: Titan

    Science.gov (United States)

    Hartle, Richard; Johnson, Robert; Sittler, Edward, Jr.; Sarantos, Menelaos; Simpson, David

    2012-01-01

    Rapid thermospheric flows can significantly enhance the estimates of the atmospheric loss rate and the structure of the atmospheric corona of a planetary body. In particular, rapid horizontal flow at the exobase can increase the corresponding constituent escape rate. Here we show that such corrections, for both thermal and non-thermal escape, cannot be ignored when calculating the escape of methane from Titan, for which drastically different rates have been proposed. Such enhancements are also relevant to Pluto and exoplanets.

  3. Big Impacts and Transient Oceans on Titan

    Science.gov (United States)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.

    2014-01-01

    We have studied the thermal consequences of very big impacts on Titan [1]. Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We assume that half of the impact energy is immediately available to the atmosphere and surface while the other half is buried at the site of the crater and is unavailable on time scales of interest. The atmosphere and surface are treated as isothermal. We make the simplifying assumptions that the crust is everywhere as methane saturated as it was at the Huygens landing site, that the concentration of methane in the regolith is the same as it is at the surface, and that the crust is made of water ice. Heat flow into and out of the crust is approximated by step-functions. If the impact is great enough, ice melts. The meltwater oceans cool to the atmosphere conductively through an ice lid while at the base melting their way into the interior, driven down in part through Rayleigh-Taylor instabilities between the dense water and the warm ice. Topography, CO2, and hydrocarbons other than methane are ignored. Methane and ethane clathrate hydrates are discussed quantitatively but not fully incorporated into the model.

  4. Texture in Aluminum Titanate Ceramic Materials

    OpenAIRE

    Schmalzried, C; Kim, J.-W.; Hennicke, H. W.

    1995-01-01

    Dry pressing and filtration of a mixture of platelike corundum and rutile powders shows a slight to sharp texture of the corundum particles. The reaction sintering forming aluminum titanate destroys the texture of the green compact. When starting with a rutile texture in the green compact there exists a texture of tielite in the reaction product. Furthermore we developed a process for production of platelike tielite monocrystalline particles which should be very suited for texturing of the ce...

  5. Scalable descriptive and correlative statistics with Titan.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David C.; Pebay, Philippe Pierre

    2008-12-01

    This report summarizes the existing statistical engines in VTK/Titan and presents the parallel versions thereof which have already been implemented. The ease of use of these parallel engines is illustrated by the means of C++ code snippets. Furthermore, this report justifies the design of these engines with parallel scalability in mind; then, this theoretical property is verified with test runs that demonstrate optimal parallel speed-up with up to 200 processors.

  6. The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first two close encounters with Titan

    OpenAIRE

    Szego, K; Bebesi, Z.; Erdos, G.; L. Foldy; Crary, F.; McComas, D. J.; Young, D. T.; Bolton, S.; Coates, A. J.; A. M. Rymer; Hartle, R. E.; Sittler, E. C.; Reisenfeld, D.; Bethelier, J. J.; Johnson, R. E.

    2005-01-01

    The Cassini spacecraft flew by Titan on October 26, 2004 and December 13, 2004. In both cases it entered the ionosphere of Titan, allowing exploration of its plasma environment. Using observations from the Cassini Plasma Spectrometer (CAPS) and the Cassini magnetometer along the inbound legs of both flybys, we examine Titan's global plasma environment. On both occasions CAPS detected plasma populations distinct from those of the Kronian magnetosphere at about 1 - 1.5 Saturn radii from the moo...

  7. Synthesis and silica coating of calcia-doped ceria/plate-like titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}) nanocomposite by seeded polymerization technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Toni, Ahmed Mohamed [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)]. E-mail: el-toni@mail.tagen.tohoku.ac.jp; Yin, Shu [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Sato, Tsugio [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2007-06-15

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products because of the excellent UV light absorption property and low catalytic ability for the oxidation of organic materials superior to undoped ceria. In order to reduce the oxidation catalytic activity further, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique. Generally, nanoparticles of inorganic materials do not provide a good coverage for human skin because of the agglomeration of the particles. The plate-like particles are required to enhance the coverage ability of inorganic materials. This can be accomplished by synthesis of calcia-doped ceria/plate-like potassium lithium titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}) nanocomposite with subsequent silica coating to control catalytic activity of calcia-doped ceria. Calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was prepared by soft chemical method followed by silica coating via seeded polymerization technique. Silica coated calcia-doped ceria/plate-like potassium lithium titanate nanocomposite was characterized by X-ray diffraction, SEM, TEM, XPS and FT-IR.

  8. Thermal decomposition of bioactive sodium titanate surfaces

    Science.gov (United States)

    Ravelingien, Matthieu; Mullens, Steven; Luyten, Jan; Meynen, Vera; Vinck, Evi; Vervaet, Chris; Remon, Jean Paul

    2009-09-01

    Alkali-treated orthopaedic titanium surfaces have earlier shown to induce apatite deposition. A subsequent heat treatment under air improved the adhesion of the sodium titanate layer but decreased the rate of apatite deposition. Furthermore, insufficient attention was paid to the sensitivity of titanium substrates to oxidation and nitriding during heat treatment under air. Therefore, in the present study, alkali-treated titanium samples were heat-treated under air, argon flow or vacuum. The microstructure and composition of their surfaces were characterized to clarify what mechanism is responsible for inhibiting in vitro calcium phosphate deposition after heat treatment. All heat treatments under various atmospheres turned out to be detrimental for apatite deposition. They led to the thermal decomposition of the dense sodium titanate basis near the interface with the titanium substrate. Depending on the atmosphere, several forms of Ti yO z were formed and Na 2O was sublimated. Consequently, less exchangeable sodium ions remained available. This pointed to the importance of the ion exchange capacity of the sodium titanate layer for in vitro bioactivity.

  9. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    International Nuclear Information System (INIS)

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications

  10. Characterization of clouds in Titan's tropical atmosphere

    Science.gov (United States)

    Griffith, C.A.; Penteado, P.; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Buratti, B.; Clark, R.; Nicholson, P.; Jaumann, R.; Sotin, C.

    2009-01-01

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 ??m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8??-20?? S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape. ?? 2009. The American Astronomical Society.

  11. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  12. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    International Nuclear Information System (INIS)

    The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850 °C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900 °C. The anatase transformation into rutile began only after a longer time of heating at 1000 °C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. - Highlights: • Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850 °C. • With heating time and temperature nanorods transformed to rutile nanoparticles. • X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base. • No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum. • Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires

  13. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    Energy Technology Data Exchange (ETDEWEB)

    Brunatova, Tereza; Matej, Zdenek [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic); Oleynikov, Peter [Stockholm University, Dept. of Materials and Environmental Chemistry, SE-106 91 Stockholm (Sweden); Vesely, Josef [Charles University, Faculty of Mathematics and Physics, Dept. of Physics of Materials, Prague (Czech Republic); Danis, Stanislav [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic); Popelkova, Daniela [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague (Czech Republic); Kuzel, Radomir, E-mail: kuzel@karlov.mff.cuni.cz [Charles University, Faculty of Mathematics and Physics, Dept. of Condensed Matter Physics, Prague (Czech Republic)

    2014-12-15

    The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850 °C decomposed into three phases — Na{sub 2}Ti{sub 6}O{sub 13} (nanorods) and two phases of TiO{sub 2} — anatase and rutile. At higher temperatures the anatase form of TiO{sub 2} transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO{sub 2} were obtained by heating at 900 °C. The anatase transformation into rutile began only after a longer time of heating at 1000 °C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. - Highlights: • Titanate nanotubes changed to particles of TiO{sub 2} and nanorods of Na{sub 2}Ti{sub 6}O{sub 13} at 850 °C. • With heating time and temperature nanorods transformed to rutile nanoparticles. • X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base. • No transition of titanate nanotubes to Na{sub 2}Ti{sub 6}O{sub 13} was found after heating in vacuum. • Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.

  14. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth

    OpenAIRE

    Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi

    2014-01-01

    Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium a...

  15. AVIATR - Aerial Vehicle for In-situ and Airborne Titan Reconnaissance A Titan Airplane Mission Concept

    Science.gov (United States)

    Barnes, Jason W.; Lemke, Lawrence; Foch, Rick; McKay, Christopher P.; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David H.; Lorenz, Ralph D.; LeMouelic, Stephane; Rodriguez, Sebastien; Gundlach, Jay; Giannini, Francesco; Bain, Sean; Flasar, F. Michael; Hurford, Terry; Anderson, Carrie M.; Merrison, Jon; Adamkovics, Mate; Kattenhorn, Simon A.; Mitchell, Jonathan; Burr, Devon M.; Colaprete, Anthony; Schaller, Emily; Friedson, A. James; Edgett, Kenneth S.; Coradini, Angioletta; Adriani, Alberto; Sayanagi, Kunio M.; Malaska, Michael J.; Morabito, David; Reh, Kim

    2011-01-01

    We describe a mission concept for a stand-alone Titan airplane mission: Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR). With independent delivery and direct-to-Earth communications, AVIATR could contribute to Titan science either alone or as part of a sustained Titan Exploration Program. As a focused mission, AVIATR as we have envisioned it would concentrate on the science that an airplane can do best: exploration of Titan's global diversity. We focus on surface geology/hydrology and lower-atmospheric structure and dynamics. With a carefully chosen set of seven instruments-2 near-IR cameras, 1 near-IR spectrometer, a RADAR altimeter, an atmospheric structure suite, a haze sensor, and a raindrop detector-AVIATR could accomplish a significant subset of the scientific objectives of the aerial element of flagship studies. The AVIATR spacecraft stack is composed of a Space Vehicle (SV) for cruise, an Entry Vehicle (EV) for entry and descent, and the Air Vehicle (AV) to fly in Titan's atmosphere. Using an Earth-Jupiter gravity assist trajectory delivers the spacecraft to Titan in 7.5 years, after which the AVIATR AV would operate for a 1-Earth-year nominal mission. We propose a novel 'gravity battery' climb-then-glide strategy to store energy for optimal use during telecommunications sessions. We would optimize our science by using the flexibility of the airplane platform, generating context data and stereo pairs by flying and banking the AV instead of using gimbaled cameras. AVIATR would climb up to 14 km altitude and descend down to 3.5 km altitude once per Earth day, allowing for repeated atmospheric structure and wind measurements all over the globe. An initial Team-X run at JPL priced the AVIATR mission at FY10 $715M based on the rules stipulated in the recent Discovery announcement of opportunity. Hence we find that a standalone Titan airplane mission can achieve important science building on Cassini's discoveries and can likely do so within

  16. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  17. Lithium Phosphate Glasses stabilized with Tungsten Oxide

    Czech Academy of Sciences Publication Activity Database

    Míka, M.; Mladonický, P.; Vondrák, Jiří; Stopka, Pavel; Klápště, Břetislav

    Brno: University of Technology Brno, 2002, s. 50-1-50-4. ISBN 80-214-2082-0. [Advanced Batteries and Accumulators /3./. Brno (CZ), 16.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA4032002; GA ČR GA104/02/0731 Institutional research plan: CEZ:AV0Z4032918 Keywords : lithium phosphate * glass * tungsten oxide Subject RIV: CA - Inorganic Chemistry

  18. Hydrothermal synthesis map of bismuth titanates

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Kripasindhu [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2012-05-15

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO{sub 3}{center_dot}2H{sub 2}O and anatase TiO{sub 2} in concentrated NaOH solution at 240 Degree-Sign C is shown to produce perovskite and sillenite phases Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} and Bi{sub 12}TiO{sub 20}, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi{sub 1.43}Ti{sub 2}O{sub 6}(OH){sub 0.29}(H{sub 2}O){sub 0.66} is formed. The use of a mixture of HNO{sub 3} and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi{sub 4}Ti{sub 3}O{sub 12}. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi L{sub III}-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products. - Graphical abstract: Use of NaBiO{sub 3}{center_dot}2H{sub 2}O and TiO{sub 2} as reagents under hydrothermal conditions allows the phase-pure preparation of four crystalline bismuth titanate materials. Highlights: Black-Right-Pointing-Pointer NaBiO{sub 3} and TiO{sub 2} under hydrothermal conditions allow formation of bismuth titanates. Black-Right-Pointing-Pointer Synthesis of four distint phases has been mapped. Black-Right-Pointing-Pointer Bi LIII-edge XANES shows Bi is reduced to oxidation state +3 in all materials. Black-Right-Pointing-Pointer A new hydrated bismuth titanate pyrochlore has been isolated.

  19. Aromatic Structure in Simulates Titan Aerosol

    Science.gov (United States)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  20. Anodic titania films as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Titania thin films were prepared through the anodisation of titanium metal in a 1.0 M sulphuric acid solution at 80 oC utilising a series of pulsed dc constant currents of increasing magnitude. Films were then tested as a potential anode material for lithium batteries using a variety of techniques. Electrochemical testing revealed that the films (3.8 cm2) offered good rate capabilities affording a constant capacity of 48 μAh for a constant current of 10 μA which decreased to 25 μAh on increasing the current to 1250 μA. Cyclic voltammetry was conducted over a range of scan rates from which capacitive currents were examined and rate constants, transfer coefficients and diffusion coefficients calculated. Electrochemical impedance spectroscopy was conducted over six potentials in the range 0.1-2.7 V with the experimental data successfully modelled using an equivalent circuit with the notation R(Q(RW))C. TEM observation of focussed ion beam milled cross-sections showed significant structural differences between the as-anodised film and those cycled in a lithium battery. Raman spectroscopy showed that the films had an anatase character that transformed into an unidentified lithium-containing, titanate phase on cycling. Based on a film thickness of 100 nm, and assuming density of 4 g cm-3 such films offered a stable capacity of 316 mAh g-1

  1. Interaction of natural survival instincts and internalized social norms exploring the Titanic and Lusitania disasters.

    Science.gov (United States)

    Frey, Bruno S; Savage, David A; Torgler, Benno

    2010-03-16

    To understand human behavior, it is important to know under what conditions people deviate from selfish rationality. This study explores the interaction of natural survival instincts and internalized social norms using data on the sinking of the Titanic and the Lusitania. We show that time pressure appears to be crucial when explaining behavior under extreme conditions of life and death. Even though the two vessels and the composition of their passengers were quite similar, the behavior of the individuals on board was dramatically different. On the Lusitania, selfish behavior dominated (which corresponds to the classical homo economicus); on the Titanic, social norms and social status (class) dominated, which contradicts standard economics. This difference could be attributed to the fact that the Lusitania sank in 18 min, creating a situation in which the short-run flight impulse dominated behavior. On the slowly sinking Titanic (2 h, 40 min), there was time for socially determined behavioral patterns to reemerge. Maritime disasters are traditionally not analyzed in a comparative manner with advanced statistical (econometric) techniques using individual data of the passengers and crew. Knowing human behavior under extreme conditions provides insight into how widely human behavior can vary, depending on differing external conditions. PMID:20194743

  2. Scoping studies: behavior and control of lithium and lithium aerosols

    International Nuclear Information System (INIS)

    The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel

  3. Scoping studies: behavior and control of lithium and lithium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D W

    1982-01-01

    The HEDL scoping studies examining the behavior of lithium and lithium aerosols have been conducted to determine and examine potential safety and environmental issues for postulated accident conditions associated with the use of lithium as a fusion reactor blanket and/or coolant. Liquid lithium reactions with air, nitrogen, carbon dioxide and concretes have been characterized. The effectiveness of various powder extinguishing agents and methods of application were determined for lithium-air reactions. The effectiveness of various lithium aerosol collection methods were determined and the volatilization and transport of radioactive metals potentially associated with lithium-air reactions were evaluated. Liquid lithium atmosphere reactions can be safely controlled under postulated accident conditions, but special handling practices must be provided. Lithium-concrete reactions should be avoided because of the potential production of high temperatures, corrosive environment and hydrogen. Carbon microspheres are effective in extinguishing well established lithium-air reactions for the lithium quantities tested (up to 10 kg). Large mass loading of lithium aerosols can be efficiently collected with conventional air cleaning systems. Potentially radioactive species (cobalt, iron and manganese) will be volatilized in a lithium-air reaction in contact with neutron activated stainless steel.

  4. Lithium and neuroprotection

    OpenAIRE

    2004-01-01

    Neuroprotection can be defined as medical prophylactic and therapeutic intervention aimed at neuronal tissue and function. Hardly any concept of neuroprotection has been convincingly efficient in man thus far. Lithium has been used for the treatment of manic depressive illness for 50 years, but the mechanisms by which this cation exerts its beneficial effects are not yet clear. The last five years several studies have indicated that lithium mediates neuroprotection. In this essay we ...

  5. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  6. Solid-state lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  7. Exfoliation and thermal transformations of Nb-substituted layered titanates

    DEFF Research Database (Denmark)

    Song, H.; Sjåstad, Anja O.; Fjellvåg, Helmer;

    2011-01-01

    Single-layer Nb-substituted titanate nanosheets of ca. 1 nm thickness were obtained by exfoliating tetrabutylammonium (TBA)-intercalated Nb-substituted titanates in water. AFM images and turbidity measurements reveal that the exfoliated nanosheets crack and corrugate when sonicated. Upon heating,...

  8. Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

    Czech Academy of Sciences Publication Activity Database

    Brunátová, T.; Matěj, Z.; Oleynikov, P.; Vesely, J.; Danis, S.; Popelková, Daniela; Kuzel, R.

    2014-01-01

    Roč. 98, December (2014), s. 26-36. ISSN 1044-5803 Institutional support: RVO:61389013 Keywords : titania nanowires * titanate nanorods * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.845, year: 2014

  9. TALISE: Titan Lake In-situ Sampling Propelled Explorer

    Science.gov (United States)

    Urdampilleta, I.; Prieto-Ballesteros, O.; Rebolo, R.; Sancho, J.

    2012-09-01

    Titan is the largest satellite of Saturn System, the only one in the Solar System with a significant atmosphere. About 95% is nitrogen, approximately 3% is methane, and the remaining 2% percent consists of hydrogen, little vapour water, other hydrocarbons, and possibly argon. Hydrocarbons may rain down on the surface, forming enclosed seas, lakes, and ponds. Radar images obtained appear to show lakes of liquid hydrocarbon (such as methane and ethane) in Titan's northern latitudes. The chemical composition of the lakes of Titan is still not well determined. The detection of other compounds and the investigation of influence of both, photochemistry and the atmosphere on the chemical composition of liquids of Titan lakes remain challenging in the absence of in situ measurements. Therefore, it is next step to understand the Titan lakes environment, its relationship with the climate behavior, the surrounding solid substrate and analyze the organic inventory including the possibility of prebiotic compounds.

  10. Charged particle tracking at Titan, and further applications

    Science.gov (United States)

    Bebesi, Zsofia; Erdos, Geza; Szego, Karoly

    2016-04-01

    We use the CAPS ion data of Cassini to investigate the dynamics and origin of Titan's atmospheric ions. We developed a 4th order Runge-Kutta method to calculate particle trajectories in a time reversed scenario. The test particle magnetic field environment imitates the curved magnetic environment in the vicinity of Titan. The minimum variance directions along the S/C trajectory have been calculated for all available Titan flybys, and we assumed a homogeneous field that is perpendicular to the minimum variance direction. Using this method the magnetic field lines have been calculated along the flyby orbits so we could select those observational intervals when Cassini and the upper atmosphere of Titan were magnetically connected. We have also taken the Kronian magnetodisc into consideration, and used different upstream magnetic field approximations depending on whether Titan was located inside of the magnetodisc current sheet, or in the lobe regions. We also discuss the code's applicability to comets.

  11. Simulating Titan's methane cycle with the TitanWRF General Circulation Model

    Science.gov (United States)

    Newman, Claire E.; Richardson, Mark I.; Lian, Yuan; Lee, Christopher

    2016-03-01

    Observations provide increasing evidence of a methane hydrological cycle on Titan. Earth-based and Cassini-based monitoring has produced data on the seasonal variation in cloud activity and location, with clouds being observed at increasingly low latitudes as Titan moved out of southern summer. Lakes are observed at high latitudes, with far larger lakes and greater areal coverage in the northern hemisphere, where some shorelines extend down as far as 50°N. Rainfall at some point in the past is suggested by the pattern of flow features on the surface at the Huygens landing site, while recent rainfall is suggested by surface change. As with the water cycle on Earth, the methane cycle on Titan is both impacted by tropospheric dynamics and likely able to impact this circulation via feedbacks. Here we use the 3D TitanWRF General Circulation Model (GCM) to simulate Titan's methane cycle. In this initial work we use a simple large-scale condensation scheme with latent heat feedbacks and a finite surface reservoir of methane, and focus on large-scale dynamical interactions between the atmospheric circulation and methane, and how these impact seasonal changes and the long term (steady state) behavior of the methane cycle. We note five major conclusions: (1) Condensation and precipitation in the model is sporadic in nature, with interannual variability in its timing and location, but tends to occur in association with both (a) frequent strong polar upwelling during spring and summer in each hemisphere, and (b) the Inter-Tropical Convergence Zone (ITCZ), a region of increased convergence and upwelling due to the seasonally shifting Hadley cells. (2) An active tropospheric methane cycle affects the stratospheric circulation, slightly weakening the stratospheric superrotation produced. (3) Latent heating feedback strongly influences surface and near-surface temperatures, narrowing the latitudinal range of the ITCZ, and changing the distribution - and generally weakening the

  12. Influence of lithium coating on the optics of Doppler backscatter system

    International Nuclear Information System (INIS)

    This paper presents the first investigation of the effect of lithium coating on the optics of Doppler backscattering. A liquid lithium limiter has been applied in the Experimental Advanced Superconducting Tokamak (EAST), and a Doppler backscattering has been installed in the EAST. A parabolic mirror and a flat mirror located in the vacuum vessel are polluted by lithium. An identical optical system of the Doppler backscattering is set up in laboratory. The power distributions of the emission beam after the two mirrors with and without lithium coating (cleaned before and after), are measured at three different distances under four incident frequencies. The results demonstrate that the influence of the lithium coating on the power distributions are very slight, and the Doppler backscattering can work normally under the dosage of lithium during the 2014 EAST campaign

  13. Influence of lithium coating on the optics of Doppler backscatter system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. H.; Liu, A. D., E-mail: lad@ustc.edu.cn; Zhou, C.; Hu, J. Q.; Wang, M. Y.; Yu, C. X.; Liu, W. D.; Li, H.; Lan, T.; Xie, J. L. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    This paper presents the first investigation of the effect of lithium coating on the optics of Doppler backscattering. A liquid lithium limiter has been applied in the Experimental Advanced Superconducting Tokamak (EAST), and a Doppler backscattering has been installed in the EAST. A parabolic mirror and a flat mirror located in the vacuum vessel are polluted by lithium. An identical optical system of the Doppler backscattering is set up in laboratory. The power distributions of the emission beam after the two mirrors with and without lithium coating (cleaned before and after), are measured at three different distances under four incident frequencies. The results demonstrate that the influence of the lithium coating on the power distributions are very slight, and the Doppler backscattering can work normally under the dosage of lithium during the 2014 EAST campaign.

  14. Lithium impacts on the amplitude and period of the molecular circadian clockwork.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo following chronic lithium treatment, and also tracked clock protein dynamics (PER2::Luciferase in vitro in lithium-treated tissue slices/cells. Lithium lengthens period of both the locomotor activity rhythms, as well as the molecular oscillations in the suprachiasmatic nucleus, lung tissues and fibroblast cells. In addition, we also identified significantly elevated PER2::LUC expression and oscillation amplitude in both central and peripheral pacemakers. Elevation of PER2::LUC by lithium was not associated with changes in protein stabilities of PER2, but instead with increased transcription of Per2 gene. Although lithium and GSK3 inhibition showed opposing effects on clock period, they acted in a similar fashion to up-regulate PER2 expression and oscillation amplitude. Collectively, our data have identified a novel amplitude-enhancing effect of lithium on the PER2 protein rhythms in the central and peripheral circadian clockwork, which may involve a GSK3-mediated signalling pathway. These findings may advance our understanding of the therapeutic actions of lithium in Bipolar Disorder or other psychiatric diseases that involve circadian rhythm disruptions.

  15. Cassini UVIS observations of Titan nightglow spectra

    Science.gov (United States)

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; McClintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-12-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range.

  16. Global map of Titan's dune fields

    Science.gov (United States)

    Le Corre, L.; Le Mouélic, S.; Sotin, C.; Barnes, J. W.; Brown, R. H.; Baines, K.; Buratti, B.; Clark, R.; Nicholson, P.

    2008-09-01

    Introduction Methane is the second major constituent of Titan's atmosphere; but it should be totally removed at least in ten million years by photochemistry in the stratosphere and condensation in the troposphere [1]. The first process produces hydrocarbons which form the haze and can condensate onto the surface. The second process causes methane rains on the surface, which carve channels networks. The loss of methane is possibly balanced by outgassing during cryovolcanic event [2]. But hydrocarbons grains deposited onto the surface cannot be recycled. They may be stored in the dunes [3], which were first seen by SAR (Synthetic Aperture Radar) [4]. We focus our study on the mapping of the dune fields in order to determine their global distribution. The aim is to constrain the amount of hydrocarbon material existing in the dunes, and to relate it to the duration of the methane cycle. Data from the Visual and Infrared Mapping Spectrometer (VIMS) and RADAR instruments onboard Cassini spacecraft can be used to map Titan's surface. Infrared images, which are mainly sensitive to composition and grain size, are very complementary to the microwave measurements which depend mainly on roughness and topography. We used spectral criteria after empirical correction of aerosols to map the distribution of heterogeneous units on Titan [5]. These units are compared with SAR images in overlapping regions. Titan's surface mosaics with VIMS VIMS probes the first ten of microns of the ground in seven narrow atmospheric windows in the 0.88 to 5.11 μm wavelength range. We built infrared mosaics with cubes sorted by spatial resolution, by keeping cubes corresponding to favorable observing conditions (incidence, emergence, phase and time exposure). Band ratios were computed and combined in false color composite images (red as 1.59/1.27-μm, green as 2.03/1.27-μm and blue as 1.27/1.08-μm). Band ratios are useful to minimize the effect of illuminating conditions and albedo variations [6

  17. Multiwavelength Studies For Titan's Atmospheric Composition Analysis

    Science.gov (United States)

    Benilan, Yves; Sebbar, E. Es; Fray, N.; Gazeau, M.; Jolly, A.; Schwell, M.; Guillemin, J.

    2009-09-01

    Titan's atmosphere mainly made of nitrogen and methane is rich in organic molecules. Hydrocarbons are formed from the photolytic dissociation of CH4 and nitriles are created by dissociation of N2 followed by reactions with hydrocarbons. In order to understand the physicochemical mechanisms responsible for the evolution of Titan's atmosphere, photochemical models are built. The latter need constrains for vertical profiles of organic compounds from the high thermosphere down to the low stratosphere as well as photodissociation rates. Those profiles over the entire atmosphere can be retrieved from Cassini observations, in particular by limb sounding, coupling infrared and ultraviolet spectroscopy. However, in order to interpret those data obtained by the ultraviolet (UVIS) and infrared (CIRS) spectrometers on board Cassini's spacecraft, precise spectroscopic parameters and their dependence on temperature are needed. We will review the current knowledge in this field of planetary spectroscopy and point out the lack of spectroscopic parameters of already detected species, especially for radiative transfer calculations at low temperature. We will focus our talk on the Cyanogen molecule (C2N2) which has been observed in Titan atmosphere in the FIR domain around 230 cm-1. We will present the latest spectroscopic studies we have performed on this molecule. Those studies cover the entire spectrum from the mid- infrared and to the vacuum ultraviolet. Integrated band intensities have been determined for all bands in the infrared. In the ultraviolet domain, we have determined absolute cross sections from 350 down to 80 nm covering six orders of magnitude absorptions. We will also show how temperature can influence VUV absorption coefficients and the implications on the interpretation of UVIS observations.

  18. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  19. Are Titan's Lakes Liquid-filled?

    OpenAIRE

    L. Mitchell, K.; Paillou, Philippe; W. Stiles, B.; Zebker, H.; Mitri, G.; Lunine, J. I.; Wall, S.; Lorenz, R. D.; M. C. Lopes, R.; Hensley, S.; R. Stofan, E.; L. Kirk, R.; J. Ostro, S.; Paganelli, F.

    2007-01-01

    SAR imagery obtained during Cassini's T16 Titan fly-by revealed numerous radar-dark features at > ~70° N, interpreted to be lakes [1] on the basis of their low radar reflectivity, morphology and consistency with predictions [2]. Later fly-bys revealed more lakes, and also overlapped with previous scenes, facilitating multi-angle, multi-temporal studies, with several more such opportunities over the coming months. Here we introduce our efforts to understand the nature of the lakes using such s...

  20. Scalable k-means statistics with Titan.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David C.; Bennett, Janine C.; Pebay, Philippe Pierre

    2009-11-01

    This report summarizes existing statistical engines in VTK/Titan and presents both the serial and parallel k-means statistics engines. It is a sequel to [PT08], [BPRT09], and [PT09] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, and contingency engines. The ease of use of the new parallel k-means engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the k-means engine.

  1. Rivers on Titan - numerical modelling of sedimentary structures

    Science.gov (United States)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the

  2. Lithium Propellant Purification and Filtration System For LFA and MPD Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium has been proposed as an attractive metal propellant for advanced nuclear-electric propulsion missions in the outer solar system. While it is low molecular...

  3. A Lithium-Air Battery with a High Energy Air Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will advance an efficient and lightweight energy storage device for Oxygen Concentrators by developing a high specific energy lithium-air cell....

  4. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  5. Lithium nephropathy: a case report

    Directory of Open Access Journals (Sweden)

    Raphael Reis Pereira-Silva

    2014-01-01

    Full Text Available Although widely used in the management of bipolar disorder, lithium may cause adverse kidney effects. The importance of the present study is to report the case of a 59-year-old woman who was under regular treatment with lithium for bipolar disorder and whose imaging studies demonstrated the presence of multiple renal microcysts, suggesting lithium nephropathy as main diagnostic hypothesis.

  6. The First Year of Cassini RADAR Observations of Titan

    Science.gov (United States)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  7. PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2011-01-19

    Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), and measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.

  8. Hydrothermal synthesis map of bismuth titanates

    Science.gov (United States)

    Sardar, Kripasindhu; Walton, Richard I.

    2012-05-01

    The hydrothermal synthesis of four bismuth titanate materials from common bismuth and titanium precursors under hydrothermal conditions is described. Reaction of NaBiO3·2H2O and anatase TiO2 in concentrated NaOH solution at 240 °C is shown to produce perovskite and sillenite phases Na0.5Bi0.5TiO3 and Bi12TiO20, depending on the ratio of metal precursors used. When KOH solution is used and a 1:1 ratio of the same precursors, a pyrochlore Bi1.43Ti2O6(OH)0.29(H2O)0.66 is formed. The use of a mixture of HNO3 and NaOH is shown to facilitate the formation of the Aurivillius-type bismuth titanate Bi4Ti3O12. The phases have been isolated separately as phase-pure powders and profile refinement of powder X-ray diffraction data allows comparisons with comparable materials reported in the literature. Analysis of Bi LIII-edge X-ray absorption near edge structure (XANES) spectra of the materials shows the oxidation state of bismuth is +3 in all of the hydrothermally derived products.

  9. Processing ISS Images of Titan's Surface

    Science.gov (United States)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  10. Titan's corona: The contribution of exothermic chemistry

    Science.gov (United States)

    De La Haye, V.; Waite, J. H.; Cravens, T. E.; Nagy, A. F.; Johnson, R. E.; Lebonnois, S.; Robertson, I. P.

    2007-11-01

    The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N 2, CH 4, H, H 2, 3CH 2, CH 3, C 2H 4, C 2H 5, C 2H 6, N( 4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N 2, CH 4, and H 2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N 2 and CH 4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be 8.3×10 Ns and 7.2×10 Cs.

  11. Progress at the TITAN-EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Klawitter, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada and Max Planck Institut für Kernphysik, 69117 Heidelberg (Germany); Alanssari, M.; Frekers, D. [Institut für Kernphysik, Westfälische Wilhelms-Universität, 48149 Münster (Germany); Chowdhury, U.; Gwinner, G. [Department of Physics, University of Manitoba, R3T 2N2, Winnipeg (Canada); Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Leach, K.; Schultz, B. E.; Dilling, J. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 (Canada); López-Urrutia, J. R. Crespo [Max Planck Institut für Kernphysik, 69117 Heidelberg (Germany); Ettenauer, S. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Gallant, A. T.; Macdonald, T. D. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada and Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Lennarz, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada and Institut für Kernphysik, Westfälische Wilhelms-Universität, 48149 Münster (Germany); Simon, M. C. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, 1090 Vienna (Austria); Seeraji, S.; Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby BC, V6T 2A3 (Canada)

    2015-01-09

    Precision mass measurements of short-lived isotopes provide insight into a wide array of physics, including nuclear structure, nucleosynthesis, and tests of the Standard Model. The precision of Penning trap mass spectrometry (PTMS) measurements is limited by the lifetime of the isotopes of interest, but scales proportionally with their charge state q, making highly charged ions attractive for mass measurements of nuclides far from stability. TITAN, TRIUMF's Ion Trap(s) for Atomic and Nuclear science, is currently the only setup in the world coupling an EBIT to a rare isotope facility for the purpose of PTMS. Charge breeding ions for Penning trap mass spectrometry, however, entails specific set of challenges. To make use of its potential, efficiencies have to be high, breeding times have to be short and the ion energy spread has to be small. An overview of the TITAN facility and charge-breeding program is given, current and future developments are highlighted and some selected results are presented.

  12. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.

    Science.gov (United States)

    Shui, Jiang-Lan; Okasinski, John S; Kenesei, Peter; Dobbs, Howard A; Zhao, Dan; Almer, Jonathan D; Liu, Di-Jia

    2013-01-01

    Non-aqueous lithium-air batteries represent the next-generation energy storage devices with very high theoretical capacity. The benefit of lithium-air batteries is based on the assumption that the anodic lithium is completely reversible during the discharge-charge process. Here we report our investigation on the reversibility of the anodic lithium inside of an operating lithium-air battery using spatially and temporally resolved synchrotron X-ray diffraction and three-dimensional micro-tomography technique. A combined electrochemical process is found, consisting of a partial recovery of lithium metal during the charging cycle and a constant accumulation of lithium hydroxide under both charging and discharging conditions. A lithium hydroxide layer forms on the anode separating the lithium metal from the separator. However, numerous microscopic 'tunnels' are also found within the hydroxide layer that provide a pathway to connect the metallic lithium with the electrolyte, enabling sustained ion-transport and battery operation until the total consumption of lithium. PMID:23929396

  13. Mechanically activating formation of layered structured bismuth titanate

    International Nuclear Information System (INIS)

    Bismuth titanate-Bi4Ti3O12 (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi2O2)2+ sheets alternating with (Bi2Ti3O10)2- perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi2O2)2+ layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi2O3 at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements

  14. Alluvial Fan Morphology, distribution and formation on Titan

    Science.gov (United States)

    Birch, S. P. D.; Hayes, A. G.; Howard, A. D.; Moore, J. M.; Radebaugh, J.

    2016-05-01

    Titan is a hydrologically active world, with dozens of alluvial fans that are evidence of sediment transport from high to low elevations. However, the distribution and requirements for the formation of fans on Titan are not well understood. We performed the first global survey of alluvial fans on Titan using Cassini Synthetic Aperture Radar (SAR) data, which cover 61% of Titan's surface. We identified 82 fans with areas ranging from 28 km2 to 27,000 km2. A significant fraction (∼60%) of the fans are restricted to latitudes of ±50-80°, suggesting that fluvial sediment transport may have been concentrated in the near-polar terrains in the geologically recent past. The density of fans is also found to be correlated with the latitudes predicted to have the highest precipitation rates by Titan Global Circulation Models. In equatorial regions, observable fans are not generally found in proximity to dune fields. Such observations suggest that sediment transport in these areas is dominated by aeolian transport mechanisms, though with some degree of recent equatorial fluvial activity. The fan area-drainage area relationship on Titan is more similar to that on Earth than on Mars, suggesting that the fans on Titan are smaller than what may be expected, and that the transport of bedload sediment is limited. We hypothesize that this has led to the development of a coarse gravel-lag deposit over much of Titan's surface. Such a model explains both the morphology of the fans and their latitudinal concentration, yielding insight into the sediment transport regimes that operate across Titan today.

  15. Lithium extractive metallurgy

    International Nuclear Information System (INIS)

    The Nuclear Fusion National Program depends on lithium supplies. Extractive metallurgy development is subordinate to the localization and evaluation of ore resources. Nowadays lithium raw materials usable with present technology consist of pegmatite ore and brine. The Instituto Geologico y Minero Espanol (IGME) found lepidolite, ambligonite and spodrimene in pegmatite ores in different areas of Spain. However, an evaluation of resources has not been made. Different Spanish surface and underground brines are to be sampled and analyzed. If none of these contain significant levels of lithium, the Junta de Energia Nuclear (JEN) will try an agreement with IGME for ENUSA (Empresa Nacional del Uranio, S.A.) to explore pegmatite-ore bodies from different locations. Different work stages, laboratory tests, pilots plants tests and commercial plant, are foreseen, if the deposits are found. (author)

  16. Organic haze on Titan and the early Earth

    OpenAIRE

    Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2006-01-01

    Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH4/N2 atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and e...

  17. Lithium Dinitramide as an Additive in Lithium Power Cells

    Science.gov (United States)

    Gorkovenko, Alexander A.

    2007-01-01

    Lithium dinitramide, LiN(NO2)2 has shown promise as an additive to nonaqueous electrolytes in rechargeable and non-rechargeable lithium-ion-based electrochemical power cells. Such non-aqueous electrolytes consist of lithium salts dissolved in mixtures of organic ethers, esters, carbonates, or acetals. The benefits of adding lithium dinitramide (which is also a lithium salt) include lower irreversible loss of capacity on the first charge/discharge cycle, higher cycle life, lower self-discharge, greater flexibility in selection of electrolyte solvents, and greater charge capacity. The need for a suitable electrolyte additive arises as follows: The metallic lithium in the anode of a lithium-ion-based power cell is so highly reactive that in addition to the desired main electrochemical reaction, it engages in side reactions that cause formation of resistive films and dendrites, which degrade performance as quantified in terms of charge capacity, cycle life, shelf life, first-cycle irreversible capacity loss, specific power, and specific energy. The incidence of side reactions can be reduced through the formation of a solid-electrolyte interface (SEI) a thin film that prevents direct contact between the lithium anode material and the electrolyte. Ideally, an SEI should chemically protect the anode and the electrolyte from each other while exhibiting high conductivity for lithium ions and little or no conductivity for electrons. A suitable additive can act as an SEI promoter. Heretofore, most SEI promotion was thought to derive from organic molecules in electrolyte solutions. In contrast, lithium dinitramide is inorganic. Dinitramide compounds are known as oxidizers in rocket-fuel chemistry and until now, were not known as SEI promoters in battery chemistry. Although the exact reason for the improvement afforded by the addition of lithium dinitramide is not clear, it has been hypothesized that lithium dinitramide competes with other electrolyte constituents to react with

  18. Lithium overdosage and related tests.

    Science.gov (United States)

    Pigatto, Paolo D; Dell'Osso, Bernardo; Guzzi, Gianpaolo

    2016-12-01

    Lithium acts biochemically through the inositol depletion in brain cortex. At low doses, however, it is partly effective and/or ineffective, whereas in high concentrations is toxic. We would like to make one point about this review. In fact, in our view, the patient should be given a support to correct hypernatremia and even sodium levels should be tested serially-along with serum lithium concentrations-because high sodium levels reduce the rate of elimination of lithium. Lithium is mainly a neurotoxicant. Lithium-related central nervous system toxicity as well as the cardiovascular and thyroid changes are most likely due to the cations (Na2 (+) and K(+)) competition. PMID:26753697

  19. Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes

    International Nuclear Information System (INIS)

    Highlights: • Li4Ti5O12 hollow microspheres were prepared by a simple method. • Li4Ti5O12 showed superior electrochemical performance due to the hollow microsphere. • A possible growth mechanism of Li4Ti5O12 hollow microspheres assembled by nanosheets was further expounded. - Abstract: Hierarchical assembly of hollow microstructures is of great scientificity and practical value. In this paper, a hydrothermal synthesis of Li4Ti5O12 hollow microspheres assembled by nanosheets is introduced. Transmission electron microscopy (TEM) image shows that such Li4Ti5O12 microspheres, with sizes of 2 μm in diameter, are composed of a hollow inner cavity and thin outer shell assembled by nanosheets. A possible growth mechanism of the structure is further expounded. The Li4Ti5O12 hollow microspheres calcinated at 700 °C display extremely good electrochemical performance, including high capacity (147.3 mA h g−1 at 3 C), excellent cyclic stability (95.0% capacity retention after 100 cycles at 3 C) and remarkable rate capability (131.3 mA h g−1 at 20 C)

  20. Specific conductivity of PMMA based gel electrolytes containing lithium salts

    Czech Academy of Sciences Publication Activity Database

    Nováček, T.; Vondrák, Jiří; Sedlaříková, M.

    Brno: University of Technology Brno, 2004, s. 58-59. ISBN 80-214-2623-3. [International Conference Advanced Batteries and Accumulators /5/.. Brno (CZ), 13.06.2004-16.06.2004] R&D Projects: GA ČR GA104/02/0731 Institutional research plan: CEZ:AV0Z4032918 Keywords : lithium polymer electrolytes Subject RIV: CA - Inorganic Chemistry

  1. Aerosols optical propertites in Titan's Detached Haze Layer

    Science.gov (United States)

    Seignovert, Benoît; Rannou, Pascal; Lavvas, Panayotis; Cours, Thibaud; West, Robert A.

    2016-06-01

    Titan's Detached Haze Layer (DHL) first observed in 1983 by Rages and Pollack during the Voyager 2 [1] is a consistent spherical haze feature surrounding Titan's upper atmosphere and detached from the main haze. Since 2005, the Imaging Science Subsystem (ISS) instrument on board the Cassini mission performs a continuous survey of the Titan's atmosphere and confirmed its persistence at 500 km up to the equinox (2009) before its drop and disappearance in 2012 [2]. Previous analyses showed, that this layer corresponds to the transition area between small spherical aerosols and large fractal aggregates and play a key role in the aerosols formation in Titan's atmosphere [3-5]. In this study we perform UV photometric analyses on ISS observations taken from 2005 to 2007 based on radiative transfer inversion to retrieve aerosols particles properties in the DHL (bulk and monomer size, fractal dimension and local density).

  2. HST observations of the limb polarization of Titan

    CERN Document Server

    Bazzon, Andreas; Buenzli, Esther

    2014-01-01

    Titan is an excellent test case for detailed studies of the scattering polarization from thick hazy atmospheres. We present the first limb polarization measurements of Titan, which are compared as a test to our limb polarization models. Previously unpublished imaging polarimetry from the HST archive is presented which resolves the disk of Titan. We determine flux-weighted averages of the limb polarization and radial limb polarization profiles, and investigate the degradation and cancelation effects in the polarization signal due to the limited spatial resolution of our observations. Taking this into account we derive corrected values for the limb polarization in Titan. The results are compared with limb polarization models, using atmosphere and haze scattering parameters from the literature. In the wavelength bands between 250 nm and 2000 nm a strong limb polarization of about 2-7 % is detected with a position angle perpendicular to the limb. The fractional polarization is highest around 1 micron. As a first ...

  3. Titan Submarine: Exploring the Depths of Kraken Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Titan is unique in the outer solar system in that it is the only one of the bodies outside the Earth with liquid lakes and seas on its surface. The Titanian seas,...

  4. Morphology of river deltas on Titan and Earth

    Science.gov (United States)

    Witek, Piotr; Czechowski, Leszek

    2016-07-01

    The Cassini-Huygens mission is entering its final phase. The landing of Huygens on Titan and flybys performed by the Cassini probe during the last ten years revolutionized our knowledge about that moon, revealing a complex fluvio-lacustrine environment. Despite significant differences in composition, temperature and gravity, the processes of sediment transport and deposition are similar on Earth and Titan. We performed numerical simulations of development of river deltas in Titanian and terrestrial conditions, under various discharges and with different dominant grain sizes. We found that evolution of deltaic deposits is more rapid on Titan due to higher efficiency of transport, but the flat, lobate river deltas may form in narrower range of parameters than on Earth. Our results help in understanding the evolution of sedimentary deposits and may partially explain the paucity of river deltas in Titan's lakes.

  5. Low Permeation Envelope Material Development for Titan Aerobot Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerobot vehicles for missions on Titan require envelope materials that are strong, light and durable. Unlike terrestrial balloon materials, these must be able to...

  6. Phase IV Simulant Testing of Monosodium Titanate Adsorption Kinetics

    International Nuclear Information System (INIS)

    The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk in several of the processing alternatives selected for additional evaluation in Phase III of their effort

  7. Low Permeation Envelope Material Development for Titan Aerobot Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerobot vehicles for missions on Titan require envelope materials that are strong, light and durable. In particular they must be able to withstand flexing at liquid...

  8. The influence of Titan on Saturn kilometric radiation

    Directory of Open Access Journals (Sweden)

    J. D. Menietti

    2010-02-01

    Full Text Available Previous studies have shown that the occurrence probability of Saturn Kilometric Radiation (SKR appears to be influenced by the local time of Titan. Using a more extensive set of data than the original study, we confirm the correlation of higher occurrence probability of SKR when Titan is located near local midnight. In addition, the direction finding capability of the Cassini Radio Plasma Wave instrument (RPWS is used to determine if this radio emission emanates from particular source regions. We find that most source regions of SKR are located in the mid-morning sector of local time even when Titan is located near midnight. However, some emission does appear to have a source in the Saturnian nightside, consistent with electron precipitation from field lines that have recently mapped to near Titan.

  9. Amphibious Quadcopter Swarm for the Exploration of Titan

    Science.gov (United States)

    Rajguru, A.; Faler, A. C.; Franz, B.

    2014-06-01

    This is a proposal for a low mass and cost effective mission architecture consisting of an amphibious quadcopter swarm flight vehicle system for the exploration of Titan's liquid methane lake, Ligeia Mare. The paper focuses on the EDL and operations.

  10. A New Titan Atmospheric Model for Mission Engineering Applications

    Science.gov (United States)

    Waite, J. H.; Bell, J. M.; Lorenz, R.; Achterberg, R.; Flasar, F. M.

    2012-03-01

    Titan’s polar regions and hydrocarbon lakes are of interest for future exploration. This paper describes a new engineering model of Titan’s atmospheric structure with particular reference to the proposed Titan Mare Explorer mission.

  11. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  12. Neptune and Titan Observed with Keck Telescope Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Max, C.E.; Macintosh, B.A.; Gibbard, S.; Gavel, D.T.; Roe, H.; De Pater, I.; Ghez, A.M.; Acton, S.; Wizinowich, P.L.; Lai, O.

    2000-05-05

    The authors report on observations taken during engineering science validation time using the new adaptive optics system at the 10-m Keck II Telescope. They observe Neptune and Titan at near-infrared wavelengths. These objects are ideal for adaptive optics imaging because they are bright and small, yet have many diffraction-limited resolution elements across their disks. In addition Neptune and Titan have prominent physical features, some of which change markedly with time. They have observed infrared-bright storms on Neptune, and very low-albedo surface regions on Titan, Saturn's largest moon, Spatial resolution on Neptune and Titan was 0.05-0.06 and 0.04-0.05 arc sec, respectively.

  13. The structure of Titan's wake from plasma wave observations

    Science.gov (United States)

    Gurnett, D. A.; Kurth, W. S.; Scarf, F. L.

    1982-01-01

    The electron density profile inferred from plasma wave emissions detected during the Voyager 1 flyby of Titan exhibits three distinct peaks with densities of about 40/cu cm, the first peak corresponding to the entry into the magnetic tail, the second corresponding to the neutral sheet crossing from the northern to the southern tail lobe, and the third corresponding to the outbound exit from the tail. Large depressions in the magnetic field strength are observed coincident with each of the density peaks, indicating that a dense plume of plasma is being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn. The 8600 K plasma temperature estimated suggests that the plasma originates from the ionosphere of Titan, probably forming a plasma plume with a theta or H cross section extending downstream from Titan.

  14. Bioavailability of lithium from lithium citrate syrup versus conventional lithium carbonate tablets.

    Science.gov (United States)

    Guelen, P J; Janssen, T J; De Witte, T C; Vree, T B; Benson, K

    1992-10-01

    The bioavailability of lithium citrate syrup was compared with that of regular lithium carbonate tablets in 18 healthy male human volunteers. Blood samples were collected up to 48 h after dosing. Lithium serum concentrations were determined by means of AAS. The absorption rate following oral administration of the syrup was greater (tmax 0.8 h) than following administration of regular tablets (tmax 1.4 h). Maximum lithium serum concentrations, however, were only about 10 per cent higher after syrup dosing and serum concentrations resulting from syrup and tablets were almost superimposable from 2 h after dosing. The terminal half-life of lithium was found to be 22 h after syrup as well as after tablet dosing. No side-effects were observed during the study. The bioavailability of lithium from syrup relative to tablets was found to be bioequivalent with respect to the maximum lithium serum concentration and the extent of drug absorption (AUC). PMID:1489941

  15. Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO₂ nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties.

    Science.gov (United States)

    Wang, Hongkang; Xi, Liujiang; Tucek, Jiri; Zhan, Yawen; Hung, Tak Fu; Kershaw, Stephen V; Zboril, Radek; Chung, C Y; Rogach, Andrey L

    2013-10-01

    Hierarchical assembly of Ti(IV)/Sn(II)-doped SnO₂ nanosheets along titanate nanowires serving as both sacrificial templates and a Ti(IV) source is demonstrated, using SnCl2 as a tin precursor and Sn(II) dopants and NaF as the morphology controlling agent. Excess fluoride inhibits the hydrolysis of SnCl2, promoting heterogeneous nucleation of Sn(II)-doped SnO₂ on the titanate nanowires due to the insufficient oxidization of Sn(II) to Sn(IV). Simultaneously, titanate nanowires are dissolved forming Ti(4+) species under the etching effect of in situ generated HF resulting in spontaneous Ti(4+) ion doping of SnO₂ nanosheets formed under hydrothermal conditions. Compositional analysis indicates that Ti(4+) ions are incorporated by substitution of Sn sites at a high level (16-18 at.%), with uniform distribution and no phase separation. Mössbauer spectroscopy quantified the relative content of Sn(II) and Sn(IV) in both Sn(II)-doped and Ti(IV)/Sn(II) co-doped SnO₂ samples. Electrochemical properties were investigated as an anode material in lithium ion batteries, demonstrating that Ti-doped SnO₂ nanosheets show improved cycle performance, which is attributed to the alleviation of inherent volume expansion of the SnO₂-based anode materials by substituting part of Sn sites with Ti dopants. PMID:23904051

  16. A Numerical Study of Micrometeoroids Entering Titan's Atmosphere

    Science.gov (United States)

    Templeton, M.; Kress, M. E.

    2011-01-01

    A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different

  17. Synthesis of lithium ceramics

    International Nuclear Information System (INIS)

    In this work, lithium silicates were synthesised by the combustion technique, the mixtures were prepared with different molar ratios and using urea as fuel. Its characterization was realized by means of X-ray diffraction (XRD) and the percentages of its sizes were determined measuring the area under curve of the peaks in the diffractogram. (Author)

  18. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Florian, E-mail: florian.endres@ltm.uni-erlangen.de; Steinmann, Paul, E-mail: paul.steinmann@ltm.uni-erlangen.de [Department of Mechanical Engineering, University of Erlangen - Nuremberg, Paul-Gordan Str. 3, 91052 Erlangen (Germany)

    2016-01-14

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.

  19. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    International Nuclear Information System (INIS)

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains

  20. Size effects of 109° domain walls in rhombohedral barium titanate single crystals—A molecular statics analysis

    Science.gov (United States)

    Endres, Florian; Steinmann, Paul

    2016-01-01

    Ferroelectric functional materials are of great interest in science and technology due to their electromechanically coupled material properties. Therefore, ferroelectrics, such as barium titanate, are modeled and simulated at the continuum scale as well as at the atomistic scale. Due to recent advancements in related manufacturing technologies the modeling and simulation of smart materials at the nanometer length scale is getting more important not only to predict but also fundamentally understand the complex material behavior of such materials. In this study, we analyze the size effects of 109° nanodomain walls in ferroelectric barium titanate single crystals in the rhombohedral phase using a recently proposed extended molecular statics algorithm. We study the impact of domain thicknesses on the spontaneous polarization, the coercive field, and the lattice constants. Moreover, we discuss how the electromechanical coupling of an applied electric field and the introduced strain in the converse piezoelectric effect is affected by the thickness of nanodomains.

  1. Novel thermal expansion of lead titanate

    Institute of Scientific and Technical Information of China (English)

    XING Xianran; DENG Jinxia; CHEN Jun; LIU Guirong

    2003-01-01

    Lattice parameters of lead titanate were precisely re-determined in the ternperature range of-150-950℃ by high precision XRPD measurements. It was clarified that there was no any evidence for a new phase transition at low temperatures. Tetragonal distortion strain decreases with temperature increasing. A novel thermal expansion was observed, positive thermal expansion from-150℃ to room temperature (RT) and above 490℃, and the negative thermal expansion in the temperature range of RT-490℃. A big jump of thermal expansion coefficient is attributed to the tetragonal-cubic phase transition. A rationalization for the negative thermal expansion of PbTiO3 is due to the decrease of anion-anion repulsion as polyhedra become more regular at heating. The mechanisms of positive and negative thermal expansions were elucidated as the same nature in the homogenous tetragonal phase at present case.

  2. Hydrothermal synthesis of sodium titanate nanotubes

    International Nuclear Information System (INIS)

    From suspension of nanoparticles TiO2 in concentrated water solution of NaOH were prepared by hydrothermal synthesis sodium titanates particles with different shapes. Influence of synthesis duration under temperature 180 grad C on the change of particles shapes was observed. The result of experiment showed that one day synthesis resulted to obtained product with high content of nanotubes, but the extension of this period led to the transformation of product's shape into stripes. From the results of experiment follows that as a precursor for TiO2 nanotubes preparation may be used only products of hydrothermal synthesis, which duration of pressure synthesis was not longer than 24 hours. (authors)

  3. Polar state in freestanding strontium titanate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, Trevor A., E-mail: tyson@njit.edu, E-mail: sswong@bnl.gov, E-mail: Stanislaus.wong@stonybrook.edu; Yu, Tian [Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States); Croft, Mark [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Scofield, Megan E.; Bobb-Semple, Dara [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Tao, Jing [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Jaye, Cherno; Fischer, Daniel [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Wong, Stanislaus S., E-mail: tyson@njit.edu, E-mail: sswong@bnl.gov, E-mail: Stanislaus.wong@stonybrook.edu [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-09-01

    Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that ∼10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (possibly with ferroelectric properties) over a broad temperature range. A tetragonal structure, with possible reduction of the electronic hybridization, is found as the particle size is reduced. In the 10 nm particles, no change in the local Ti-off centering is seen between 20 and 300 K. The results indicate that nanoscale motifs of SrTiO{sub 3} may be utilized in data storage as assembled nano-particle arrays in applications where chemical stability, temperature stability, and low toxicity are critical issues.

  4. Investigation of sintering kinetics of magnesium titanate

    Directory of Open Access Journals (Sweden)

    Petrović V.V.

    2013-01-01

    Full Text Available Obtaining new materials including sintered electronic materials using different procedures is the consequence of long complex and expensive experimental work. However, the dynamics of expansive development of electronic devices requires fast development of new materials, especially sintered oxide materials. The recent rapid development of electronics is among other things due to development and improvement of new components based on titanate ceramics. Research in this work has included an experimental study of the synthesis of dielectric ceramics in the system MgCO3 - TiO2. Starting powders were mechanically activated by milling in a high energy planetary mill for different times. Samples were prepared for isothermal sintering at 1100ºC by dual pressing of powders into cylindrical samples in a hydraulic press.

  5. Thermal expansion in lead zirconate titanate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The volume anomalies with temperature variations in tin-modified lead zirconate titanate ceramics are investigated. Experimental results show that the volume changes are related to the phase transitions induced with temperature. The magnitude and orientation of crystal volume changes are dependent on the particular phase transition. When antiferroelectrics is transformed to ferroelectrics or paraelectrics the volume expands. Oppositely when ferroelectrics is transformed to antiferroelectrics or paraelectrics the volume contracts. In the transition of antiferroelectric orthorhombic structure to tetragonal structure or ferroelectric low-temperature rhombohedral structure to high-tem- perature rhombohedral structure, there are also revealed apparent anomalies in the curves of thermal expansion. Among them, the volume strain caused by the transition between antiferroelectrics and ferroelectrics is the biggest in magnitude, and the linear expansion dL/L0 and the expansion coefficient (dL/L0)/dT can reach 2.810?3 and 7.5 × 10?4 K?1 respectively.

  6. Chemical evolution on the giant planets and Titan

    Science.gov (United States)

    Caldwell, J.; Owen, T.

    1984-01-01

    The atmospheres of Jupiter, Saturn, Neptune and Uranus, and Titan are characterized chemically in a review of recent observational and theoretical investigations. Compositions are indicated in tables, and special emphasis is given to the formation of HCN on Jupiter, the differentiation of polar and equatorial zones in the Jovian atmosphere, the mechanisms responsible for the color of the Great Red Spot, and the possible origin of the N2-dominated atmosphere of Titan.

  7. Plasma environment of Titan: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-05-01

    Full Text Available Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.

  8. Earth-Based Support for the Titan Saturn System Mission

    Science.gov (United States)

    Coustenis, Athena; Lunine, Jonathan; Lebreton, Jean-Pierre; Matson, Dennis; Erd, Christian; Reh, Kim; Beauchamp, Patricia; Lorenz, Ralph; Waite, Hunter; Sotin, Christophe; Gurvits, Leonid; Hirtzig, Mathieu

    2009-09-01

    The Titan Saturn System Mission (TSSM) concept is composed of a TSSM orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the probe/lake lander. One overarching goal of TSSM is to explore in situ the atmosphere and surface of Titan. The mission has been prioritized as the second Outer Planets Flagship Mission, the first one being the Europa Jupiter System Mission (EJSM). TSSM would launch around 2023-2025 arriving at Saturn 9 years later followed by a 4-year science mission in the Saturn system. Following delivery of the in situ elements to Titan, the TSSM orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys before entering into a dedicated orbit around Titan. The Titan montgolfière aerial vehicle under consideration will circumnavigate Titan at a latitude of ~20° and at altitudes of ~10 km for a minimum of 6 months. The probe/lake lander will descend through Titan’s atmosphere and land on the liquid surface of Kraken Mare (~75° north latitude). As for any planetary space science mission, and based on the Cassini-Huygens experience, Earth-based observations will be synergistic and enable scientific optimization of the return of such a mission. Some specific examples of how this can be achieved (through VLBI and Doppler tracking, continuous monitoring of atmospheric and surface features, and Direct-to-Earth transmission) are described in this paper.

  9. Plasma-ion Induced Sputtering and Heating of Titan's Atmosphere

    Science.gov (United States)

    Johnson, R. E.; Tucker, O. J.

    2007-05-01

    Titan is unique among the outer solar system icy satellites in having an atmosphere with a column density about ten times that of the Earth's atmosphere and an atmospheric mass to solid mass ratio comparable to that of Venus. Atmospheres equivalent in size to that at Titan would have been removed from the icy Galilean satellites by the plasma trapped in the Jovian magnetosphere (Johnson 2004). Therefore, the use of Cassini data to determine the present erosion rate of Titan's atmosphere provides an important end point for studying the erosion and heating of planetary and satellite atmospheres by an ambient plasma. In this paper we describe the deposition of energy, the erosion and the expansion of the upper atmosphere of Titan using Direct Simulation Monte Carlo models (Shematovich et al. 2003; Michael et al. 2005; Michael and Johnson 2005). These calculations are used to calibrate semi-empirical models of atmospheric sputtering (Johnson 1994) that are used to interpret Cassini data at Titan. Using a number of plasma conditions, the temperature and density vs. altitude above the exobase and the rate of escape are calculated. References: Johnson, R.E. "Plasma-induced Sputtering of an Atmosphere" in Space Science Reviews 69 215-253 (1994). Johnson. R.E., " The magnetospheric plasmadriven evolution of satellite atmospheres" Astrophys. J. 609, L99-L102 (2004). Michael, M. and R.E. Johnson, "Energy deposition of pickup ions and heating of Titan's atmosphere", Planetary & Space Sci.53, 1510-1514 (2005). Michael M., R.E. Johnson, F. Leblanc, M. Liu, J.G. Luhmann, and V.I. Shematovich, "Ejection of nitrogen from Titan's atmosphere by magnetospheric ions and pick-up ions", Icarus 175, 263-267 (2005). Shematovich, V.I., R.E. Johnson, M. Michael, and J.G. Luhmann, "Nitrogen loss from Titan", JGR 108, No. E8, 5087, doi:10.1029/2003JE002094 (2003).

  10. Piezoelectric bismuth titanate ceramics for high temperature applications

    OpenAIRE

    Shulman, Holly Sue; Setter, Nava

    2005-01-01

    Bismuth titanate (Bi4Ti3O12) shows promise in piezoelectric applications in a temperature range (300-600 °C) which is not well served by standard piezoelectric ceramics. The proposal to use bismuth titanate ceramics for these applications has a major flaw, namely that the high electrical conductivity precludes the efficient polarization of these materials in an electric field. The degree of polarization is critical since it is directly related to the piezoelectric response. In addition, once ...

  11. Three-Dimensional Views of Titan

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Cassini RADAR Team

    2009-04-01

    By the end of its four-year prime mission, Cassini obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys, with ~2% of the surface imaged two or more times. Most image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. Our first step toward extracting quantitative topographic information was our development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically adjustment of the spacecraft trajectories before mapping. The stereo coverage includes a large portion of Titan's north polar lake country, a continuous traverse of high resolution data from the lakes to mid-southern latitudes, and widely distributed smaller areas (more than 20 in all). Many of these areas are viewed and illuminated from very different directions, making image matching difficult, but we find that is possible to produce digital topographic models (DTMs) even from opposite-side image pairs by a combination of automatic image matching and interactive editing. We are collecting DTMs of all usable image pairs and will present the most interesting results. The first six areas mapped may be summarized as follows. T25-T28-T29 We have mapped the 200x100 km overlap between the T25 and T28 images, covering parts of Titan's largest north polar sea, Kraken Mare. The most basic discovery is that the darkest areas occupy the topographic lows, consistent

  12. Lithium ion battery production

    International Nuclear Information System (INIS)

    Highlights: ► Sustainable battery manufacturing focus on more efficient methods and recycling. ► Temperature control and battery management system increase battery lifetime. ► Focus on increasing battery performance at low- and high temperatures. ► Production capacity of 100 MWh equals the need of 3000 full-electric cars. - Abstract: Recently, new materials and chemistry for lithium ion batteries have been developed. There is a great emphasis on electrification in the transport sector replacing part of motor powered engines with battery powered applications. There are plans both to increase energy efficiency and to reduce the overall need for consumption of non-renewable liquid fuels. Even more significant applications are dependent on energy storage. Materials needed for battery applications require specially made high quality products. Diminishing amounts of easily minable metal ores increase the consumption of separation and purification energy and chemicals. The metals are likely to be increasingly difficult to process. Iron, manganese, lead, zinc, lithium, aluminium, and nickel are still relatively abundant but many metals like cobalt and rare earths are becoming limited resources more rapidly. The global capacity of industrial-scale production of larger lithium ion battery cells may become a limiting factor in the near future if plans for even partial electrification of vehicles or energy storage visions are realized. The energy capacity needed is huge and one has to be reminded that in terms of cars for example production of 100 MWh equals the need of 3000 full-electric cars. Consequently annual production capacity of 106 cars requires 100 factories each with a 300 MWh capacity. Present day lithium ion batteries have limitations but significant improvements have been achieved recently . The main challenges of lithium ion batteries are related to material deterioration, operating temperatures, energy and power output, and lifetime. Increased lifetime

  13. Fluvial erosion as a mechanism for crater modification on Titan

    Science.gov (United States)

    Neish, C. D.; Molaro, J. L.; Lora, J. M.; Howard, A. D.; Kirk, R. L.; Schenk, P.; Bray, V. J.; Lorenz, R. D.

    2016-05-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan's crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan's drier equatorial regions.

  14. A Survey of Titan Balloon Concepts and Technology Status

    Science.gov (United States)

    Hall, Jeffery L.

    2011-01-01

    This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.

  15. Tracing of energetic particles in the vicinity of Titan

    Science.gov (United States)

    Regoli, Leonardo; Jones, Geraint; Krupp, Norbert; Coates, Andrew; Roussos, Elias; Kotova, Anna; Feyerabend, Moritz

    2014-05-01

    We present results from the application of a particle tracing software specifically developed to study the interaction of Titan with the surrounding magnetospheric plasma. By combining the output of hybrid plasma code simulations with the tracing software itself, we aim to further study the different ionization processes occurring at Titan with special emphasis on the role played by energetic ions and electrons. The tracing software is used to simulate the trajectories of particles entering the Titan environment from different positions with energy ranges similar to those observed by the Cassini MIMI/LEMMS detector and with different pitch angle distributions and thus be able to estimate the amount of particles that interact with the moon's atmosphere and those that escape the system due to magnetic and electric field perturbations or charge-exchange with the high-altitude exosphere. Additionally, a comparison of the results obtained with the observational data available from the CAPS, and MIMI instruments allows us to validate the results of the tracing software for those regions of Titan not sampled by Cassini at a given flyby. For this initial study, we show the first maps of allowed energetic electron and ion access (as a function of energy) at Titan's exobase, when magnetic and electric field disturbances in a reference Titan interaction region are considered. Similar maps will be used as input for ionization and energy deposition calculation in future steps of this project.

  16. Direct hydrothermal synthesis and magnetic property of titanate nanotubes doped magnetic metal ions

    Institute of Scientific and Technical Information of China (English)

    Meili Wang; Gongbao Song; Jian Li; Landong Miao; Baoshu Zhang

    2008-01-01

    Pure titanate nanotubes and titanate nanotubes doped with Fe3+/Ni2+/Mn2+ ions were synthesized by the hydrothermal method. In this process, titanate nanotubes were first prepared synchronously with doping Fe3+/Ni2+/Mn2+ ions. The morphology,structure, thermal stability and magnetic property of titanate nanotubes were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and magnetic measurement. The titanate nanotubes transformed into the anatase titania nanocrystals,and further the mixture of anatase and rutile titania along with increasing temperature. The results indicate that the titanate nanotubes doped with Fe3+/Ni2+/Mn2+ ions are paramagnetic behaviors.

  17. Lithium availability and future production outlooks

    OpenAIRE

    Vikström, Hanna; Davidsson, Simon; Höök, Mikael

    2013-01-01

    Lithium is a highly interesting metal, in part due to the increasing interest in lithium-ion batteries. Several recent studies have used different methods to estimate whether the lithium production can meet an increasing demand, especially from the transport sector, where lithium-ion batteries are the most likely technology for electric cars. The reserve and resource estimates of lithium vary greatly between different studies and the question whether the annual production rates of lithium can...

  18. Reversible Lithium Neurotoxicity: Review of the Literature

    OpenAIRE

    Netto, Ivan; Phutane, Vivek H

    2012-01-01

    Objective: Lithium neurotoxicity may be reversible or irreversible. Reversible lithium neurotoxicity has been defined as cases of lithium neurotoxicity in which patients recovered without any permanent neurologic sequelae, even after 2 months of an episode of lithium toxicity. Cases of reversible lithium neurotoxicity differ in clinical presentation from those of irreversible lithium neurotoxicity and have important implications in clinical practice. This review aims to study the clinical pre...

  19. Electrodeposition of Lithium from Lithium-Containing Solvate Ionic Liquids

    OpenAIRE

    Vanhoutte, Gijs; Brooks, Neil R.; Schaltin, Stijn; Opperdoes, Bastiaan; Van Meervelt, Luc; Locquet, Jean-Pierre; Vereecken, Philippe M.; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Lithium-containing solvate ionic liquids [Li(L)n][X], with ligands L = 1,2-dimethoxyethane (G1, monoglyme) or 1-methoxy-2-(2-methoxyethyl)ether (G2, diglyme) (with n = 1, 2 or 3) and with anions X = bis(trifluoromethylsulfonyl)imide (Tf2N–), bromide (Br–) or iodide (I–), were synthesized and used as electrolytes for the electrodeposition of lithium metal. Very high lithium-ion concentrations could be obtained, since the lithium ion is part of the cationic structure of the solvate ionic liquid...

  20. Research Advances in Silicon-Based Anode Materials of High Capacity Lithium Ion Battery%高容量型锂离子电池硅基负极材料的研究

    Institute of Scientific and Technical Information of China (English)

    胡社军; 张苗; 侯贤华; 王洁; 李敏; 刘祥

    2013-01-01

    Due to its high capacity , silicon based anode materials have been widely studied in recent years .How-ever,the commercialization of silicon-based materials as the anode of lithium-ion batteries( LIBs) has been hindered by the huge volume change , poor cycle life and low initial coulombic efficiency during the charge /discharge process .This article analyses the insertion/interinsertion lithium ion principle of silicon anodes , reviews the change of the crystal structure and the surface/interface of Si-based material during the intercalation/deintercalation of lith-ium, and the methods for improving the electrochemical performance .The prospects of silicon-based materials as the anode of LIBs are also discussed .%硅基负极材料由于具有高容量而被广泛研究,该材料在充/放电过程中巨大的体积变化、低的循环寿命和初始库仑效率阻碍了其商业化应用。在作者多年从事硅基负极材料的研究基础上,分析了硅基负极材料的工作原理,回顾了Si负极在脱/嵌锂过程中的晶体结构、表面/界面的变化以及提高其电化学性能的方法,讨论了锂离子电池硅基负极材料的前景。

  1. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P;

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption of...... lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  2. Experimental lithium system. Final report

    International Nuclear Information System (INIS)

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m3 lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion

  3. Hydrolysis of lithium hydride

    International Nuclear Information System (INIS)

    Due to its high hydrogen density and unique nuclear chemistry, lithium hydride, in all its isotopic forms, has an unsurpassed place in modem nuclear weapons. The hydrolysis of the material, and the outgassing of hydrogen from the bulk, are crucial to the performance of the material in service. This thesis describes research conducted at AWE Aldermaston, UK, to examine the hydrolysis and hydrogen outgassing from the bulk material, with the aim of ultimately developing the kinetics 8c mechanisms responsible. The basic chemistry is of great interest, especially the reaction with water. This reaction, whilst being fairly extensively studied in the past, has not been conclusively described with an accepted mechanism and associated kinetics. The last significant UK work on the topic was by Imperial College, London, under contract to AW(R)E in the late 1960s. This thesis describes the development of: (i) a solid state NMR spectroscopy technique to examine semi-quantitatively the surface of bulk lithium hydride for its chemical composition, and (ii) a dedicated lithium hydride inert atmosphere gravimetric analysis glove box to study the hydride/water reaction. Solid State NMR Spectroscopy has been utilised for the first time to probe the hydride/hydroxide ratio of partially hydrolysed lithium hydride. 6Li chemical shifts have been established for species of interest and extremely long, up to 17 hours, T1 relaxation times have been measured for 6Li hydride and hydroxide. A method for semi-quantitatively determining the hydroxide/hydride composition of a partially reacted sample has been developed, based on a 'dual-scan' technique using one short and one long pulse sequence. Gravimetric analysis has been developed for lithium hydride/humidity studies. This facility fully contains gravimetric analysis within an argon glove box, with the ability to control the sample atmosphere from room temperature to 60 deg C and from 0.5 to 40 percent relative humidity. The hydrolysis of

  4. Membranes in Lithium Ion Batteries

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  5. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  6. Every reason to discontinue lithium

    OpenAIRE

    Salgado, Manuel E Fuentes; Sutor, Bruce; Albright, Robert C; Mark A Frye

    2014-01-01

    Lithium as a gold standard therapy for bipolar disorder is well known to have a number of medical comorbidities that impact renal, parathyroid, and thyroid function. Despite these medical comorbidities, there remains a group of lithium-responsive lithium-treated patients who have maintained mood stability for decades. The risk/benefit ratio of end organ toxicity/mood stability must be evaluated in each individual case.

  7. Implications for Titan's potentially active regions: A study on Cassini/VIMS data.

    Science.gov (United States)

    Solomonidou, Anezina; Coustenis, Athena; Rodriguez, Sebastien; Bratsolis, Emmanuel; Le Mouelic, Stephane; Sotin, Christophe; Bampasidis, Georgios; Kyriakopoulos, Konstantinos; Moussas, Xenophon

    Continuing investigations of Titan's surface have shown that this Earth-like Saturnian satellite presents an extremely complex geology [1, 2, 3]. The Cassini Mission Visual and Infrared Mapping Spectrometer (VIMS) acquires data operating as a multi-spectral camera that allow for a complete analysis of the composition, geology and morphology of Titan's surface [4]. Two of the most geologically interesting areas on Titan are Xanadu's Tui Regio (20S, 130W) and Hotei Regio (26S, 78W) as they present higher 5m reflectivities than the surrounding areas [5] and have been interpreted as cryovolcanic in origin [6]. We present our study on both possibly active regions with the aim to identify the composition as well as the alterations of the components that compose the possible calderas and lava flows [7], by using radiative transfer modeling [8] and a classical staitistical method, the Principal Component Analysis [9]. [1] Jaumann, R. et al., (2009) Springer Netherlands pp. 75-140. [2] Nelson, R. M. et al., (2009) Icarus 199, 429-441. [3] Solomonidou, A. et al., (2009) European Planetary Science Congress Vol. 4, EPSC2009-710. [4] Jaumann, R. et al., (2006) Planet Space Science 54:1146-1155. [5] Barnes, J. W. et al., (2006) Geophysical Research Letters Vol. 33, L16204. [6] Lopes, R. M. C. et al., (2010) Icarus Vol. 205 pp:540-558. [7] Sotin, C. (2005) Nature, Vol 435. [8] Rodriguez, S. et al., (2009) Workshop on Hyperspectral Image and Signal Processing: Evolution on Remore Sensing pp. 1-4. [9] Bellucci, G. et al., (2004) Advances in Space Research 34 pp. 1640-1646.

  8. Zerstörungsfreie Charakterisierung von Lithium-Plating in Lithium-Ionen-Batterien

    OpenAIRE

    Petzl, Mathias

    2015-01-01

    The dissertation is focused on the nondestructive detection and quantification of lithium plating in commercial lithium-ion batteries. Lithium plating denotes the deposition of metallic lithium on the negative graphite electrode of a lithium-ion battery during charging. This is a severe degradation process followed by capacity loss and impedance rise. Furthermore, the deposited lithium can grow dendritically which poses a serious safety hazard. It is shown that lithium plating can be detec...

  9. Lithium - induced tardive dystonia.

    Directory of Open Access Journals (Sweden)

    Chakrabarti S

    2002-10-01

    Full Text Available Tardive dystonia is an uncommon form of chronic dystonia, which usually develops on exposure to neuroleptics. Tardive dystonia (Tdt following lithium therapy has not been previously reported. The case of 38 year old man with bipolar affective disorder who developed tardive dystonia while on maintenance lithium treatment is described. Presentation of Tdt in this patient was fairly characteristic although there was no suggestion of recent neuroleptic exposure. Tdt known to have poor treatment response, responded very well to clozapine, a novel anti-psychotic, in this case. To conclude, Tdt may develop on exposure to drugs other than neuroleptics. An adequate trial to clozapine can prove to be a useful treatment option.

  10. Lithium isotope separation

    International Nuclear Information System (INIS)

    Published methods for 6Li-7Li lithium isotope separation have been reviewed. Future demand for 6Li, whose main use will be as a tritium breeder in blankets surrounding the core of DT fusion power reactors, is likely to exceed 5 Mg/a in the next century. The applicability of the various available methods to such a large scale production rate has been assessed. Research on improving the effectiveness of current lithium isotope separation processes has been carried out worldwide in several major areas during the past decade; these include two-phase chemical exchange systems, ion exchange resin chromatography, highly isotope-selective techniques like laser photoactivation and radiofrequency spectroscopy. Chemical exchange systems appear to offer good potential in the near term for 6Li enrichment

  11. Titan Mare Explorer (TiME): first in situ exploration of an extraterrestrial sea

    OpenAIRE

    Stofan, E. R.; Lorenz, R. D.; Lunine, J. I.; Aharonson, O.; Bierhaus , E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka , E.; Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C; Ravine , M.; Trainer, M

    2010-01-01

    The lakes and seas of Titan are a sink of products of photolysis in the atmosphere, and a crucial component in Titan's active methane cycle. In situ exploration of the seas is necessary to understand their intriguing prebiotic organic chemistry.

  12. Titan Mare Explorer (TiME): First In Situ Exploration of an Extraterrestrial Sea

    Science.gov (United States)

    Stofan, E. R.; Lorenz, R. D.; Lunine, J. I.; Aharonson, O.; Bierhaus, E.; Clark, B.; Griffith, C.; Harri, A.-M.; Karkoschka, E.; Kirk, R.; Kantsiper, B.; Mahaffy, P.; Newman, C.; Ravine, M.; Trainer, M.; Waite, H.; Zarnecki, J.

    2010-04-01

    The lakes and seas of Titan are a sink of products of photolysis in the atmosphere, and a crucial component in Titan's active methane cycle. In situ exploration of the seas is necessary to understand their intriguing prebiotic organic chemistry.

  13. Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode

    Science.gov (United States)

    Clark, Steve J.; Wang, Da; Armstrong, A. Robert; Bruce, Peter G.

    2016-03-01

    Graphite, the dominant anode in rechargeable lithium batteries, operates at ~0.1 V versus Li+/Li and can result in lithium plating on the graphite surface, raising safety concerns. Titanates, for example, Li4Ti5O12, intercalate lithium at~1.6 V versus Li+/Li, avoiding problematic lithium plating at the expense of reduced cell voltage. There is interest in 1 V anodes, as this voltage is sufficiently high to avoid lithium plating while not significantly reducing cell potential. The sulfides, LiVS2 and LiTiS2, have been investigated as possible 1 V intercalation electrodes but suffer from capacity fading, large 1st cycle irreversible capacity or polarization. Here we report that the 50/50 solid solution, Li1+x(V0.5Ti0.5)S2, delivers a reversible capacity to store charge of 220 mAhg-1 (at 0.9 V), 99% of theoretical, at a rate of C/2, retaining 205 mAhg-1 at C-rate (92% of theoretical). Rate capability is excellent with 200 mAhg-1 at 3C. C-rate is discharge in 1 h. Polarization is low, 100 mV at C/2. To the best of our knowledge, the properties/performances of Li(V0.5Ti0.5)S2 exceed all previous 1 V electrodes.

  14. Geologic Features on Titan's Surface as Revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R. M.; Stofan, E.; Elachi, C.; Kirk, R.; Lorenz, R.; Lunine, J.; Mitchell, K. L.; Ori, G. G.; Paganelli, F.; Soderblom, L.; Wall, S.; Wood, C.

    2005-12-01

    The Cassini Titan Radar Mapper is one of the prime investigations to explore Titan's surface from orbit. Because of its almost opaque atmosphere, microwave remote sensing contributes uniquely to that investigation. The Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). We review the diversity of geologic features revealed using SAR during four fly-bys (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005) and their context. Early SAR images from Ta and T3 reveal that Titan is very geologically complex (see Elachi et al., 2005, Science 13, 970-4). A variety of landforms and surface units were characterized morphologically and mapped, based on brightness variations, general planform shape and texture. Significant differences were seen in the geology between the Ta swath (centered at ~ 50N, 80W) and the T3 swath (centered at ~ 30N, 70W). The units in the Ta swath appear relatively young and no impact craters could be unambiguously identified. A variety of features which we argue to be cryovolcanic in origin were seen, including extensive flows, paterae, and a circular feature (Ganesa Macula) interpreted as a volcanic dome. We interpret radar-bright braided and sinuous channels and associated deposits to be fluvial in origin. Five distinct units were mapped in Ta, including a dark mottled unit that may represent the presence of surface liquids. The T3 swath displayed many of the same units seen in Ta, except for cryovolcanic features which are absent or indistinct. Among the new features in T3 are a large impact (440 km diameter) basin, a smaller (80 km diameter) crater, and dark lineated streaks, nicknamed "cat scratches" that are thought to be aeolian in origin. The dominant unit in T3 is a bright mottled unit that may contain ubiquitous small (less than 10 km across) topographic features. Groups of material that appear to be hills are more common in the T3 data than Ta. Based on

  15. Correlations between VIMS and RADAR data over the surface of Titan: Implications for Titan's surface properties

    Science.gov (United States)

    Tosi, F.; Orosei, R.; Seu, R.; Coradini, A.; Lunine, J. I.; Filacchione, G.; Capaccioni, F.; Cerroni, P.; Flamini, E.; Brown, R. H.; Cruikshank, D. P.; Lopes, R. M.

    2010-12-01

    We present new results combining the VIMS and RADAR medium resolution data on Titan’s surface. In RADAR data we consider two geophysical quantities: the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for the incidence angle, and the calibrated antenna temperature determined from the radiometer measurement, as found in publicly available data products. In VIMS data, combining spatial and spectral information, we have selected some atmospheric windows in the spectral range between 2 and 5 μm, providing the best optical depth to measure surface reflectance. The two RADAR parameters are combined with VIMS data, with estimated errors, to produce an aggregate data set, that we process using multivariate classification methods to identify homogeneous taxonomic units in the multivariate space of the samples. Such units in fact reveal compositional trends in the surface, that are likely related to different abundances of simple ices and/or hydrocarbons. Our analysis relies on the G-mode method, which has been successfully used in the past for the classification of such diverse data sets as lunar rock samples, asteroids and planetary surfaces. Due to the large number of data of Titan, the classification work proceeds in several steps. In a previous work (Tosi et al., 2010), we analyzed the data acquired in Titan flybys: T3, T4, T8, T13 and T16, covering mostly the major bright and dark features seen around the equator, combined with VIMS infrared data, in order to validate the classification method. Now we focus on flybys: T23, T25, T28, T30, and T43, covering also regions of Titan located at higher latitudes, and partly including the polar regions. The obtained results are generally in agreement with previous work devoted both to the analysis of the scatterometry data through physical models and to the correlation between SAR and radiometry data at a high resolution scale. This classification can be expanded and refined as new

  16. Titan's atmosphere from Voyager infrared observations. I. The gas composition of Titan's equatorial region

    International Nuclear Information System (INIS)

    After inferring minor atmospheric-constituent abundances in Titan's equatorial region from Voyager 1 IR spectra, a stratospheric temperature profile is derived. An analysis of three different sections has yielded stratospheric mole fractions for C2H2, C2H4, C2H6, C3H4, C3H8, C4H2, HCN, and CO2; an altitude-dependent CO2 profile has been tested against observations, but no conclusive data on vertical distribution could be extracted. Emission-line formation for all minor components originates from the 1-20 mbar, or 75-200 km, pressure levels. 47 refs

  17. Lithium reserves and resources

    International Nuclear Information System (INIS)

    As a result of accelerating research efforts in the fields of secondary batteries and thermonuclear power generation, concern has been expressed in certain quarters regarding the availability, in sufficient quantities, of lithium. As part of a recent study by the National Research Council on behalf of the Energy Research and Development Administration, a subpanel was formed to consider the outlook for lithium. Principal areas of concern were reserves, resources and the 'surplus' available for energy applications after allowing for the growth in current lithium applications. Reserves and resources were categorized into four classes ranging from fully proved reserves to resources which are probably dependent upon the marketing of co-products to become economically attractive. Because of the proprietary nature of data on beneficiation and processing recoveries, the tonnages of available lithium are expressed in terms of plant feed. However, highly conservative assumptions have been made concerning mining recoveries and these go a considerable way to accounting for total losses. Western World reserves and resources of all classes are estimated at 10.6 million tonnes Li of which 3.5 million tonnes Li are located in the United States. Current United States capacity, virtually equivalent to Western World capacity, is 4700 tonnes Li and production in 1976 approximated to 3500 tonnes Li. Production for current applications is expected to grow to approx. 10,000 tonnes in year 2000 and 13,000 tonnes a decade later. The massive excess of reserves and resources over that necessary to support conventional requirements has limited the amount of justifiable exploration expenditures; on the last occasion, there was a a major increase in demand (by the USAEA) reserves and capacity were increased rapidly. There are no foreseeable reasons why this shouldn't happen again when the need is clear. (author)

  18. Lithium Alkyl Exchange Equilibria

    International Nuclear Information System (INIS)

    Kinetic analyses of two types of exchange reactions of organo- lithium reagents, both alkyl and aryl types, RLi, have been made: (1) halogen-metal interchange with alkyl and aryl halides, R'X, and (2) hydrogen-metal interchange (commonly called metallation) with aromatic hydrocarbons, R'H. Rates of these RLi + R'X ⇄ RX + R'Li; (1) . RLi + R'H ⇄ RH+ R'Li (2) reactions have been determined, conditions under which the systems attain equilibrium have been established, and the positions of equilibrium measured, all as functions of the reactants, solvents and catalysts employed. Concerning halogen-lithium interchange between alkyl groups (1), the conclusion is reached that equilibration proceeds to yield the less sterically demanding alkyl group attached to lithium. The data show, for example, that isobutyllithium is much less stable than n-butyllithium, and again, that 2,6-dimethyl- phenyllithium is much less stable than phenyllithium. The exchange is general with iodides, occurs with some bromides and does not occur with chlorides. The exchange is quite slow in hydrocarbon media and is catalysed by relatively small amounts of ethers. In the presence of the optically active methyl ether of menthol, methyl iodide exchanges with racemic s-butyllithium to give optically active s-butyl iodide. In work with the second reaction, hydrogen-lithium interchange (2), nuclear magnetic resonance spectrometry has been used for rate studies. Catalysts (Lewis bases) have been evolved for establishing equilibria in rather unreactive systems, e.g. phenyllithium can be demonstrated to exchange with benzene by labelling the latter radioactivity. From the correlations of structure and reactivity found in this study, the conclusion is reached that the basic alkyllithium structure is dimeric, R2Li2 The arrangement of the groups within this dimer satisfactorily explain the special steric effects noted in organolithium reagent stability. (author)

  19. Microstructuring of lithium niobate

    OpenAIRE

    Barry, I.E.

    2000-01-01

    This thesis presents the results from an investigation into methods for micron-scale relief structuring of lithium niobate. A wet etch consisting of HF and HNO3 was applied, and directed by 1) patterning the ferroelectric domain structure of the samples and 2) illuminating the crystals with patterned 488nm light. Post-etch treatment of the structures resulted in ridge waveguides and alignment grooves, while pre-etch manipulation achieved an etch-stop. Ablation was investigated as a method of ...

  20. Lithium-Induced Nephropathy

    OpenAIRE

    Desbuquoit, D.; Snoeckx, A; Corthouts, B.; Parizel, P. M.

    2015-01-01

    Background: A 59-year-old man was referred for CT scan of the abdomen after repair of an eventrated appendectomy wound. The man had a known history of bipolar affective disorder, for which he had been on lithium therapy for many years. As an incidental finding, CT scan showed numerous small hypodense renal lesions. Subsequently a MRI examination was performed to further characterize these renal abnormalities.

  1. Human Internal Contamination with Strontium-90 Titanate

    International Nuclear Information System (INIS)

    Strontium-90 has been used in multikilocurie quantities recently as a heat source for thermoelectric generators. The titanate was carefully selected for this purpose as the chemical form which best met requirements including inertness to corrosive attack in the event of accidental release to the environment. An industrial accidental exposure of one worker on 26 June 1963 to strontium-90 titanate powder, originally in the form of particles of about 120 μm and less, provided an opportunity to attempt the assessment of the human body burden of this supposedly highly insoluble compound. Because of the physical and biological behaviour of the particles, it was assumed that the actual particle size which was dispersed and ingested and/or inhaled by the exposed person was in the range of 1 to 30 μm. Three techniques were used to estimate the body burden. Whole-body radiation counting carried out by Dr. Charles H. Miller at Argonne National Laboratory, which only gave an upper limit because of the non-specific Bremsstrahlung spectrum from strontium-90, yttrium-90 indicated an initial total-body burden of 4.8 μc. The second method, total urinary and faecal output collection, totalled 5.0 for the first 20 d. Combining that amount with an estimate of the amount retained in the body, an initial total-body burden of 5.2 μc was obtained. The third technique, blood radioactivity determination, indicated an initial total-body burden of 6 μc. The ratio of faecal to urinary output in the first 20 d was 15 to 1, and 94% of the total strontium-90 excretion was via the gastro-intestinal tract. It is of interest, however, that a significant fraction was evidently soluble. By the 20th post-incident day, it was estimated that the retained body burden was only 5% of the total intake. Methods used in that period to enhance faecal excretion by MgSO4 and urinary excretion by a combination of Ca-gluconate and NH4CI are described. Subsequent excretion patterns and the current estimate of

  2. Nanostructured lithium sulfide materials for lithium-sulfur batteries

    Science.gov (United States)

    Lee, Sang-Kyu; Lee, Yun Jung; Sun, Yang-Kook

    2016-08-01

    Upon the maturation and saturation of Li-ion battery technologies, the demand for the development of energy storage systems with higher energy densities has surged to meet the needs of key markets such as electric vehicles. Among the many next generation high-energy storage options, the Lisbnd S battery system is considered particularly close to mass commercialization because of its low cost and the natural abundance of sulfur. In this review, we focus on nanostructured Li2S materials for Lisbnd S batteries. Due to a lithium source in its molecular structure, Li2S can be coupled with various Li-free anode materials, thereby giving it the potential to surmount many of the problems related with a Li-metal anode. The hurdles that impede the full utilization of Li2S materials include its high activation barrier and the low electrical conductivity of bulk Li2S particles. Various strategies that can be used to assist the activation process and facilitate electrical transport are analyzed. To provide insight into the opportunities specific to Li2S materials, we highlight some major advances and results that have been achieved in the development of metal Li-free full cells and all-solid-state cells based on Li2S cathodes.

  3. An improved high-performance lithium-air battery

    Science.gov (United States)

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-07-01

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh gcarbon-1 and 3 A gcarbon-1, respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  4. Electronic structures of lithium metasilicate and lithium disilicate

    International Nuclear Information System (INIS)

    The electronic structures of lithium metasilicate (Li2SiO3) and lithium disilicate (Li2Si2O5) are calculated using a first-principles orthogonalized linear combination of atomic-orbitals method. Results are compared with experimental x-ray-photoemission spectra and earlier calculations on sodium metasilicate and sodium disilicates

  5. Integrated-blanket-coil applications in the TITAN-I reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The TITAN-I Reversed-Field Pinch reactor incorporates the Integrated-Blanket-Coil (IBC) concept for the toroidal field and divertor field coil systems. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils in a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (∼0.36 T) leads to relatively low coil currents. Design of IBC components addresses four areas: (1) Neutronics, including tritium breeding and blanket energy multiplication; (2) thermal hydraulics, including magnetohydrodynamic (MHD) pressure drops; (3) magnetics, including field magnitude and topology; and (4) electrical engineering of the circuit determining the power supply requirements. The TF-IBC approach, in comparison to copper coils, offers several advantages for a compact RFP reactor: Increased access for coolant and auxiliary services, improved viability for single-piece maintenance, and reduced magnetic ripple in the toroidal magnetic field. In the divertor system, improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC relative to copper coils. (orig.)

  6. Concept for A Mission to Titan, Saturn System and Enceladus

    Science.gov (United States)

    Reh, K.; Beauchamp, P.; Elliott, J.

    2008-09-01

    A mission to Titan is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, possibly contains a vast subsurface ocean and has energy sources to drive chemical evolution. With these recent discoveries, the interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. The baseline mission concept shown in Figures 1 and 2 would consist of a chemically propelled orbiter, with accommodations for ESA contributed in situ elements, and would launch on an Atlas 551 in 2016-2018 timeframe, traveling to Saturn on a Venus-Earth-Earth gravity assist (VEEGA) trajectory, and reaching Saturn approximately 10 years later. Prior to Saturn orbit insertion (SOI) the orbiter would target and release ESA provided in situ elements; possibly a low-latitude Montgolfiere balloon system and capable polar and/or mid-latitude lander. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting 18 months. This tour phase would accomplish Saturn system and Enceladus science (4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing leveraging Titan pump down manoeuvres to minimize the required amount of

  7. The Determination Of Titan's Rotational State From Cassini SAR Images

    Science.gov (United States)

    Persi Del Marmo, P.; Iess, L.; Picardi, G.; Seu, R.; Bertotti, B.

    2007-12-01

    SAR images acquired by the spacecraft Cassini in overlapping strips have been used to determine the vectorial angular velocity of Titan. The method entails the tracking of surface landmarks at different times (and mean anomalies). Cassini radar observations have provided so far 14 high resolution image pairs of the same portion of Titan surface, spanning a period from 2004 to 2007. Each image is referenced both in an inertial frame and in the IAU, Titan-centric, body-fixed reference frame. This referencing is quite precise, as the position of Cassini relative to Titan is known with an accuracy smaller than 100 m during each flyby. The IAU body-fixed frame assumes a spin axis different from the actual one. Therefore, in this putative frame a landmark appears at different geographic coordinates in the two observations. By correlating the two images of the same surface region, one gets a two-dimensional vector, which retains information about the true spin axis. This vector provides the magnitude and direction of the displacement to be applied to a reference point of each image in order to produce maximum correlation. The correlation results therefore in a new Titan-centric, inertial referencing of the images, R(t1) and R(t2). The spin axis s is then obtained by requiring that [R(t2) - R(t1)] s = 0 for each overlapping image pairs. Due to experimental errors (dominated by image correlation errors and inaccuracies in the spacecraft orbit relative to Titan) the left hand sides cannot be simultaneously zeroed and the spin axis must be determined by means of a least square procedure. The magnitude of the angular velocity is then derived from the angle between the vectors R(t1) and R(t2) and the known time difference between the two observations. Our analysis indicates that the Titan pole coordinates are consistent with the occupancy of the fourth Cassini state. The uncertainties are obtained assuming a realistic error of 250 m in the reconstruction of the inertially

  8. Acute renal failure induced by markedly decreased appetite secondary to a depressive episode after discontinuation of long-term lithium therapy in an elderly patient with bipolar disorder

    Science.gov (United States)

    Okada, Akira

    2014-01-01

    Some elderly patients on chronic lithium therapy for bipolar disorder and their doctors may be faced with a therapeutic dilemma over whether or not to continue prescribing/taking lithium given their increased risk of reduced renal function. We present the case of a 78-year-old woman with bipolar disorder who discontinued lithium therapy due to increased risk factors for renal injury. After discontinuation, she experienced markedly decreased appetite secondary to a depressive episode, and developed acute renal failure, which subsequently progressed to a more advanced stage of chronic kidney disease. This case suggests that extreme care must be taken to prevent the recurrence of depression in elderly patients with bipolar disorder who discontinue lithium therapy, even when they had been emotionally stable for a long time while receiving lithium. Medications other than lithium for bipolar disorder may be needed at the time lithium therapy is discontinued. PMID:24835805

  9. Synthesis and structural characterization of Ce-doped bismuth titanate

    International Nuclear Information System (INIS)

    Ce-modified bismuth titanate nanopowders Bi4-xCexTi3O12 (x ≤ 1) have been synthesized using a coprecipitation method. DTA/TG, FTIR, XRD, SEM/EDS and BET methods were used in order to investigate the effect of Ce-substitution on the structure, morphology and sinterability of the obtained powders. The phase structure investigation revealed that after calcinations at 600 deg. C powder without Ce addition exhibited pure bismuth titanate phase; however, powders with Ce (x = 0.25, 0.5 and 0.75) had bismuth titanate pyrochlore phase as the second phase. The strongest effect of Ce addition on the structure was noted for the powder with the highest amount of Ce (x = 1) having a cubic pyrochlore structure. The presence of pure pyrochlore phase was explained by its stabilization due to the incorporation of cerium ions in titanate structure. Ce-modified bismuth titanate ceramic had a density over 95% of theoretical density and the fracture in transgranular manner most probably due to preferable distribution of Ce in boundary region

  10. Ionization by Cosmic Rays in the Atmosphere of Titan

    Science.gov (United States)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  11. Crater Topography on Titan: Implications for Landscape Evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  12. Analysis of SPECT imaging simulation using the TITAN transport code

    International Nuclear Information System (INIS)

    Simulation of the NCAT heart phantom has recently been done using the hybrid deterministic code TITAN. Single photon emission computed tomography (SPECT) simulation is traditionally done using Monte Carlo codes such as SIMIND. This paper analyzes and compares the results of the SIMIND and TITAN codes for an NCAT heart phantom. Since the SIMIND code does not provide statistical information, runs with varying numbers of particles were used to ensure that the solution had converged for the first energy group (source particle energy bin). SIMTND results for the lower energy groups were determined to be less accurate due to the lack of cross section data and larger statistical uncertainties. The output of the TITAN code was analyzed for the Diamond Differencing with zero fix-up (DDZ) and Directional Theta-Weighted (DTW) differencing schemes and various orders of quadrature. The DTW method was found to converge to a solution at a lower order of quadrature than DDZ. In comparison with SIMIND, the DDZ and DTW methods were found to be equally accurate. The SIMIND and TITAN solutions were in good agreement and TITAN was shown to have a much shorter run time than SIMIND. (authors)

  13. Evidence of Titan's Climate History from Evaporite Distribution

    Science.gov (United States)

    MacKenzie, Shannon; Barnes, J. W.; Brown, R.; Sotin, C.; Buratti, B. J.; Clark, R.; Baines, K. H.; Nicholson, P. D.; Le Mouelic, S.; Rodriguez, S.

    2013-10-01

    5-μm bright material on the surface of Titan has been positively correlated with the shores of RADAR-dark (liquid-filled) and the bottoms of RADAR-bright (empty) lakebeds in the region just south of Ligea Mare by Barnes et al. (2011). This water ice-poor spectral unit was thus proposed to be evaporite, the formerly-dissolved solute deposits left behind when the solvent (here presumably a methane/ethane mixture) evaporates. Because evaporite forms under specific conditions—solute and solvent at or near saturation, no outlets or other means of affecting the solution balance, etc.—the presence of evaporite can shed light on Titan's climate history. Adding to the previously identified cases, we use the breadth of available Cassini VIMS data to comprehensively map new instances of evaporite. In particular, we found new instances of evaporite in the north polar region and the midlatitudes. Our map of the global distribution of Titan's 5-μm-bright deposits can be used to constrain the historical evolution of Titan's surface volatile inventory and may bear on the question of the time variation of the methane concentration in Titan's atmosphere. Furthermore, we explore the implications of the idea that the 5-$\\mu$m-bright areas are indeed mostly evaporitic in nature with respect to the relationship between the regional and global volatile cycles.

  14. In-Situ Missions for the Exploration of Titan's Lakes

    Science.gov (United States)

    Elliott, John O.; Waite, J. Hunter

    2011-01-01

    The lakes of Titan represent an increasingly tantalizing target for future exploration. As Cassini continues to reveal more details the lakes appear to offer a particularly rich reservoir of knowledge that could provide insights to Titan's formation and evolution, as well as an ideal location to explore Titan's potential for pre-biotic chemistry. A recent study of Titan Lake Probe missions was undertaken as one of several dozen studies commissioned by the National Research Council (NRC) Planetary Decadal Survey to explore the technical readiness, feasibility and affordability of scientifically promising mission scenarios. This in-depth study focused on an in-situ examination of a hydrocarbon lake on the Saturnian moon Titan--a target that presents unique scientific opportunities as well as several unique engineering challenges (e.g., submersion systems and cryogenic sampling) to enable those measurements. Per direction from the NRC Planetary Decadal Survey Satellites Panel, and after an initial trade-space examination, study architectures focused on three possible New Frontiers-class missions and a more ambitious Flagship-class lander intended as the in-situ portion of a larger collaborative mission. Detailed point designs were developed to explore these four potential mission options, including consideration of flight system and mission designs, as well as operations on and under the lake's surface and scenarios for data return. In this paper we present an overview of the science objectives of the missions, the mission architecture and surface.

  15. Radiation damage and nanocrystal formation in uranium-niobium titanates

    Science.gov (United States)

    Lian, J.; Wang, S. X.; Wang, L. M.; Ewing, R. C.

    2001-07-01

    Two uranium-niobium titanates, U 2.25Nb 1.90Ti 0.32O 9.8 and Nb 2.75U 1.20Ti 0.36O 10, formed during the synthesis of brannnerite (UTi 2O 6), a minor phase in titanate-based ceramics investigated for plutonium immobilization. These uranium titanates were subjected to 800 keV Kr 2+ irradiation from 30 to 973 K. The critical amorphization dose of the U-rich and Nb-rich titanates at room temperature were 4.72×10 17 and 5×10 17 ions/ m2, respectively. At elevated temperature, the critical amorphization dose increases due to dynamic thermal annealing. The critical amorphization temperature for both Nb-rich and U-rich titanates is ˜933 K under a 800 keV Kr 2+ irradiation. Above the critical amorphization temperature, nanocrystals with an average size of ˜15 nm were observed. The formation of nanocrystals is due to epitaxial recrystallization. At higher temperatures, an ion irradiation-induced nucleation-growth mechanism also contributes to the formation of nanocrystals.

  16. Dysprosium titanate as an absorber material for control rods

    Energy Technology Data Exchange (ETDEWEB)

    Risovany, V.D. E-mail: fae@niiar.ru; Varlashova, E.E.; Suslov, D.N

    2000-09-02

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point ({approx}1870 deg. C), non-interaction with the cladding at temperatures above 1000 deg. C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4x10{sup 22} cm{sup -2} (E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  17. Dysprosium titanate as an absorber material for control rods

    Science.gov (United States)

    Risovany, V. D.; Varlashova, E. E.; Suslov, D. N.

    2000-09-01

    Disprosium titanate is an attractive control rod material for the thermal neutron reactors. Its main advantages are: insignificant swelling, no out-gassing under neutron irradiation, rather high neutron efficiency, a high melting point (˜1870°C), non-interaction with the cladding at temperatures above 1000°C, simple fabrication and easily reprocessed non-radioactive waste. It can be used in control rods as pellets and powder. The disprosium titanate control rods have worked off in the MIR reactor for 17 years, in VVER-1000 - for 4 years without any operating problems. After post-irradiation examinations this type of control rod having high lifetime was recommended for the VVER and RBMK. The paper presents the examination results of absorber element dummies containing dysprosium titanate, irradiated in the SM reactor to the neutron fluence of 3.4×10 22 cm -2 ( E>0.1 MeV) and, also, the data on structure, thermal-physical properties of dysprosium titanate, efficiency of dysprosium titanate control rods.

  18. Design of a Long Endurance Titan VTOL Vehicle

    Science.gov (United States)

    Prakash, Ravi; Braun, Robert D.; Colby, Luke S.; Francis, Scott R.; Guenduez, Mustafa E.; Flaherty, Kevin W.; Lafleur, Jarret M.; Wright, Henry S.

    2006-01-01

    Saturn s moon Titan promises insight into many key scientific questions, many of which can be investigated only by in situ exploration of the surface and atmosphere of the moon. This research presents a vertical takeoff and landing (VTOL) vehicle designed to conduct a scientific investigation of Titan s atmosphere, clouds, haze, surface, and any possible oceans. In this investigation, multiple options for vertical takeoff and horizontal mobility were considered. A helicopter was baselined because of its many advantages over other types of vehicles, namely access to hazardous terrain and the ability to perform low speed aerial surveys. Using a nuclear power source and the atmosphere of Titan, a turbo expander cycle produces the 1.9 kW required by the vehicle for flight and operations, allowing it to sustain a long range, long duration mission that could traverse the majority of Titan. Such a power source could increase the lifespan and quality of science for planetary aerial flight to an extent that the limiting factor for the mission life is not available power but the life of the mechanical parts. Therefore, the mission could potentially last for years. This design is the first to investigate the implications of this potentially revolutionary technology on a Titan aerial vehicle.

  19. Mechanics of high-capacity electrodes in lithium-ion batteries

    Science.gov (United States)

    Ting, Zhu

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. Project support by the NSF (Grant Nos. CMMI 1100205 and DMR 1410936).

  20. Neutron scattering for analysis of processes in lithium-ion batteries

    International Nuclear Information System (INIS)

    The review is concerned with analysis and generalization of information on application of neutron scattering for elucidation of the structure of materials for rechargeable energy sources (mainly lithium-ion batteries) and on structural rearrangements in these materials occurring in the course of electrochemical processes. Applications of the main methods including neutron diffraction, small-angle neutron scattering, inelastic neutron scattering, neutron reflectometry and neutron introscopy are considered. Information on advanced neutron sources is presented and a number of typical experiments are outlined. The results of some studies of lithium-containing materials for lithium-ion batteries, carried out at IBR-2 pulsed reactor, are discussed. The bibliography includes 50 references

  1. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    Science.gov (United States)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  2. Have Titan's North-Polar Lakes Changed?

    Science.gov (United States)

    Wall, Stephen D.; Hayes, A.; Elachi, C.; Stofan, E.; Paillou, P.; Formico, T.; Mitchell, K.; Casarano, D.; Notarnicola, C.

    2012-10-01

    Cassini's RADAR instrument acquired a SAR swath over Titan's north polar lakes on May 22, 2012 , providing repeat images of a number of the smaller lakes. Previous coverage of these lakes was obtained on various passes in 2006 and 2007. Among the principal objectives of the Cassini mission is to monitor the liquid in the lakes with the approach of northern summer. Evidence of change in the lakes' levels might consist of shoreline changes, changes in radar backscatter (e.g. as penetration increases or dry spots appear), or combinations of these. We have chosen ten lakes and lake complexes for study, ranging from -4 to -100 km largest dimension. Visual comparison of repeat images is complicated by the dissimilar imaging geometry and (in some cases) resolution, and by SAR speckle. There are ambiguous cases that require further study, but at this writing we cannot identify certain changes. Ambiguous cases will be analyzed by using electromagnetic models, which can also take into account different acquisition geometry. Further analysis will be carried out exploiting electromagnetic scattering models and inversion approaches (e.g., Bayesian) to provide estimate of the lake parameters and any related changes. Parts of the research described in this paper were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  3. The Novel Formation of Barium Titanate Nanodendrites

    Directory of Open Access Journals (Sweden)

    Chien-Jung Huang

    2014-01-01

    Full Text Available The barium titanate (BaTiO3 nanoparticles with novel dendrite-like structures have been successfully fabricated via a simple coprecipitation method, the so-called BaTiO3 nanodendrites (BTNDs. This method was remarkable, fast, simple, and scalable. The growth solution is prepared by barium chloride (BaCl2, titanium tetrachloride (TiCl4, and oxalic acid. The shape and size of BaTiO3 depend on the amount of added BaCl2 solvent. To investigate the influence of amount of BaCl2 on BTNDs, the amount of BaCl2 was varied in the range from 3 to 6 mL. The role of BaCl2 is found to have remarkable influence on the morphology, crystallite size, and formation of dendrite-like structures. The thickness and length of the central stem of BTND were ~300 nm and ~20 μm, respectively. The branchings were found to occur at irregular intervals along the main stem. Besides, the formation mechanism of BTND is proposed and discussed.

  4. Ordered arrays of lead zirconium titanate nanorings

    International Nuclear Information System (INIS)

    Periodic arrays of nanorings of morphotropic phase boundary lead zirconium titanate (PZT) have been successfully fabricated using a novel self-assembly technique: close-packed monolayers of latex nanospheres were deposited onto Pt-coated silicon substrates, and then plasma cleaned to form ordered arrays of isolated nanospheres, not in contact with each other. Subsequent pulsed laser deposition of PZT, high angle argon ion etching and thermal annealing created the arrays of isolated nanorings, with diameters of ∼100 nm and wall thicknesses of ∼10 nm. Energy dispersive x-ray analysis confirms that the rings are compositionally morphotropic phase boundary PZT, and high resolution transmission electron microscopy imaging of lattice fringes demonstrates some periodicities consistent with perovskite rather than pyrochlore material. The dimensions of these nanorings, and the expected 'soft' behaviour of the ferroelectric material from which they are made, means that they offer the most likely opportunity to date for observing whether or not vortex arrangements of electrical dipoles, analogous to those seen in ferromagnetic nanostructures, actually exist

  5. Exploring Titan with Autonomous, Buoyancy Driven Gliders

    Science.gov (United States)

    Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.

    Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.

  6. Precipitation Climatology on Titan-like Exomoons.

    Science.gov (United States)

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets. PMID:25796390

  7. Dielectric properties of lead zirconate titanate thin films seeded with barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    A low temperature synthetic method recently proposed by the authors was applied to the fabrication of lead zirconate titanate (PZT) thin films containing crystalline seeds of barium strontium titanate (BST) nanoparticles. PZT precursor and the BST particles were prepared with complex alkoxide methods. Precursor solution suspending the BST particles was spin-coated on Pt/Ti/SiO2/Si substrate to film thickness of 500-800 nm at particle concentrations of 0-25.1 mol%, and annealed at various temperatures. Seeding of BST particles prevented the formation of pyrochlore phases, which appeared at temperatures above 400 deg. C in unseeded PZT films, and induced crystallization of PZT into perovskite structures at 420 deg. C, which was more than 100 deg. C below the crystallization temperature of the unseeded PZT films. Measurement of dielectric properties at 1 kHz showed that the 25.1 mol% BST-seeded PZT films annealed at 450 deg. C had a dielectric constant as high as 300 with a dissipation factor of 0.05. Leakage current density of the film was less than 1x10-6 A/cm2 at applied electric field from 0 to 64 kV/cm

  8. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  9. Does lithium protect against dementia?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Forman, Julie Lyng; Andersen, Per Kragh

    2010-01-01

    OBJECTIVE: To investigate whether treatment with lithium in patients with mania or bipolar disorder is associated with a decreased rate of subsequent dementia. METHODS: Linkage of register data on prescribed lithium in all patients discharged from psychiatric health care service with a diagnosis ...

  10. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus;

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5), an...

  11. Photo crystallization of lithium iodate

    International Nuclear Information System (INIS)

    It is shown that the processes of crystallization and dissolution of lithium iodate crystals are susceptible to the influence of light. The character of influence of light depends on the solution acidity. A possible mechanism explaining these phenomena is discussed. A technique of growing of lithium iodate crystals at constant temperature, pressure, and volume of the solution is proposed and realized

  12. Issue and challenges facing rechargeable thin film lithium batteries

    International Nuclear Information System (INIS)

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium batteries are the systems of choice, offering high energy density, flexible, lightweight design and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based thin film rechargeable batteries highlight ongoing research strategies and discuss the challenges that remain regarding the discovery of nanomaterials as electrolytes and electrodes for lithium batteries also this article describes the possible evolution of lithium technology and evaluates the expected improvements, arising from new materials to cell technology. New active materials under investigation and electrode process improvements may allow an ultimate final energy density of more than 500 Wh/L and 200 Wh/kg, in the next 5-6 years, while maintaining sufficient power densities. A new rechargeable battery technology cannot be foreseen today that surpasses this. This report will provide key performance results for thin film batteries and highlight recent advances in their development

  13. Lithium cobalt oxide coated lithium zinc titanate anode material with an enhanced high rate capability and long lifespan for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of LiCoO2 coated Li2ZnTi3O8 via a wet chemical process followed by heat treatment. • The high rate capability and cyclic stability are improved due to the LiCoO2 surface coating. • Electrochemical properties were tested in a charge/discharge voltage range of 0.05-3.0 V (vs. Li/Li+). - Abstract: LiCoO2 coated Li2ZnTi3O8 is synthesized by a preliminary formation of Li2ZnTi3O8 by facile solid state reaction and a following coating process with LiCoO2 nano layer via a wet chemical process followed by heat treatment. The structure and electrochemical property of the as-prepared samples have been characterized comprehensively. A thin LiCoO2 layer with a thickness of about 2 nm is uniformly coated on the surface of active particles, which does not affect the crystal structure and space group. After LiCoO2 surface modification, high discharge capacities of 192.1, 163.7, 108.2 mAh g−1 with capacity retention of 99.1, 92.3, 71.4% are obtained at 1.0, 2.0, 3.0 A g−1 after 100 cycles for the coated composite, respectively, which are obviously larger than those of un-coated sample. Besides, the discharge capacity and cyclic stability of Li2ZnTi3O8 after 1000 cycles have been enhanced after coating. Cyclic voltammograms and electrochemical impedance spectroscopy measurements prove that the LiCoO2 coating can dramatically decrease polarization and reduce the charge transfer resistance during repeated Li+ intercalation/de-intercalation process. The improved electrochemical properties of LiCoO2 coated Li2ZnTi3O8 are attributed to small particle sizes, large packed holes, high surface area and better electronic conductive

  14. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  15. HOW RELIABLE IS 24 HOUR SERUM LITHIUM LEVEL AFTER A TEST DOSE OF LITHIUM IN PREDICTING OPTIMAL LITHIUM DOSE?

    OpenAIRE

    Kuruvilla, K.; Shaji, K. S.

    1989-01-01

    SUMMARY 57% of a group of 35 patients treated with Lithium Carbonate at dosages predicted by the nomogram suggested by Cooper et al (1973) failed to reach therapeutic levels of serum lithium. This finding casts serious doubts on the usefulness of the claim by Cooper et al (1973 & 1976) that 24 hour serum lithium level after a test dose of 600 mg. lithium can predict the daily lithium dose.

  16. Methane storms as a driver of Titan's dune orientation

    CERN Document Server

    Charnay, Benjamin; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Pont, Sylvain Courrech du; Lucas, Antoine

    2015-01-01

    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

  17. Electron microscopy of barium bismuth titanate multilayer ceramics

    International Nuclear Information System (INIS)

    For a number of years bismuth containing compounds have been used with pre-calcined barium titanate to reduce the sintering temperature of the capacitor formulations. As reported earlier the backscattered electron (BSE) SEM micrographs of the bismuth containing barium titanate ceramic reveal that the grains having an average size of 1.2μm consist of a two phase structure consisting of relatively pure barium titanate grain cores surrounded by bismuth rich grain shells. The TEM and STEM studies along with the EDS analyses show that the bismuth concentration increases sharply as one steps towards the grain boundary with a maximum bismuth content at the grain boundary. It is the purpose of this work to investigate the distribution of bismuth in these formulations including the bismuth content, if any, at the ceramic metal interface as affected by the sintering temperature. The subsequent effect on the electrical resistivity of these ceramics in the multilayer configuration is reported

  18. Liquid-phase-deposited barium titanate thin films on silicon

    International Nuclear Information System (INIS)

    Using a mixture of hexafluorotitanic acid, barium nitrate and boric acid, high refractive index (1.54) barium titanate films can be deposited on silicon substrates. The deposited barium titanate films have featureless surfaces. The deposition temperature is near room temperature (800C). However, there are many fluorine and silicon incorporations in the films. The refractive index of the as-deposited film is 1.54. By current-voltage measurement, the leakage current of the as-deposited film with a thickness of 1000 A is about 9.48x10-7 A cm-2 at the electrical field intensity of 0.3 MV cm-1. By capacitance-voltage measurement, the effective oxide charge of the liquid-phase-deposited barium titanate film is 3.06x1011 cm-2 and the static dielectric constant is about 22. (author)

  19. Sequestration of ethane in the cryovolcanic subsurface of Titan

    CERN Document Server

    Mousis, Olivier

    2008-01-01

    Saturn's largest satellite, Titan, has a thick atmosphere dominated by nitrogen and methane. The dense orange-brown smog hiding the satellite's surface is produced by photochemical reactions of methane, nitrogen and their dissociation products with solar ultraviolet, which lead primarily to the formation of ethane and heavier hydrocarbons. In the years prior to the exploration of Titan's surface by the Cassini-Huygens spacecraft, the production and condensation of ethane was expected to have formed a satellite-wide ocean one kilometer in depth, assuming that it was generated over the Solar system's lifetime. However, Cassini-Huygens observations failed to find any evidence of such an ocean. Here we describe the main cause of the ethane deficiency on Titan: cryovolcanic lavas regularly cover its surface, leading to the percolation of the liquid hydrocarbons through this porous material and its accumulation in subsurface layers built up during successive methane outgassing events. The liquid stored in the pores...

  20. The tectonics of Titan: Global structural mapping from Cassini RADAR

    Science.gov (United States)

    Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Neish, Catherine D.; Kirk, Randolph L.; Lorenz, Ralph D.

    2016-05-01

    The Cassini RADAR mapper has imaged elevated mountain ridge belts on Titan with a linear-to-arcuate morphology indicative of a tectonic origin. Systematic geomorphologic mapping of the ridges in Synthetic Aperture RADAR (SAR) images reveals that the orientation of ridges is globally E-W and the ridges are more common near the equator than the poles. Comparison with a global topographic map reveals the equatorial ridges are found to lie preferentially at higher-than-average elevations. We conclude the most reasonable formation scenario for Titan's ridges is that contractional tectonism built the ridges and thickened the icy lithosphere near the equator, causing regional uplift. The combination of global and regional tectonic events, likely contractional in nature, followed by erosion, aeolian activity, and enhanced sedimentation at mid-to-high latitudes, would have led to regional infilling and perhaps covering of some mountain features, thus shaping Titan's tectonic landforms and surface morphology into what we see today.