WorldWideScience

Sample records for advanced liquefaction processes

  1. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  2. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  3. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction....

  4. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  5. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  6. REVIEW OF NATURAL GAS LIQUEFACTION PROCESSES

    OpenAIRE

    2009-01-01

    High pressure pipelines are the most common way of natural gas transport from a gas field to a processing plant and further to consumers. In case when the distance between natural gas production and consumption regions is more than 4000 kilometers, and due to necessity of natural gas supply diversification, gas liquefaction and its transport by ships is being applied. The final choice of liquefaction process depends on the project variables, the development level of new or upgrading of alread...

  7. Coal liquefaction process research quarterly report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  8. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  9. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  10. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  11. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  12. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies, including...

  13. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies including...

  14. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  15. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  16. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-09-01

    Reported here are the results of Laboratory and Bench- Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE- AC22- 91PC91040 during the period April 1, 1997 to June 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which includes dispersed lower- cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This report includes a data analysis of the ALC- 2 run which was the second continuous run in which Wyodak Black Thunder coal was fed to a two kg/ h bench- scale unit. One of the objectives of that run was to determine the relative activity of several Mo- based coal impregnated catalyst precursors. The precursors included ammonium heptamolybdate (100 mg Mo/ kg dry coal), which was used alone as well as in combination with ferrous sulfate (1% Fe/ dry coal) and nickel sulfate (50 mg Ni/ kg dry coal). The fourth precursor that was tested was phosphomolybdic acid which was used at a level of 100 mg Mo/ kg dry coal. Because of difficulties in effectively separating solids from the product stream, considerable variation in the feed stream occurred. Although the coal feed rate was nearly constant, the amount of recycle solvent varied which resulted in wide variations of resid, unconverted coal and mineral matter in the feed stream. Unfortunately, steady state was not achieved in any of the four conditions that were run. Earlier it was reported that Ni- Mo catalyst appeared to give the best results based upon speculative steady- state yields that were developed.

  17. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  18. An advanced extruder-feeder biomass liquefaction reactor system

    Science.gov (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  19. Indirect thermal liquefaction process for producing liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-01-01

    A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

  20. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  1. Exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Highlights: • Exergoeconomic analysis is performed for single mixed refrigerant process. • Cost of exergy destruction and exergoeconomic factor are calculated. • Sensitivity of exergoeconomic factor is investigated. - Abstract: Exergy and exergoeconomic analysis is performed for single mixed refrigerant Linde and Air Products and Chemicals Inc, processes, which are among the most important and popular natural gas liquefaction processes. Cost of exergy destruction, exergoeconomic factor, exergy destruction and exergy efficiency are calculated. Results of exergy analysis demonstrates that exergy efficiency of Linde process is around 40.2%, and its total exergy destruction rate is 93,229 kW. The exergy efficiency and exergy destruction rate for Air Products and Chemicals Inc, process are 45.0% and 72,245 kW respectively. Results of exergoeconomic analysis suggests that maximum exergy destruction cost for Linde process is related to E-2 heat exchanger which is 34,072 $/h and for Air Products and Chemicals Inc, process maximum exergy destruction cost is related to E-2 heat exchanger with the value of 4125 kW. Sensitivity of cost of exergy destruction and exergoeconomic factor to operating variables of the processes are studied and analyzed

  2. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  3. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  4. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  5. A novel process for small-scale pipeline natural gas liquefaction

    International Nuclear Information System (INIS)

    Highlights: • A novel process was proposed to liquefy natural gas by utilizing the pressure exergy. • The process is zero energy consumption. • The maximum liquefaction rate of the process is 12.61%. • The maximum exergy utilization rate is 0.1961. • The economic analysis showed that the payback period of the process is quit short. - Abstract: A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period

  6. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian; H. Bruun, Allan

    2016-01-01

    Natural gas liquefaction systems are based on refrigeration cycles, which can be subdivided into: the cascade, mixed refrigerant and expansion-based processes. They differ by their design configurations, components and working fluids, and thus have various operating conditions and equipment inven...... thermodynamic models leads to relative deviations of up to 1% for the power consumption and 20% for the network conductance. Particular caution should thus be exercised when extrapolating the results of process models to the design of actual gas liquefaction systems....

  7. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  8. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-07-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

  9. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY; FINAL

    International Nuclear Information System (INIS)

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes

  10. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  11. A Characterization and Evaluation of Coal Liquefaction Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    An updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams and a review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils are presented in this document. In addition, a summary is provided for the University of Delaware program conducted under this contract to develop an empirical test to determine relative resid reactivity and to construct a computer model to describe resid structure and predict reactivity.

  12. ENVIRONMENTAL AND ECONOMIC ASPECTS OF INDIRECT COAL LIQUEFACTION PROCESSES: A REPORT EMPHASIZING THE RELATIONSHIP BETWEEN PRODUCT MIX AND EFFICIENCY

    Science.gov (United States)

    This report covers environmental and economic aspects of three indirect liquefaction processes. Specifically, the following are addressed: U.S. coal resources; the Lurgi/Methanol, Lurgi/Methanol/Mobil M, and the Lurgi/Fischer-Tropsch indirect coal liquefaction processes; and envi...

  13. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  14. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  15. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  16. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  17. Study on the mechanism of coal liquefaction reaction and a new process concept

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-dong; LI Wen-bo; WANG Yong; GUO Zhi; LI Ke-jian

    2008-01-01

    The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabi-lized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal lique-faction (CDCL) process is presented based on the mechanism study of coal liquefaction.

  18. Corrosion and stress corrosion cracking in coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V. B.; Keiser, J. R.

    1980-01-01

    The liquefaction of coal to produce clean-burning synthetic fuels has been demonstrated at the pilot plant level. However, some significant materials problems must be solved before scale-up to commercial levels of production can be completed. Failures due to inadequate materials performance have been reported in many plant areas: in particular, stress corrosion cracking has been found in austenitic stainless steels in the reaction and separation areas and several corrosion has been observed in fractionation components. In order to screen candidate materials of construction, racks of U-bend specimens in welded and as-wrought conditions and unstressed surveillance coupons were exposed in pilot plant vessels and evaluated. Failed components were analyzed on-site and by subsequent laboratory work. Laboratory tests were also performed. From these studies alloys have been identified that are suitable for critical plant locations. 19 figures, 7 tables.

  19. Lifecycle Assessment of Microalgae to Biofuel: Thermochemical Processing through Hydrothermal Liquefaction or Pyrolysis

    OpenAIRE

    Bennion, Edward P

    2014-01-01

    Microalgae have many desirable attributes as a renewable energy recourse. These include use of poor quality land, high yields, and it is not a food recourse. This research focusses on the energetic and environmental impact of processing microalgae into a renewable diesel. Two thermochemical bio-oil recovery processes are analyzed, pyrolysis and hydrothermal liquefaction (HTL). System boundaries include microalgae growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conv...

  20. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    OpenAIRE

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian; H. Bruun, Allan

    2016-01-01

    Natural gas liquefaction systems are based on refrigeration cycles, which can be subdivided into: the cascade, mixed refrigerant and expansion-based processes. They differ by their design configurations, components and working fluids, and thus have various operating conditions and equipment inventory. The present work investigates three configurations (single-mixed refrigerant, single and dual reverse Brayton cycles) for small-scale applications, which are optimised and evaluated individually...

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  2. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  3. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  4. Design and analysis of liquefaction process for offshore associated gas resources

    International Nuclear Information System (INIS)

    Liquefaction is the key section on floating platform. Some experts and designers selected mixed refrigerant process for floating platform, while some recommended expander cycle. However, few of them compared the two types of processes systemically before making a choice. In this paper, the liquefaction processes of propane pre-cooled mixed refrigerant cycle (C3/MRC), mixed refrigerant cycle (MRC) and nitrogen expander cycle (N2 expander) for the special offshore associated gases in South China Sea have been designed and studied. These processes have been analyzed and compared systematically considering the main factors including the performance parameters, economic performance, layout, sensitivity to motion, suitability to different gas resources, safety and operability, accounting for the features of the floating production, storage and offloading unit for liquefied natural gas (LNG-FPSO) in marine environment. The results indicated that N2 expander has higher energy consumption and poorer economic performance, while it has much more advantages than C3/MRC and MRC for offshore application because it is simpler and more compact and thus requiring less deck area, less sensitive to LNG-FPSO motion, has better suitability for other gas resources, has higher safety and is easier to operate. Therefore, N2 expander is the most suitable offshore liquefaction process. In addition, the exergy analysis is conducted for N2 expander and the results indicate that the compression equipments and after coolers, expanders and LNG heat exchangers are the main contribution to the total exergy losses. The measures to decrease the losses for these equipments are then discussed.

  5. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, through March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Accomplishments for this quarter are described.

  6. Energy consumption, destruction of exergy and boil off during the process of liquefaction, transport and regasification of liquefied natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Stradioto, Diogo Angelo; Schneider, Paulo Smith [Dept. of Mechanical Engineering. Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)], e-mail: pss@mecanica.ufrgs.br

    2010-07-01

    A supply chain of Liquefied Natural Gas (LNG) is composed by several processes like extraction, purification, liquefaction, storage, transport, regasification and distribution. In all these stages, processes need of energy. The main objective of this work is to quantify the energy consumption, mass loss and exergy destruction occurred throughout the chain. Results show that the process of liquefaction is the largest consumer of energy. Storage and transport by ship are responsible for the bigger mass losses and regasification is the process of larger destruction of exergy. A case study is performed considering a stream of pure methane at the input of a liquefaction plant, and evaluates energy along the chain, ending up at the distribution of NG after its regasification. (author)

  7. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  8. Dispersed catalysts for co-processing and coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, B.; Parfitt, D.; Miller, R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  9. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  10. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States))

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  11. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian;

    2016-01-01

    Natural gas liquefaction systems are based on refrigeration cycles, which can be subdivided into: the cascade, mixed refrigerant and expansion-based processes. They differ by their design configurations, components and working fluids, and thus have various operating conditions and equipment...... inventory. The present work investigates three configurations (single-mixed refrigerant, single and dual reverse Brayton cycles) for small-scale applications, which are optimised and evaluated individually. The influences of the refrigerant properties and process technologies are analysed, and the most...... promising cycle setups are identified. The findings illustrate the resulting trade-offs between the system performance and investment costs, which differ significantly with the type of refrigeration cycle. Although these configurations are suitable for small-scale applications, mixed-refrigerant processes...

  12. Liquefaction of crop residues for polyol production

    OpenAIRE

    C Wan; Wang, T.; Zhang, L.; Zang, L.; Li, Y.; Mao, Z.; L. Liang

    2006-01-01

    The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained i...

  13. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints

    International Nuclear Information System (INIS)

    The particle swarm paradigm is employed to optimize single mixed refrigerant natural gas liquefaction process. Liquefaction design involves multivariable problem solving and non-optimal execution of these variables can waste energy and contribute to process irreversibilities. Design optimization requires these variables to be optimized simultaneously; minimizing the compression energy requirement is selected as the optimization objective. Liquefaction is modeled using Honeywell UniSim Design™ and the resulting rigorous model is connected with the particle swarm paradigm coded in MATLAB. Design constraints are folded into the objective function using the penalty function method. Optimization successfully improved efficiency by reducing the compression energy requirement by ca. 10% compared with the base case. -- Highlights: ► The particle swarm paradigm (PSP) is employed for design optimization of SMR NG liquefaction process. ► Rigorous SMR process model based on UniSim is connected with PSP coded in MATLAB. ► Stochastic features of PSP give more confidence in the optimality of complex nonlinear problems. ► Optimization with PSP notably improves energy efficiency of the SMR process.

  14. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  15. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  16. Advanced direct liquefaction concepts for PETC generic units: Phase 2. Quarterly technical progress report, July--September, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Advanced Direct Liquefaction Concepts Program sponsored by the DOE Pittsburgh Energy Technology Center was initiated in 1991 with the objective of promoting the development of new and emerging technology that has the potential for reducing the cost of producing liquid fuels by direct coal liquefaction. The laboratory research program (Phase I) was completed in 1995 by UK/CAER, CONSOL, Sandia National Laboratories and LDP Associates. A three year extension was subsequently awarded in October 1995 to further develop several promising concepts derived from the laboratory program. During Phase II, four continuous bench scale runs will be conducted at Hydrocarbon Technologies, Inc. using a 2 kg/hr continuous bench scale unit located at their facility in Lawrenceville, NJ. The first run in this program (ALC-1), conducted between April 19 and May 14, 1996, consisted of five test conditions to evaluate the affect of coal cleaning and recycle solvent modification. A detailed discussion of this run is included in Section Two of this report. Results obtained during this reporting period for all participants in this program are summarized.

  17. Advanced Biosignal Processing

    CERN Document Server

    Nait-Ali, Amine

    2009-01-01

    Presents the principle of many advanced biosignal processing techniques. This title introduces the main biosignal properties and the acquisition techniques. It concerns one of the most intensively used biosignals in the clinical routine, namely the Electrocardiogram, the Elektroenzephalogram, the Electromyogram and the Evoked Potential

  18. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In......This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During the...... hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by...

  19. Advanced uranium enrichment processes

    International Nuclear Information System (INIS)

    Three advanced Uranium enrichment processes are dealt with in the report: AVLIS (Atomic Vapour LASER Isotope Separation), MLIS (Molecular LASER Isotope Separation) and PSP (Plasma Separation Process). The description of the physical and technical features of the processes constitutes a major part of the report. If further presents comparisons with existing industrially used enrichment technologies, gives information on actual development programmes and budgets and ends with a chapter on perspectives and conclusions. An extensive bibliography of the relevant open literature is added to the different subjects discussed. The report was drawn up by the nuclear research Centre (CEA) Saclay on behalf of the Commission of the European Communities

  20. Prospect of coal liquefaction in Indonesia

    International Nuclear Information System (INIS)

    With the current known oil reserves of about 11 billion barrel and annual production of approximately 500 million barrel, the country's oil reserves will be depleted by 2010, and Indonesia would have become net oil importer if no major oil fields be found somewhere in the archipelago. Under such circumstances the development of new sources of liquid fuel becomes a must, and coal liquefaction can be one possible solution for the future energy problem in Indonesia, particularly in the transportation sector due to the availability of coal in huge amount. This paper present the prospect of coal liquefaction in Indonesia and look at the possibility of integrating the process with HTR as a heat supplier. Evaluation of liquidability of several low grade Indonesian coals will also be presented. Coal from South Banko-Tanjung Enim is found to be one of the most suitable coal for liquefaction. Several studies show that an advanced coal liquefaction technology recently developed has the potential to reduce not only the environmental impact but also the production cost. The price of oil produced in the year 2000 is expected to reach US $ 17.5 ∼ 19.2/barrel and this will compete with the current oil price. Not much conclusion can be drawn from the idea of integrating HTR with coal liquefaction plant due to limited information available. (author). 7 figs, 3 tabs

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  2. Advanced information processing system

    Science.gov (United States)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  3. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  4. Energy optimization for liquefaction process of natural gas in peak shaving plant

    Energy Technology Data Exchange (ETDEWEB)

    Mokarizadeh Haghighi Shirazi, M.; Mowla, D. [School of Chemical and Petroleum Engineering, Shiraz University, Zand Street, Shiraz, Fars (Iran)

    2010-07-15

    One of the most important sections in the gas peak shaving plant regarding the energy consumption is the liquefaction process of natural gas (NG). Thus, selection and development of this process with the lowest energy consumption, offer huge potential energy and cost benefits. Here, a single-stage mixed refrigerant (SMR) cryogenic cycle with two compression stages has been selected for producing Liquefied Natural Gas (LNG). Energy consumption of the process as an objective function is optimized by describing key variables of the design. The proposed process's calculations of thermodynamic concepts and properties are applied in MATLAB software to generate the objective function; furthermore Genetic Algorithm (GA) is used as an optimization method. Concerning works done in this area, more key parameters - related directly to the objective function - are introduced in this paper. A low irreversibility is due to enhanced values of key parameters in the LNG heat exchanger observed under a low temperature difference between hot and cold composite curves. Finally, the exergy lost of equipments in the proposed process are evaluated and analyzed in details. (author)

  5. Energy optimization for liquefaction process of natural gas in peak shaving plant

    International Nuclear Information System (INIS)

    One of the most important sections in the gas peak shaving plant regarding the energy consumption is the liquefaction process of natural gas (NG). Thus, selection and development of this process with the lowest energy consumption, offer huge potential energy and cost benefits. Here, a single-stage mixed refrigerant (SMR) cryogenic cycle with two compression stages has been selected for producing Liquefied Natural Gas (LNG). Energy consumption of the process as an objective function is optimized by describing key variables of the design. The proposed process's calculations of thermodynamic concepts and properties are applied in MATLAB software to generate the objective function; furthermore Genetic Algorithm (GA) is used as an optimization method. Concerning works done in this area, more key parameters - related directly to the objective function - are introduced in this paper. A low irreversibility is due to enhanced values of key parameters in the LNG heat exchanger observed under a low temperature difference between hot and cold composite curves. Finally, the exergy lost of equipments in the proposed process are evaluated and analyzed in details.

  6. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  7. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  8. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  9. Advanced materials processing

    International Nuclear Information System (INIS)

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni3Al and MoSi2. Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  10. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  11. Hydrothermal processing of fermentation residues in a continuous multistage rig – Operational challenges for liquefaction, salt separation, and catalytic gasification

    International Nuclear Information System (INIS)

    Fermentation residues are a waste stream of biomethane production containing substantial amounts of organic matter, and thus representing a primary energy source which is mostly unused. For the first time this feedstock was tested for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production. The processing steps include hydrothermal liquefaction, salt separation, as well as catalytic gasification over a ruthenium catalyst in supercritical water. In continuous experiments at a feed rate of 1 kg h−1 a partial liquefaction and carbonization of some of the solids was observed. Significant amounts of heavy tars were formed. Around 50% of the feed carbon remained in the rig. Furthermore, a homogeneous coke was formed, presumably originating from condensed tars. The mineralization of sulfur and its separation in the salt separator was insufficient, because most of the sulfur was still organically bound after liquefaction. Desalination was observed at a salt separator set point temperature of 450 °C and 28 MPa; however, some of the salts could not be withdrawn as a concentrated brine. At 430 °C no salt separation took place. Higher temperatures in the salt separator were found to promote tar and coke formation, resulting in conflicting process requirements for efficient biomass liquefaction and desalination. In the salt separator effluent, solid crystals identified as struvite (magnesium ammonium phosphate) were found. This is the first report of struvite formation from a supercritical water biomass conversion process and represents an important finding for producing a fertilizer from the separated salt brine. - Highlights: • Continuous processing of fermentation residues in sub- and supercritical water. • Continuous separation of salt brines at supercritical water conditions. • Struvite crystals (magnesium ammonium phosphate) were recovered from the effluent. • Separation of sulfur from the biomass could not

  12. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  13. Development of an extruder-feeder biomass direct liquefaction process. Volume 2, Parts 4--8: Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. [Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE`s Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  14. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  15. Advances in speech processing

    Science.gov (United States)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  16. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis

    Science.gov (United States)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  17. Advanced powder processing

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  18. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  19. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  20. Valves - current operating experience of slurry valves (block and letdown) in coal liquefaction processes. Third quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This paper summarizes the recent letdown and block valve experience in the liquefaction pilot plants. Also included is a brief description of the research and development activities on valves which are conducted in supporting laboratories. The purpose of the summary is to concentrate on critical component problems common to all liquefaction plants, to avoid duplication of efforts, and to help provide timely solutions to the valve problems. The main source of information used in this paper is the Minutes of the Critical Component and Materials Meeting which is sponsored by the Office of Coal Processing, Fossil Energy, Department of Energy. Other sources of information such as the technical progress reports are also included based on availability and relevance to topics covered in this paper. It is intended that this report will be followed by updates as pertinent information concerning valves becomes available. In the subsequent sections of this paper a brief outline of past valve studies is given as background material followed by a summary of the most recent valve operating experience at the liquefaction plants.

  1. Development of Predictive Thermodynamic Model for Liquefaction of Natural Gas Using the C3-Mr Refrigeration Process

    Directory of Open Access Journals (Sweden)

    Dagde, Kenneth, K.

    2012-11-01

    Full Text Available This paper presents a propane precooled mixed refrigerant (C3-MR liquefaction plant with 4 pressure levels of propane cooling operational in Nigeria and demonstrates the procedure for developing a thermodynamic model that predicts the liquefied natural gas (LNG production rate. The model prediction was validated with plant data with a maximum deviation of 3%. The thermodynamic efficiency of the natural gas liquefaction plant was estimated to be 45.1%. Simulations reveals that LNG production rate for the C3-MR plant depends on cooling water supply temperature (1 ͦC rise results to 92 tonnes per day of LNG loss, thermodynamic efficiency of the overall liquefaction process (1% drop results to 215 tonnes per day of LNG loss, LNG outlet temperature (1 ͦC decrease results to 108 tonnes per day of LNG loss, LNG production to feed gas supply ratio (1% rise results to 37 tonnes per day rise in LNG, thermal efficiency of gas turbine drivers (1% drop results to 277 tonnes per day of LNG loss, ambient air temperature (1 ͦC drop results to 67 tonnes per day of LNG increase and feed gas supply pressure.

  2. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    OpenAIRE

    Engin GÜRTEKİN; Nusret ŞEKERDAĞ

    2008-01-01

    Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple ...

  3. Coal liquefaction in early stage of NEDOL process 1t/d PSU; 1t/d PSU ni okeru ekika shoki hanno ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kawabata, M.; Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the behavior of coal liquefaction reaction in early stage as a part of studies on the coal liquefaction characteristics using NEDOL process 1 t/d process supporting unit (PSU), coal slurry sample was taken from the outlet of slurry preheater located in the upflow of liquefaction reactors, and was tested. Tanito Harum coal was used for liquefaction. Preheater was operated under the condition of pressure of 170 kg/cm{sup 2}, gas flow rate of 64 Nm{sup 3}/hr, and at temperature up to 410{degree}C at the outlet, in response to the standard test condition. The slurry sample was discharged into a high temperature separator with temperature of 250{degree}C. Liquefaction was not proceeded at the outlet of preheater. Solid residue yielded around 80%, and liquid yielded around 15%. Gases, CO and CO2, and water yielded also small amount around 3%. The solid sample contained much IOM fraction (tetrahydrofuran-insoluble and ash), and the liquid contained much heavy oil fraction. Hydrogenation was not proceeded, and the hydrogen consumption was very low showing below one-tenth of that at the usual operation. Hydrogen sulfide gas was formed at early stage, which suggested that the change of iron sulfide catalyst occur at early stage of liquefaction. 1 ref., 5 figs., 2 tabs.

  4. Effect of process parameters on hydrothermal liquefaction of oil palm biomass for bio-oil production and its life cycle assessment

    International Nuclear Information System (INIS)

    Highlights: • Water is used as a clean solvent to liquefy palm biomass to bio-oil. • The optimum liquefaction condition of oil palm biomass is 390 °C and 25 MPa. • Optimum reaction time for liquefaction of empty fruit bunch and palm mesocarp fiber is 120 min. • Optimum reaction time for liquefaction of palm kernel shell is 240 min. • From the life cycle assessment, a net 2.29 kg CO2 equivalent is generated per kg of bio-oil produced. - Abstract: This paper presents the studies on the effect of three process parameters; temperature, pressure and reaction time on the subcritical and supercritical hydrothermal liquefaction of oil palm empty fruit bunch, palm mesocarp fiber and palm kernel shell. The effect of temperature (330–390 °C), pressure (25–35 MPa) and reaction time (30–240 min) on bio-oil yields were investigated using a Inconel batch reactor. The optimum liquefaction condition for empty fruit bunch, palm mesocarp fiber and palm kernel shell was at supercritical condition of water; 390 °C and 25 MPa. For the effect of reaction time, bio-oil from empty fruit bunch and palm mesocarp fiber attained maximum yields at 120 min, whereas bio-oil yield from palm kernel shell continued to increase at reaction time of 240 min. Lastly, a life cycle assessment based on a conceptual biomass hydrothermal liquefaction process for bio-oil production was constructed and presented

  5. Effect of catalysts on biopolymers phenolic resin by liquefaction process of soda lignin

    International Nuclear Information System (INIS)

    Liquefaction of soda lignin was carried using phenol with 1:3 ratio. The reaction time was 90 minutes at 130 degree Celsius in the reflux system. The main product of liquefaction, phenolates lignin (PL), was analyzed by Fourier Transform Infrared Spectrometer (FTIR), rheometer and thermalgravimetri analyzer (TGA). The sample synthesized from hydrochloric acid as catalyst gave excellent characteristics. FTIR spectrum consists of essential functional groups such as aromatic ring, alcohol and carbonyl. All samples obeyed the Arrhenius equation and showed pseudo-plastic properties. The percentage weight loss and degradation of PL samples were affected by the type of catalysts used. The synthesized PL was classified as biopolymers resin phenolic. (author)

  6. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  7. Conversion of cotton plant and cotton gin residues to fuels by the extruder-feeder liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H. [Arizona Univ., Tucson, AZ (United States). Dept. of Chemical and Environmental Engineering; Coates, W.E. [Arizona Univ., Tucson, AZ (United States). Bioresources Research Facility; Wolf, D. [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemical Engineering

    1996-04-01

    Cotton is planted on a large scale in the USA, and is a major crop in Arizona. A large amount of cotton plant residue and cotton gin waste is produced annually, and these present a disposal problem. This material is comprised of cotton stalks, along with the upper portion of the taproot, and cotton gin trash. Cotton plant residues are a greater problem in the warmer regions of the USA as they serve as an over-wintering site for insect pests, and thus must be destroyed. Presently they are buried. Most field operations used to bury the residue are high energy consumers, and tend to destroy soil structure, thereby increasing the potential for erosion. This burial process is considered to be detrimental to the soil. One option to change the negative value of this biomass to a positive one is to harvest the cotton plants and combine them with other cotton wastes to produce a feedstock for liquefaction purposes. A process for harvesting and transporting the roots and stalks is being developed at the University of Arizona. In this paper we propose a combined harvesting/liquefaction system. This system would harvest and liquefy cotton wastes into oil and densified solid fuels with higher economic values. The extruder-feeder liquefaction process was developed at the University of Arizona in the 1980s under the sponsorship of the U.S. Department of Energy, with the goal to convert wood to a clean, 16000 btu/lb liquid fuel. The process has been redirected to other organic wastes using additional processing to yield ``value-added`` byproducts. Cotton wastes are good candidates for this process. By combining the harvesting and fuel processing operations, a negative value biomass would become a positive value biomass by (a) solving a disposal problem, and (b) producing high value fuels. (Author)

  8. Reaction engineering in direct coal liquefaction

    Science.gov (United States)

    Shah, Y. T.

    Processes for direct coal liquefaction by solvent extraction are considered along with the structure and properties of coal and the mechanism of coal liquefaction, heteroatom removal during liquefaction, kinetic models for donor-solvent coal liquefaction, the design of coal liquefaction reactors, and the refining of coal liquids. Attention is given to the catalytic hydrogenation of coal in the presence of a solvent, the origin and character of coal, laboratory reactors for rate measurements, reaction networks based on lumped fractions, free-radical reaction models, reactor types, the compatibility of coal-derived liquids and petroleum fuels, the stability of coal liquids, thermal cracking, catalytic hydrotreating, catalytic cracking, and catalytic reforming.

  9. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

    Science.gov (United States)

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J

    2015-12-01

    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase. PMID:26432053

  10. EDS coal liquefaction process development, Phase V. Engineering design study of an EDS Illinois bottoms fired hybrid boiler

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-04-01

    This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company and was prepared by Combustion Engineering, Inc. This report is the second of two reports by Combustion Engineering, Inc. on the predevelopment phase of the Hybrid Boiler program and covers the results of an engineering design study of a Hybrid Boiler firing the vacuum distillation residue (vacuum bottoms) derived from processing Illinois No. 6 coal in the EDS Coal Liquefaction Process. The function of the Hybrid Boiler is to heat the coal slurry feed for an EDS coal liquefaction plant by a process coil in the convection section and to generate high pressure steam in the radiant section. The Hybrid Boiler design developed in this phase of the program is based on the results of a laboratory characterization program (reported in EDS Interim Report FE-2893-112), on Combustion Engineering, Inc.'s extensive experience as a designer and supplier of steam generating equipment, and on Exxon Research and Engineering Co.'s experience with the design and operation of process heaters.

  11. Advances in Solidification Processing

    Directory of Open Access Journals (Sweden)

    Hugo F. Lopez

    2015-08-01

    Full Text Available Melt solidification is the shortest and most viable route to obtain components, starting from the design to the finished products. Hence, a sound knowledge of the solidification of metallic materials is essential for the development of advanced structural metallic components that drive modern technological societies. As a result, there have been innumerable efforts and full conferences dedicated to this important subject [1–6]. In addition, there are various scientific journals fully devoted to investigating the various aspects which give rise to various solidification microstructures [7–9]. [...

  12. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    International Nuclear Information System (INIS)

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed

  13. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. 落叶松锯屑液化工艺研究%Study of the Liquefaction Process of Larch Sawdust

    Institute of Scientific and Technical Information of China (English)

    王春霞; 刘浩阳; 崔立东; 张晶; 张长武

    2012-01-01

      By means of uniform design experimentation and regression analysis, the interaction between various factors involved in the liquefaction process of larch sawdust is obtained. Through gel permeation chromatography, inspection is conducted of samples of liquefied larch sawdust obtained under 8 different synthesis conditions, with number-average molecular weight and weight-average molecular weight obtained respectively. The result shows that no matter what liquefaction conditions, the molecular weight of liquefied samples is dominated by large molecules, to be exact, high molecule weight segments.%  通过均匀设计试验法和回归分析得出落叶松锯屑液化工艺各因子之间的交互作用。使用凝胶渗透色谱仪对8种不同合成条件下的落叶松锯屑液化物样品进行检测,分别求得数均分子量和重均分子量。结果表明:无论液化条件如何,液化物的分子量仍是以大分子为主,且在液化物中以这样的高分子量片段为主。

  15. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  16. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1992--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.

  17. Coal liquefaction and gas conversion: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  19. Coal liquefaction process solvent characterization and evaluation: Technical progress report, July 1, 1986 through September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1987-03-01

    Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils, to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. Close cooperation is maintained with the process developers and with DOE in order to maximize the benefits of the work. Analytical methods used are based on their ability to provide quantitatively valid measures of process oil composition. Particular use is made of methods which provide chemical/molecular information of proven relevance to process performance. In addition, all samples are treated using conventional methods of analysis and preparation so that unit performance parameters, such as conversions and yields, can be independently determined to assure sample validity and correlation of analytical results among various plant operations. 10 refs., 3 figs., 20 tabs.

  20. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages

    International Nuclear Information System (INIS)

    The utilization of unconventional natural gas is still a great challenge for China due to its distribution locations and small reserves. Thus, liquefying the unconventional natural gas by using small-scale LNG plant in skid-mount packages is a good choice with great economic benefits. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale plant in skid-mount packages has been proposed. It first designs a process configuration. Then, thermodynamic analysis of the process is conducted. Next, an optimization model with genetic algorithm method is developed to optimize the process. Finally, the flexibilities of the process are tested by two different feed gases. In conclusion, the proposed parallel nitrogen expansion liquefaction process can be used in small-scale LNG plant in skid-mount packages with high exergy efficiency and great economic benefits. - Highlights: • A novel design of parallel nitrogen expansion liquefaction process is proposed. • Genetic algorithm is applied to optimize the novel process. • The unit energy consumption of optimized process is 0.5163 kWh/Nm3. • The exergy efficiency of the optimized case is 0.3683. • The novel process has a good flexibility for different feed gas conditions

  1. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  2. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica;

    2014-01-01

    can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehy-dration or decarboxylation. The chemical properties of the product are mostly de-pendent of the biomass substrate composition. Biomass consists of various com-ponents such as......Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided into...... biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass into...

  3. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  4. 德国IGOR煤液化工艺及云南先锋褐煤液化%IGOR PROCESS OF DIRECT COAL LIQUEFACTION AND XIANFENG BROWN COAL LIQUEFACTION IN IT

    Institute of Scientific and Technical Information of China (English)

    李克健; 史士东; 李文博

    2001-01-01

    In this paper, IGOR process of direct coal liquefaction in Germany and experimental results of Xianfeng brown coal in 200 kg/d PDU of IGOR process in Germany are introduced. Compared with other direct coal liquefaction processes, IGOR process is characterized with higher throughout of coal hydrogenation reactor, higher integration degree and higher quality of oils. The results of Xianfeng coal tested in 200 kg/d PDU of IGOR process in Germany showed IGOR process marched Xianfeng brown coal well with 53% of oil yield, 2 mg/kg and 17 mg/kg of N and S contents. Qualified 0# diesel oil can be produced from Xianfeng coal oil with simple distillation and qualified 90# lead free gasoline can be produced from it with reforming step.%介绍了德国IGOR煤直接液化工艺和云南先锋褐煤在IGOR工艺200 kg/d的PDU装置的试验结果. 与其它煤直接液化工艺相比, IGOR工艺具有煤直接液化反应器的空速高、系统集成度高和油品质量好的特点. 云南先锋褐煤在IGOR工艺200 kg/d的PDU装置上的试验结果表明, 先锋褐煤是适宜IGOR煤液化的煤种, 得到的油收率为53%, 油品中氮和硫的含量分别为2 mg/kg和17 mg/kg.煤液化油经过简单蒸馏可得到合格的0#柴油,经过重整可得到合格的90#无铅汽油.

  5. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  6. Advances in machining process modeling

    International Nuclear Information System (INIS)

    Ever increasing speed and affordability of computing resources together with the advances in the modeling techniques made it possible to use the numerical models like finite element method (FEM), to simulate the metal cutting processes numerically. This paper explains the recent technological advances made in the commercial DEFORMTM system to facilitate the modeling of metal cutting process. During the first phase of this work a 2D system has been developed which assumes orthogonal cutting conditions. The second phase of this work has resulted in the development of a modeling system for 3D machining processes with main focus on turning. The modeling tools developed in this project utilize a hybrid procedure including both transient and steady state approaches. Automated remeshing procedure is being used with great success. Multiple coating layers on the insert can be modeled to study their thermal effects. Elastic and thermal response of the insert during the machining process can also be modeled using this system. The Usui's wear model has also been implemented in the system to study the tool wear. The system developed has been validated with various results reported from actual cutting tests and comparisons are found to be reasonably accurate

  7. The direct liquefaction proof of concept program

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H. [New York & Puritan Avenues, Lawrenceville, NJ (United States)

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  8. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  9. Electrochromic Windows: Advanced Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  10. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  11. Cryogenic hydrogen-induced air-liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  12. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  13. Liquefaction of crop residues for polyol production

    Directory of Open Access Journals (Sweden)

    Wan, C.

    2006-11-01

    Full Text Available The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained in 60 minutes of reaction when corn stover was liquefied with ethylene glycol, a mixture of polyethylene glycol and glycerol (9:1, w/w, and ethylene carbonate, respectively. When ethylene carbonate was used as solvent, the liquefaction yields of rice straw and wheat straw were 67% and 73%, respectively, which is lower than that of corn stover (80%. When a mixture of ethylene carbonate and ethylene glycol (8:2, w/w was used as solvent, the liquefaction yields for corn stover, rice straw and wheat straw were 78, 68, and 70%, respectively.

  14. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...

  15. Demineralization of Sargassum spp. Macroalgae Biomass: Selective Hydrothermal Liquefaction Process for Bio-Oil Production

    OpenAIRE

    Díaz-Vázquez, Liz M.; Rojas-Pérez, Arnulfo; Fuentes-Caraballo, Mariela; Robles, Isis V.; Jena, Umakanta; Das, K. C.

    2015-01-01

    Algae biomasses are considered a viable option for the production of biofuel because of their high yields of oil produced per dry weight. Brown macroalgae Sargassum spp. are one of the most abundant species of algae in the shores of Puerto Rico. Its availability in large quantity presents a great opportunity for use as a source of renewable energy. However, high ash content of macroalgae affects the conversion processes and the quality of resulting fuel products. This research studied the eff...

  16. Advances in uranium enrichment processes

    International Nuclear Information System (INIS)

    Advances in gas centrifuges and development of the atomic vapour laser isotope separation process promise substantial reductions in the cost of enriched uranium. The resulting reduction in LWR fuel costs could seriously erode the economic advantage of CANDU, and in combination with LWR design improvements, shortened construction times and increased operational reliability could allow the LWR to overtake CANDU. CANDU's traditional advantages of neutron economy and high reliability may no longer be sufficient - this is the challenge. The responses include: combining neutron economy and dollar economy by optimizing CANDU for slightly enriched uranium fuel; developing cost-reducing improvements in design, manufacture and construction; and reducing the cost of heavy water. Technology is a renewable resource which must be continually applied to a product for it to remain competitive in the decades to come. Such innovation is a prerequisite to Canada increasing her share of the international market for nuclear power stations. The higher burn-up achievable with enriched fuel in CANDU can reduce the fuel cycle costs by 20 to 40 percent for a likely range of costs for yellowcake and separative work. Alternatively, some of the benefits of a higher fissile content can take the form of a cheaper reactor core containing fewer fuel channels and less heavy water, and needing only a single fuelling machine. An opportunity that is linked to this need to introduce an enriched uranium fuel cycle into CANDU is to build an enrichment business in Canada. This could offer greater value added to our uranium exports, security of supply for enriched CANDUs, technological growth in Canada and new employment opportunities. AECL has a study in progress to define this opportunity

  17. Liquefaction and methanization of solid and liquid coffee wastes by two phase anaerobic digestion process.

    Science.gov (United States)

    Houbron, E; Larrinaga, A; Rustrian, E

    2003-01-01

    This study attempted to investigate the feasibility of volatile fatty acid (VFA) production from coffee pulp hydrolyse, and further to determine the potential of methanization of both the pre-acidified effluent and the coffee wastewater. The experiments were carried out in 2 completely mixed reactors, each one with a working volume of 4 litres. Coffee pulp was used as substrate in the acidogenic reactor and different mixtures of pulper and wash-water and pre-acidified effluent in the methanogenic one. The acidogenic and methanogenic reactors were operated at an organic loading rate of 5 COD g x l(-1) x d(-1) and 0.5 COD g x l(-1) x d(-1). The total, soluble and VFA's effluent COD concentrations of the acidogenic reactor present average values of 57.75, 17.00 and 13.92 g x l(-1) respectively. Under these experimental conditions, 23% (COD based) of coffee pulp was hydrolysed with a rate of 1.32 gCOD x l(-1) x d(-1) and the soluble fraction was transformed to VFA's with an acidification efficiency of 82%. Total VFA's concentration reached a value of 13.9 gCOD x l(-1), and acetate, propionate, butyrate and valerate represented 52%, 28%, 9% and 11% respectively of the liquid phase COD. In the methanogenic reactor, COD removal and methanization of fresh coffee wastewater, pre-acidified effluent and both combined occur with an efficiency of 85% to 95% respectively, with a characteristic biogas composition of 80% CH4 and 20% CO2. These results show that a humid coffee "Beneficio" processing daily 23 tons of cherry coffee (fresh fruit), equipped with a two stage anaerobic digestion process could generate at least 1,886 CH4 m3 x d(-1). This represents an increase in methane production by a factor 3 to 5 compared to a "Beneficio" using anaerobic digestion only for the treatment of its wastewater. PMID:14640226

  18. Liquefaction and methanization of solid and liquid coffee wastes by two phase anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Houbron, E.; Rustrian, E. [Universidad Veracruzana, Orizaba, Ver. (Mexico). Facultad de Ciencias Quimicas; Larrinaga, A. [Instituto tecnologico de Orizaba, Ver. (Mexico)

    2003-07-01

    This study attempted to investigate the feasibility of volatile fatty acid (VFA) production from coffee pulp hydrolyse, and further to determine the potential of methanization of both the pre-acidified effluent and the coffee wastewater. The experiments were carried out in 2 completely mixed reactors, each one with working volume of 4 litres. Coffee pulp was used as substrate in the acidogenic reactor and different mixtures of pulper and wash-water and pre-acidified effluent in the methanogenic one. The acidogenic and methanogenic reactors were operated at an organic loading rate of 5 COD g.l{sup -1}.d{sup -1} and 0.5 COD g.l{sup -1}.d{sup -1}. The total, soluble and VFA's effluent COD concentrations of the acidogenic reactor present average values of 57.75, 17.00 and 13.92 g.l{sup -1} respectively. Under these experimental conditions, 23% (COD based) of coffee pulp was hydrolysed with a rate of 1.32 gCOD.l{sup -1}.d{sup -1} and the soluble fraction was transformed to VFA's with an acidification efficiency of 82%. Total VFA's concentration reached a value of 13.9 gCOD.l{sup -1}, and acetate, propionate, butyrate and valerate represented 52%, 28%, 9% and 11% respectively of the liquid phase COD. In the methanogenic reactor, COD removal and methanization of fresh coffee wastewater, pre-acidified effluent and both combined occur with an efficiency of 85% to 95% respectively, with a characteristic biogas composition of 80% CH{sub 4} and 20% CO{sub 2}. These results show that a humid coffee 'Beneficio' processing daily 23 tons of cherry coffee (fresh fruit), equipped with a two stage anaerobic digestion process could generate at least 1,886 CH{sub 4} m{sup 3}.d{sup -1}. This represents an increase in methane production by a factor 3 to 5 compared to a 'Beneficio' using anaerobic digestion only for the treatment of its wastewater. (author)

  19. Advanced thermally assisted surface engineering processes

    CERN Document Server

    Chattopadhyay, Ramnarayan

    2007-01-01

    Preface. Acknowledgements. 1: Wear, Surface Heat and Surface Engineering. 2: Plasma Assisted Thermal Processes. 3: Ion Beam Processes. 4: Electron Beam Processes. 5: Microwave Assisted Surface Modification Processes. 6: Laser Assisted Surface Engineering Processes. 7: Solar Energy for Surface Modifications. 8: Combustion Processes for Surface Modification. 9: Friction Weld Surfacing. 10: Induction Surface Modification Processes. 11: Surfacing by Spark Deposition Processes. 12: Arc Assisted Advanced Surface Engineering Processes. 13: Hot Isostatic Press. 14: Fluid Bed Processes. 15: P

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  1. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction. Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, E. C. D.; Talmadge, M.; Dutta, A.; Hensley, J.; Schaidle, J.; Biddy, M.; Humbird, D.; Snowden-Swan, L. J.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics of conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to

  2. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  3. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  4. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude.

    Science.gov (United States)

    Lavanya, Melcureraj; Meenakshisundaram, Arunachalam; Renganathan, Sahadevan; Chinnasamy, Senthil; Lewis, David Milton; Nallasivam, Jaganathan; Bhaskar, Sailendra

    2016-03-01

    Biocrude was produced from Tetraselmis sp. - a marine alga and Arthrospira platensis - a fresh water alga using hydrothermal liquefaction (HTL) process. Considering the constraints in cultivating algae for replacing 100% petrocrude, this study evaluated the option of blending and co-processing algal biocrude with petrocrude. Biocrudes obtained from algal strains cultivated in fresh water and sea water were blended with petrocrude at 10% concentration and the characteristics were studied using FT-IR and CNS SIMDIST. True Boiling Point (TBP) distillation was carried out to assess yields and properties of distillates of blended biocrudes. Biocrudes obtained from both algae were light crudes and the blended crudes recorded distillate yields of 76-77 wt%. The yield of light naphtha fraction of biocrude blends was 29-30%; whereas the yield of diesel fraction was about 18%. This study proposes blending and co-processing of algal biocrude with petrocrude to produce drop-in biofuels. PMID:26735877

  5. Survey study of the efficiency and economics of hydrogen liquefaction

    Science.gov (United States)

    1975-01-01

    The production of liquid hydrogen, with coal as the starting material, is reported. The minimum practicable energy and cost for liquefaction of gaseous hydrogen in the 1985-2000 time period is presented to investigate the possible benefits of the integration of coal gasification processes with the liquefaction process.

  6. Advanced methods for processing ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  7. Solidification process control for advanced superalloys

    Science.gov (United States)

    Gray, H. R.; Dreshfield, R. L.

    1982-01-01

    The importance of understanding and controlling the basic solidification process in high temperature alloy technology as applied to gas turbine engine production is discussed. Resultant tailoring of the superalloy macro- and microstructure offers significant potential for continued advances in superalloy use temperatures in turbine engines. Atomized superalloy powders, rapidly solidified superalloys, microstructural control, and advanced superalloys are discussed.

  8. Advancements in Big Data Processing

    CERN Document Server

    Vaniachine, A; The ATLAS collaboration

    2012-01-01

    The ever-increasing volumes of scientific data present new challenges for Distributed Computing and Grid-technologies. The emerging Big Data revolution drives new discoveries in scientific fields including nanotechnology, astrophysics, high-energy physics, biology and medicine. New initiatives are transforming data-driven scientific fields by pushing Bid Data limits enabling massive data analysis in new ways. In petascale data processing scientists deal with datasets, not individual files. As a result, a task (comprised of many jobs) became a unit of petascale data processing on the Grid. Splitting of a large data processing task into jobs enabled fine-granularity checkpointing analogous to the splitting of a large file into smaller TCP/IP packets during data transfers. Transferring large data in small packets achieves reliability through automatic re-sending of the dropped TCP/IP packets. Similarly, transient job failures on the Grid can be recovered by automatic re-tries to achieve reliable Six Sigma produc...

  9. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  10. Advanced Electrorefining Process at KAERI

    International Nuclear Information System (INIS)

    In order to enhance the throughput of a pyro-processing in which electrochemical processes are mostly engaged, the design of a continuous concept is required. The graphite cathode in the electro-refiner enables the uranium deposit on the cathodes to be stripped off spontaneously, resulting in a continuous reaction. The collected uranium deposits at the bottom of the inner cone of the reactor are transferred by a conveyor. The residuals in the anode basket after the uranium is depleted are noble metals. These are also collected at the bottom of the outer shell of the reactor, and conveyed from the reactor for a further treatment. This work addresses the design of the electro-refiner for a continuous operation. The behavior of particles such as uranium dendrites or noble metals was analyzed to achieve the proper operating conditions. The operating conditions for the cathode processor in which molten salt is distilled were also investigated. (authors)

  11. An optimal design methodology for large-scale gas liquefaction

    International Nuclear Information System (INIS)

    Highlights: ► Configuration selection and parametric optimization carried out simultaneously for gas liquefaction systems. ► Effective Heat Transfer Factor proposed to indicate the performance of heat exchanger networks. ► Relatively high exergy efficiency of liquefaction process achievable under some general assumptions. -- Abstract: This paper presents an optimization methodology for thermodynamic design of large scale gas liquefaction systems. Such a methodology enables configuration selection and parametric optimization to be implemented simultaneously. Exergy efficiency and genetic algorithm have been chosen as an evaluation index and an evaluation criterion, respectively. The methodology has been applied to the design of expander cycle based liquefaction processes. Liquefaction processes of hydrogen, methane and nitrogen are selected as case studies and the simulation results show that relatively high exergy efficiencies (52% for hydrogen and 58% for methane and nitrogen) are achievable based on very general consumptions.

  12. Advanced oxidation processes: overall models

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Curco, D.; Addardak, A.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica. Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    Modelling AOPs implies to consider all the steps included in the process, that means, mass transfer, kinetic (reaction) and luminic steps. In this way, recent works develop models which relate the global reaction rate to catalyst concentration and radiation absorption. However, the application of such models requires to know what is the controlling step for the overall process. In this paper, a simple method is explained which allows to determine the controlling step. Thus, it is assumed that reactor is divided in two hypothetical zones (dark and illuminated), and according to the experimental results, obtained by varying only the reaction volume, it can be decided if reaction occurs only in the illuminated zone or in the all reactor, including dark zone. The photocatalytic degradation of phenol, by using titania degussa P-25 as catalyst, is studied as reaction model. The preliminary results obtained are presented here, showing that it seems that, in this case, reaction only occurs in the illuminated zone of photoreactor. A model is developed to explain this behaviour. (orig.)

  13. Traditional machining processes research advances

    CERN Document Server

    2015-01-01

    This book collects several examples of research in machining processes. Chapter 1 provides information on polycrystalline diamond tool material and its emerging applications. Chapter 2 is dedicated to the analysis of orthogonal cutting experiments using diamond-coated tools with force and temperature measurements. Chapter 3 describes the estimation of cutting forces and tool wear using modified mechanistic models in high performance turning. Chapter 4 contains information on cutting under gas shields for industrial applications. Chapter 5 is dedicated to the machinability of magnesium and its alloys. Chapter 6 provides information on grinding science. Finally, chapter 7 is dedicated to flexible integration of shape and functional modelling of machine tool spindles in a design framework.    

  14. Advanced direct liquefaction concepts for PETC generic units. [Mainly, the effect of preteatment of coal with carbon monoxide and steam

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.

  15. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  16. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  17. Studies of initial stage in coal liquefaction. Effect of prethermal treatment condition with process solvent to increase oil yields; Ekika hanno no shoki katei ni kansuru kenkyu. Sekitan no maeshori joken to yozai koka

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, T.; Komatsu, N.; Kishimoto, M.; Okui, T.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. ltd., Tokyo (Japan)

    1996-10-28

    Process solvent was hydrogenated in the brown coal liquefaction, to investigate the influence of it on the prethermal treatment and liquefaction. Consequently, it was found that the n-hexane soluble (HS) yield was improved. In this study, capacity of hydrogen transfer from solvent during prethermal treatment and effects of catalyst were investigated. Since prethermal treatment in oil was effective for improving the oil yield in the presence of hydrogen/catalyst or high hydrogen-donor solvent, influence of hydrogen-donor performance of solvent or addition of catalyst on the hydrogenation behavior of coal and the characteristics of products during prethermal treatment were investigated in relation to successive liquefaction results. As a result, it was found that the increase of HS yield was due to the acceleration of conversion of THF-insoluble using high hydrogen-donor solvent and/or by adding catalyst. It was also found that the use of high hydrogen-donor solvent and highly active catalyst at the stage of prethermal treatment before the successive liquefaction was effective for improving the HS yield, i.e., liquefied oil yield. 2 refs., 5 figs., 1 tab.

  18. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  19. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  20. Geotechnical Trainspotting: Early Observations From the New Seattle Liquefaction Array

    Science.gov (United States)

    Bodin, P.; Yelin, T.; Weaver, C. S.; Steidl, J. H.; Steller, R. A.; Gomberg, J. S.

    2012-12-01

    The Seattle Liquefaction Array (SLA) is a geotechnical monitoring array established by the US Geological Survey earlier this year in industrialized Seattle, Washington. Funding for the array was provided by the Advanced National Seismic System, at the behest of the Pacific Northwest Seismic Network's regional advisory committee. The SLA aims to further the understanding of earthquake-induced liquefaction, particularly the processes associated with repeatedly liquefied soils and the liquefaction of deeply buried deposits. The SLA occupies a site at which shaking-induced liquefaction was observed during earthquakes in 1949, 1965, and 2001. The SLA site is seismically noisy but important as it is similar to sites that host many structures in Seattle. The site is comprised chiefly by loose-to-dense interbedded coastal and river outwash sands. Instrumentation at the site includes four 3-component accelerometers at the surface and at depths of 5.4, 44.9, and 56.4 meters, a surface barometer, and six piezometers at depths of 6.9, 22.9, 28.9, 43.1, 46.9, and 51.9 meters. Emplacement depths were selected to sample a variety of liquefaction susceptibilities. Continuous data from all sensors are sampled at 200 samples per second, and are available from the IRIS DMC archive, with a buffer of data stored on site in the event of telemetry failure. To date, only a handful of earthquakes have produced shaking strong enough at the SLA to be observed within the high levels of background noise. However, the noise itself provides data useful to constrain the low-strain seismic and pressure response of the site. Notably, the array is within a few meters of a set of busy railroad tracks. Passing and parked trains expose the site to a broad bandwidth of deformations, including seismic frequencies, albeit with a source at the surface. Many times each day the site experiences both high levels of shaking, and step changes in the pressure field of a variety of amplitudes that may last from

  1. Study for Development of the Coal Liquefaction Process by 150t/d Coal Liquefaction Pilot Plant 3. Properties of coal liquefaction products and their toxicological assessment; 150t/d sekitan ekika pairottorpuranto ni yoru kaihatu kenkyu 3. PP sekitan ekika seiseibutu no seijo oyobi anzensei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Toshihiro.; Oi, Shoichi.; Hayashi, Takashi.; Yoshimura, Yasuji.; Oneyama, Minoru.; Kouzu, Masato.; Koyama, Kazuhide.; Sato, Eizo.; Ueda, Shigeru.; Kobayashi, Masatoshi. [Nippon Coal Oil Co., Ltd., Ibaraki (Japan); Yoshida, Haruhiko.; Yamagiwa, Hisashi. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-02-20

    150t/d Coal liquefaction pilot plant (PP) supported by New Energy and Industrial Technology Development Organization (NEDO) was successfully operated without any serious trouble throughout five runs operated till 1998. The most important object in this project is to develop Demonstration Plant or Commerical Plant, or to take a varieties of engineering data including performance test of each equipment. Additionally, it is very important tto establish commercial acceptability of coal liquefaction products by means of clearing their chemical component and toxicological properties. The works reported here are those which relate to characteristic properties of coal liquefaction products and their toxicological properties. Also we are going to mention our planning concerning the toxicological assessment to be done. (author)

  2. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  3. The small natural gas liquefaction process using liquid nitrogen%利用液氮冷能的小型天然气液化流程

    Institute of Scientific and Technical Information of China (English)

    郑宗和; 郭汇江; 王卫晓; 纪超

    2013-01-01

    In order to simplify the refrigerating equipment of small - scale natural gas liquefaction process and increase the product yield rate, a natural gas liquefaction process with distillation using the cold energy of liquid nitrogen was designed so that the liquefied natural gas (LNG) and the liquefied petrol gas (LPG) could be gotten at the same time in this technology. The HYSYS software was adapted to simulate the process; P - R equation was selected to calculate the phase equilibrium properties of the natural gas. The process is optimized through the objective function that is the minimum power consumption in obtaining unit quality LNG production. The simulative calculation of the small scale LNG project achieved the key node parameters and the column operation condition. The load and temperature distribution in heat exchanger were analyzed. The results indicate that operating pressure of the tower has a great influence on the purity of the product, large temperature difference and heat exchange load are the primary reasons of exergy loss in heat exchangers, and the LNG recovery rate is over 90%.%为了简化小型天然气液化流程中的制冷装置,增加产品的收益率,设计了一种利用液氮冷能且带精馏的天然气液化流程,在得到液化天然气(LNG)的同时得到液化石油气(LPG).采用HYSYS软件对流程进行模拟,选取P-R方程计算天然气气液相平衡特性,以生产单位质量的LNG耗功最小为目标函数进行优化,得到了关键节点参数,主要分析了塔内工作状况和换热器管路的热负荷分布情况.结果表明:塔的操作压力对产品纯度影响很大,换热器过大的温差和负荷造成了主要的(火用)损失,LNG回收率大于90%.

  4. Catalytic multi-stage liquefaction (CMSL)

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  5. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    Science.gov (United States)

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  6. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    Science.gov (United States)

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  7. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  8. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  9. Process simulation for advanced composites production

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  10. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  11. Liquefaction for cataract extraction

    Science.gov (United States)

    Labiris, Georgios; Toli, Aspasia; Polychroni, Damaskini; Gkika, Maria; Angelonias, Dimitrios; Kozobolis, Vassilios P.

    2016-01-01

    A systematic review of the recent literature regarding the implementation of the liquefaction in cataract surgery and its short-term and long-term outcomes in various parameters that affect the quality of patients' life, including visual rehabilitation and possible complications was performed based on the PubMed, Medline, Nature and the American Academy of Ophthalmology databases in November 2013 and data from 14 comparative studies were included in this narrative review. Liquefaction is an innovative technology for cataract extraction that uses micropulses of balanced salt solution to liquefy the lens nucleus. Most studies reported that liquefaction is a reliable technology for mild to moderate cataracts, while fragmentation difficulties may be encountered with harder nuclei. PMID:26949656

  12. Self-organized criticality of liquefaction in saturated granules

    Institute of Scientific and Technical Information of China (English)

    吴爱祥; 孙业志; 李青松

    2003-01-01

    Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturatedgranules was analyzed. When the irreversible force increases to some degree, the system will be in a state far fromequilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolutionwas deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating lique-faction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force ofsystem evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibratingliquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the incre-ment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and thestrain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.

  13. Shielding analysis of the advanced voloxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Park, J. J.; Lee, J. W.; Shin, J. M.; Park, G. I.; Song, K. C

    2008-09-15

    This report deals describes how much a shielding benefit can be obtained by the Advanced Voloxidation process. The calculation was performed with the MCNPX code and a simple problem was modeled with a spent fuel source which was surrounded by a concrete wall. The source terms were estimated with the ORIGEN-ARP code and the gamma spectrum and the neutron spectrum were also obtained. The thickness of the concrete wall was estimated before and after the voloxidation process. From the results, the gamma spectrum after the voloxidation process was estimated as a 67% reduction compared with that of before the voloxidation process due to the removal of several gamma emission elements such as cesium and rubidium. The MCNPX calculations provided that the thickness of the general concrete wall could be reduced by 12% after the voloxidation process. And the heavy concrete wall provided a 28% reduction in the shielding of the source term after the voloxidation process. This can be explained in that there lots of gamma emission isotopes still exist after the advanced voloxidation process such as Pu-241, Y-90, and Sr-90 which are independent of the voloxidation process.

  14. Advances in image processing and pattern recognition

    International Nuclear Information System (INIS)

    The conference papers reported provide an authorative and permanent record of the contributions. Some papers are more theoretical or of review nature, while others contain new implementations and applications. They are conveniently grouped into the following 7 fields (after a general overview): Acquisition and Presentation of 2-D and 3-D Images; Static and Dynamic Image Processing; Determination of Object's Position and Orientation; Objects and Characters Recognition; Semantic Models and Image Understanding; Robotics and Computer Vision in Manufacturing; Specialized Processing Techniques and Structures. In particular, new digital image processing and recognition methods, implementation architectures and special advanced applications (industrial automation, robotics, remote sensing, biomedicine, etc.) are presented. (Auth.)

  15. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.)

  16. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  17. Micropollutant removal by advanced oxidation processes

    OpenAIRE

    Autin, Olivier

    2012-01-01

    The use of pesticides in agriculture has been associated to high concentrations found in surface waters and ultimately to the tightening of drinking water regulations. Whilst traditional granular activated carbon filtration or ozone are effective barriers for the large majority of pesticides, new polar pesticides such as clopyralid or metaldehyde are not readily removed by such technologies. The use of advanced oxidation processes (AOPs) is suggested as an effective alternative...

  18. Recent Advances in Precombustion Coal Cleaning Processes

    Institute of Scientific and Technical Information of China (English)

    Shiao-HungChiang; DaxinHe

    1994-01-01

    The mineral matter in coal constitutes a major impediment to the direct use of coal in power plants.A concerted effort has been mounted to reduce the ash/sulfur contents in product coal to meet the ever more stringent environmental regulations.In recent years,significant advances have taken place in fine coal cleaning technologies.A review of recent developments in aveanced physical,chemical and biological processes for deep-cleaning of fine coal is presented.

  19. Advanced oxidation process sanitization of eggshell surfaces.

    Science.gov (United States)

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  20. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  1. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  2. Recent advances in nonlinear speech processing

    CERN Document Server

    Faundez-Zanuy, Marcos; Esposito, Antonietta; Cordasco, Gennaro; Drugman, Thomas; Solé-Casals, Jordi; Morabito, Francesco

    2016-01-01

    This book presents recent advances in nonlinear speech processing beyond nonlinear techniques. It shows that it exploits heuristic and psychological models of human interaction in order to succeed in the implementations of socially believable VUIs and applications for human health and psychological support. The book takes into account the multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s foreword). To this aim, the book is organized in 6 sections, each collecting a small number of short chapters reporting advances “inside” and “outside” themes related to nonlinear speech research. The themes emphasize theoretical and practical issues for modelling socially believable speech interfaces, ranging from efforts to capture the nature of sound changes in linguistic contexts and the timing nature of speech; labors to identify and detect speech features that help in the diagnosis of psychological and neuronal disease, attempts to improve the effectiveness and performa...

  3. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  4. Magnetic refrigerator for hydrogen liquefaction

    OpenAIRE

    Matsumoto, Koichi; Kondo, T.; Yoshioka, S; Kamiya, K.; Numazawa, T.

    2009-01-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle s...

  5. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  6. Advances in Packaging Methods, Processes and Systems

    Directory of Open Access Journals (Sweden)

    Nitaigour Premchand Mahalik

    2014-10-01

    Full Text Available The food processing and packaging industry is becoming a multi-trillion dollar global business. The reason is that the recent increase in incomes in traditionally less economically developed countries has led to a rise in standards of living that includes a significantly higher consumption of packaged foods. As a result, food safety guidelines have been more stringent than ever. At the same time, the number of research and educational institutions—that is, the number of potential researchers and stakeholders—has increased in the recent past. This paper reviews recent developments in food processing and packaging (FPP, keeping in view the aforementioned advancements and bearing in mind that FPP is an interdisciplinary area in that materials, safety, systems, regulation, and supply chains play vital roles. In particular, the review covers processing and packaging principles, standards, interfaces, techniques, methods, and state-of-the-art technologies that are currently in use or in development. Recent advances such as smart packaging, non-destructive inspection methods, printing techniques, application of robotics and machineries, automation architecture, software systems and interfaces are reviewed.

  7. Further studies on developing technology for indirect liquefaction

    Science.gov (United States)

    Gray, D.; Neuworth, M. B.; Tomlinson, G.

    1982-03-01

    Our investigations have resulted in the conclusion that fluidized gasifiers, such as Westinghouse or entrained flow gasifiers such as Texaco and Shell-Koppers offer significant advantages over the BGC Lurgi gasifier when Illinois No. 6 coal is employed as the feedstock. Dry-ash Lurgi gasification has additional disadvantages which appear to make it unsuitable for applications with mildly caking coal such as Illinois No. 6. The results of our analyses of Illinois No. 6 coal do not alter our prior conclusions regarding the use of advanced gasification systems for indirect liquefaction. BGC/Lurgi, Westinghouse, Texaco and Shell-Koppers gasifiers offer significant advantages over dry-ash Lurgi and should be given detailed consideration for a US liquefaction facility. The final decision will probably be driven by the relative state of development at the time a decision is required, process license and guarantees which could be negotiated, the market value of an SNG co-product, and the specific characteristics of the coal feedstock to be used.

  8. Advanced monitoring with complex stream processing

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Making sense of metrics and logs for service monitoring can be a complicated task. Valuable information is normally scattered across several streams of monitoring data, requiring aggregation, correlation and time-based analysis to promptly detect problems and failures. This presentations shows a solution which is used to support the advanced monitoring of the messaging services provided by the IT Department. It uses Esper, an open-source software product for Complex Event Processing (CEP), that analyses series of events for deriving conclusions from them.

  9. Processing and properties of advanced metallic foams

    Science.gov (United States)

    Brothers, Alan Harold

    Since the development of the first aluminum foams in the middle of the 20th century [178], great advances have been made in the processing and fundamental understanding of metallic foams. As a result of these advances, metallic foams are now penetrating a number of applications where their unique suite of properties makes them superior to solid materials, such as lightweight structures, packaging and impact protection, and filtration and catalysis [3]. The purpose of this work is to extend the use of metallic foams in such applications by expanding their processing to include more sophisticated base alloys and architectures. The first four chapters discuss replacement of conventional crystalline metal foams with ones made from high-strength, low-melting amorphous metals, a substitution that offers potential for achieving mechanical properties superior to those of the best crystalline metal foams, without sacrificing the simplicity of processing methods made for low-melting crystalline alloys. Three different amorphous metal foams are developed in these chapters, and their structures and properties characterized. It is shown for the first time that amorphous metal foams, due to stabilization of shear bands during bending of their small strut-like features, are capable of compressive ductility comparable to that of ductile crystalline metal foams. A two-fold improvement in mechanical energy absorption relative to crystalline aluminum foams is shown experimentally to result from this stabilization. The last two chapters discuss modifications in foam processing that are designed to introduce controllable and continuous gradients in local foam density, which should improve mass efficiency by mimicking the optimized structures found in natural cellular materials [64], as well as facilitate the bonding and joining of foams with solid materials in higher-order structures. Two new processing methods are developed, one based on replication of nonuniformly-compressed polymer

  10. Asspects Concerning the Improvement of Soils Against Liquefaction

    Directory of Open Access Journals (Sweden)

    Costel Pleşcan

    2010-01-01

    Full Text Available The specialized literature concerning the Geotechnical Engineering Field indicates the problems due to soil liquefaction and the aggravating consequences that liquefaction phenomenon may cause to buildings. Some procedures of foundation soil improvement for both existing and future foundations are presented. The paper also presents three soil remediation methods involving a low level of vibration generated in the process of foundation soil improvement and two case studies representing the usual method in Romania.

  11. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  12. Ultrasound-assisted liquefaction of honey

    OpenAIRE

    Kabbani, Dania

    2014-01-01

    Crystallization of honey is a common process of the honey industry. Liquid honey is preferred by most of the consumers and by food companies for ease of handling. Honey is commonly heated during pasteurization in order to liquefy it and inhibit any microbial growth. However, heating can degrade the main quality parameters of honey. A better method compared to expensive and time-consuming heating is desirable to pasteurize, accelerate the liquefaction and retard the crystallization process...

  13. Radiation Processing of Advanced Composite Materials

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and γ-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose

  14. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  15. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  16. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  17. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  18. Progress in Coal Liquefaction Technologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Worldwide primary energy consumption is entering an era of pluralism and high quality under the influence of rapid economic development, increasing energy shortage and strict environmental policies. Although renewable energy technology is developing rapidly, fossil fuels (coal, oil and gas) are still the dominant energy sources in the world. As a country rich in coal but short ofoil and gas, China's oil imports have soared in the past few years. Government, research organizations and enterprises in China are paying more and more attention to the processes of converting coal into clean liquid fuels. Direct and indirect coal liquefaction technologies are compared in this paper based on China's current energy status and technological progress not only in China itself but also in the world.

  19. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  20. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  1. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  2. Advanced sludge reduction and phosphorous removal process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An advanced sludge reduction process, i.e. sludge reduction and phosphorous removal process, was developed. The results show that excellent sludge reduction and biological phosphorous removal can be achieved perfectly in this system. When chemical oxygen demand ρ(COD) is 332 - 420 mg/L, concentration of ammonia ρ(NH3-N) is 30 - 40 mg/L and concentration of total phosphorous ρ(TP) is 6.0 - 9.0 mg/L in influent, the system still ensures ρ(COD)<23 mg/L, ρ(NH3-N)<3.2 mg/L and ρ(TP)<0.72 mg/L in effluent. Besides, when the concentration of dissolved oxygen ρ(DO) is around 1.0 mg/L, sludge production is less than 0. 140 g with the consumption of 1 g COD, and the phosphorous removal exceeds 91%. Also, 48.4% of total nitrogen is removed by simultaneous nitrification and denitrification.

  3. Induced effects of advanced oxidation processes

    Science.gov (United States)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  4. Algae liquefaction / Hope Baloyi

    OpenAIRE

    Baloyi, Hope

    2012-01-01

    The liquefaction of algae for the recovery of bio–oil was studied. Algae oil is a non–edible feedstock and has minimal impact on food security and food prices; furthermore, it has been identified as a favourable feedstock for the production of biodiesel and this is attributed to its high oil yield per hectare. Algae oil can be potentially used for fuel blending for conventional diesel. The recovery step for algae oil for the production of biodiesel is costly and demands a lot of energy due to...

  5. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  6. Corrosion studies in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Olsen, A.R.

    1983-01-01

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States in order to evaluate several liquefaction processes. Oak Ridge National Laboratory has provided assistance to pilot plant operators in assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants.

  7. Metallography for coal liquefaction pilot plants

    International Nuclear Information System (INIS)

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States to evaluate several liquefaction processes. Oak Ridge National Laboratory has assisted pilot plant operators by assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations, which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants

  8. Recovery of metal values from spent CoMo/Al/sub 2/O/sub 3/ petroleum hydrodesulfurization and coal liquefaction catalysts: laboratory-scale process and preliminary economics

    Energy Technology Data Exchange (ETDEWEB)

    Sebenik, R.F.; Ference, R.A.

    1982-01-01

    Recovery of metal values from spent CoMo/Al/sub 2/O/sub 3/ catalysts from petroleum hydrodesulfurization (HDS) processes containing appreciable amounts of V, Ni, S, coke, and heavy hydrocarbons is described. The recovery process involves accepted chemical techniques. A slightly modified process was used for coal liquefaction catalysts which are not poisoned by Ni and V, as are the HDS catalysts, but which contain Ca, Fe, and Ti as the major contaminants. Preliminary estimates (+-30%) of capital and operating costs for the process based on recovery of the latter type of catalyst only are tabulated. Flow diagrams for both processes are included. Results to determine the effects of Ca, Fe, Si, and Ti impurities on the Mo recovery are not yet complete. It is emphasized that the recovery process has been tested only on a laboratory scale and has not been applied to pilot plant recovery as yet. (BLM)

  9. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  10. Liquefaction Susceptibility of Soils With Clay Particles from Earthquake-induced Landslides

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-sheng; JIANG Xin; ZHANG Xu

    2007-01-01

    The main reason for earthquake-induced landslides is liquefaction of soil, a process considered to occur mostly in sandy soils. Liquefaction can occur in clayey soils has also been reported and proven in the recent literature, but liquefaction in clayey soils still remains unclear and there are many questions that need to be addressed. In order to address these questions, an depth study on the liquefaction potential of clayey soils was conducted on the basis of field investigation and a series of laboratory tests on the samples collected from the sliding surface of the landslides. The liquefaction potential of the soils was studied by means of undrained cyclic ring-shear tests. Research results show that the liquefaction potential of sandy soils is higher than that of clayey soils given the same void ratio;the soil resistance to liquefaction rises with an increase in plasticity for clayey soils; relation between plasticity index and the liquefaction potential of soil can be used in practical application to estimate the liquefaction potential of soil.

  11. Teaching an advanced processing course with hands-on projects

    OpenAIRE

    Simar, Aude; International Conference on Materials Education

    2015-01-01

    The present work discusses an advanced processing course with 10 magisterial courses (2h each) where theoretical aspects are covered and three hands-on projects. This advanced manufacturing course follows a basic course reviewing all manufacturing technologies. The courses concern process selection, advanced machining and additive manufacturing. To each of these topics a project is associated where the use of computer technologies for manufacturing is emphasized. The process selection process...

  12. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, May-July 1981

    Energy Technology Data Exchange (ETDEWEB)

    Guin, J. A.; Curtis, C. W.; Tarrer, A. R.

    1981-01-01

    This report discusses a kinetic investigation of the Fe-S-H/sub 2/ system conducted as an outgrowth of current research in the SRC-I (solvent refined coal) process to better understand the effects of naturally occurring iron sulfides in coal hydrogenation and hydrodesulfurization. A total of twelve closed system reactions were carried out in which 48 to 60 mesh pyrite, in the presence of hydrogen gas, underwent transformation to 1C hexagonal pyrrhotite. Reaction temperatures were 350/sup 0/C and 400/sup 0/C with four sample runs at temperature. Initial pressure of hydrogen gas was 1250 psig (8617 KPa). A comparison of the results for each reaction series was evaluated with time and temperature as variables. The transformation rate of pyrite to pyrrhotite was found to increase over the range of reaction temperatures with the 400/sup 0/C samples showing the greatest amount of transformation per unit time. For the 375/sup 0/C and 400/sup 0/C runs pyrrhotite formation decreased after approximately 15 minutes of reaction time due to (1) reduced availability of pyrite, and (2) resistance to diffusion in the topochemical product layer.

  13. Natural language processing and advanced information management

    Science.gov (United States)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  14. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  15. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  16. Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

  17. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  18. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  19. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang;

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  20. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  1. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  2. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  3. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I. [Inonu University, Malatya (Turkey). Faculty of Engineering

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  4. Effects of catalysts on liquefaction of Agaricus versicolor (L.)

    Science.gov (United States)

    Durak, Halil

    2016-04-01

    Supercritical liquefaction process is used for producing energy from biomass. The common reaction conditions for supercritical liquefaction process are the 240-380 °C temperature range and 5-20 Mpa pressure values range. Agaricus versicolor (L.) was liquefied by acetone in an autoclave (75 mL) under high pressure with (aluminium oxide and calcium hydroxide) and without catalyst at 290 °C for producing bio-oil. The products of liquefaction (bio-oil) were analysed and characterized using various methods including elemental analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. GC-MS identified 27 different compounds in the bio-oils obtained at 290 °C.

  5. Preventive measures against liquefaction in consideration of peripheral environment. Example of SAVE (Silent, Advanced Vibration-Erasing) composer method; Shuhen kankyo ni hairyoshita ekijoka taisaku koho. Seiteki shimekatame sunakui (SAVE composer) koho no sekorei

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Takahashi, Y.; Fukada, H. [Fudo Construction Co. Ltd., Tokyo (Japan)

    1998-09-25

    This paper presents the working machine, method and example of the newly developed SAVE composer method. The working machine of the SAVE composer method adopts a forced elevating equipment and rotating penetration equipment equipped with an auger motor for hydraulic forced penetration and elevation of a casing. The process of the SAVE composer method is composed of setting a casing at a proper position. charging material from a hopper to a casing, penetrating a casing up to a proper depth by the auger motor of the rotating penetration equipment, discharging material by extracting a casing, and re-penetrating a casing for compaction of discharged material. This method is free from noise and vibration because of no use of an excitor. This method was used for preventive measures against liquefaction at the coastal levee of Tsu-Matsuzaka harbor, Mie prefecture. As a result, nearly the same improvement effect as conventional SCP method, and considerable vibration reduction were confirmed. 3 refs., 12 figs., 1 tab.

  6. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    OpenAIRE

    Dorota Krzemińska; Ewa Neczaj; Gabriel Borowski

    2015-01-01

    High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC), Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s) are characterized by a common chemical feature: the capability of exploiting...

  7. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  8. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  9. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    Science.gov (United States)

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  10. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  11. Advances in heuristic signal processing and applications

    CERN Document Server

    Chatterjee, Amitava; Siarry, Patrick

    2013-01-01

    There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a spec

  12. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  13. Present status of advanced aqueous separation process technology development

    International Nuclear Information System (INIS)

    In 'the Feasibility study on commercialized fast reactor cycle systems' begun in 1999, the commercialized candidate concept of the process as the advanced aqueous reprocessing system has been examined. This process, named NEXT, includes such advanced process elements as high efficiency dissolution, crystallization, U/Pu/Np co-recovery, and MA recovery. Small scale hot tests of these process elements have been conducted with irradiated fuel of the experimental Fast Reactor 'JOYO' in Chemical Processing Facility (CPF). The prospect of the technical feasibility of the NEXT process is being obtained as a promising candidate concept. (author)

  14. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  15. Recent advances in imaging subcellular processes.

    Science.gov (United States)

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  16. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  17. Advances in Nuclear Power Process Heat Applications

    International Nuclear Information System (INIS)

    Following an IAEA coordinated research project, this publication compiles the findings of research and development activities related to practical nuclear process heat applications. An overview of current progress on high temperature gas cooled reactors coupling schemes for different process heat applications, such as hydrogen production and desalination is included. The associated safety aspects are also highlighted. The summary report documents the results and conclusions of the project.

  18. Advances in the Application of Image Processing Fruit Grading

    OpenAIRE

    Fang, Chengjun; Hua, Chunjian

    2013-01-01

    In the perspective of actual production, the paper presents the advances in the application of image processing fruit grading from several aspects, such as processing precision and processing speed of image processing technology. Furthermore, the different algorithms about detecting size, shape, color and defects are combined effectively to reduce the complexity of each algorithm and achieve a balance between the processing precision and processing speed are keys to automatic apple grading.

  19. Direct liquefaction proof-of-concept facility

    Energy Technology Data Exchange (ETDEWEB)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  20. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  1. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    Science.gov (United States)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  2. Liquefaction of lignocellulose: Do basic and acidic additives help out?

    NARCIS (Netherlands)

    Kumar, S.; Lange, J.P.; Rossum, van G.; Kersten, S.R.A.

    2015-01-01

    Lignocellulosic feedstock can be converted to bio-oil by direct liquefaction in a phenolic solvent such as guaiacol. The bio-oil could then be further upgraded to transportation fuel using conventional oil refining process. The production of heavy components (molecular weight >1000 Da) was found to

  3. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    Science.gov (United States)

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  4. Recent advances in radiation processing of food

    International Nuclear Information System (INIS)

    Commercial application of radiation technology for food processing started in the nineties after it was approved by FAO/IAEA/WHO and Codex Alimentarius Commission in the eighties. Sanitary applications were initially explored commercially with microbial decontamination of spices and dry ingredients as the primary commodities to be processed on a large scale. Subsequently, with the emergence of E.coli O157:H7 as the potential food poisoning risk in ground beef, irradiation of meat was initiated in the late nineties in the USA. Since then irradiation, has become a very useful food safety tool and the technology has been approved for addressing food safety risks in moluscan shellfish and vegetables like lettuce, spinach, and more recently for raw uncooked meat by USFDA. Phytosanitary applications assumed importance after USFDA approved irradiation as a method of phytosanitary treatment and subsequent endorsement of the process by International Plant Protection Convention (IPPC) in 2003. These approvals were responsible for development of international trade in agricultural commodities. The first to demonstrate the feasibility of the process were India and Australia, the countries that exported mangoes to New Zealand and USA, respectively. As far as the source of radiation is concerned, the world is slowly moving towards deployment of machine sources, thereby reducing its dependence on radioisotopes for commercial irradiation. (author)

  5. Advanced signal processing technology by softcomputing

    CERN Document Server

    Hsu, Charles

    2000-01-01

    This book presents worldwide outstanding research and recent progress in the applications of neural networks, fuzzy logic, chaos, independent component analysis, etc to fields related to speech recognition enhancement, supervised Fourier demixing noise elimination, acoustic databases, the human hearing system, cancer detection, image processing, and visual communications.

  6. Recent Advancements in Semiconductor-based Optical Signal Processing

    DEFF Research Database (Denmark)

    Nielsen, M L; Mørk, Jesper

    2006-01-01

    Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching.......Significant advancements in technology and basic understanding of device physics are bringing optical signal processing closer to a commercial breakthrough. In this paper we describe the main challenges in high-speed SOA-based switching....

  7. Proceedings of the second international conference on advanced oxidation processes

    International Nuclear Information System (INIS)

    The major objective of the conference is to discuss the recent developments in diversified fields in advanced oxidation processes. Development of new and modern technologies for water purification is vital to water management in any country. Advanced oxidation process is among the latest methodologies which are under tremendous researches in the recent past. In-situ generation of highly oxidizing species using chemical, photochemical, sonochemical and radiation chemical techniques were the focus of the discussions. Papers relevant to INIS are indexed separately

  8. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  9. Improving Seismic Image with Advanced Processing Techniques

    Directory of Open Access Journals (Sweden)

    Mericy Lastra Cunill

    2012-07-01

    Full Text Available Taking Taking into account the need to improve the seismic image in the central area of Cuba, specifically in the area of the Venegas sector, located in the Cuban Folded Belt, the seismic data acquired by Cuba Petróleo (CUPET in the year 2007 was reprocessed according to the experience accumulated during the previous processing carried out in the same year, and the new geologic knowledge on the area. This was done with the objective of improving the results. The processing applied previously was analyzed by reprocessing the primary data with new focuses and procedures, among them are the following: the attenuation of the superficial wave with a filter in the Radon domain in its lineal variant, the change of the primary statics corrections of elevation by those of refraction, the study of velocity with the selection automatic biespectral of high density, the study of the anisotropy, the attenuation of the random noise, and the pre stack time and depth migration. As a result of this reprocessing, a structure that was not identified in the seismic sections of the previous processing was located at the top of a Continental Margin sediment located to the north of the sector that increased the potentialities of finding hydrocarbons in quantities of economic importance thus diminishing the risk of drilling in the sector Venegas.

  10. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  11. Technology advances for Space Shuttle processing

    Science.gov (United States)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  12. Overview of advanced process control in welding within ERDA

    International Nuclear Information System (INIS)

    The special kinds of demands placed on ERDA weapons and reactors require them to have very reliable welds. Process control is critical in achieving this reliability. ERDA has a number of advanced process control projects underway with much of the emphasis being on electron beam welding. These include projects on voltage measurement, beam-current control, beam focusing, beam spot tracking, spike suppression, and computer control. A general discussion of process control in welding is followed by specific examples of some of the advanced joining process control projects in ERDA

  13. Development of Advanced Voloxidation Process for Treatment of Spent Fuel

    International Nuclear Information System (INIS)

    Data for evaluation of the effects of advanced voloxidation on pyroprocessing of spent oxide fuel with a determination for a path forward such was produced as follows: effect of particle size and particle structure on oxide reduction, assessment of decladding options for pyroprocessing, effect of removal timing of fission products, analysis of radioactivity and decay heat of advanced voloxidation process, proliferation resistance of advanced voloxidation process, Effect of advanced voloxidation process on shielding. Also, performance objectives for advanced voloxidation with respective to the down stream effects was established. The technology on design and manufacture of voloxidation and off gas treatment equipment was established. The possibility of fabrication of porous granule as a feed material for electro-reduction process was confirmed using rotary voloxidizer and SIMFUEL. The operational conditions for advanced voloxidation process consisting of 4 steps heat treatment was drawn to vaporize fission products and fabricate UO2 granule. The trapping test of Cs and Re(surrogate material of Tc) using newly developed filter were selectively separated at trapping efficiency of 99%, respectively. Data for oxidative decladding, vaporization rate of fission products, and particle size from experiment on voloxidation using spent fuel in ILN hot cell was acquisited including data of off gas trapping characteristics and verification of excellent performance of filter

  14. Advances in cost effective processing of titanium

    International Nuclear Information System (INIS)

    Recently an industry expert pointed out that one of the greatest hindrances to the growth of titanium usage has been the low percentage of material usable in the final product. Due to the extensive processing, forming, and machining operations typically performed on titanium, yield losses are high. This is especially true in aerospace applications where most titanium is used. In engine components, the start to finish ratio, known as the buy to fly ratio, is often as high as 7 to 1. This can be illustrated by looking at the use of titanium in Pratt and Whitney engines. In the JT-8D-217 used on Boeing's 737-200, the titanium buyweight is 5,385 pounds, whereas the finished titanium, flyweight is just 758 pounds. This start to finish ratio is 7.1:1, giving titanium 17.0% of total engine weight. (orig.)

  15. Advances in modeling plastic waste pyrolysis processes

    Directory of Open Access Journals (Sweden)

    Y. Safadi, J. Zeaiter

    2014-01-01

    Full Text Available The tertiary recycling of plastics via pyrolysis is recently gaining momentum due to promising economic returns from the generated products that can be used as a chemical feedstock or fuel. The need for prediction models to simulate such processes is essential in understanding in depth the mechanisms that take place during the thermal or catalytic degradation of the waste polymer. This paper presents key different models used successfully in literature so far. Three modeling schemes are identified: Power-Law, Lumped-Empirical, and Population-Balance based equations. The categorization is based mainly on the level of detail and prediction capability from each modeling scheme. The data shows that the reliability of these modeling approaches vary with the degree of details the experimental work and product analysis are trying to achieve.

  16. Optical metrology for advanced process control: full module metrology solutions

    Science.gov (United States)

    Bozdog, Cornel; Turovets, Igor

    2016-03-01

    Optical metrology is the workhorse metrology in manufacturing and key enabler to patterning process control. Recent advances in device architecture are gradually shifting the need for process control from the lithography module to other patterning processes (etch, trim, clean, LER/LWR treatments, etc..). Complex multi-patterning integration solutions, where the final pattern is the result of multiple process steps require a step-by-step holistic process control and a uniformly accurate holistic metrology solution for pattern transfer for the entire module. For effective process control, more process "knobs" are needed, and a tighter integration of metrology with process architecture.

  17. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  18. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  20. The latest developments and outlook for hydrogen liquefaction technology

    International Nuclear Information System (INIS)

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future

  1. The latest developments and outlook for hydrogen liquefaction technology

    Energy Technology Data Exchange (ETDEWEB)

    Ohlig, K.; Decker, L. [Linde Kryotechnik AG, Pfungen, CH-8422 (Switzerland)

    2014-01-29

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.

  2. Advances in the Process Development of Biocatalytic Processes

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Lima Ramos, Joana; Al-Haque, Naweed;

    2013-01-01

    Biocatalysis is already established in chemical synthesis on an industrial scale, in particular in the pharmaceutical sector. However, the wider implementation of biocatalysis is currently hindered by the extensive effort required to develop a competitive process. In order that resources spent...... on development are used in the most efficient manner for these challenging systems, a holistic view on process development and a more in-depth understanding of the underlying constraints (process related as well as biocatalyst related) are required. In this concept article a systematic approach to solve...

  3. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    International Nuclear Information System (INIS)

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  4. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  5. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  6. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  7. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U3O8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO2 pellet into U3O8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U3O8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO2+x granules into UO2 granules at 1000 .deg. C in an atmosphere of 4%H2-Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  8. Treatment of Landfill Leachate by Advanced Oxidation Processes

    OpenAIRE

    Koçak, Seda; Güney, Cansu; Argun, M. Tuna; Tarkın, Begüm; Kırtman, E. Özlem; Akgül, Deniz; MERTOGLU, Bulent

    2013-01-01

    Organic and inorganic pollutants found in municipal landfill leachate lead to severe problems for the environment when directly discharged to water bodies without treatment. Due to the existence of recalcitrant organics in leachate, advanced oxidation processes (AOP) are mostly applied to biologically treated leachate as a polishing step. In this study, the effectiveness of Fenton process on leachate treatment was examined. The Fenton process was applied to both young (untreated) and biologic...

  9. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  10. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  11. Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction

    Institute of Scientific and Technical Information of China (English)

    T.Shenthan; R.Nashed; S.Thevanayagam; G. R. Martin

    2004-01-01

    The objective of this study is to develop an analytical methodology to evaluate the effectiveness ofvibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densification during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified.The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. Thc ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils.

  12. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

    Indian Academy of Sciences (India)

    M H Bagheripour; I Shooshpasha; M Afzalirad

    2012-02-01

    Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

  13. Earthquake Risk - MO 2013 Liquefaction Potential (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing geologic and alluvium maps. Quaternary, Tertiary, and Cretaceous-age sediments, and alluvium deposits are...

  14. Adding structure to the transition process to advanced mathematical activity

    Science.gov (United States)

    Engelbrecht, Johann

    2010-03-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical deductive reasoning, required in advanced mathematics. It is necessary to assist students in this transition process, in moving from general to mathematical thinking. In this article some structure is suggested for this transition period. This essay is an argumentative exposition supported by personal experience and international literature. This makes this study theoretical rather than empirical.

  15. Advanced solidification processing of an industrial gas turbine engine component

    Science.gov (United States)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  16. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  17. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  18. Electron processing of fibre-reinforced advanced composites

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author)

  19. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    Science.gov (United States)

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  20. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  1. Microeconomics of advanced process window control for 50-nm gates

    Science.gov (United States)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  2. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  3. Advanced Information Processing System - Fault detection and error handling

    Science.gov (United States)

    Lala, J. H.

    1985-01-01

    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  4. Processing effects on the nutritional advancement of probiotics and prebiotics

    OpenAIRE

    Ananta, E.; Birkeland, S.-E.; Corcoran, B.; Fitzgerald, Gerald F.; Hinz, S.; Klijn, A.; Matto, J.; Mercernier, A.; Nilsson, U.; Nyman, M.; O’Sullivan, E; Parche, S; Rautonen, N.; Ross, R. Paul; Saarela, M.

    2004-01-01

    Investigates the processing effects on the nutritional advancement of probiotics and prebiotics. Efforts of health researchers to overcome difficulties that impact on the performance of functional foods; Importance of characterizing the interactions between probiotics and prebiotics in starter cultures or in functional foods prior to human consumption; Role of prebiotics on the viability and stability of probiotic cultures within food matrices during processing and storage.

  5. Ceramic component processing development for advanced gas-turbine engines

    Science.gov (United States)

    Mcentire, B. J.; Hengst, R. R.; Collins, W. T.; Taglialavore, A. P.; Yeckley, R. L.; Bright, E.; Bingham, M. G.

    1991-01-01

    A review of ceramic component advancements directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls is presented. The first three components are being produced from HIPed Si3N4, while scrolls were prepared from a series of siliconized silicon-carbide materials. Developmental work has been conducted on all aspects of the fabrication process utilizing Taguchi experimental design methods. An assessment of material properties for various components from each process and material are made.

  6. Advanced multiresponse process optimisation an intelligent and integrated approach

    CERN Document Server

    Šibalija, Tatjana V

    2016-01-01

    This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.

  7. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  8. Degradation of 2-hydroxybenzoic acid by advanced oxidation processes

    OpenAIRE

    C. L. P. S. Zanta; Martínez-Huitle, C. A.

    2009-01-01

    In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton p...

  9. Corrosion problems and their countermeasures in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Takeo

    1988-06-05

    Problems in materials of coal liquefaction plants are described with emphasis placed on research results in U.S. The paper further describes the stress corrosion cracking (S.C.C.) of stainless steel and countermeasures against it taking an example from research carried out on the oil refinery plants, in similar environment. The operation of coal liquefaction plant is grouped to 6 processes: Coal preparation, slurry preheating, reaction column, gas separation column, pressure reduction, solids separation and distillation and each of the processes is investigated regarding sulfurization, erosion, erosion/corrosion, SCC (CI, polythionic acid), hydrogen erosion and organic acid corrosion. Examples of cases are given for SCC of stainless steel in each process and on-site tests are conducted with new materials. SCC occurred less frequently on the overlay welded portion, when it contained an adequate portion of delta-ferrite. (7 figs, 3 tabs, 54 refs)

  10. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as high performance fuel concepts now under development for delivery in the late 1980s. The paper also discusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability

  11. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  12. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  13. Recording-based identification of site liquefaction

    Institute of Scientific and Technical Information of China (English)

    Hu Yuxian; Zhang Yushan; Liang Jianwen; Ray Ruichong Zhang

    2005-01-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study,which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  14. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  15. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  16. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  17. Advanced CO2 removal process control and monitor instrumentation development

    Science.gov (United States)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  18. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    This paper describes some practical problems encountered, when implementing Advanced Process Control, APC, schemes on linear processes. The implemented APC controllers discussed will be LQR, Riccati MPC and Condensed MPC controllers illustrated by simulation of the Four Tank Process and a...... linearised CSTR. Advantages and disadvantages of these controllers will be discussed. All three controller types shows a set of common undesirable characteristics, which must be accounted for. At the end of the evaluation horizon the "optimal" solution has an unstable characteristics, which can be suppressed...

  19. Effect of microwave pretreatment on liquefaction of low-rank Mukah Balingian Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Nur Nasulhah Kasim [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    The effect of microwave pretreatment on low-rank Malaysian coal towards coal conversion and oil+gas yield during direct liquefaction was investigated. The pretreatment on coal was carried out prior to liquefaction using a conventional variable power microwave oven at 150, 300 and 600 W for a period of 1 to 15 min. Liquefaction processes were carried out in a 1-liter high-pressure high-temperature batch-wise reactor with tetralin as a hydrogen-donor solvent, at temperature of 420{sup o}C and at 4 MPa nitrogen pressure. The DTG results of the pyrolysed microwave-treated samples via thermogravimetric analysis (TGA) showed the increased in coal reactivity in comparison to the untreated sample. The coal conversion and oil+gas yield obtained from the liquefaction of the pretreated coal under various pretreatment conditions showed an increase of up to 3 - 7 and 9 - 22 %, respectively. The significant increased of oil+gas yield at less severe liquefaction temperature on the microwave-irradiated samples might be due to the cracks and fissures formed as shown by Scanning Electron Microscope (SEM), and the weaken coal structure (C-C bonds) that probably occurred during the microwave pretreatment to facilitate the diffusion of solvent into the coal structure. Thus, this new and effective pretreatment on coal could be a promising approach in enhancing coal conversion and oil+gas yield that utilises a less severe temperature for coal liquefaction. 22 refs., 4 figs., 5 tabs.

  20. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  1. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  2. Multisensor and Multispectral Approach in Documenting and Analyzing Liquefaction Hazard using Remote Sensing

    Science.gov (United States)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2008-12-01

    Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different

  3. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  4. Advanced oxidation processes for wastewater reuse - removal of micropollutants

    OpenAIRE

    James, Christopher P.

    2013-01-01

    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power...

  5. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Hikmat S. Al-Salim

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42. doi:10.9767/bcrec.4.2.28.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.28.37-42

  6. Practical Implementations of Advanced Process Control for Linear Systems

    DEFF Research Database (Denmark)

    Knudsen, Jørgen K . H.; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2013-01-01

    Most advanced process control systems are based on Model Predictive Control (MPC). In this paper we discuss three critical issues for the practical implementation of linear MPC for process control applications. The rst issue is related to oset free control and disturbance models; the second issue......-regulator structure. It enables oset free control; it can be computed eciently on-line using several optimization algorithms; and accommodates soft constraint for the outputs and for shaping the set-point tracking penalty function. We report selected observations using this implementation and discuss their practical...... models and integration of the innovation errors. If the disturbances increases, oset-free control cannot be achieved without violation of process constraints. A target calculation function is used to calculate the optimal achievable target for the process. The use of soft constraints for process output...

  7. Use of advanced oxidation processes for removal of micropollutants

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    One of the big challenges of modern water treatment is the handling of micropollutants. These are compounds found in very low concentrations, often at ppt or ppb level, but are still capable of having a potent effect on the environment, and possibly humans as well. One of the emerging technologies...... for removal of micropollutants is the use of advanced oxidation processes (AOPs). AOPs use highly reactive hydroxyl radicals to degrade the micropollutants, but the processes are very energy intensive, which may limit their applications. To investigate the feasibility of introducing AOPs in the Danish...

  8. Process development status report for advanced manufacturing projects

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  9. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  10. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  11. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    Science.gov (United States)

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs. PMID:27115746

  12. INVESTIGATION INTO NATURAL GAS LIQUEFACTION METHODS, LNG TRANSPORT AND STORAGE

    Directory of Open Access Journals (Sweden)

    Atakan AVCI

    1995-03-01

    Full Text Available Liquefied Natural Gas (LNG processes are very new in Turkey. The Government of Turkey, due to diversification of supply and balancing of seasonal load, decided to import LNG from Algeria. The first shipment in Marmara Ereğli import terminal has been carried out in the August the 3 rd, 1994. LNG after regasification will be injected into the main transmission pipeline. The share of LNG in the world natural gas trade was approixmately 22.1% in 1988. According to the forecast, LNG share will be rapidly spreading all over the world in near future. In this paper, treatment, liquefaction, transport, storage, regasification, distribution and utilisation of LNG are examined. Particular attention has given into liquefaction of natural gas.

  13. Integrated Seismic Event Detection and Location by Advanced Array Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  14. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  15. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  16. A graphene superficial layer for the advanced electroforming process

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  17. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  18. Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned

    CERN Document Server

    Baily, Charles; Pollock, Steven J

    2013-01-01

    When education researchers describe newly developed curricular materials, they typically concentrate on the research base behind their design, and the efficacy of the final products, but do not highlight the initial stages of creating the actual materials. With the aim of providing useful information for faculty engaged in similar projects, we describe here our development of a set of in-class tutorials for advanced undergraduate electrodynamics students, and discuss factors that influenced their initial design and refinement. Among the obstacles to be overcome was the investigation of student difficulties within the short time frame of our project, and devising ways for students to engage in meaningful activities on advanced-level topics within a single 50-minute class period. We argue for a process that leverages faculty experience and classroom observations, and present several guidelines for tutorial development and implementation in upper-division physics classrooms.

  19. Advanced materials and biochemical processes for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.; van Rooyen, D.; Premuzic, E.T.

    1987-04-01

    Two Geothermal Technology Division (GTD)-sponsored programs: (1) Geothermal Materials Development, and (2) Advanced Biochemical Processes for Geothermal Brines, are described. In the former, work in the following tasks is in progress: (1) high temperature elastomeric materials for dynamic sealing applications, (2) advanced high temperature (300/sup 0/C) lightweight (1.1 g/cc) well cementing materials, (3) thermally conductive composites for heat exchanger tubing, (4) corrosion rates for metals in brine-contaminated binary plant working fluids, and (5) elastomeric liners for well casing. Methods for the utilization and/or the low cost environmentally acceptable disposal of toxic geothermal residues are being developed in the second program. This work is performed in two tasks. In one, microorganisms that can interact with toxic metals found in geothermal residues to convert them into soluble species for subsequent reinjection back into the reservoir or to concentrate them for removal by conventional processes are being identified. In the second task, process conditions are being defined for the encapsulation of untreated or partially biochemically treated residues in Portland cement-based formulations and the subsequent utilization of the waste fractions in building materials. Both processing methods yield materials which appear to meet disposal criteria for non-toxic solid waste, and their technical and economic feasibilities have been established.

  20. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  1. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  2. Influence of the void ratio and the confining on the static liquefaction in slopes in shangi sand

    Directory of Open Access Journals (Sweden)

    Alfonso Mariano Ramos Cañón

    2015-01-01

    Full Text Available A numerical study on the onset of static liquefaction in slopes under undrained conditions of loading was developed based on a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of controllability. The criterion is applied to the case of axisymmetric loading to detect the onset of static liquefaction. The criterion is used in conjunction with an elastoplastic model for sands and is tested by means of numerical simulations of element tests. The numerical results are compared with experimental evidence obtaining good agreement. A quantitative study of the influence of the mean pressure, void ratio and the anisotropy of stress on the onset of static liquefaction is presented for the Changi sand. From the analysis of the numerical results, it can be concluded that: a. the mobilized friction angle at the onset of liquefaction is not an intrinsic property of the material, but is a state variable b. Despite of the multiple variables involved in the process of generation of undrained instability, the state of stresses at the onset of static liquefaction can be conveniently represented by a linear relation between Dq/po and no . This graphical representation can be used in the practice of geotechnical engineering to quantify the margin of security against the static liquefaction of a sandy slope.

  3. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  4. Advanced Mathematical Model to Describe the Production of Biodiesel Process

    Directory of Open Access Journals (Sweden)

    Ahmmed S. Ibrehem

    2009-12-01

    Full Text Available Advanced mathematical model was used to capture the batch reactor characteristics of reacting compounds. The model was applied to batch reactor for the production of bio-diesel from palm and kapok oils. Results of the model were compared with experimental data in terms of conversion of transesterification reaction for the production of bio-diesel under unsteady state. A good agreement was obtained between our model predictions and the experimental data. Both experimental and modeling results showed that the conversion of triglycerides to methyl ester was affected by the process conditions. The transesterification process with temperature of about 70 oC, and methanol ratio to the triglyceride of about 5 times its stoichiometry, and the NAOH catalyst of wt 0.4%, appear to be acceptable process conditions for bio diesel process production from palm oil and kapok oil. The model can be applied for endothermic batch process. © 2009 BCREC UNDIP. All rights reserved[Received: 12 August 2009, Revised: 15 October 2009; Accepted: 18 October 2009][How to Cite: A.S. Ibrehem, H. S. Al-Salim. (2009. Advanced Mathematical Model to Describe the Production of Biodiesel Process. Bulletin of Chemical Reaction Engineering and Catalysis, 4(2: 37-42.  doi:10.9767/bcrec.4.2.7109.37-42][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.4.2.7109.37-42 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7109 ] 

  5. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  6. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  7. A graphene superficial layer for the advanced electroforming process.

    Science.gov (United States)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-07-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties. PMID:26949072

  8. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    International Nuclear Information System (INIS)

    As the semiconductor industry roadmap passes through the 0.1 μm technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 μm in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied

  9. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  10. H Scan/AHP advanced technology proposal evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S. [Energetics, Inc., Columbia, MD (United States); Valladares, M.R.S. de [National Renewable Energy Lab., Washington, DC (United States)

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  11. Liquefaction of micro-algae with iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Nishihara, A.; Ueda, C.; Ohtsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Department of Chemical Engineering

    1997-09-01

    Microalgae used for carbon dioxide fixation need to be used effectively before they degrade by microbiological process to yield CO{sub 2} once more. Liquefaction of Spirulina, a high-protein microalga, afforded {gt} 90 wt% of THF-soluble products and 60 wt% of hexane-soluble fractions, in the temperature range 300-425{degree}C under hydrogen in various organic solvents with highly dispersed catalysts. The oil yield increased from 52.3 to 66.9 wt% with Fe(CO){sub 5}-S catalyst at 350{degree}C for 60 min in tetralin under 5.0 MPa of hydrogen. Hydrogen activated by the dispersed catalyst contributed to an increase in oil yield. Liquefaction in water as solvent gave a higher oil yield of 78.3 wt% at 350{degree}C even under nitrogen. Liquefaction in toluene gave oil fractions of high carbon content and lower oxygen content, with a heating value of 32-33 MJ kg{sup -1}. On the contrary, oil fractions obtained in water had a lower carbon content and higher oxygen content, with a lower heating value of 26 MJ kg{sup -1}. The presence of moderate amount of water is considered to be effective for the production of oil of high heating value in high yield. FT-i.r. spectroscopy and gel permeation chromatograph showed that production of oil fractions proceeded via thermal decomposition of polypeptides and hydrolysis by water produced during liquefaction in organic solvents. 24 refs., 8 figs., 3 tabs.

  12. Advances in multi-photon processes and spectroscopy, v.5

    CERN Document Server

    Lin, Sheng H

    1989-01-01

    In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in many interdisciplinary fields, an Advanced Series that contains review papers readable not only to active researchers in these areas but also to those who are not experts in the field but intend to enter the field is very necessary. This series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much prepar

  13. Advanced computational modelling for drying processes – A review

    International Nuclear Information System (INIS)

    Highlights: • Understanding the product dehydration process is a key aspect in drying technology. • Advanced modelling thereof plays an increasingly important role for developing next-generation drying technology. • Dehydration modelling should be more energy-oriented. • An integrated “nexus” modelling approach is needed to produce more energy-smart products. • Multi-objective process optimisation requires development of more complete multiphysics models. - Abstract: Drying is one of the most complex and energy-consuming chemical unit operations. R and D efforts in drying technology have skyrocketed in the past decades, as new drivers emerged in this industry next to procuring prime product quality and high throughput, namely reduction of energy consumption and carbon footprint as well as improving food safety and security. Solutions are sought in optimising existing technologies or developing new ones which increase energy and resource efficiency, use renewable energy, recuperate waste heat and reduce product loss, thus also the embodied energy therein. Novel tools are required to push such technological innovations and their subsequent implementation. Particularly computer-aided drying process engineering has a large potential to develop next-generation drying technology, including more energy-smart and environmentally-friendly products and dryers systems. This review paper deals with rapidly emerging advanced computational methods for modelling dehydration of porous materials, particularly for foods. Drying is approached as a combined multiphysics, multiscale and multiphase problem. These advanced methods include computational fluid dynamics, several multiphysics modelling methods (e.g. conjugate modelling), multiscale modelling and modelling of material properties and the associated propagation of material property variability. Apart from the current challenges for each of these, future perspectives should be directed towards material property

  14. Recent Technological Advances in Natural Language Processing and Artificial Intelligence

    OpenAIRE

    Shah, Nishal Pradeepkumar

    2012-01-01

    A recent advance in computer technology has permitted scientists to implement and test algorithms that were known from quite some time (or not) but which were computationally expensive. Two such projects are IBM's Jeopardy as a part of its DeepQA project [1] and Wolfram's Wolframalpha[2]. Both these methods implement natural language processing (another goal of AI scientists) and try to answer questions as asked by the user. Though the goal of the two projects is similar, both of them have a ...

  15. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    OpenAIRE

    Barazesh, JM; Hennebel, T; Jasper, JT; Sedlak, DL

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low con...

  16. The Numerical Tours of Signal Processing - Advanced Computational Signal and Image Processing

    OpenAIRE

    Peyré, Gabriel

    2011-01-01

    The Numerical Tours of Signal Processing is an online collection of tutorials to learn advanced computational signal and image processing. These tours allow one to follow a step by step Matlab or Scilab implementation of many important processing algorithms. This implementation is commented and the connexions with the relevant mathematical notions are exposed. These algorithms are applied to various signal, image, movie and 3D mesh datasets. These tours are suitable for practitioners in the f...

  17. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca; Singh, Shashank; Jensen, Thomas; Rosendahl, Lasse Aistrup

    2015-01-01

    Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co-processing ......Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co...

  18. Safety Analysis of Soybean Processing for Advanced Life Support

    Science.gov (United States)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  19. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  20. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  1. Study on process basic requirements of experimental facility of advanced spent fuel management process

    International Nuclear Information System (INIS)

    The advanced spent fuel management process, which was proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. Hot cell facilities of α-γ type and inert atmosphere are required essentially for safe hot test and verification of this process. In this study, design basic data are established, and these data include process flow, process condition and yields, mass and radioactivity balance of radionuclides, process safety considerations, etc. And also, these data will be utilized for basic and detail design of hot cell facility, secured conservative safety and effective operability

  2. Evaluation, engineering and development of advanced cyclone processes

    International Nuclear Information System (INIS)

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal's heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation's coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel

  3. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    This thesis deals with a wide range of topics within the research area of advanced baseband receiver design for wireless communication systems. In particular, the work focuses on signal processing algorithms for receivers in multiple-input multiple-output (MIMO) orthogonal frequency......-division multiplexing (OFDM) systems, with a particular emphasis on the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard as a study case. Signal processing in wireless receivers can be designed following different strategies. On the one hand, one can use intuitive argumentation to define...... the applicability of MF methods to the problem of estimation of sparse signals. Among the contributions within the area of heuristic approaches, we highlight our study of iterative MIMO detection, interference cancellation and decoding for LTE systems. A detailed study of channel estimation algorithms for OFDM...

  4. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  5. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  6. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  7. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    Science.gov (United States)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  8. Advanced treatment of pharmaceutical wastewater by Fenton reagent oxidation process

    Directory of Open Access Journals (Sweden)

    Yanan YANG

    2015-12-01

    Full Text Available Avermectin-salinomycin waster is hard to be further biodegraded after treated by anaerobic-aerobiotic process, so Fenton oxidation process is studied for its advanced treatment. Influencing factors of pH, reaction time, H2O2 dosage and H2O2/Fe2+ on COD removal are investigated, respectively. When pH value is 3.0, the dosage of H2O2 is 1.5 mL/L, and the mole ratio of H2O2/Fe2+ is 5∶1, the effluent COD mass concentrations decreases from 224 to 64.3 mg/L, namely the COD removal efficiency reaches 71.3%.

  9. An advanced aqueous process for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    To develop an advanced aqueous reprocessing process using a minimal organic solvent and compact equipment to separate U, Pu and long-lived minor actinides from spent nuclear fuels, we have developed a new type of anion exchanger (AR-01) and several novel extraction resins containing a chelating ligand such as CMPO, Cyanex-301 and R-BTP. A hot separation experiment for a spent BWR-fuel solution was carried out by an ion exchange column packed with AR-01. To enhance the separation factor between U and FPs, electrolytic reduction of UO22+ to U+4 was studied using a flow type electrolysis cell with carbon-fiber electrode. Separation behavior of Am(III) from simulated HLW by CMPO and R-BTP impregnated resins were investigated. On the basis of the experimental results, an advanced aqueous process which consists of anion exchange as main separation method, electrolytic reduction for reducing U(VI) to U(IV) and extraction chromatography for MA partitioning has been designed and evaluated preliminarily. (author)

  10. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    Science.gov (United States)

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually. PMID:15533022

  11. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an advanced cold process canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie local-iced corrosion for the steel or copper canisters can be dismissed as a failure mechanism; The evaluation of the effects of processed outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. For completeness also evaluation of post-failure behaviour was carried out. Analyses were focussed on low probability phenomena from faults in canisters. Some items were identified where further research is justified in order to increase knowledge of the phenomena and thus strengthen the confidence of safety margins. However, it can be concluded that the risks of these scenarios can be judged to be acceptable. This is due to the fact that firstly, the probability of occurrence of most of these scenarios can be controlled to a large extent through technical measures. Secondly, these analyses indicated that the consequences would not be severe

  12. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    A near-field performance evaluation of an Advanced Cold Process Canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. The canister design was originally proposed by TVO. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. Throughout the analysis, present day underground conditions has been assumed to persist during the service life of the canister. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie localized corrosion for the steel or copper canisters can be dismissed as a failure mechanism. The evaluation of the effects of processes outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. This factor will ensure the safety of the concept. (orig.)

  14. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  15. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe3O4) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion release to

  16. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  17. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  18. 3rd international conference on coal gasification and liquefaction, University of Pittsburgh

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-01

    The third annual international conference on ''Coal Gasification and Liquefaction: What Needs to be Done Now'' was held at the University of Pittsburgh, Pittsburgh, PA on August 3-5, 1976. The majority of the papers dealt with coal gasification and liquefaction (often on the basis of process pilot plant experience) and on flue gas desulfurization by a variety of processes; fewer papers involved fluidized bed combustion, combined cycle power plants, coal desulfurization, government policy on environmental effects and on synthetic fuels, etc. Twenty-eight papers have been entered individually into EDB and ERA. (LTN)

  19. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.;

    2013-01-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220-375 °C, 20-255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid...... residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on...... Nannochloropsis salina at 350 °C and 175 bar. For Spirulina platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for Nannochloropsis salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae...

  20. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  1. Applications of advanced oxidation processes: present and future.

    Science.gov (United States)

    Suty, H; De Traversay, C; Cost, M

    2004-01-01

    The use of advanced oxidation processes (AOPs) to remove pollutants in various water treatment applications has been the subject of study for around 30 years. Most of the available processes (Fenton reagent, O3 under basic conditions, O3/H2O2, O3/UV, O3/solid catalyst, H2O2/M(n+), H2O2/UV, photo-assisted Fenton, H2O2/solid catalyst, H2O2/NaClO, TiO2/UV etc.) have been investigated in depth and a considerable body of knowledge has been built up about the reactivity of many pollutants. Various industrial applications have been developed, including ones for ground remediation (TCE, PCE), the removal of pesticides from drinking water, the removal of formaldehyde and phenol from industrial waste water and a reduction in COD from industrial waste water. The development of such AOP applications has been stimulated by increasingly stringent regulations, the pollution of water resources through agricultural and industrial activities and the requirement that industry meet effluent discharge standards. Nevertheless, it is difficult to obtain an accurate picture of the use of AOPs and its exact position in the range of water treatment processes has not been determined to date. The purpose of this overview is to discuss those processes and provide an indication of future trends. PMID:15077976

  2. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  3. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  4. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process.

    Science.gov (United States)

    Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O

    2016-05-01

    A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield. PMID:26918837

  5. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    International Nuclear Information System (INIS)

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O3), hydrogen peroxide (H2O2), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  6. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  7. Direct liquefaction proof-of-concept program. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R. [and others

    1996-12-01

    This report presents the results of work conducted under the DOE Proof-of-Concept Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey, from February 1994 through April 1995. The work includes modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the second PDU run (POC Run 2) under the Program. The 45-day POC Run 2 demonstrated scale up of the Catalytic Two-Stage Liquefaction (CTSL Process) for a subbituminous Wyoming Black Thunder Mine coal to produce distillate liquid products at a rate of up to 4 barrels per ton of moisture-ash-free coal. The combined processing of organic hydrocarbon wastes, such as waste plastics and used tire rubber, with coal was also successfully demonstrated during the last nine days of operations of Run POC-02. Prior to the first PDU run (POC-01) in this program, a major effort was made to modify the PDU to improve reliability and to provide the flexibility to operate in several alternative modes. The Kerr McGee Rose-SR{sup SM} unit from Wilsonville, Alabama, was redesigned and installed next to the U.S. Filter installation to allow a comparison of the two solids removal systems. The 45-day CTSL Wyoming Black Thunder Mine coal demonstration run achieved several milestones in the effort to further reduce the cost of liquid fuels from coal. The primary objective of PDU Run POC-02 was to scale-up the CTSL extinction recycle process for subbituminous coal to produce a total distillate product using an in-line fixed-bed hydrotreater. Of major concern was whether calcium-carbon deposits would occur in the system as has happened in other low rank coal conversion processes. An additional objective of major importance was to study the co-liquefaction of plastics with coal and waste tire rubber with coal.

  8. Paleoseismic investigations in the Kopili Fault Zone of North East India: Evidences from liquefaction chronology

    Science.gov (United States)

    Kumar, Devender; Reddy, D. V.; Pandey, Anand K.

    2016-04-01

    We report the seismogenic liquefaction signatures observed in the Kopili Fault Zone of the Brahmaputra plains, NE India. This seismically active zone has previously been identified as the "Assam seismic gap" and thus necessitates understanding its past seismicity and implied seismic hazard. With this objective, paleo-seismic studies using seismogenic liquefaction features have been carried out in this region largely covered with the flood plain deposits of Kopili and Kalang rivers. The trenches excavated at two locations revealed extensive liquefaction features with more than 20 sub parallel sand dykes having major orientation in NE-SW direction. A total of 29 samples from marker horizons have been processed to constrain chronology of the liquefaction features using optically stimulated luminescence (OSL) and 14C (AMS) dating techniques. The age constraints in terms of respective lower and upper bound age brackets for individual dykes suggest three time intervals of their formations i.e. (i) 250 ± 25 yr. BP, (ii) between 400 to 770 yr. BP and (iii) 900 ± 50 yr. BP. These new ages of liquefaction features correspond to the occurrence timings of causative seismic events which are in addition to the known historical earthquakes and thus enhance our understanding of the paleoseismic history of this region during past ~ 1000 years.

  9. Rapid liquefaction of giant miscanthus feedstock in ethanol–water system for production of biofuels

    International Nuclear Information System (INIS)

    Highlights: • Rapid water/ethanol liquefaction system was proposed for giant miscanthus feedstock. • The optimum liquefaction conditions were 280 °C and 15 min at water/ethanol ratio 50%. • Application of ZnCl2 catalyst enhanced liquefaction process significantly. • 52% bio-oil yield and 1% residue were obtained after 5 min when ZnCl2 catalyst used. - Abstract: Energy issues nowadays are one of the critical priorities for the United States. There is a strong desire and tremendous efforts employed towards replacing fossil fuels with sustainable alternative sources of energy. In this study, hydrothermal liquefaction with ethanol and water as co-solvents was applied on giant miscanthus (Miscanthus giganteus) perennial biomass feedstock. Four temperatures and six ethanol ratios were chosen for the study. The optimum combination of temperature and water/ethanol ratio was 280 °C and 50%, respectively. The effect of time, biomass to solvent ratio and catalyst type was studied as well. The best liquefaction results without applying catalysts (53% oil yield and 8% solid residue) were obtained after 15 min. When zinc chloride was used as catalyst, more than 52% of oil yield with 1% solid residue was obtained after 5 min. The crude bio-oil chemical composition was identified by using gas chromatography/mass spectrometry (GC/MS)

  10. Advanced information processing system: Inter-computer communication services

    Science.gov (United States)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  11. Evaluation methodologies for an advanced information processing system

    Science.gov (United States)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  12. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  13. Advanced information processing system: Input/output system services

    Science.gov (United States)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  14. Homogeneity survey of advanced spent fuel conditioning process hot cell

    International Nuclear Information System (INIS)

    The hot cell facility (ACPF) for research activities related to the advanced spent fuel conditioning process (ACP) is being constructed. The hot cell construction work will be finished in May, 2005. Hot cell is designed to permit safe handling of radioactive materials up to 1,385 TBq and to keep gamma and neutron dose-rate lower than the recommended ones. The dose-rate limit values following the Korean nuclear laws are 0.01 mSv/h at operation area and 0.15 mSv/h at maintenance area. The ACPF is a concrete structure with two rooms, and made its exterior walls of heavy concrete with density of 3.45 g/cm3 and the wall thickness is more than 90 cm

  15. Advanced Manufacturing Technology Implementation Process in SME: Critical Success Factors

    Directory of Open Access Journals (Sweden)

    Jani Rahardjo

    2010-01-01

    Full Text Available The aim of this paper is to present critical factors that constitute a successful implementation of the Advanced Manufacturing Technologies (AMT in Small Medium Enterprise (SME. Many large companies have applied AMT and the applications have shown significant results in this global market era. Conveniently, these phenomenons are also engaged to Small Medium Enterprises (SME that of high demands on performing high quality product, fast delivery, reliable and more flexible. The implementation of AMT follow several processes namely pre installation, installation, improvement and mature. In order to guarantee the succesfull of running these processes, one should consider the Critical Success Factors (CSF. We conducted a survey to 125 SMEs that have implemented AMT, and found that the CSF for each process are moderately different. Good leadership is the main critical success factor for preparing and installation of the AMT. Once the AMT started or installed and arrived at growth stage, the financial availability factor turns into a critical success factor in the AMT implementation. In, mature stage, the support and commitment of top management becomes an important factor for gaining successful implementation. By means of factor analysis, we could point out that strategic factors are the main factors in pre-installation and installation stage. Finally, in the growth stage and mature stage, both tactical and strategic factors are the important factors in the successful of AMT implementation

  16. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  17. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  18. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  19. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  1. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H2O2 / Fe+2) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H2O2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO3 as a white precipitate resulting from the reaction between the Ba(OH)2 and the CO2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe+2 /H2O2 30%) at 100 deg C after 2 hours. (author)

  2. Advanced oxide powders processing based on cascade plasma

    International Nuclear Information System (INIS)

    Analysis of the potential advantages offered to thermal spraying and powder processing by the implementation of plasma torches with inter-electrode insert (IEI) or, in other words, cascade plasma torches (CPTs) is presented. The paper provides evidence that the modular designed single cathode CPT helps eliminate the following major disadvantages of conventional plasma torches: plasma parameters drifting, 1-5 kHz pulsing of plasma flow, as well as excessive erosion of electrodes. More stable plasma results in higher quality, homogeneity and reproducibility of plasma sprayed coatings and powders treated. In addition, CPT offers an extremely wide operating window, which allows better control of plasma parameters, particle dwell time and, consequently, particle temperature and velocity within a wide range by generating high enthalpy quasi-laminar plasmas, medium enthalpy transient plasmas, as well as relatively low enthalpy turbulent plasmas. Stable operation, flexibility with plasma gases as well as wide operating window of CPT should help significantly improve the existing plasma spraying processes and coatings, and also help develop new advanced technologies

  3. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  4. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Comolli; T.L.K. Lee; J. Hu; G. Popper; M.D. Elwell; J. Miller; D. Parfitt; P. Zhou

    1999-12-30

    This report presents the results of the bench-scale work, Bench Run PB-09, HTI Run Number 227-106, conducted under the DOE Proof-of-Concept Option Program indirect coal liquefaction at Hydrocarbon Technologies Inc. in Lawrenceville, New Jersey. Bench Run PB-09 was conducted using two types of Chinese coal, Shenhua No.2 and Shenhua No.3, and had several goals. One goal was to study the liquefaction performance of Shenhua No.2 and Shenhua No.3 with respect to coal conversion and distillate production. Another goal of Bench Run PB-09 was to study the effect of different GelCatw formulations and loadings. At the same time, the space velocity and the temperature of the fmt reactor, K-1, were varied to optimize the liquefaction of the two Chinese coals. The promoter-modified HTI GelCat{trademark} catalyst was very effective in the direct liquefaction of coal with nearly 92% maf coal conversion with Shenhua No.3 and 93% maf coal conversion with 9 Shenhua No.2. Distillate yields (CQ-524 C)varied from 52-68% maf for Shenhua No.3 coal to 54-63% maf for Shenhua No.2 coal. The primary conclusion from Bench Run PB-09 is that Shenhua No.3 coal is superior to Shenhua No.2 coal in direct liquefaction due to its greater distillate production, although coal conversion is slightly lower and C{sub 1}-C{sub 3} light gas production is higher for Shenhua No.3. The new promoter modified GelCat{trademark} proved successful in converting the two 9 Chinese coals and, under some conditions, producing good distillate yields for a coal-only bench run. Run PB-09 demonstrated significantly better performance of China Shenhua coal using HTI's coal direct liquefaction technology and GelCat{trademark} catalyst than that obtained at China Coal Research Institute (CCRI, coal conversion 88% and distillate yield 61%).

  5. Coal liquefaction. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

  6. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  7. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  8. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  9. Advanced water processing system (AWPS), including advanced filtration system (AFS) and advanced ion selective system (AISS) for improved utility (PWR/BWR) water processing performance

    International Nuclear Information System (INIS)

    The advanced water processing system (AWPS) has the potential for wide spread success on a worldwide scale in both PWR and BWRs. The AWPS incorporates the advanced features (patent pending) of advanced filtration and advanced ion selective technologies (patented). Typical problems encountered in current filtration systems include: (1) poor effluent quality, (2) short run lengths on filters, (3) frequent filter change-outs/backwashes, (4) large waste volumes, and (5) failed filter cartridges. The advanced filtration system (AFS) features reduced waste production per million gallons of water processed, cleaner water for recycle or release to the environment, filter element volume 100 times less than that of competitive filters, and a far lower capital cost compared to systems with similar performance. The AWPS should be of interest to plants that are upgrading, or to new plants to lower both their capital and operating costs, as well as total curie discharge levels. In addition, the AWPS will function in non-nuclear, as well as nuclear, applications of water purification, specially where pre coat filtration/ion exchange or reverse osmosis (RO) is being applied to process water with high concentrations of colloidal contaminants. Pilot testing has been successfully completed in the U. S. at the Byron (PWR), LaSalle (BWR), and Dresden(BWR) nuclear plants for Commonwealth Edison, and the Bruce several spent filters in a High Integrated Container these bench- and pilot-scale demonstrations will be presented herein. Full-scale designs or systems have been shipped to these locations. In all cases, the testing demonstrated: (1) longer run lengths (300,000 gallons between backwashes--a 100 fold improvement), (2) recoverability of cartridge filters after backwash (cartridge lives of approximately 6 months to a year--a 5 to 10 fold improvement in filter life), (3) large removal efficiencies for colloidal particles (reduced discharge curies), and (4) reduced waste volumes

  10. Robustness of advanced nuclear fuel reprocessing processes. Study on solvent extraction processes adjusted to advanced reprocessing process. Document on collaborative study

    International Nuclear Information System (INIS)

    The advanced nuclear fuel reprocessing process with crystallization uranium recovery has been proposed to enhance economical incentive and to reduce amount of discharged waste. Because a solvent extraction process following the crystallization uranium recovery will be operated with new process parameters due to different parameters of loading of heavy metals, decontamination factors, flow rates etc, fundamental studies on chemical flowsheet of the process are required to verify robustness of the process and to understand influence of process variation upon process performance. In this study, theoretical and computational studies were performed from this kind of aspect. Firstly, separation characteristics with the chemical flowsheet were studied for the steady-state, and recovery yields of uranium and plutonium, decontamination factor, process waste amount were computated for the normal process condition. Secondary, transient behaviors were computated with some variations in flow rates, heavy metal loading and so on from the normal process condition. Finally, influence of small fluctuation of the process condition was analyzed and the robustness of the new solvent extraction process was verified. This work was performed by Nagoya University and Japan Nuclear Cycle Development Institute under the JNC Cooperative Research Scheme on the Nuclear Fuel Cycle. (author)

  11. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  12. Recent advances in lactic acid production by microbial fermentation processes.

    Science.gov (United States)

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  13. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  14. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  15. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  16. Numerical computation of anti-liquefaction effect of lattice-type cement-mixed soil countermeasure

    Institute of Scientific and Technical Information of China (English)

    高玉峰; 杨雪玲; 沈扬; 周源

    2008-01-01

    Continuous soil-cement wall confinement method to resist liquefaction is a new kind of process. However, whether it also has a good effect on anti-liquefaction or not needs to be urgently answered for earthquake engineering. Quiet boundary is adopted on the lateral face while free field boundary is employed at the bottom. Byrne model on dynamic pore water pressure generation is accepted and natural seismic wave EI Centro whose peak acceleration is adjusted to 0.2 g in proportion is used for input. A double-layer foundation with sandy soil in the upper portion while clay soil in the lower part is chosen as the calculation model, which is 30 m in length and 20 m in width. The groundwater level is on the ground surface. Excess pore water pressure rate is considered as a liquefaction index in the three-dimensional non-linear earthquake response computation. The anti-liquefaction effectiveness and its influencing factors, such as confinement element area are studied. For the natural double-layer foundation, it is liquefied when the excess pore water pressure rate reaches 1.0 under the seismic load. Under the same earthquake load, the peak excess pore water pressure reduces to 0.56 after adopting reinforcement of the continuous soil-cement wall, which is 46% lower than before. It indicates that continuous soil-cement wall confinement method can attain the purpose of anti-liquefaction. Accordingly, it can be a sort of engineering measure to carry on the anti-liquefaction foundation treatment.

  17. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric; Iversen, Bo Brummerstedt

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  18. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  19. Growth process and microstructure of Y123 film fabricated by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The advanced metal organic deposition (MOD) process using F-free salt of Cu and trifluroacetates (TFA) salts (Superconductivity Research Laboratory (SRL)-Method) was applied to form well oriented Y123 film on LaAlO3 substrate. In order to clarify the growth mechanism of the Y123 film by the advanced TFA-MOD process, two methods were introduced. One was the quenching method to get samples under several different conditions during the process, and the microstructures were observed by transmission electron microscopy (TEM). The other was in situ observation method to know surface changes of the film by the generation of liquid and/or gas. From the θ-2θ X-ray diffraction (XRD) analysis of YBa2Cu3O7-δ (YBCO) films fabricated by suitable conditions (0 0 n) diffraction peaks were obtained indicating they had strongly c-axis oriented structure. The thin YBCO films had critical current density (J C) of 3.8-4.9 MA/cm2 (77 K,0 T) measured by the four-probe-method. A growth model with some process-controlling parameters was proposed based on the above observed results

  20. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  1. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    Science.gov (United States)

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins. PMID:23376205

  2. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    Science.gov (United States)

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  3. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measuremen...

  4. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    Energy Technology Data Exchange (ETDEWEB)

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio [Nuclear and Energy Research Institute, Av. Lineu Prestes, 2242., Sao Paulo, SP. (Brazil); Passos Piveli, Roque; Campos, Fabio [The Polytechnic School of the University of Sao Paulo, Av. Prof. Almeida Prado, 83, trav.2. Sao Paulo, SP (Brazil)

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the

  5. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    International Nuclear Information System (INIS)

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  6. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  7. Redesign of the Advanced Education processes in the United States Coast Guard

    OpenAIRE

    Johnson, Lamar V.; Sanders, Marc F.

    1999-01-01

    The processes used in the operation of the Coast Guard Advanced Education Program have evolved as most business processes that were developed prior to the introduction of information technology. These processes include the selection, management, assignment and tracking of advanced education students. These processes are still fully dependent on physical files and the mail system. The Coast Guard has an information technology infrastructure that supports better processes, however it is not bei...

  8. Processing for long YBCO coated conductors by advanced TFA-MOD process

    International Nuclear Information System (INIS)

    The long tape process was developed using the advanced TFA precursor solution. In a long tape production, the advanced TFA precursor solution was coated by a die-coater using the reel-to-reel system, and the multi-coating method was applied for thicker film fabrication. We successfully fabricated long uniform precursor films. In the high temperature treatment, a large scale equipment for the continuous long tape process was developed. This equipment had a perpendicular gas flow system to the tape length which is effective to fabricate the uniform films. Ic values and its distribution in the YBCO tape fabricated by this method on CeO2/IBAD-Gd2Zr2O7/Hastelloy were measured. And the uniform and high performance was confirmed. A 0.25 m long YBCO film with 1.38 μm in thickness on the metal substrate shows the high Ic performance of 210 A with end to end at 77.3 K in self-fields

  9. Organic conductors as novel ``molecular rulers`` for advanced manufacturing processes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M.

    1995-12-31

    Future advanced manufacturing equipment used in high technology programs will require ultra-high precision and associated machining tool operations that require placement accuracy of {approximately} 1--100 nm (1 nm = 10 {angstrom}). There is consensus among engineers that this equipment will be based on STM (Scanning Tunneling Microscope) technology. All such STM-based ``drivers`` must contain a metrology system that requires absolute length standards referenced to atomic spacings for calibration. Properly designed organic conductor substrate crystals have the potential to be molecular rulers for STM-based advanced manufacturing equipment. The major challenges in future organic conductor research aimed at STM metrology application are listed.

  10. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  11. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  12. LIQUEFACTION AND DISPLACEMENT OF SATURATED SAND UNDER VERTICAL VIBRATION LOADING

    Institute of Scientific and Technical Information of China (English)

    LU Xiaobing; TAN Qingming; CHENG C.M.; YU Shanbing; CUI Peng

    2004-01-01

    In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction.The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  14. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  15. Earthquake Risk - MO 2013 Liquefaction Potential St. Louis Area (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing surficial materials and floodplain alluvium maps. Alluvium deposits and artificial deposits are generally...

  16. Analysis and Evaluation of the Liquefaction on Layered Soil

    International Nuclear Information System (INIS)

    Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site for this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed and Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. As seismic input motion used for the assessment of liquefaction, the artificial time history compatible with the US NRC Regulatory Guide 1.60 is used. Assessment results of the liquefaction are validated by analyzing to the other typical soil foundations which can show the effects on the foundation depth and soil data. (authors)

  17. Application of Advanced Oxidation Processes to Wastewater Treatment

    OpenAIRE

    Lucas, Marco Paulo Gomes de Sousa

    2009-01-01

    Tese de Doutoramento em Química This research contributes to the study and development of advanced oxidation technologies applied to two different problematic wastewaters: textile and winery wastewaters. In this dissertation the factors that influence the oxidation of the model compound of textile wastewaters, the azo dye Reactive Black 5 (RB5), and of the winery wastewaters were investigated. The first part of the thesis experimental work is dedicated to the decolorization of RB5 solut...

  18. Advanced power electronics converters PWM converters processing AC voltages

    CERN Document Server

    dos Santos, Euzeli

    2014-01-01

    This book covers power electronics, in depth, by presenting the basic principles and application details, which can be used both as a textbook and reference book.  Introduces a new method to present power electronics converters called Power Blocks Geometry. Applicable for courses focusing on power electronics, power electronics converters, and advanced power converters. Offers a comprehensive set of simulation results to help understand the circuits presented throughout the book

  19. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  20. Liquefaction necrosis of mitral annulus calcification.

    Science.gov (United States)

    Mallisho, Maram; Hwang, Inyong; Alsafwah, Shadwan F

    2014-01-01

    Liquefaction necrosis of the mitral annulus is a rare form of peri-annular calcification that the cardiologist must be able to differentiate from other cardiac masses. It classically looks like a round or semilunar hyperdense mass with a denser peripheral rim, located mainly in the posterior mitral annulus. The case we report here was diagnosed in a 78-year-old female patient who presented with an embolic cerebral vascular accident, which raises the question of its etiopathogenic responsibility. PMID:24420234

  1. Cost analysis of advanced turbine blade manufacturing processes

    Science.gov (United States)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  2. Co-liquefaction of micro algae with coal using coal liquefaction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, N.; Ueda, C.; Matsui, T.; Ohtsuki, M.; Suzuki, T. [Kansai University, Osaka (Japan). Dept. of Chemical Engineering, Faculty of Engineering

    2001-04-01

    Co-liquefaction of micro algae (Chlorella, Spirulina and Littorale) with coal (Australian Yallourn brown coal and Illinois No. 6 coal) was carried out under pressurized H{sub 2} in 1-methylnaphthalene at 350-400{degree}C for 60 min with various catalysts. Co-liquefaction of Chlorella with Yallourn coal was successfully achieved with excess sulfur to iron (S/Fe = 4), where sufficient amount of Fe{sub 1-x}S, which is believed to be the active species in the coal liquefaction, was produced. The conversion and the yield of the hexane-soluble fraction were close to the values calculated from the additivity of the product yields of the respective homo-reactions. In the reaction with a one-to-one mixture of Chlorella and Yallourn coal, 99.8% of conversion and 65.5% of hexane-soluble fraction were obtained at 400{degree}C with Fe (CO){sub 5} at S/Fe = 4. When Littorale and Spirulina were used as micro algae, a similar tendency was observed with the iron catalyst. On the other hand, in the co-liquefaction with Illinois No. 6 coal, which is known to contain a large amount of sulfur in the form of catalytically active pyrite, the oil yield in the co-liquefaction was close to the additivity of the respective reaction with Fe(CO){sub 5}-S, even at SFe = 2. Ru{sub 3}(CO){sub 12} was also effective for the co-liquefaction of micro algae with coal. 26 refs., 12 figs., 1 tab.

  3. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik;

    in the sampling equipment. The use of the IR technique for determination of particle temperatures, particle sizes, and number density proved reliable in both the swirl burner and the laboratory scale fixed bed reactor. When the technique was used in the swirl burner the subsequent data treatment was......This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...

  4. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (wF) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol−1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, wF of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  5. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  6. Advanced Control of a Continuous Solution Copolymerization Process

    OpenAIRE

    Nádson Murilo Nascimento Lima; Lamia Zuñiga Liñan; Flavio Manenti; Rubens Maciel Filho; Marcelo Embiruçu; Maria Regina Wolf Maciel

    2011-01-01

    A model-based predictive control system is designed for a copolymerization reactor. These processes typically have such a high nonlinear dynamic behavior to make practically ineffective the conventional control techniques, still so widespread in process and polymer industries. A predictive controller is adopted in this work, given the success this family of controllers is having in many chemical processes and oil refineries, especially due to their possibility of including bounds on both mani...

  7. AGU governance's decision-making process advances strategic plan

    Science.gov (United States)

    McPhaden, Michael; Finn, Carol; McEntee, Chris

    2012-10-01

    A lot has happened in a little more than 2 years, and we want give AGU members an update on how things are working under AGU's strategic plan and governance model. AGU is an organization committed to its strategic plan (http://www.agu.org/about/strategic_plan.shtml), and if you have not read the plan lately, we encourage you to do so. AGU's vision is to be an organization that "galvanizes a community of Earth and space scientists that collaboratively advances and communicates science and its power to ensure a sustainable future." We are excited about the progress we have made under this plan and the future course we have set for the Union. Everything the Board of Directors, Council, and committees put on their agendas is intended to advance AGU's strategic goals and objectives. Together with headquarters staff, these bodies are working in an integrated, effective manner to carry out this plan. The best way to demonstrate the progress made and each group's role is to walk through a recent example: the creation of a new Union-level award (see Figure 1).

  8. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  9. Advanced nonlinear signal processing in silicon-based waveguides

    OpenAIRE

    Petropoulos, P.; Ettabib, M.A.; Bottrill, K.R.H.; Lacava, C.; Parmigiani, F.; Hammani, K.; BRUN, M.; Labeye, P.; Nicoletti, S.; Bogris, A.; Kapsalis, A.; Syvridis, D.

    2015-01-01

    This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.

  10. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  11. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  12. Dual-Process Theories and Cognitive Development: Advances and Challenges

    Science.gov (United States)

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive…

  13. Advanced ThioClear process testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lani, B.

    1998-03-01

    Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.

  14. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    OpenAIRE

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik; Jensen, Anker Degn

    2012-01-01

    Denne rapport beskriver resultaterne, der er blevet opnået i PSO-projektet 010069, “Advanced Diagnostics in Oxy-Fuel Combustion Processes”. Tre områder af optisk diagnostik er inkluderet i rapporten: - FTIR målinger i en 30 kW swirlbrænder. - IR målinger i en 30 kW swirlbrænder. - IR målinger i en laboratorieskala fixed bed reaktor. Resultaterne, der blev opnået i swirlbrænderen, viser at FTIR teknikken er et værdifuldt værktøj til bestemmelse af gasfasetemperaturer. Når dens anvendelighed ev...

  15. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    International Nuclear Information System (INIS)

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  16. Advances in signal processing and intelligent recognition systems

    CERN Document Server

    Gelbukh, Alexander; Mukhopadhyay, Jayanta

    2014-01-01

    This Edited Volume contains a selection of refereed and revised papers originally presented at the International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS-2014), March 13-15, 2014, Trivandrum, India. The program committee received 134 submissions from 11 countries. Each paper was peer reviewed by at least three or more independent referees of the program committee and the 52 papers were finally selected. The papers offer stimulating insights into Pattern Recognition, Machine Learning and Knowledge-Based Systems; Signal and Speech Processing; Image and Video Processing; Mobile Computing and Applications and Computer Vision. The book is directed to the researchers and scientists engaged in various field of signal processing and related areas.  

  17. Power beams and their comparative positioning in advanced materials processing

    International Nuclear Information System (INIS)

    Power Beam Technology covering laser, electron and plasma beams belongs to a class of novel manufacturing techniques. Availability of high power density in localized area along with flexible-controllability of the process makes them attractive for material processing applications. The use of power beams in cutting, welding and melting has been known for over five decades. However, it is only recently that the use of power beams in non-thermal and non-equilibrium processing is emerging as an area of active interest. This paper addresses some of the issues related to the underlying principles of power beams, the comparative strengths and weaknesses of the different techniques and their implementation in processing environment. (author)

  18. Advancements on the simulation of the micro injection moulding process

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard;

    2013-01-01

    Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...... injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new...... strategies and aspects for comprehensive simulation models which provide more precise results for micro injection molding are discussed. Modeling and meshing recommendations are presented, leading to a multi-scale mesh of all relevant units in the injection molding process. The implementation of the process...

  19. Titanium alloys. Advances in alloys, processes, products and applications

    OpenAIRE

    Blenkinsop, P.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in "older" alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments ...

  20. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  1. ADVANCES ON BILINEAR MODELING OF BIOCHEMICAL BATCH PROCESSES

    OpenAIRE

    GONZÁLEZ MARTÍNEZ, JOSÉ MARÍA

    2015-01-01

    [EN] This thesis is aimed to study the implications of the statistical modeling approaches proposed for the bilinear modeling of batch processes, develop new techniques to overcome some of the problems that have not been yet solved and apply them to data of biochemical processes. The study, discussion and development of the new methods revolve around the four steps of the modeling cycle, from the alignment, preprocessing and calibration of batch data to the monitoring of batches trajectories....

  2. Holographic femtosecond laser manipulation for advanced material processing

    Science.gov (United States)

    Hasegawa, Satoshi; Hayasaki, Yoshio

    2016-02-01

    Parallel femtosecond laser processing using a computer-generated hologram displayed on a spatial light modulator, known as holographic femtosecond laser processing, provides the advantages of high throughput and high-energy use efficiency. Therefore, it has been widely used in many applications, including laser material processing, two-photon polymerization, two-photon microscopy, and optical manipulation of biological cells. In this paper, we review the development of holographic femtosecond laser processing over the past few years from the perspective of wavefront and polarization modulation. In particular, line-shaped and vector-wave femtosecond laser processing are addressed. These beam-shaping techniques are useful for performing large-area machining in laser cutting, peeling, and grooving of materials and for high-speed fabrication of the complex nanostructures that are applied to material-surface texturing to control tribological properties, wettability, reflectance, and retardance. Furthermore, issues related to the nonuniformity of diffraction light intensity in optical reconstruction and wavelength dispersion from a computer-generated hologram are addressed. As a result, large-scale holographic femtosecond laser processing over 1000 diffraction spots was successfully demonstrated on a glass sample.

  3. Applied Felts contract represents milestone for the Advanced and Applied Polymer Processing Institute

    OpenAIRE

    Callaway, Curtis

    2005-01-01

    Virginia's Philpott Manufacturing Extension Partnership (VPMEP) and the Institute for Advanced Learning and Research (IALR) announce the first contract for the Advanced and Applied Polymer Processing Institute (AAPPI) involving commercially-sponsored, university research for a Southside company, Applied Felts, Inc. of Martinsville.

  4. Co-liquefaction of micro- and macroalgae in subcritical water.

    Science.gov (United States)

    Jin, Binbin; Duan, Peigao; Xu, Yuping; Wang, Feng; Fan, Yunchang

    2013-12-01

    Co-liquefaction of microalgae (Spirulina platensis, SP) and macroalgae (Entermorpha prolifera, EP) was studied in subcritical water by using a stainless-steel batch reactor at different temperature (250 to 370°C), time (5 to 120 min), SP/EP mass ratio (0 to 100%), and water/algae mass ratio (1:1 to 6:1). The results suggested that a positive synergetic effect existed during the co-liquefaction of SP and EP, and this synergetic effect was dependent on reaction conditions. Co-liquefaction alleviated the severe reaction conditions compared to the separate liquefaction of SP and EP and also promoted the in situ deoxygenation of the bio-oil. The higher-heating-value of bio-oil produced from the co-liquefaction of SP and EP (wSP:wEP=1) is 35.3 MJ/kg. The energy recovery from the co-liquefaction is larger than the average value from the separate liquefaction of SP and EP. Co-liquefaction did not affect the molecular composition but affect the relative amount of each component in the bio-oil. PMID:24096026

  5. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  6. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  7. Advancements in organic antireflective coatings for dual-damascene processes

    Science.gov (United States)

    Deshpande, Shreeram V.; Shao, Xie; Lamb, James E., III; Brakensiek, Nickolas L.; Johnson, Joe; Wu, Xiaoming; Xu, Gu; Simmons, William J.

    2000-06-01

    Dual Damascene (DD) process has been implemented in manufacturing semiconductor devices with smaller feature sizes (EQ 0.20 micrometer), due to increased use of copper as a metal of choice for interconnects. Copper is preferred over aluminum due to its lower resistance which helps to minimize the effects of interconnect delays. Via first DD process is the most commonly used process for manufacturing semiconductor devices since it requires less number of processing steps and also it can make use of a via fill material to minimize the resist thickness variations in the trench patterning photolithography step. Absence of via fill material results in non-uniform fill of vias (in isolated and dense via regions) thus leading to non-uniform focus and dose for exposure of the resist in the deep vias. This results in poor resolution and poor critical dimension (CD) control in the trench-patterning step. When a via fill organic material such as a bottom anti- reflective coating (BARC) is used, then the resist thickness variations are minimized thus enhancing the resolution and CD control in trench patterning. Via fill organic BARC materials can also act as etch blocks at the base of the via to protect the substrate from over etch. In this paper we review the important role of via fill organic BARCs in improving the efficiency of via first DD process now being implemented in semiconductor manufacturing.

  8. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    Science.gov (United States)

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-03-11

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications. PMID:25629307

  9. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    Energy Technology Data Exchange (ETDEWEB)

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  10. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    K. Jothimurugesan; Santosh K. Gangwal

    2000-12-01

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

  11. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES; FINAL

    International Nuclear Information System (INIS)

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H(sub 2)S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H(sub 2)S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO(sub 2) tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H(sub 2)S to below 20 ppmv from coal gas and can be regenerated using SO(sub 2) to produce elemental sulfur

  12. Recent applications of pulsed lasers in advanced materials processing

    International Nuclear Information System (INIS)

    Pulsed laser sources are widely used for the micro-processing of materials from the structuring and patterning of surfaces to the direct machining of devices. This paper discusses laser micro-processing techniques for the fabrication of microstructures with high accuracy and precision over large areas. Techniques discussed include laser mask projection techniques, synchronised image scanning (SIS) and bow tie scanning (BTS) and direct beam micromachining. Examples of the application of these techniques in industrial production are discussed, including solar cell scribing, micro-optical device manufacture, inkjet printer nozzle drilling and plasma display panel patterning

  13. EFFECT OF UNEQUAL DEFORMATION IN DEVELOPMENT OF ADVANCED PLASTIC PROCESSING TECHNOLOGIES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An effect of unequal deformation in development of advanced plastic processing technologies is researched by studying an in-plane bending process of strip metal under unequal compressing. The research results show the following: If appropriately controlled, unequal plastic deformation can play an important role not only in the improvement of quality of parts obtained by plastic processing technologies, but also in the development of new processes for advanced plastic working technologies. A coordinated growth of unequal plastic deformation can develop the deformation potentiality of material to the full. The degree of unequal plastic deformation can be used as bases for optimization design of processes and dies of plastic forming.

  14. Assessment of Soil Liquefaction Potential Based on Numerical Method

    DEFF Research Database (Denmark)

    Choobasti, A. Janalizadeh; Vahdatirad, Mohammad Javad; Torabi, M.;

    2012-01-01

    Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss...... accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria, a...... zone of the corridor of Tabriz urban railway line 2 susceptible to liquefaction was recognized. Then, using numerical analysis and cyclic stress method using QUAKE/W finite element code, soil liquefaction potential in susceptible zone was evaluated based on design earthquake....

  15. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    Science.gov (United States)

    An electrochemical advanced oxidation process has been developed utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with hy...

  16. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  17. Advances in time-dependent methods for multiphoton processes

    International Nuclear Information System (INIS)

    This paper discusses recent theoretical results on above threshold ionization harmonic generation and high-frequency, high intensity suppression of ionization. These studies of multiphoton processes in atoms and molecules for short, intense pulsed optical lasers have been carried out using techniques which involve the explicit solution of the time-dependent Schroedinger equation. 43 refs., 5 figs

  18. Advanced materials and processes for polymer solar cell devices

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Søndergaard, Roar; Krebs, Frederik C

    2010-01-01

    The rapidly expanding field of polymer and organic solar cells is reviewed in the context of materials, processes and devices that significantly deviate from the standard approach which involves rigid glass substrates, indium-tin-oxide electrodes, spincoated layers of conjugated polymer...

  19. Advances towards a Clean Hydrometallurgical Process for Chromite

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2016-01-01

    Full Text Available Because of the acute toxicity of Cr(VI-bearing substances, the pollution problem caused by chromite process residue has become a worldwide concern. In the view of relevant studies, the technologies based on the alkali treatment cannot fundamentally resolve the pollution problem, because the oxidation of Cr(III to Cr(VI is unavoidable during chromite decomposition. In contrast, the oxidation of Cr(III to Cr(VI can be controlled by the sulfuric acid treatment of chromite, and the Cr(VI pollution can be eliminated from the original source of production. Many research studies focusing on the resolutions of the key obstacles hindering the development of the sulfuric acid treatment process have been carried out, and significant progress has been achieved. In this study, a clean hydrometallurgical process without the generation of hexavalent chromium is demonstrated. First, the chromite was decomposed and leached by sulfuric acid solution in the presence of an oxidant. Then, iron was hydrothermally removed from the acid solution as the precipitate of jarosite. Finally, chromium salts were obtained by adjusting the basicity of the solution, separation and drying. With the aim of realizing industrialization, future research emphasis on the development of the sulfuric acid treatment process is proposed in this study.

  20. Advancing e-commerce personalization: Process framework and case study

    NARCIS (Netherlands)

    Kaptein, M.C.; Parvinen, P.

    2015-01-01

    Personalization is widely used in e-commerce, and as computational power increases, personalization is now within reach for many online vendors. We describe a process framework to structure our knowledge of online personalization both from academia and from applied attempts. This framework is expect

  1. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  2. A thermodynamic review of cryogenic refrigeration cycles for liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung

    2015-12-01

    A thermodynamic review is presented on cryogenic refrigeration cycles for the liquefaction process of natural gas. The main purpose of this review is to examine the thermodynamic structure of various cycles and provide a theoretical basis for selecting a cycle in accordance with different needs and design criteria. Based on existing or proposed liquefaction processes, sixteen ideal cycles are selected and the optimal conditions to achieve their best thermodynamic performance are investigated. The selected cycles include standard and modified versions of Joule-Thomson (JT) cycle, Brayton cycle, and their combined cycle with pure refrigerants (PR) or mixed refrigerants (MR). Full details of the cycles are presented and discussed in terms of FOM (figure of merit) and thermodynamic irreversibility. In addition, a new method of nomenclature is proposed to clearly identify the structure of cycles by abbreviation.

  3. ADVANCED OXIDATION PROCESSES (AOPs) APPLIED FOR WASTEWATER AND DRINKING WATER TREATMENT. ELIMINATION OF PHARMACEUTICALS

    OpenAIRE

    Petrovic, Mira; Radjenovic, Jelena; Barcelo, Damia

    2011-01-01

    Due to their insufficient removal in conventional wastewater treatments, advanced drinking and wastewater treatment options should be considered for the removal of pharmaceutically active compounds (PhACs) from urban, hospital and industrial wastewaters. This paper summarizes the current state-of-the-art in two often applied advanced oxidation processes (AOPs), namely TiO2 assisted photocatalysis and photo-Fenton process. Their possibilities in removing PhACs are discussed, giving examples fo...

  4. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    Miguel Mercader, de F.; Groeneveld, M.J.; Kersten, S.R.A.; Way, N.W.J.; Schaverien, C.J.; Hogendoorn, J.A.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end temper

  5. Recent advances in brain physiology and cognitive processing

    Directory of Open Access Journals (Sweden)

    Alfredo Pereira Jr

    2011-03-01

    Full Text Available The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena.

  6. Recent advances in brain physiology and cognitive processing

    Directory of Open Access Journals (Sweden)

    Pereira Jr Alfredo

    2011-01-01

    Full Text Available The discovery of participation of astrocytes as active elements in glutamatergic tripartite synapses (composed by functional units of two neurons and one astrocyte has led to the construction of models of cognitive functioning in the human brain, focusing on associative learning, sensory integration, conscious processing and memory formation/retrieval. We have modelled human cognitive functions by means of an ensemble of functional units (tripartite synapses connected by gap junctions that link distributed astrocytes, allowing the formation of intra- and intercellular calcium waves that putatively mediate large-scale cognitive information processing. The model contains a diagram of molecular mechanisms present in tripartite synapses and contributes to explain the physiological bases of cognitive functions. It can be potentially expanded to explain emotional functions and psychiatric phenomena.

  7. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  8. Advanced Image Processing for Defect Visualization in Infrared Thermography

    Science.gov (United States)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  9. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  10. Combining advanced imaging processing and low cost remote imaging capabilities

    Science.gov (United States)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  11. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  12. Advanced cellular ceramics processed using direct foaming methods

    OpenAIRE

    Guzi De Moraes, Elisangela

    2015-01-01

    The research work presented in this thesis concerns the development of silicon nitride based ceramics with a cellular structure and containing designed interconnected porosity (> 80 vol%) and cell size distribution (10 up to 800 μm) by direct foaming processing routes. Concentrated emulsions (O/W oil-in-water) stabilized by surfactants and gelcasting using environmentally friendly biopolymers as gelling agents, were developed as intermediates in the production of highly porous inorganic mater...

  13. Optimisation techniques for advanced process supervision and control

    OpenAIRE

    Abu-el-zeet, Z.H.

    2000-01-01

    This thesis is concerned with the use and development of optimisation techniques for process supervision and control. Two major areas related to optimisation are combined namely model predictive control and dynamic data reconciliation. A model predictive control scheme is implemented and used to simulate the control of a coal gasification plant. Static as well as dynamic data reconciliation techniques are developed and used in conjunction with steady-state optimisation and model predictive co...

  14. Advances in multi-photon processes and spectroscopy, v.3

    CERN Document Server

    Lin, Sheng H

    1987-01-01

    In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions, and molecules in chemistry, physics, biology and material sciences, this series contains review papers exploring the growth. They are readable not only by active researchers in these areas but also by those who are not experts in the field but intend to enter the field.

  15. Elastic wave in thin wall structures and advanced signal processing

    Czech Academy of Sciences Publication Activity Database

    Blaháček, Michal; Převorovský, Zdeněk

    Praha: Brno University of Technology, 2003 - (Mazal, P.), s. 33-40 ISBN 80-214-2475-3. [NDT in progress. Průhonice (CZ), 06.10.2003-08.10.2003] R&D Projects: GA ČR GA106/00/D105; GA AV ČR IBS2076356 Institutional research plan: CEZ:AV0Z2076919 Keywords : signal processing * elastic wave propagation * wavelet transformation Subject RIV: JI - Composite Materials

  16. Advancements on Radar Polarization Information Acquisition and Processing

    Directory of Open Access Journals (Sweden)

    Dai Dahai

    2016-04-01

    Full Text Available The study on radar polarization information acquisition and processing has currently been one important part of radar techniques. The development of the polarization theory is simply reviewed firstly. Subsequently, some key techniques which include polarization measurement, polarization anti-jamming, polarization recognition, imaging and parameters inversion using radar polarimetry are emphatically analyzed in this paper. The basic theories, the present states and the development trends of these key techniques are presented and some meaningful conclusions are derived.

  17. Advances in multi-photon processes and spectroscopy, v.2

    CERN Document Server

    Lin, Sheng H

    1986-01-01

    This volume focuses on the recent rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions and molecules in chemistry, physics, biology, material sciences, It contains papers readable by active researchers and by those who intend to enter it. Theory and experiment are equally emphasized, and each review article is written in a self-contained manner by experts in the field so that readers learn the subject without much preparation.

  18. Investigation of Advanced Processed Single-Crystal Turbine Blade Alloys

    Science.gov (United States)

    Peters, B. J.; Biondo, C. M.; DeLuca, D. P.

    1995-01-01

    This investigation studied the influence of thermal processing and microstructure on the mechanical properties of the single-crystal, nickel-based superalloys PWA 1482 and PWA 1484. The objective of the program was to develop an improved single-crystal turbine blade alloy that is specifically tailored for use in hydrogen fueled rocket engine turbopumps. High-gradient casting, hot isostatic pressing (HIP), and alternate heat treatment (HT) processing parameters were developed to produce pore-free, eutectic-free microstructures with different (gamma)' precipitate morphologies. Test materials were cast in high thermal gradient solidification (greater than 30 C/cm (137 F/in.)) casting furnaces for reduced dendrite arm spacing, improved chemical homogeneity, and reduced interdendritic pore size. The HIP processing was conducted in 40 cm (15.7 in.) diameter production furnaces using a set of parameters selected from a trial matrix study. Metallography was conducted on test samples taken from each respective trial run to characterize the as-HIP microstructure. Post-HIP alternate HT processes were developed for each of the two alloys. The goal of the alternate HT processing was to fully solution the eutectic gamma/(gamma)' phase islands and to develop a series of modified (gamma)' morphologies for subsequent characterization testing. This was accomplished by slow cooling through the (gamma)' solvus at controlled rates to precipitate volume fractions of large (gamma)'. Post-solution alternate HT parameters were established for each alloy providing additional volume fractions of finer precipitates. Screening tests included tensile, high-cycle fatigue (HCF), smooth and notched low-cycle fatigue (LCF), creep, and fatigue crack growth evaluations performed in air and high pressure (34.5 MPa (5 ksi)) hydrogen at room and elevated temperature. Under the most severe embrittling conditions (HCF and smooth and notched LCF in 34.5 MPa (5 ksi) hydrogen at 20 C (68 F), screening test

  19. Recent advances in processing and characterization of edgeless detectors

    Science.gov (United States)

    Wu, X.; Kalliopuska, J.; Eränen, S.; Virolainen, T.

    2012-02-01

    During past five years VTT has actively developed edgeless detector fabrication process. The straightforward and high yield process relies on ion-implantation to activate the edges of the detector. A recent fabrication process was performed at VTT to provide p-on-n edgeless detectors. The layout contained DC- and AC-coupled strip detector and pixel detectors for Medipix/Timepix readouts. The fabricated detector thicknesses were 50, 100 and 150 μm. Electrical characterization was done for 5 × 5 mm2 edgeless diodes on wafer level. All measured electrical parameters showed a dramatic dependence on the diode thickness. Leakage current was measured below 10 nA/cm2 at full depletion. Calculation using a theoretical approximation indicates the diode surface generation current of less than 300 pA. The breakdown voltages were measured to be above 140 V and increased as a function of diode thickness. Reverse bias of 10 V is enough to fully deplete designed edgeless diodes. Leakage current dependence of temperature was investigated for both p-on-n and previous n-on-n edgeless detectors and results show that the leakage current doubles for every 8.5 degree Celsius rise in temperature. TCAD device simulations reveal that breakdown occurs at the lateral p-n junction where the electric field reaches its highest value. Thick edgeless diodes have wider bulk space that allows electric potential to drop and causes smaller curvature of the equipotential lines. This releases the accumulation of electric field at the corner of anode and increases the breakdown voltage. A good match of the simulated and the measured capacitance-voltage curves enables identification of proper parameters used in the simulation.

  20. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    Science.gov (United States)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  1. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  2. Advances in multi-photon processes and spectroscopy v.22

    CERN Document Server

    Lin, S H; Fujimura, Y

    2014-01-01

    This volume presents the recent progress and perspective in multi-photon processes and spectroscopy of atoms, ions, molecules and solids. The subjects in the series cover the experimental and theoretical investigations in the interdisciplinary research fields of natural science including chemistry, physics, bioscience and material science. Contents:Theoretical Foundations for Exploring Quantum Optimal Control of Molecules (Tak-San Ho, Herschel Rabitz and Shih-I Chu)Intramolecular Nuclear Flux Densities (I Barth, C Daniel, E Gindensperger, J Manz, J F Pérez-To

  3. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  4. Advances in carbon dioxide compression and pipeline transportation processes

    CERN Document Server

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2015-01-01

    Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related

  5. Advanced modeling of management processes in information technology

    CERN Document Server

    Kowalczuk, Zdzislaw

    2014-01-01

    This book deals with the issues of modelling management processes of information technology and IT projects while its core is the model of information technology management and its component models (contextual, local) describing initial processing and the maturity capsule as well as a decision-making system represented by a multi-level sequential model of IT technology selection, which acquires a fuzzy rule-based implementation in this work. In terms of applicability, this work may also be useful for diagnosing applicability of IT standards in evaluation of IT organizations. The results of this diagnosis might prove valid for those preparing new standards so that – apart from their own visions – they could, to an even greater extent, take into account the capabilities and needs of the leaders of project and manufacturing teams. The book is intended for IT professionals using the ITIL, COBIT and TOGAF standards in their work. Students of computer science and management who are interested in the issue of IT...

  6. Piezometer Performance at Wildlife Liquefaction Site, California

    OpenAIRE

    Scott, Ronald F.; Hushmand, B.

    1995-01-01

    In response to an urgent need for field data from instrumented liquefaction sites, the U.S. Geological Survey in 1982 selected and instrumented a site in southern California called the Wildlife site. Two accelerometers (one at ground surface and one at a depth of 7.5 m) and six electrical pore-pressure transducers (five in a liquefiable silty sand layer) were placed at the site. The November 1987 Superstition Hills earthquake triggered sand boils and the desired instrumental response by gener...

  7. Free-radical kinetics of coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Smith, J.M.; McCoy, B.J.

    1994-07-16

    A rate expression with first- and second-order terms in the concentration of extractable compounds in solid coal particles is derived from a fundamental free-radical mechanism. The expression was suggested empirically by prior experiments for coal liquefaction in the presence of a hydrogen-donor solvent. Radical reactions are considered to occur in both coal and in solvent. The long-chain approximation justifies the neglect of initiation, hydrogen abstraction, and termination rates as quantitatively insignificant relative to propagation reaction rates.

  8. Gastrointestinal stromal tumor: acute liquefaction necrosis

    International Nuclear Information System (INIS)

    Stromal tumors, together with leiomyomas and schwannomas, constitute the sol-called mesenchymal tumors of the intestinal wall. Stromal tumors are histologically differentiated from other mesenchymal tumors in that they are derived from the interstitial cell of Cajal. These tumors can be encountered at any point throughout the entire digestive tract, by usually develop in stomach or small bowel. the clinical presentation in anemia secondary to gastrointestinal bleeding. Acute abdomen due to perforation or necrosis is rare. We present a case of jejunal stromal tumors with massive liquefaction necrosis, a circumstance that resulted in the peculiar radiological features observed. (Author) 9 refs,

  9. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  10. Self-supported electrocatalysts for advanced energy conversion processes

    Directory of Open Access Journals (Sweden)

    Tian Yi Ma

    2016-06-01

    Full Text Available The biggest challenge in developing new energy conversion technologies such as rechargeable metal-air batteries, regenerated fuel cells and water splitting devices is to find suitable catalysts that can efficiently and stably catalyze the key electrochemical processes involved. This paper reviews the new development of self-supported electrocatalysts in three categories: electrocatalysts growing on rigid substrates, electrocatalysts growing on soft substrates, and free-standing catalyst films. They are distinct and superior to the conventional powdery electrocatalysts, showing advantages in controllable nanostructure and chemical component, flexible electrode configuration, and outstanding catalytic performance. The self-supported electrocatalysts with various architectures like nanowire/plate/pillar arrays and porous films, composed of metals, metal oxides/selenides/phosphides, organic polymers, carbons and their corresponding hybrids, are presented and discussed. These catalysts exhibit high activity, durability and selectivity toward oxygen reduction, oxygen evolution, and/or hydrogen evolution reactions. The perspectives on the relevant areas are also proposed.

  11. Plasma ash processing solutions for advanced interconnect technology

    International Nuclear Information System (INIS)

    A mechanism for the modification of porous ultra low-k (ULK) and extreme ultra low-k (EULK) SiCOH-based materials is proposed. This is achieved by correlating film damage on a patterned structure measured by angular resolved x-ray photoelectron spectroscopy (ARXPS) with corresponding changes in reactive species radical density and ion current in the plasma measured by optical emission spectroscopy (OES), rare gas actinometry, and modeling. Line-to-line electrical leakage and capacitance data of nested line structures exposed to downstream ash plasmas suggest that other etching steps during back-end-of-the-line (BEOL) dual damascene processing are also critical for the overall modification induced to these materials

  12. Machine Vision and Advanced Image Processing in Remote Sensing

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to most...... application of radiometric and atmospheric correction schemes that are linear or affine in the gray numbers of each image band. Other multivariate change detection schemes described are principal component type analysis of simple difference images. A case study with Landsat TM data using simple linear...... stretching and masking of the change images shows the usefulness of the new MAD and MAF/MAD change detection schemes. A simple simulation of a no-change situation shows the power of the MAD and MAF/MAD transformations...

  13. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    Science.gov (United States)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  14. Advanced Signal Processing Methods Applied to Digital Mammography

    Science.gov (United States)

    Stauduhar, Richard P.

    1997-01-01

    The work reported here is on the extension of the earlier proposal of the same title, August 1994-June 1996. The report for that work is also being submitted. The work reported there forms the foundation for this work from January 1997 to September 1997. After the earlier work was completed there were a few items that needed to be completed prior to submission of a new and more comprehensive proposal for further research. Those tasks have been completed and two new proposals have been submitted, one to NASA, and one to Health & Human Services WS). The main purpose of this extension was to refine some of the techniques that lead to automatic large scale evaluation of full mammograms. Progress on each of the proposed tasks follows. Task 1: A multiresolution segmentation of background from breast has been developed and tested. The method is based on the different noise characteristics of the two different fields. The breast field has more power in the lower octaves and the off-breast field behaves similar to a wideband process, where more power is in the high frequency octaves. After the two fields are separated by lowpass filtering, a region labeling routine is used to find the largest contiguous region, the breast. Task 2: A wavelet expansion that can decompose the image without zero padding has been developed. The method preserves all properties of the power-of-two wavelet transform and does not add appreciably to computation time or storage. This work is essential for analysis of the full mammogram, as opposed to selecting sections from the full mammogram. Task 3: A clustering method has been developed based on a simple counting mechanism. No ROC analysis has been performed (and was not proposed), so we cannot finally evaluate this work without further support. Task 4: Further testing of the filter reveals that different wavelet bases do yield slightly different qualitative results. We cannot provide quantitative conclusions about this for all possible bases

  15. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  16. Hydroxamic acids - novel reagents for advanced Purex processes

    International Nuclear Information System (INIS)

    BNFL has undertaken a wide-ranging research programme to investigate the fundamental properties of hydroxamic acids and, in particular, their reactions with actinide ions. Most work has focussed on simple hydroxamic acids (R = H and CH3) although some comparative data with more complex molecules including di-hydroxamates have been obtained. Properties of hydroxamic acids studied include, hydrolysis in nitric acid, decomposition to gases, pKa's and redox potentials. The redox and co-ordination of actinides by hydroxamic acids has been investigated using a range of techniques and stability constants for both 4f and 5f hydroxamate complexes have been determined. In conjunction with these fundamental studies, more applied work has been carried out to assess the applications of simple hydroxamic acids under process conditions. A large database of solvent extraction distribution data has been accumulated and, from this, extraction algorithms describing how hydroxamic acids modify actinide extraction in to TBP have been derived. Also the effects of hydroxamic acids on U and Np mass transfer has been studied in single stage centrifugal contactors and this has been modelled theoretically. The third stage of our development work so far has looked at the actual testing of novel hydroxamic acid based flowsheets which selectively strip Np(IV) from a uranium loaded TBP stream. (authors)

  17. Advanced Signal Processing for Thermal Flaw Detection; TOPICAL

    International Nuclear Information System (INIS)

    Dynamic thermography is a promising technology for inspecting metallic and composite structures used in high-consequence industries. However, the reliability and inspection sensitivity of this technology has historically been limited by the need for extensive operator experience and the use of human judgment and visual acuity to detect flaws in the large volume of infrared image data collected. To overcome these limitations new automated data analysis algorithms and software is needed. The primary objectives of this research effort were to develop a data processing methodology that is tied to the underlying physics, which reduces or removes the data interpretation requirements, and which eliminates the need to look at significant numbers of data frames to determine if a flaw is present. Considering the strengths and weakness of previous research efforts, this research elected to couple both the temporal and spatial attributes of the surface temperature. Of the possible algorithms investigated, the best performing was a radiance weighted root mean square Laplacian metric that included a multiplicative surface effect correction factor and a novel spatio-temporal parametric model for data smoothing. This metric demonstrated the potential for detecting flaws smaller than 0.075 inch in inspection areas on the order of one square foot. Included in this report is the development of a thermal imaging model, a weighted least squares thermal data smoothing algorithm, simulation and experimental flaw detection results, and an overview of the ATAC (Automated Thermal Analysis Code) software that was developed to analyze thermal inspection data

  18. Assessment of liquefaction potential index for Mumbai city

    Directory of Open Access Journals (Sweden)

    J. Dixit

    2012-09-01

    Full Text Available Mumbai city is the financial capital of India and is fifth most densely populated city in the world. Seismic soil liquefaction is evaluated for Mumbai city in terms of the factors of safety against liquefaction (FS along the depths of soil profiles for different earthquakes with 2% probability of exceedance in 50 yr using standard penetration test (SPT-based simplified empirical procedure. This liquefaction potential is evaluated at 142 representative sites in the city using the borehole records from standard penetration tests. Liquefaction potential index (LPI is evaluated at each borehole location from the obtained factors of safety (FS to predict the potential of liquefaction to cause damage at the surface level at the site of interest. Spatial distribution of soil liquefaction potential is presented in the form of contour maps of LPI values. As the majority of the sites in the city are of reclaimed land, the vulnerability of liquefaction is observed to be very high at many places.

  19. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    Science.gov (United States)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  20. Large Scale Helium Liquefaction and Considerations for Site Services for a Plant Located in Algeria

    Science.gov (United States)

    Froehlich, P.; Clausen, J. J.

    2008-03-01

    The large-scale liquefaction of helium extracted from natural gas is depicted. Based on a block diagram the process chain, starting with the pipeline downstream of the natural-gas plant to the final storage of liquid helium, is explained. Information will be provided about the recent experiences during installation and start-up of a bulk helium liquefaction plant located in Skikda, Algeria, including part-load operation based on a reduced feed gas supply. The local working and ambient conditions are described, including challenging logistic problems like shipping and receiving of parts, qualified and semi-qualified subcontractors, basic provisions and tools on site, and precautions to sea water and ambient conditions. Finally, the differences in commissioning (technically and evaluation of time and work packages) to European locations and standards will be discussed.

  1. Process control integration requirements for advanced life support systems applicable to manned space missions

    Science.gov (United States)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  2. Earthquake Risk - EARTHQUAKE_LIQUEFACTION_POTENTIAL_MM81_IN: Liquefaction Potential of Surficial Materials in Indiana (Indiana Geological Survey, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — EARTHQUAKE_LIQUEFACTION_POTENTIAL_MM81_IN is a polygon shapefile that shows highly generalized categories (low, moderate, and high) of liquefaction potential, based...

  3. 9 CFR 318.24 - Product prepared using advanced meat/bone separation machinery; process control.

    Science.gov (United States)

    2010-01-01

    .../bone separation machinery; process control. 318.24 Section 318.24 Animals and Animal Products FOOD.../bone separation machinery; process control. (a) General. Meat, as defined in § 301.2 of this subchapter... this subchapter, using advances in mechanical meat/bone separation machinery (i.e., AMR systems)...

  4. Project T.E.A.M. (Technical Education Advancement Modules). Introduction to Statistical Process Control.

    Science.gov (United States)

    Billings, Paul H.

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 6-hour introductory module on statistical process control (SPC), designed to develop competencies in the following skill areas: (1) identification of the three classes of SPC use; (2) understanding a process and how it works; (3)…

  5. Vibrating Liquefaction Experiment and Mechanism Study in Saturated Granular Media

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Xu Ming; Ju Haiyan; Zhao Jiangqian; Huang Hongyuan; Sun Yezhi

    2006-01-01

    By the vibrating liquefaction experiment of tailings and fine-ores of iron, it is observed and noted that the change of pore water pressure when the vibrating liquefaction takes place. Based on relevant suppositions, the equation of wave propagation in saturated granular media is obtained. This paper postulates the potential vector equation and the velocity expression of three kinds of body waves under normal conditions.Utilizing the wave theory and the experimental results, the influence of three body waves on pore water pressure and granules has been analyzed in detail. This revealed the rapid increment mechanism of pore water pressure and the wave mechanism of vibrating liquefaction.

  6. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  7. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  8. Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

    OpenAIRE

    karimi B.; Ehrampoush M.H.; Mokhtari M.; Ebrahimi A

    2011-01-01

    Backgrounds and Objectives: Wet air oxidation (WAO) is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate.The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachateMaterial and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sam...

  9. C.I. Reactive Black 5 degradation by advanced electrochemical oxidation process, AEOP

    OpenAIRE

    Esteves, M. de Fátima; Sousa, Elisabete,1954-

    2007-01-01

    In the last decades, an increasing number of procedures to remove pollutants from wastewater have been reported. Advanced oxidation processes (AOPs) are one of those technologies used for this purpose, namely, for textile wastewater treatment. AOPs are environmentally friendly methods based on chemical, photochemical or photocatalytical production of hydroxyl radical (HO•). This strong oxidant can react with most organic compounds present in wastewater, as dyestuffs. In this paper, an Advance...

  10. Advanced reactor water cleanup system with high-temperature electrophoresis demineralization process as alternative to ion-exchange resin process

    International Nuclear Information System (INIS)

    The ion-exchange resin process has been widely applied to reactor water cleanup systems to remove impurities from the water used in boiling water reactors (BWRs). Toshiba has developed a high-temperature electrophoresis demineralization process as an alternative to the ion-exchange resin process for an advanced reactor water cleanup system. Since the new process uses only inorganic materials, high-temperature and high-pressure water can be fed directly to the system. The new system was confirmed to remove ions with high efficiency in a performance test using high-temperature and high-pressure water simulating BWR water. The advanced reactor water cleanup system will be greatly simplified because heat exchangers and resin-handling equipment are not required. It will also be economical due to reductions in heat loss and resin waste. (author)

  11. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  12. Role of expanders in helium liquefaction cycles: Parametric studies using Collins cycle

    International Nuclear Information System (INIS)

    Large scale helium liquefaction/refrigeration plant is a key subsystem of fusion devices. Performance of these plants is dependent on a number of geometric and operating parameters of its constituting components such as compressors, heat exchangers, expanders, valves, etc. Expander has been chosen as the subject matter of analyses in the present study. As the sensible cold of helium vapor is lost in liquefiers, the expanders in liquefaction cycles have to provide more refrigeration than those in refrigeration cycles. The expander parameters such as rate of mass flow, operating pressure, inlet temperature, etc. are inter-dependent, and hence, it is difficult to predict the system behavior with variation of a particular parameter. This necessitates the use of process simulators. Parametric studies have been performed on Collins helium liquefaction cycle using Aspen HYSYS. Collins cycle has all the basic characteristics of a large-scale helium liquefier and the results of this study may be extrapolated to understand the behavior of large scale helium liquefiers. The study shows that the maximum liquid production is obtained when 80% of the compressor flow is diverted through the expanders and it is equally distributed between the two expanders. The relationships between the liquid production and the isentropic efficiency of expanders are almost linear and both the higher and lower temperature expanders exhibit similar trends.

  13. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis

    International Nuclear Information System (INIS)

    Highlights: • Hydrothermal liquefaction (HTL) of microalgae C. pyrenoidosa and S. platensis. • Characterization of bio-crude oils and aqueous fractions during HTL process. • General reaction network for HTL of C. pyrenoidosa and S. platensis. • Specific reaction pathways for HTL of lipid, protein and non-fibrous carbohydrate. - Abstract: Low-lipid microalgae can be successfully converted to bio-crude oil in a hydrothermal liquefaction (HTL) environment. This study examined the behavior of hydrothermal liquefaction of two low-lipid content microalgae in subcritical water between 200 °C and 320 °C at 20 °C intervals. Under these conditions, the chemical composition and functional groups for the bio-crude oil and aqueous fraction were analyzed. Results indicated that reaction temperature greatly affected the distribution of chemical composition and functional groups of HTL bio-crude oil and aqueous fraction. The bio-crude oil with a higher percentage of aliphatic functional groups was obtained at higher reaction temperatures (280–320 °C). Besides, the aqueous fraction recovered under the same operating conditions had a lower concentration of nitrogenous organic compounds (NOCs) with two or more methyl groups. The general reaction network for HTL of low-lipid microalgae was proposed. The specific reaction pathways for microalgae substrates were analyzed in terms of lipid, protein and non-fibrous carbohydrate based on the spectral analysis

  14. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  15. On the risk of liquefaction of buffer and backfill

    International Nuclear Information System (INIS)

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m3 or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m3. Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes

  16. Recent advances of annular centrifugal extractor for hot test of nuclear waste partitioning process

    Institute of Scientific and Technical Information of China (English)

    HeXiang-Ming; YanYu-Shun; 等

    1998-01-01

    Advances are being made in the design of the annular centrifugal extractor fornuclear fuel reprocessing extraction process studies.The extractors have been built and tested.Twelve stages of this extractor and 50 stages are used toimplement the TRPO process for the cleanup ofcommercial and defense nuclear waste liquids,respectively.Following advances are available:(1) simple way of assembly and disassembly between rotor part and housing part of extractor,ease of manipulator operation;(2)automatic sampling from housing of extractor in hot cell;(3) compact multi-stage housing system;(4) easy interstage link;(5) computer data acquisition and monitoring system of speed.

  17. Liquefaction Potential for Soil Deposits in Muscat, Oman

    Science.gov (United States)

    El Hussain, I. W.; Deif, A.; Girgis, M.; Al-Rawas, G.; Mohamed, A.; Al-Jabri, K.; Al-Habsi, Z.

    2015-12-01

    Muscat is located in the northeastern part of Oman on a narrow strip between Oman coast and Oman Mountains, which is the place for at least four earthquakes of order of 5.2 magnitude in the last 1300 years. The near surface geology of Muscat varies from hard rocks in the eastern, southern and western parts to dense and lose sediments in the middle and northern parts. Liquefaction occurs in saturated cohesionless soils when its shear strength decreased to zero due to the increase of pore pressure. More than 500 boreholes in Muscat area were examined for their liquefaction susceptibility based on the soil characteristics data. Only soils susceptible to liquefaction are further considered for liquefaction hazard assessment. Liquefaction occurs if the cyclic stress ratio (CSR) caused by the earthquake is higher than the cyclic resistance ratio (CRR) of the soil. CSR values were evaluated using PGA values at the surface obtained from previously conducted seismic hazard and microzonation studies. CRR for Muscat region is conducted using N values of SPT tests from numerous borehole data and the shear wave velocity results from 99 MASW surveys over the entire region. All the required corrections are conducted to get standardized (N1) 60 values, to correct shear-wave velocity, and scale the results for Mw 6.0 instead of the proposed 7.5 (magnitude scaling factor). Liquefaction hazard maps are generated using the minimum factor of safety (FS) at each site as a representative of the FS against liquefaction at that location. Results indicate that under the current level of seismic hazard, liquefaction potential is possible at few sites along the northern coast where alluvial soils and shallow ground water table are present. The expected soft soil settlement is also evaluated at each liquefiable site.

  18. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  19. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process

    OpenAIRE

    Bragg, Stefanie A.; Armstrong, Kristie C.; Xue, Zi-Ling

    2012-01-01

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H2O2 and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high CH2O2,t = 0, the reaction is zeroth order with respect to CH2O2 and first order with respect to Cblood....

  20. Liquefaction and saccharification of mandarin orange

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Oku, Y.; Kawamura, D.; Nagai, S.

    1979-01-01

    Liquefaction and saccharification of mandarin orange peel with H/sub 2/SO/sub 4/ in an autoclave and with macerating enzymes from Aspergillus niger were studied. The acid hydrolysis with 0.8N H/sub 2/SO/sub 4/ under 1 kg/square cm for 15 minutes yielded 0.36 grams of reducing sugars from 1 gram of dried orange peel, approximately 36% of which was identified as glucose. Enzymic hydrolysis with 0.2% crude enzyme at 40 degrees for 24 hours yielded 0.59 grams of reducing sugars/g peal, consisting mainly of glucose, arabinose, and galacturonic acid. Comparison of the macerating enzyme with commercial available cellulase and pectinase indicated that the macerating enzyme of A. niger contained mainly pectinase with a little cellulase.