WorldWideScience

Sample records for advanced large power

  1. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lixin; Jin Zhi; Liu Xinyu, E-mail: zhaolixin@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2009-12-15

    In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs. (semiconductor devices)

  2. Large screen mimic display design research for advanced main control room in nuclear power plant

    International Nuclear Information System (INIS)

    Zheng Mingguang; Yang Yanhua; Xu Jijun; Zhang Qinshun; Ning Zhonghe

    2002-01-01

    Firstly the evolution of mimic diagrams or displays used in the main control room of nuclear power plant was introduced. The active functions of mimic diagrams were analyzed on the release of operator psychological burden and pressure, the assistance of operator for the information searching, status understanding, manual actuation, correct decision making as well as the safe and reliable operation of the nuclear power plant. The importance and necessity to use the (large screen) mimic diagrams in advanced main control room of nuclear power plant, the design principle, design details and verification measures of large screen mimic display are also described

  3. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  4. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  5. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  6. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  7. Advanced robot vision system for nuclear power plants

    International Nuclear Information System (INIS)

    Onoguchi, Kazunori; Kawamura, Atsuro; Nakayama, Ryoichi.

    1991-01-01

    We have developed a robot vision system for advanced robots used in nuclear power plants, under a contract with the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. This work is part of the large-scale 'advanced robot technology' project. The robot vision system consists of self-location measurement, obstacle detection, and object recognition subsystems, which are activated by a total control subsystem. This paper presents details of these subsystems and the experimental results obtained. (author)

  8. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    International Nuclear Information System (INIS)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-01-01

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT 'dark current' background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or 'Back' detector, to both (1) minimize Compton background in the low-energy portion of the 'Front' scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as implemented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors

  9. Large power electron tubes for high frequency heating

    International Nuclear Information System (INIS)

    Okamoto, Tadashi; Sato, Hisaaki.

    1988-01-01

    On the large power electron tubes used for electron cyclotron heating, lower hybrid resonance frequency heating, and ion cyclotron range of frequency heating, namely gyrotron, klystron and quadrupole tube, the features, the present status of development, the construction, the principle and so on are explained. The research and development of gyrotrons are most advanced in USSR, the inventor. The course of the development of gyrotrons in foreign countries and in Japan is described. There are many variants of gyrotrons, for example whispering gallery mode, klystron type, backward wave oscillator type, gyro-peniotron and others. The principle of gyrotrons is explained, and about the examples of the developed gyrotrons, the design parameters are shown. For the purpose of using for the LHRF heating in JT-60, a superlarge power klystron of 1 MW output at 2 GHz frequency, which is the largest class in the world, has been developed. Its total length is 2.7 m, and weight is 1.5 t. It features, construction, function and performance are reported. The trend of large power quadrupole tubes is toward stable action with large power in VHF zone, and the typical products in USA and Europe are shown. (Kako, I.)

  10. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  11. Application and study of advanced network technology in large container inspection system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1996-01-01

    Large Container Inspection System (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of center manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network technology and software programming technique are presented

  12. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  13. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    International Nuclear Information System (INIS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-01-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ∼ 16 We/kg and ∼ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ∼ 640 m2 and ∼ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ∼ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ∼ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems

  14. The ARIES-AT advanced tokamak, Advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, Farrokh; Abdou, A.; Bromberg, L.

    2006-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N . ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES

  15. Advanced Power Electronics and Smart Inverters | Grid Modernization | NREL

    Science.gov (United States)

    Advanced Power Electronics and Smart Inverters Advanced Power Electronics and Smart Inverters , into the electric distribution system requires advanced power electronics, or smart inverters, that . Contact Sudipta Chakraborty Power Electronics Team Lead sudipta.chakraborty@nrel.gov | 303-384-7093

  16. Large scale renewable power generation advances in technologies for generation, transmission and storage

    CERN Document Server

    Hossain, Jahangir

    2014-01-01

    This book focuses on the issues of integrating large-scale renewable power generation into existing grids. It includes a new protection technique for renewable generators along with the inclusion of current status of smart grid.

  17. Balancing modern Power System with large scale of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Altin, Müfit; Hansen, Anca Daniela

    2014-01-01

    Power system operators must ensure robust, secure and reliable power system operation even with a large scale integration of wind power. Electricity generated from the intermittent wind in large propor-tion may impact on the control of power system balance and thus deviations in the power system...... frequency in small or islanded power systems or tie line power flows in interconnected power systems. Therefore, the large scale integration of wind power into the power system strongly concerns the secure and stable grid operation. To ensure the stable power system operation, the evolving power system has...... to be analysed with improved analytical tools and techniques. This paper proposes techniques for the active power balance control in future power systems with the large scale wind power integration, where power balancing model provides the hour-ahead dispatch plan with reduced planning horizon and the real time...

  18. Impact of advanced wind power ancillary services on power system

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Altin, Müfit

    The objective of this report is to illustrate and analyse, by means of simulation test cases, the impact of wind power advanced ancillary services, like inertial response (IR), power oscillation damping (POD) and synchronising power (SP) on the power system. Generic models for wind turbine, wind...... power plant and power system are used in the investigation....

  19. Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  20. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  1. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  2. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  3. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  4. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  5. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  6. Reduction of wind power induced reserve requirements by advanced shortest-term forecasts and prediction intervals

    Energy Technology Data Exchange (ETDEWEB)

    Dobschinski, Jan; Wessel, Arne; Lange, Bernhard; Bremen, Lueder von [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany)

    2009-07-01

    In electricity systems with large penetration of wind power, the limited predictability of the wind power generation leads to an increase in reserve and balancing requirements. At first the present study concentrates on the capability of dynamic day-ahead prediction intervals to reduce the wind power induced reserve and balancing requirements. Alternatively the reduction of large forecast errors of the German wind power generation by using advanced shortest-term predictions has been evaluated in a second approach. With focus on the allocation of minute reserve power the aim is to estimate the maximal remaining uncertainty after trading activities on the intraday market. Finally both approaches were used in a case study concerning the reserve requirements induced by the total German wind power expansion in 2007. (orig.)

  7. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  8. An advanced control system for the optimal operation and management of medium size power systems with a large penetration from renewable power sources

    Energy Technology Data Exchange (ETDEWEB)

    Nogaret, E.; Stavrakakis, G.; Kariniotakis, G. [Ecole de Mines de Paris, Centre d`Energetique, Sophia-Antipolis (France)] [and others

    1997-10-01

    An advanced control system for the optimal operation and management of autonomous wind-diesel systems is presented. This system minimises the production costs through an on-line optimal scheduling of the power units, which takes into account the technical constraints of the diesel units, as well as short-term forecasts of the load and renewable resources. The power system security is maximised through on-line security assessment modules, which enable the power system to withstand sudden changes in the production of the renewable sources. The control system was evaluated using data from the island of Lemnos, where it has been installed and operated since January 1995. (Author)

  9. Credit Risk Evaluation of Large Power Consumers Considering Power Market Transaction

    Science.gov (United States)

    Fulin, Li; Erfeng, Xu; ke, Sun; Dunnan, Liu; Shuyi, Shen

    2018-03-01

    Large power users will participate in power market in various forms after power system reform. Meanwhile, great importance has always attached to the construction of the credit system in power industry. Due to the difference between the awareness of performance and the ability to perform, credit risk of power customer will emerge accordingly. Therefore, it is critical to evaluate credit risk of large power customers in the new situation of power market. Firstly, this paper constructs index system of credit risk of large power customers, and establishes evaluation model of interval number and AHP-entropy weight method.

  10. Advanced radioisotope power source options for Pluto Express

    International Nuclear Information System (INIS)

    Underwood, M.L.

    1995-01-01

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors

  11. Economic analysis of the need for advanced power sources

    International Nuclear Information System (INIS)

    Hardie, R.W.; Omberg, R.P.

    1975-01-01

    The purpose of this paper is to determine the economic need for an advanced power source, be it fusion, solar, or some other concept. However, calculations were also performed assuming abandonment of the LMFBR program, so breeder benefits are a by-product of this study. The model used was the ALPS linear programming system for forecasting optimum power growth patterns. Total power costs were calculated over a planning horizon from 1975 to 2041 and discounted at 7 1 / 2 percent. The benefit of a particular advanced power source is simply the reduction in total power cost resulting from its introduction. Since data concerning advanced power sources (APS) are speculative, parametric calculations varying introduction dates and capital costs about a hypothetical APS plant were performed. Calculations were also performed without the LMFBR to determine the effect of the breeder on the benefits of an advanced power source. Other data used in the study, such as the energy demand curve and uranium resource estimates, are given in the Appendix, and a list of the 11 power plants used in this study is given. Calculations were performed for APS introduction dates of 2001 and 2011. Estimates of APS capital costs included cases where it was assumed the costs were $50/kW and $25/kW higher than the LMFBR. In addition, cases where APS and LMFBR capital costs are identical were also considered. It is noted that the APS capital costs used in this study are not estimates of potential advanced power system plant costs, but were chosen to compute potential dollar benefits of advanced power systems under extremely optimistic assumptions. As a further example, all APS fuel cycle costs were assumed to be zero

  12. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  13. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  14. Advancing Concentrating Solar Power Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  15. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  16. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  17. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  18. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    Science.gov (United States)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  19. Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2015-01-01

    wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...

  20. Siemens Wind Power 3.6 MW wind turbines for large offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, Vladislav; Nygaard Nielsen, Joergen; Thisted, Jan; Groendahl, Erik; Egedal, Per; Noertoft Frydensbjerg, Michael; Jensen, Kim Hoej [Siemens Wind Power A/S, Brande (Denmark)

    2008-07-01

    Siemens Wind power A/S is the key player on the offshore wind power market. The Siemens Wind Power 3.6 MW variable-speed wind turbine is among the word's largest, most advanced and competitive wind turbines with a solid portfolio of large offshore wind farms. Transmission system operators and developers require dynamic wind turbine models for evaluation of fault-ride-through capability and investigations of power system stability. The even larger size of the on- and offshore wind farms has entailed that the grid impact of the voltage and frequency control capability of the wind farm can be appropriated modelled and evaluated. Siemens Wind Power has developed a dynamic model of the 3.6 MW variable-speed wind turbine with the fault-ride-through sequences and models of the voltage and frequency controllers to be applied for large offshore wind farms. The dynamic models have been implemented in the commercially available simulation tools such as DIgSILENT PowerFactory and Siemens PTI PSS/E and successfully validated from measurements. (orig.)

  1. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  2. Advanced Power Plant Development and Analyses Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  3. Advanced Power Plant Development and Analysis Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  4. NATO Advanced Research Workshop “Nuclear Power and Energy Security”

    CERN Document Server

    Apikyan, Samuel A; Nuclear Power and Energy Security

    2010-01-01

    World energy consumption has grown dramatically over the past few decades. This growth in energy demand will be driven by large increases in both economic growth and world population coupled with rising living standards in rapidly growing countries. The last years, we routinely hear about a "renaissance" of nuclear energy. The recognition that nuclear power is vital to global energy security in the 21st century has been growing for some time. "The more we look to the future, the more we can expect countries to be considering the potential benefits that expanding nuclear power has to offer for the global environment and for economic growth," IAEA Director General Mohamed ElBaradei said in advance of a gathering of 500 nuclear power experts assembled in Moscow for the "International Conference on Fifty Years of Nuclear Power - the Next Fifty Years". But such a renaissance is not a single-valued and sure thing. Legitimate four unresolved questions remain about high relative costs; perceived adverse safety, envir...

  5. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  6. A flipped mode teaching approach for large and advanced electrical engineering courses

    Science.gov (United States)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  7. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  8. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  9. Conventional and advanced exergetic analyses applied to a combined cycle power plant

    International Nuclear Information System (INIS)

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana; Carassai, Anna

    2012-01-01

    Conventional exergy-based methods pinpoint components and processes with high irreversibilities. However, they lack certain insight. For a given advanced technological state, there is a minimum level of exergy destruction related to technological and/or economic constraints that is unavoidable. Furthermore, in any thermodynamic system, exergy destruction stems from both component interactions (exogenous) and component inefficiencies (endogenous). To overcome the limitations of the conventional analyses and to increase our knowledge about a plant, advanced exergy-based analyses have been developed. In this paper, a combined cycle power plant is analyzed using both conventional and advanced exergetic analyses. Except for the expander of the gas turbine system and the high-pressure steam turbine, most of the exergy destruction in the plant components is unavoidable. This unavoidable part is constrained by internal technological limitations, i.e. each component’s endogenous exergy destruction. High levels of endogenous exergy destruction show that component interactions do not contribute significantly to the thermodynamic inefficiencies. In addition, these inefficiencies are unavoidable to a large extent. With the advanced analysis, new improvement strategies are revealed that could not otherwise be found. -- Highlights: ► This is the first application of a complete advanced exergetic analysis to a complex power plant. ► In the three-pressure-level combined cycle power plant studied here, the improvement potential of the majority of the components is low, since most of the exergy destruction is unavoidable. ► Component interactions are generally of lower importance for the considered plant. ► Splitting the exogenous exergy destruction reveals one-to-one component interactions and improvement strategies. ► The advanced exergetic analysis is a necessary supplement to the conventional analysis in improving a complex system.

  10. Cost-estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R.

    1993-01-01

    Various advanced power plant concepts are currently under development. These include several advanced light water reactors as well as the modular high-temperature gas-cooled reactor and the advanced liquid-metal reactor. One measure-of the attractiveness of a new concept is cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electric generation. In order to make reasonable comparative assessments of competing technologies, consistent ground rules and assumptions must be applied when developing cost estimates. This paper describes the cost-estimate guidelines developed by Oak Ridge National Laboratory for the U.S. Department of Energy (DOE) to be used in developing cost estimates for the advanced nuclear reactors and how these guidelines relate to the DOE cost verification process

  11. Stabilized High Power Laser for Advanced Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Willke, B; Danzmann, K; Fallnich, C; Frede, M; Heurs, M; King, P; Kracht, D; Kwee, P; Savage, R; Seifert, F; Wilhelm, R

    2006-01-01

    Second generation gravitational wave detectors require high power lasers with several 100W of output power and with very low temporal and spatial fluctuations. In this paper we discuss possible setups to achieve high laser power and describe a 200W prestabilized laser system (PSL). The PSL noise requirements for advanced gravitational wave detectors will be discussed in general and the stabilization scheme proposed for the Advanced LIGO PSL will be described. Special emphasis will be given to the most demanding power stabilization requirements and new results (RIN ≤ 4x10 -9 /√Hz) will be presented

  12. Compensating active power imbalances in power system with large-scale wind power penetration

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2016-01-01

    Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power penetrat...

  13. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  14. Power Ramp Limitation capabilities of Large PV Power Plants with Active Power Reserves

    DEFF Research Database (Denmark)

    Bogdan, Craciun; Kerekes, Tamas; Sera, Dezso

    2017-01-01

    Power Ramp Limitation (PRL) is likely to become a requirement for large scale photovoltaic power plants (LPVPPs) in order to allow the increase of PV penetration levels. Especially in islands with reduced inertia capability, this problem is more stringent: high power ramp can be caused by either...... fast irradiance changes or other participant generators for example wind power, or loads. In order to compensate for the power mismatch, LPVPPs must use Active Power Reserve (APR), by either curtailment or auxiliary storage. The paper proposes a PRL control structure for dynamic APR sizing...... and deployment. The selected test case is the power system of Puerto Rico (PREPA), modeled using the modified IEEE 12 bus benchmark system, with different levels of PV penetration. It is shown that LPVPP with PRL can effectively reduce the ramping rate of the participating generators. Considering that the large...

  15. Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Science.gov (United States)

    Wong, Wayne A.; Anderson, David J.; Tuttle, Karen L.; Tew, Roy C.

    2006-01-01

    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized.

  16. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bennion, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); DeVoto, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moreno, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waye, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  17. Evaluation of Advanced Data Centre Power Management Strategies

    NARCIS (Netherlands)

    Postema, Björn F.; Haverkort, Boudewijn R.

    2018-01-01

    In recent work, we proposed a new specification language for power management strategies as an extension to our AnyLogic-based simulation framework for the trade-off analysis of power and performance in data centres. In this paper, we study the quality of such advanced power management strategies

  18. Power quality load management for large spacecraft electrical power systems

    Science.gov (United States)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  19. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-01-01

    Full Text Available The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

  20. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  1. Overview of Small and Large-Scale Space Solar Power Concepts

    Science.gov (United States)

    Potter, Seth; Henley, Mark; Howell, Joe; Carrington, Connie; Fikes, John

    2006-01-01

    An overview of space solar power studies performed at the Boeing Company under contract with NASA will be presented. The major concepts to be presented are: 1. Power Plug in Orbit: this is a spacecraft that collects solar energy and distributes it to users in space using directed radio frequency or optical energy. Our concept uses solar arrays having the same dimensions as ISS arrays, but are assumed to be more efficient. If radiofrequency wavelengths are used, it will necessitate that the receiving satellite be equipped with a rectifying antenna (rectenna). For optical wavelengths, the solar arrays on the receiving satellite will collect the power. 2. Mars Clipper I Power Explorer: this is a solar electric Mars transfer vehicle to support human missions. A near-term precursor could be a high-power radar mapping spacecraft with self-transport capability. Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. 3. Alternative Architectures: this task involves investigating alternatives to the traditional solar power satellite (SPS) to supply commercial power from space for use on Earth. Four concepts were studied: two using photovoltaic power generation, and two using solar dynamic power generation, with microwave and laser power transmission alternatives considered for each. All four architectures use geostationary orbit. 4. Cryogenic Propellant Depot in Earth Orbit: this concept uses large solar arrays (producing perhaps 600 kW) to electrolyze water launched from Earth, liquefy the resulting hydrogen and oxygen gases, and store them until needed by spacecraft. 5. Beam-Powered Lunar Polar Rover: a lunar rover powered by a microwave or laser beam can explore permanently shadowed craters near the lunar

  2. Advances in integration of photovoltaic power and energy production in practical systems

    Science.gov (United States)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  3. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    Science.gov (United States)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  4. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.

    2007-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power......More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...

  5. Power fluctuations from large wind farms - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul; Pinson, P.; Cutululis, N.A.; Madsen, Henrik; Jensen, Leo Enrico; Hjerrild, J.; Heyman Donovan, M.; Vigueras-ROdriguez, A.

    2009-08-15

    Experience from power system operation with the first large offshore wind farm in Denmark: Horns Rev shows that the power from the wind farm is fluctuating significantly at certain times, and that this fluctuation is seen directly on the power exchange between Denmark and Germany. This report describes different models for simulation and prediction of wind power fluctuations from large wind farms, and data acquired at the two large offshore wind farms in Denmark are applied to validate the models. Finally, the simulation model is further developed to enable simulations of power fluctuations from several wind farms simultaneously in a larger geographical area, corresponding to a power system control area. (au)

  6. Advances in Large-Scale Solar Heating and Long Term Storage in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    According to (the) information from the European Large-Scale Solar Heating Network, (See http://www.hvac.chalmers.se/cshp/), the area of installed solar collectors for large-scale application is in Europe, approximately 8 mill m2, corresponding to about 4000 MW thermal power. The 11 plants...... the last 10 years and the corresponding cost per collector area for the final installed plant is kept constant, even so the solar production is increased. Unfortunately large-scale seasonal storage was not able to keep up with the advances in solar technology, at least for pit water and gravel storage...... of the total 51 plants are equipped with long-term storage. In Denmark, 7 plants are installed, comprising of approx. 18,000-m2 collector area with new plants planned. The development of these plants and the involved technologies will be presented in this paper, with a focus on the improvements for Danish...

  7. New technologies deployment for advanced power plants

    International Nuclear Information System (INIS)

    Kiyoshi, Yamauchi

    2007-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been the total engineering and manufacturing company of pressurized water reactors (PWRs) in Japan since the commencement of commercial operations of Mihama Unit 1 of the Kansai Electric Power Company in 1970. Over these decades, MHI has endeavored to develop a broad spread of nuclear technology, from design, manufacturing, and construction, to plant maintenance services. More recently, with the ever rising need for nuclear power generation around the world to prevent global warming and to cope with surging oil prices, MHI is striving to expand its nuclear power business in the world market, such as US-APWR (Advanced Pressurized Water Reactor) in the U.S., as well as to develop technology for advanced reactors and nuclear fuel cycles to ensure energy security in the future. This paper introduces these approaches, especially focused on new technologies deployment for the global needs, and clarifies the current status and future prospects of MHI as the world's leading nuclear company. (author)

  8. Large-power microwave circuit device

    International Nuclear Information System (INIS)

    Suzuki, Kunio

    1987-01-01

    A 250 KW CW circulator and 1 MW CW dammy load are developed as large-power microwave circuit devices for Tristan, and they are shown to have good characteristics. The circulator has a Y-shape and consists of waveguides divided into four parts. Partition plates are provided in the waveguide connected to each port in order to divide the power into four components. A ferrite material which is high in Curie temperature and less likely to suffer from a RF loss is selected to be used in the circulator. Thin disks of this material, which is low in temperature gradient in the direction of thickness, are bonded to the surface of the waveguides with an epoxy adhesive. A magnet is provided at the top and bottom of the main portion of the circulator and the magnetic field is adjusted so that optimum characteristics are achieved. These arrangements result in good electrical and power characteristics. The dammy load of a water loading type is selected because microwave power is easily absorbed in water. A mechanically strong pipe which does not cause a large loss in microwave is mounted in a waveguide and water is passed through it to allow the power to be consumed gradually. A test up to a RF power of 750 KW shows that the temperature rise in the waveguide is 30 deg C. (Nogami, K.)

  9. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  10. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  11. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  12. Strategic plan for the development of core technologies for the Korean advanced nuclear power reactor for export

    International Nuclear Information System (INIS)

    Moon, Joo Hyun; Cho, Young Ho

    2010-01-01

    With the soaring oil price and worsening global warming, nuclear power has attracted considerable attention on a global scale and a new large market of nuclear power plants (NPPs) is expected. The Korean government aims to export up to 10 NPPs by 2012, based on the successful export of 2 NPPs to the UAE in 2009. It is also going to develop a follow-up model of the Advanced Power Reactor (APR) 1400, and join the world's NPP market under the banner of Korea's original reactor type. For this, it promulgated the strategic plan, NuTech 2012, a technology development plan intended for the early acquisition of core technologies for the Korean advanced NPP design and domestic production of the main components in NPP. This paper introduces the strategic plan of NuTech 2012. (orig.)

  13. Assessment of HAPs emissions from advanced power systems

    International Nuclear Information System (INIS)

    Erickson, T.A.; Brekke, D.W.

    1996-01-01

    The 1990 Clean Air Act Amendments (CAAA) identified 189 substances as air toxics or hazardous air pollutants (HAPs). Under the CAAA, the U. S. Environmental Protection Agency (EPA) must regulate emissions of these HAPs at their sources, including advanced power systems used for the production of electricity. Eleven trace elements are included in the CAAA list of HAPS, as shown in Table 1. The EPA will define those sources that require regulation and limit their emissions according to regulatory directives. This project focused on evaluating and manipulating the advanced power systems HAPs data currently available for presentation to the U.S. Department of Energy (DOE). Trace components included in the 189 HAPs of the 1990 CAAA are: antimony compounds; arsenic compounds; beryllium compounds; cadmium compounds; chromium compounds; cobalt compounds; lead compounds; manganese compounds; mercury compounds; nickel compounds; and selenium compounds. The review of trace element emissions from advanced power systems and hot-gas cleanup systems included data from Tidd Station, General Electric hot-gas cleanup, Louisiana Gasification Technology Incorporated, and the Cool Water plant. Very few other sources of information were located, and those that were contained significantly flawed information that was not of value to this project. To offset the shortage of information, thermochemical equilibrium predictions were used in evaluating advanced control systems. An outline of the systems reviewed is given in Table 2. In addition to the four demonstration and 1 full-scale systems reviewed, nine conventional systems were also reviewed for comparison with the advanced systems

  14. Framatome advanced nuclear power-benefits for our clients from the new company

    International Nuclear Information System (INIS)

    Weber, P.

    2001-01-01

    Framatome ANP (Advanced Nuclear Power) merges the complementary strengths of two global nuclear industry leaders Framatome and Siemens - offering clients the best technological solutions for safe, reliable and economical plant performance. With a combined workforce of 13,300 skilled individuals, Framatome ANP is now the nuclear industry's leading supplier. Serving as Original Equipment Manufacturer (OEM) for more than 90 reactors that provide about 30% of the world's total installed nuclear power capacity, our experienced resources remain focused on the local needs of individual clients, wherever in the world they may be. The Company main business used to be turnkey construction of complete Nuclear Power plants, BWR and PWR capabilities, heavy equipment manufacturing, comprehensive I and C capabilities, and also expertise and knowledge of VVER. Framatome ANP will benefit in all of its fields of activity of the experience gained through Framatome and Siemens' collaboration on the next generation reactor, the EPR, as well as on steam generators replacements and or modernization of VVER. Framatome ANP nuclear fuel designs for both PWR and BWR plants provide innovative features and world-leading performance. Framatome ANP is organized according a matrix organization with: - 4 Business Groups (Project and Engineering, Service, Nuclear Fuel, Mechanical Equipment) - 3 Regional Divisions (Framatome Advanced Nuclear Power S.A.S., France; Framatome Advanced Nuclear Power GmbH, Germany; Framatome Advanced Nuclear Power Inc., USA). By 30th January 2001 Siemens Nuclear Power GmbH, founded in 2000 as successor of the Nuclear Division of Siemens Power Generation Group (KWU), was renamed to Framatome Advanced Nuclear Power GmbH forming the German part of the world wide acting company. Over the past 40 years 23 nuclear power plants all around the world - not only pressurized and boiling water reactors, but also two heavy-watermoderated reactors have been designed, constructed and

  15. Improvement of environmental aspects of thermal power plant operation by advanced control concepts

    Directory of Open Access Journals (Sweden)

    Mikulandrić Robert

    2012-01-01

    Full Text Available The necessity of the reduction of greenhouse gas emissions, as formulated in the Kyoto Protocol, imposes the need for improving environmental aspects of existing thermal power plants operation. Improvements can be reached either by efficiency increment or by implementation of emission reduction measures. Investments in refurbishment of existing plant components or in plant upgrading by flue gas desulphurization, by primary and secondary measures of nitrogen oxides reduction, or by biomass co-firing, are usually accompanied by modernisation of thermal power plant instrumentation and control system including sensors, equipment diagnostics and advanced controls. Impact of advanced control solutions implementation depends on technical characteristics and status of existing instrumentation and control systems as well as on design characteristics and actual conditions of installed plant components. Evaluation of adequacy of implementation of advanced control concepts is especially important in Western Balkan region where thermal power plants portfolio is rather diversified in terms of size, type and commissioning year and where generally poor maintenance and lack of investments in power generation sector resulted in high greenhouse gases emissions and low efficiency of plants in operation. This paper is intended to present possibilities of implementation of advanced control concepts, and particularly those based on artificial intelligence, in selected thermal power plants in order to increase plant efficiency and to lower pollutants emissions and to comply with environmental quality standards prescribed in large combustion plant directive. [Acknowledgements. This paper has been created within WBalkICT - Supporting Common RTD actions in WBCs for developing Low Cost and Low Risk ICT based solutions for TPPs Energy Efficiency increasing, SEE-ERA.NET plus project in cooperation among partners from IPA SA - Romania, University of Zagreb - Croatia and Vinca

  16. Large floating structures technological advances

    CERN Document Server

    Wang, BT

    2015-01-01

    This book surveys key projects that have seen the construction of large floating structures or have attained detailed conceptual designs. This compilation of key floating structures in a single volume captures the innovative features that mark the technological advances made in this field of engineering, and will provide a useful reference for ideas, analysis, design, and construction of these unique and emerging urban projects to offshore and marine engineers, urban planners, architects and students.

  17. Advanced and intelligent control in power electronics and drives

    CERN Document Server

    Blaabjerg, Frede; Rodríguez, José

    2014-01-01

    Power electronics and variable frequency drives are continuously developing multidisciplinary fields in electrical engineering, and it is practically not possible to write a book covering the entire area by one individual specialist. Especially by taking account the recent fast development in the neighboring fields like control theory, computational intelligence and signal processing, which all strongly influence new solutions in control of power electronics and drives. Therefore, this book is written by individual key specialist working on the area of modern advanced control methods which penetrates current implementation of power converters and drives. Although some of the presented methods are still not adopted by industry, they create new solutions with high further research and application potential. The material of the book is presented in the following three parts: Part I: Advanced Power Electronic Control in Renewable Energy Sources (Chapters 1-4), Part II: Predictive Control of Power Converters and D...

  18. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1993-05-01

    Several advanced power plant concepts are currently under development. These include the Modular High Temperature Gas Cooled Reactors, the Advanced Liquid Metal Reactor and the Advanced Light Water Reactors. One measure of the attractiveness of a new concept is its cost. Invariably, the cost of a new type of power plant will be compared with other alternative forms of electrical generation. This report provides a common starting point, whereby the cost estimates for the various power plants to be considered are developed with common assumptions and ground rules. Comparisons can then be made on a consistent basis. This is the second update of these cost estimate guidelines. Changes have been made to make the guidelines more current (January 1, 1992) and in response to suggestions made as a result of the use of the previous report. The principal changes are that the reference site has been changed from a generic Northeast (Middletown) site to a more central site (EPRI's East/West Central site) and that reference bulk commodity prices and labor productivity rates have been added. This report is designed to provide a framework for the preparation and reporting of costs. The cost estimates will consist of the overnight construction cost, the total plant capital cost, the operation and maintenance costs, the fuel costs, decommissioning costs and the power production or busbar generation cost

  19. Wind power integration into the automatic generation control of power systems with large-scale wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit

    2014-01-01

    Transmission system operators have an increased interest in the active participation of wind power plants (WPP) in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC......) of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs) and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described...... and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different...

  20. Advanced pulverized-coal power plants: A U.S. export opportunity

    International Nuclear Information System (INIS)

    Ruth, L.A.; Ramezan, M.; Izsak, M.S.

    1995-01-01

    This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ''more electrical generation capacity will be built over the next 25 years than was built in the previous century''. For example, China and India alone, with less than 10% of today's demand, plan to build what would amount to a quarter of the world's new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn't require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible

  1. Grid synchronization for advanced power processing and FACTS in wind power systems

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Vazquez, G.

    2010-01-01

    The high penetration of wind power systems in the electrical network has introduced new issues in the stability and transient operation of the grid. By means of providing advanced functionalities to the existing power converters of such power plants it is possible to enhance their performance...... and also to support the grid operation, as the new grid codes demand. The connection of FACTS based on power converters, such as STATCOMs, are also contributing to the integration of renewable energies improving their behavior under contingencies. However, in both cases it is needed to have a grid voltage...

  2. Variability in large-scale wind power generation: Variability in large-scale wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Kiviluoma, Juha [VTT Technical Research Centre of Finland, Espoo Finland; Holttinen, Hannele [VTT Technical Research Centre of Finland, Espoo Finland; Weir, David [Energy Department, Norwegian Water Resources and Energy Directorate, Oslo Norway; Scharff, Richard [KTH Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Söder, Lennart [Royal Institute of Technology, Electric Power Systems, Stockholm Sweden; Menemenlis, Nickie [Institut de recherche Hydro-Québec, Montreal Canada; Cutululis, Nicolaos A. [DTU, Wind Energy, Roskilde Denmark; Danti Lopez, Irene [Electricity Research Centre, University College Dublin, Dublin Ireland; Lannoye, Eamonn [Electric Power Research Institute, Palo Alto California USA; Estanqueiro, Ana [LNEG, Laboratorio Nacional de Energia e Geologia, UESEO, Lisbon Spain; Gomez-Lazaro, Emilio [Renewable Energy Research Institute and DIEEAC/EDII-AB, Castilla-La Mancha University, Albacete Spain; Zhang, Qin [State Grid Corporation of China, Beijing China; Bai, Jianhua [State Grid Energy Research Institute Beijing, Beijing China; Wan, Yih-Huei [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA; Milligan, Michael [National Renewable Energy Laboratory, Transmission and Grid Integration Group, Golden Colorado USA

    2015-10-25

    The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.

  3. Expert assessment of advanced power sources. Contract report

    International Nuclear Information System (INIS)

    Gardner, C.L.

    2007-07-01

    Although DRDC published an exhaustive technical report (in August 2001) on technology trends in advanced power sources projected out to the year 2020, the terrorist attacks on the US on September 11, 2001 (and the consequent, augmented and more broadly-based defence and national security posture adopted by the CF/DND), together with rapid developments in power source technologies over the past five years, internationally, prompted DRDC to update the 2001 report, on a selected number of power source technologies or applications and to provide further guidance to DRDC's Advanced Power Source R and D program. Eight wide-ranging, power source technologies or applications were investigated, using the technique of 'expert elicitation' (that is, using independent experts in the various and diverse technological fields), based on a standardized questionnaire, augmented by the contractor's own expertise (and his overall analysis of the experts' responses) in these diverse areas. In addition, each expert was asked about his/her view on the likely role of nanotechnology in each technological area or application. Following collection and analysis of all the data, the contractor made recommendations on the ability of each power source to meet the future requirements of the CF/DND, taking into account the Technology Readiness Level, for each technology or application

  4. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA)[1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance

  5. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  6. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  7. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  8. 77 FR 52758 - Large Power Transformers From Korea

    Science.gov (United States)

    2012-08-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1189 (Final)] Large Power Transformers... materially injured, by reason of imports from Korea of large power transformers, provided for in subheadings... Commission and Commerce by ABB Inc., Cary, NC; Delta Star Inc., Lynchburg, VA; and Pennsylvania Transformer...

  9. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  10. Fireside corrosion of superheaters/reheaters in advanced power plants

    Energy Technology Data Exchange (ETDEWEB)

    Syed, A.U.; Simms, N.J.; Oakey, J.E. [Cranfield Univ. (United Kingdom). Energy Technology Centre

    2010-07-01

    The generation of increasing amounts of electricity while simultaneously reducing environmental emissions (CO{sub 2}, SO{sub 2}, NO{sub x} particles, etc) has become a goal for the power industry worldwide. Co-firing biomass and coal in new advanced pulverised fuel power plants is one route to address this issue, since biomass is regarded as a CO{sub 2} neutral fuel (i.e. CO{sub 2} uptake during its growth equals the CO{sub 2} emissions produced during its combustion) and such new advanced power plants operate at higher efficiencies than current plants as a result of using steam systems with high temperatures and pressures. However, co-firing has the potential to cause significant operational challenges for such power plants as amongst other issues, it will significantly change the chemistry of the deposits on the heat exchanger surfaces and the surrounding gas compositions. As a result these critical components can experience higher corrosion rates, and so shorter lives, causing increased operational costs, unless the most appropriate materials are selected for their construction. This paper reports the results of a series of 1000 hour laboratory corrosion tests that have been carried out in controlled atmosphere furnaces, to assess the effect of biomass/coal co-firing on the fireside corrosion of superheaters/reheaters. The materials used for the tests were one ferritic alloy (T92), two austenitic alloys (347HFG and HR3C) and one nickel based alloy (alloy 625). Temperatures of 600 and 650 C were used to represent the metal temperatures in advanced power plants. During these exposures, traditional mass change data were recorded as the samples were recoated with the simulated deposits. After these exposures, cross-sections through samples were prepared using standard metallographic techniques and then analysed using SEM/EDX. Pre-exposure micrometer and post-exposure image analyser measurements were used so that the metal wastage could be calculated. These data are

  11. Advanced Small Free-Piston Stirling Convertors for Space Power Applications

    Science.gov (United States)

    Wood, J. Gary; Lane, Neill

    2004-02-01

    This paper reports on the current status of an advanced 35 We free-piston Stirling convertor currently being developed under NASA SBIR Phase II funding. Also described is a further advanced and higher performance ~80 watt free-piston convertor being developed by Sunpower and Boeing/Rocketdyne for NASA under NRA funding. Exceptional overall convertor (engine plus linear alternator) thermodynamic performance (greater than 50% of Carnot) with specific powers around 100 We /kg appear reasonable at these low power levels.

  12. A Concept Plane using electric distributed propulsion Evaluation of advanced power architecture

    OpenAIRE

    Ridel , M.; Paluch , B.; Doll , C.; Donjat , D.; Hermetz , J.; Guigon , A.; Schmollgruber , P.; Atinault , O.; Choy , P.; Le Tallec , P.; Dessornes , O.; Lefebvre , T.

    2015-01-01

    International audience; Starting from electrical distributed propulsion system concept, the ONERA’s engineers demonstrated the viability of an all electrical aircraft for a small business aircraft. This paper describes the advanced power architecture considering energy conversion and power distribution. The design of this advanced power architecture requires the multi-physic integration of different domains as flight performances, safety and environmental requirements (thermal, electric, elec...

  13. Lifetime prediction of high-power press-pack IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Cristian

    The Wind Turbine (WT) industry is advancing at a rapid pace and the power rating of new WTs is continuously growing. The next generation large WTs are likely to be realized with full-scale power converters due to the advantages they offer in terms of grid code compliance, power density and decoup......The Wind Turbine (WT) industry is advancing at a rapid pace and the power rating of new WTs is continuously growing. The next generation large WTs are likely to be realized with full-scale power converters due to the advantages they offer in terms of grid code compliance, power density...... and decoupling of the generator and grid sides. Press-Pack (PP) Insulated Gate Bipolar Transistors (IGBTs) are promising semiconductor devices for the next generation large WTs due to the advantages they offer in terms of power capability, power density and thermal cycling capability. PP IGBTs require proper...

  14. Recent advances in flexible low power cholesteric LCDs

    Science.gov (United States)

    Khan, Asad; Shiyanovskaya, Irina; Montbach, Erica; Schneider, Tod; Nicholson, Forrest; Miller, Nick; Marhefka, Duane; Ernst, Todd; Doane, J. W.

    2006-05-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. Applications ranging from low resolution large signs to ultra high resolution electronic books can utilize cholesteric displays to not only benefit from the numerous features, but also create enabling features that other flat panel display technologies cannot. Flexible displays are the focus of attention of numerous research groups and corporations worldwide. Cholesteric displays have been demonstrated to be highly amenable to flexible substrates. This paper will review recent advances in flexible cholesteric displays including both phase separation and emulsification approaches to encapsulation. Both approaches provide unique benefits to various aspects of manufacturability, processes, flexibility, and conformability.

  15. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  16. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  17. Wind power integration into the automatic generation control of power systems with large-scale wind power

    Directory of Open Access Journals (Sweden)

    Abdul Basit

    2014-10-01

    Full Text Available Transmission system operators have an increased interest in the active participation of wind power plants (WPP in the power balance control of power systems with large wind power penetration. The emphasis in this study is on the integration of WPPs into the automatic generation control (AGC of the power system. The present paper proposes a coordinated control strategy for the AGC between combined heat and power plants (CHPs and WPPs to enhance the security and the reliability of a power system operation in the case of a large wind power penetration. The proposed strategy, described and exemplified for the future Danish power system, takes the hour-ahead regulating power plan for generation and power exchange with neighbouring power systems into account. The performance of the proposed strategy for coordinated secondary control is assessed and discussed by means of simulations for different possible future scenarios, when wind power production in the power system is high and conventional production from CHPs is at a minimum level. The investigation results of the proposed control strategy have shown that the WPPs can actively help the AGC, and reduce the real-time power imbalance in the power system, by down regulating their production when CHPs are unable to provide the required response.

  18. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  19. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  20. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    Science.gov (United States)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  1. Advanced Technology for Ultra-Low Power System-on-Chip (SoC)

    Science.gov (United States)

    2017-06-01

    was proposed for lower power applications with Ioff=10pA/μm and VDD=0.5V. In this project, the optimized structure shows great potential in both Lg...AFRL-RY-WP-TR-2017-0115 ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON-CHIP (SoC) Jason Woo, Weicong Li, and Peng Lu University of California...September 2015 – 31 March 2017 4. TITLE AND SUBTITLE ADVANCED TECHNOLOGY FOR ULTRA-LOW POWER SYSTEM-ON- CHIP (SoC) 5a. CONTRACT NUMBER FA8650-15-1-7574 5b

  2. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...

  3. National nuclear power planning of China and advanced reactor

    International Nuclear Information System (INIS)

    Qian Jihui

    1990-01-01

    The necessity of investigation on the trends of advanced reactor technology all over the world is elabrated while China is going to set up its long-term national nuclear power programme. In author's opinion, thermal reactor power plants will have a quite long period development in the next century and a new trend of second generation NPPs might emerge in the beginning of next century. These new generation advanced reactors are characterized with new design concepts based on the inherent or passive safety features. Among them, most promising ones are those of AP-600 and MHTGR. Chinese experts are paying special attention to and closely following these two directions

  4. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...... of the maximum junction temperature estimation is also proposed. Finally, the validity and effectiveness of the proposed method is confirmed by experimental results.......On-state collector-emitter voltage (VCE) is a good indicator to determine the wear-out condition of power device modules. Further, it is a one of the Temperature Sensitive Electrical Parameters (TSEPs) and thus can be used for junction temperature estimation. In this paper, the junction temperature...

  5. Effects of nuclear elastic scattering and modifications of ion-electron equilibration power on advanced-fuel burns

    International Nuclear Information System (INIS)

    Galambos, J.D.

    1983-01-01

    The effects of Nuclear Elastic Scattering (NES) of fusion products and modifications of the ion-electron equilibration power on D-T and D-based advanced-fuel fusion plasmas are presented here. The processes causing the modifications to the equilibration power included here are: (1) depletion of low-energy electrons by Coulomb collisions with the ions; and (2) magnetic field effects on the energy transfer between the ions and the electrons. Both NES and the equilibration modifications affect the flow of power to the plasma ions, which is an important factor in the analysis of advanced-fuels. A Hot Ion Mode (HIM) analysis was used to investigate the changes in the minimum ignition requirements for Cat-D and D- 3 He plasmas, due to the changes in the allowable T/sub i/T/sub e/ for ignition from NES and equilibration modifications. Both of these effects have the strongest influence on the ignition requirements for high temperature (>50 keV), low beta (<15%) plasmas, where the cyclotron radiation power loss from the electrons (which is particularly sensitive to changes in the electron temperature) is large

  6. Study on large release frequency of nuclear power plants

    International Nuclear Information System (INIS)

    Chen Yan; Song Wei; Li Chaojun; Fu Zhiwei; Wang Zhe; Zuo Jiaxu; Tong Jiejuan

    2014-01-01

    There are several definitions of large release frequency of nuclear power plant. This paper reviews the meanings of large release and requirement of large release frequency provided by IAEA, NRC and WENRA, analyses the relationship between the meanings of large release, compares the calculations of several large release frequencies, It is different frequency that the definition of LRF is not same. Last we discuss the difference between large release frequency and large early release frequency and explore the suitable definitions of LRF for nuclear power plants in China. (authors)

  7. Large-break LOCA assessment for the highly advanced core design

    International Nuclear Information System (INIS)

    Doria, F.J.; Nath, V.I.; Hau, K.F.; Dam, R.F.; Vecchiarelli, J.

    1997-01-01

    Over the course of the years, a conceptual highly advanced core (HAC) reactor has been designed for Japan Electric Power Development Company Limited (EPDC). The HAC reactor, which is capable of generating 1326 MW of electrical power, consists of 640 CANDU-type fuel channels with each fuel channel containing twelve 61-element fuel bundles. As part of the conceptual design study, the performance of the HAC reactor during a large loss-of-coolant accident (LOCA) was assessed with the use of several computer codes. The SOPHT, CATHENA, ELOCA and ELESTRES computer codes were used to predict the thermalhydraulic behaviour of the circuit, thermalhydraulic behaviour of a single high-power channel, thermal-mechanical behaviour of the outer fuel elements contained in the high-powered channel and the steady-state fuel-element conditions respectively. The LOCAs that were analyzed include 100% reactor outlet header (ROH) break, and a survey of reactor inlet header (RIH) breaks ranging from 5% to 25%. The conceptual feasibility of the HAC design was evaluated against two criteria; namely, maximum sheath temperature less than 1200 deg C and AECL's 5% sheath straining criterion to assess failure by excessive straining. For the cases analyzed, the analysis predicted a maximum sheath temperature of 820 deg C and a maximum sheath strain of 1.5% (the maximum pressure-tube temperature was 515 deg C). Although the maximum element-burnup of the HAC design is extended beyond the CANDU 6 burnup, the maximum linear power of HAC (40 kW/m) is significantly lower than the maximum linear power of a CANDU 6 reactor (60 kW/m). The reduced element-power level in conjunction with internal design modification for the HAC design has resulted m significantly lower internal gas pressures under steady-state conditions, as compared with the CANDU 6 design. During a LOCA, the low linear powers and zero-void reactivity associated with the HAC design has increased the safety margin. In addition, the cases

  8. Advance Directives and Powers of Attorney in Intensive Care Patients.

    Science.gov (United States)

    de Heer, Geraldine; Saugel, Bernd; Sensen, Barbara; Rübsteck, Charlotte; Pinnschmidt, Hans O; Kluge, Stefan

    2017-06-05

    Advance directives and powers of attorney are increasingly common, yet data on their use in clinical situations remain sparse. In this single center cross-sectional study, we collected data by questionnaire from 1004 intensive care patients in a university hospital. The frequencies of advance directives and powers of attorney were determined, and the factors affecting them were studied with multivariate logistic regression analysis. Usable data were obtained from 998 patients. 51.3% stated that they had prepared a document of at least one of these two kinds. Among them, 39.6% stated that they had given the relevant document(s) to the hospital, yet such documents were present in the patient's hospital record for only 23%. 508 patients stated their reasons for preparing an advance directive or a power of attorney: the most common reason (48%) was the fear of being at other people's mercy, of the lack of self-determination, or of medical overtreatment. The most important factors associated with a patient's statement that he/she had prepared such a document were advanced age (advance directive: 1.022 [1.009; 1.036], p = 0.001; power of attorney: 1.027 [1.014; 1.040], padvance directive: 1.622 [1.138; 2.311], padvance directives and 44.1% of the powers of attorney that were present in the hospital records were poorly interpretable because of the incomplete filling-out of preprinted forms. Half of the patients who did not have such a document had already thought of preparing one, but had not yet done so. For patients hospitalized in intensive care units, there should be early discussion about the presence or absence of documents of these kinds and early evaluation of the patient's concrete wishes in critical situations. Future studies are needed to determine how best to assure that these documents will be correctly prepared and then given over to hospital staff so that they can take their place in the patient's record.

  9. Operation of the power information center: Performance of secretariat functions and information exchange activities in the advanced power field of the interagency advanced power group

    Science.gov (United States)

    1983-01-01

    Highlights of activities conducted during the reporting period to facilitate the exchange of technical information among scientists and engineers both within the federal government and within industry are cited. Interagency Advanced Power Group meetings and special efforts, project briefs, and organization development are considered.

  10. Economic benefits of advanced materials in nuclear power systems

    International Nuclear Information System (INIS)

    Busby, J.T.

    2009-01-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  11. Large autonomous spacecraft electrical power system (LASEPS)

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  12. Recent development of nuclear power in Japan and instrumentation and control system and control room equipment for advanced light water reactors

    International Nuclear Information System (INIS)

    Wakayama, N.

    1992-01-01

    This paper was provided for the 13th IAEA/IWG-NPPCI Meeting and aims to introduce an outline of recent development of nuclear power in Japan and some topics in the field of nuclear power plant control and instrumentation. Forty units of nuclear power plants are in operation in Japan and five units of BWRs and six PWRs are under construction. Construction of prototype FBR Monju have almost completed an construction of High-Temperature Engineering Test Reactor, HTTR, started in March 1991. In parallel of those, extensive effort has been carried out to develop the third generation LWRs which are called Advanced BWR (ABWR) and Advanced PWR (APWR). Two Advanced BWRs are under safety review for construction. Instrumentation and control system of these Advanced LWRs adopts integrated digital I and C system, optical multiplexing signal transmission, fault tolerant control systems and software logic for reactor protection and safety systems and enhances plant control performance and provides human-friendly operation and maintenance environments. Main control room of these Advanced LWRs, comprised with large display panels and advanced console, has special futures such as one-man sit-down operation, human friendly man-machine interface, high level automation in operation and maintenance. (author). 7 refs, 9 figs, 1 tab

  13. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  14. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  15. Magnet power supplies for the Advanced Light Source

    International Nuclear Information System (INIS)

    Jackson, L.T.; Lutz, I.C.

    1989-03-01

    The Lawrence Berkeley Laboratory (LBL) is building an Advanced Light Source (ALS) to produce synchrotron radiation. An electron linear accelerator, and a booster synchrotron are used to accelerate the electron beam to 1.5 GeV to fill the storage ring. This paper describes the power supplies used for the magnets in the booster and the storage ring and the interface requirements for computer control and monitoring the power supplies and magnet currents. 1 ref., 3 figs., 2 tabs

  16. Task 3.0 - Advanced power systems. Subtask 3.18 - Ash behavior in power systems

    International Nuclear Information System (INIS)

    Zygarlicke, Christopher J.; Mccollor, Donald P.; Kay, John P.; Swanson, Michael L.

    1998-01-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (T cv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems

  17. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  18. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1986-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  19. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Hudson, C.R. II.

    1987-07-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies

  20. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...... estimation of power semiconductor devices and capacitors have been done. Accelerated power cycling test is one of the common tests to assess the power device module and develop the lifetime model considering the physics of failure. In this paper, a new advanced power cycling test setup is proposed for power...

  1. Commercializing the next generation: the AP600 advanced simplified nuclear power plant

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1994-01-01

    Today, government and industry are working together on advanced nuclear power plant designs that take advantage of valuable lessons learned from the experience to date and promise to reconcile the demands of economic expansion with the laws of environmental protection. In the U.S., the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) initiated a design certification program in 1989 to develop and commercialize advanced light water reactors (ALWRs) for the next round of power plant construction. Advanced, simplified technology is one approach under development to end the industry's search for a simpler, more forgiving, and less costly reactor. As part of this program, Westinghouse is developing the AP600, a new standard 600 MWe advanced, simplified plant. The design strikes a balance between the use of proven technology and new approaches. The result is a greatly streamlined plant that can meet safety regulations and reliability requirements, be economically competitive, and promote broader public confidence in nuclear energy. 1 fig

  2. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  3. Power suppression at large scales in string inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, Bologna, 40126 (Italy); Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX, 77843-4242 (United States)

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  4. Advance in study of intelligent diagnostic method for nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Gang; Yang Li

    2008-01-01

    The advance of research on the application of three types of intelligent diagnostic approach based on neural network (ANN), fuzzy logic and expert system to the operation status monitoring and fault diagnosis of nuclear power plant (NPP) was reviewed. The research status and characters on status monitoring and fault diagnosis approaches based on neural network, fuzzy logic and expert system for nuclear power plant were analyzed. The development trend of applied research on intelligent diagnostic approaches for nuclear power plant was explored. The analysis results show that the research achievements on intelligent diagnostic approaches based on fuzzy logic and expert system for nuclear power plant are not much relatively. The research of intelligent diagnostic approaches for nuclear power plant concentrate on the aspect of operation status monitoring and fault diagnosis based on neural networks for nuclear power plant. The advancing tendency of intelligent diagnostic approaches for nuclear power plant is the combination of various intelligent diagnostic approaches, the combination of neural network diagnostic approaches and other diagnostic approaches as well as multiple neural network diagnostic approaches. (authors)

  5. Reactive power compensation and loss reduction in large industrial enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S; Gajic, B; Mijailovic, S [Institute Nikola Tesla, Beograd (Yugoslavia)

    1991-12-01

    This paper considers the reactive power compensation and the active power and energy loss reduction of large radial power networks in the Serbian mine and smelting industry. It gives an efficient optimization procedure for positioning and sizing capacitors in large industrial systems integrated with a simple network analysis method. (Author).

  6. Advanced applications of water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2008-07-01

    By August 2007, there were 438 nuclear power plants (NPPs) in operation worldwide, with a total capacity of 371.7 GW(e). Further, 31 units, totaling 24.1 GW(e), were under construction. During 2006 nuclear power produced 2659.7 billion kWh of electricity, which was 15.2% of the world's total. The vast majority of these plants use water-cooled reactors. Based on information provided by its Member States, the IAEA projects that nuclear power will grow significantly, producing between 2760 and 2810 billion kWh annually by 2010, between 3120 and 3840 billion kWh annually by 2020, and between 3325 and 5040 billion kWh annually by 2030. There are several reasons for these rising expectations for nuclear power: - Nuclear power's lengthening experience and good performance: The industry now has more than 12 000 reactor years of experience, and the global average nuclear plant availability during 2006 reached 83%; - Growing energy needs: All forecasts project increases in world energy demand, especially as population and economic productivity grow. The strategies are country dependent, but usually involve a mix of energy sources; - Interest in advanced applications of nuclear energy, such as seawater desalination, steam for heavy oil recovery and heat and electricity for hydrogen production; - Environmental concerns and constraints: The Kyoto Protocol has been in force since February 2005, and for many countries (most OECD countries, the Russian Federation, the Baltics and some countries of the Former Soviet Union and Eastern Europe) greenhouse gas emission limits are imposed; - Security of energy supply is a national priority in essentially every country; and - Nuclear power is economically competitive and provides stability of electricity price. In the near term most new nuclear plants will be evolutionary water cooled reactors (Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs), often pursuing economies of scale. In the longer term, innovative designs that

  7. Traveling wave accelerating structures with a large phase advance

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2012-01-01

    The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.

  8. Operation Modeling of Power Systems Integrated with Large-Scale New Energy Power Sources

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-10-01

    Full Text Available In the most current methods of probabilistic power system production simulation, the output characteristics of new energy power generation (NEPG has not been comprehensively considered. In this paper, the power output characteristics of wind power generation and photovoltaic power generation are firstly analyzed based on statistical methods according to their historical operating data. Then the characteristic indexes and the filtering principle of the NEPG historical output scenarios are introduced with the confidence level, and the calculation model of NEPG’s credible capacity is proposed. Based on this, taking the minimum production costs or the best energy-saving and emission-reduction effect as the optimization objective, the power system operation model with large-scale integration of new energy power generation (NEPG is established considering the power balance, the electricity balance and the peak balance. Besides, the constraints of the operating characteristics of different power generation types, the maintenance schedule, the load reservation, the emergency reservation, the water abandonment and the transmitting capacity between different areas are also considered. With the proposed power system operation model, the operation simulations are carried out based on the actual Northwest power grid of China, which resolves the new energy power accommodations considering different system operating conditions. The simulation results well verify the validity of the proposed power system operation model in the accommodation analysis for the power system which is penetrated with large scale NEPG.

  9. Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'06

    International Nuclear Information System (INIS)

    2006-01-01

    Following the highly successful ICAPP'05 meeting held in Seoul Korea, the 2006 International Congress on Advances in Nuclear Power Plants brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covers the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. The program covers lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program by technical track deals with: - 1. Water-Cooled Reactor Programs and Issues Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting medium term utility needs; design and regulatory issues; business, political and economic challenges; infrastructure limitations and improved construction techniques including modularization. - 2. High Temperature Gas Cooled Reactors Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, hydrogen production and other industrial uses; advanced thermal and fast reactors. - 3. Long Term Reactor Programs and Strategies Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as, super critical water reactors, liquid metal reactors, gaseous and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. - 4. Operation, Performance and Reliability Management Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and

  10. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation); 1998 nendo ogata furyoku hatsuden system kaihatsu. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (furyoku hatsuden gijutsu ni kansuru kaihatsu doko chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey is designed to analyze, e.g., current status of large-scale wind power generation devices/system technologies and development trends worldwide, and to make predictions about future developments, in an effort to contribute to advancements in new technology for wind power generation systems in Japan. The international R and D cooperation programs promoted by IEA and EU have helped the participants produce a number of good results at lower costs. The European countries have developed the wind power generation industries in each area, promoted by the governmental subsidy policies, and are leading the world. The system is becoming larger, from around an average unit capacity of 250kW in the beginning of the 90's to 600kW now, reducing the cost by the scale merit. The improved computer capacity has made it possible to more easily analyze the complicated rotor aerodynamics, structural dynamics, wind characteristics and other factors related to wind power generation systems. The future R and D directions will include world standards for large-scale wind turbines, advancements in wind farm technologies, offshore wind power generation systems, advancement in design technologies, and new concepts for wind power turbine designs, e.g., floating wind turbine. (NEDO)

  11. Global development of advanced nuclear power plants, and related IAEA activities

    International Nuclear Information System (INIS)

    2006-09-01

    Renewed interest in the potential of nuclear energy to contribute to a sustainable worldwide energy mix is underlining the IAEA's statutory role in fostering the peaceful uses of nuclear energy, in particular the need for effective exchanges of information and collaborative research and technology development among Member States on advanced nuclear power technologies deployable in the near term as well as in the longer term. For applications in the medium to longer term, with rising expectations for the role of nuclear energy in the future, technological innovation has become a strong focus of nuclear power technology developments by many Member States. To meet Member States' needs, the IAEA conducts activities to foster information exchange and collaborative research and development in the area of advanced nuclear reactor technologies. These activities include coordination of collaborative research, organization of international information exchange, and analyses of globally available technical data and results, with a focus on reducing nuclear power plant capital costs and construction periods while further improving performance, safety and proliferation resistance. In other activities, evolutionary and innovative advances are catalyzed for all reactor lines such as advanced water cooled reactors, high temperature gas cooled reactors, liquid metal cooled reactors and accelerator driven systems, including small and medium sized reactors. In addition, there are activities related to other applications of nuclear energy such as seawater desalination, hydrogen production, and other process heat applications. This brochure summarizes the worldwide status and the activities related to advanced nuclear power technology development and related IAEA activities. It includes a list of the collaborative research and development projects conducted by the IAEA, as well as of the status reports and other publications produced

  12. Dynamic model of frequency control in Danish power system with large scale integration of wind power

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2013-01-01

    This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....

  13. Plant protection system optimization studies to mitigate consequences of large breaks in the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system

  14. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  15. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  16. Cost estimate guidelines for advanced nuclear power technologies

    International Nuclear Information System (INIS)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs

  17. Active power reserves evaluation in large scale PVPPs

    DEFF Research Database (Denmark)

    Crăciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    The present trend on investing in renewable ways of producing electricity in the detriment of conventional fossil fuel-based plants will lead to a certain point where these plants have to provide ancillary services and contribute to overall grid stability. Photovoltaic (PV) power has the fastest...... growth among all renewable energies and managed to reach high penetration levels creating instabilities which at the moment are corrected by the conventional generation. This paradigm will change in the future scenarios where most of the power is supplied by large scale renewable plants and parts...... of the ancillary services have to be shared by the renewable plants. The main focus of the proposed paper is to technically and economically analyze the possibility of having active power reserves in large scale PV power plants (PVPPs) without any auxiliary storage equipment. The provided reserves should...

  18. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  19. Terms for describing new, advanced nuclear power plants

    International Nuclear Information System (INIS)

    1997-04-01

    The IAEA's Division of Nuclear Power and the Fuel Cycle (then the Division of Nuclear Power) took an initiative in this field some years ago when work was initiated in the area of ''safety related terms'' by its International Working Group on Advanced Technologies for Water Cooled Reactors. This activity drew on advice from reactor design organizations, research institutes and government organizations, and aimed at helping eliminate confusion and misuse of safety related terms in widespread use, clarifying technical thinking regarding these terms, and improving nuclear power acceptability by providing precisely described technical meanings to them. After discussion also in the International Working Groups for Gas Cooled Reactors and Fast Reactors, the work resulted in the publication in September 1991 of IAEA-TECDOC-626, entitled ''Safety Related Terms for Advanced Nuclear Plants'', which has become a widely used publication. The present TECDOC has been prepared using the same approach to obtain advice from involved parties. Drafts of this report have been reviewed by the International Working Groups on Water Cooled Reactors, Fast Reactors and Gas Cooled Reactors, as well as by the IAEA's International Fusion Research Council (IFRC). The comments and suggestions received have been evaluated and utilized for producing the present TECDOC. 3 figs

  20. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    Science.gov (United States)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  1. Power deposition for ion cyclotron heating in large tokamaks

    International Nuclear Information System (INIS)

    Hellsten, T.; Villard, L.

    1988-01-01

    The power deposition profiles during minority ion cyclotron heating are analysed in large tokamaks by using the global, toroidal wave code LION. For tokamaks with large aspect ratio and with circular cross-section, the wave is focused on the magnetic axis and can be absorbed there by cyclotron absorption when the cyclotron resonance passes through the magnetic axis. The power deposition profile is then essentially determined by the Doppler broadening of the ion cyclotron resonance. For equilibria either non-circular or with a small aspect ratio the power deposition profile depends also on the strength of the damping. In this case the power deposition profile can be expressed as a sum of two power deposition profiles. One is related to the power absorbed in a single pass, and its shape is similar to that obtained for large aspect ratio and circular cross-section. The other profile is obtained by calculating the power deposition in the limit of weak damping, in which case the wave electric field is almost constant along the cyclotron resonance layer. A heuristic formula for the power deposition is given. The formula includes a number of calibration curves and functions which has been calculated with the LION code for JET relevant equilibria. The formula enables calculation of the power deposition profile in a simple way when the launched wave spectrum and damping coefficients are known. (author). 7 refs, 11 figs

  2. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  3. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  4. Advanced power conversion based on the Aerocapacitor{trademark}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roark, D.

    1997-03-05

    This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.

  5. Progress of nuclear safety for symbiosis and sustainability advanced digital instrumentation, control and information systems for nuclear power plants

    CERN Document Server

    Yoshikawa, Hidekazu

    2014-01-01

    This book introduces advanced methods of computational and information systems allowing readers to better understand the state-of-the-art design and implementation technology needed to maintain and enhance the safe operation of nuclear power plants. The subjects dealt with in the book are (i) Full digital instrumentation and control systems and human?machine interface technologies (ii) Risk? monitoring methods for large and? complex? plants (iii) Condition monitors for plant components (iv) Virtual and augmented reality for nuclear power plants and (v) Software reliability verification and val

  6. Advances in the treatment of malignant large-bowel obstruction

    African Journals Online (AJOL)

    2007-07-19

    Jul 19, 2007 ... Most cases of large-bowel obstruction are due to colonic adeno- carcinoma. 324 ... to perforation and faeculent peritonitis. .... advance in emergency colorectal surgery has been the .... where there is clinical suspicion of bowel.

  7. Essays on the voting power of large shareholders

    DEFF Research Database (Denmark)

    Poulsen, Thomas

    in this thesis is the relative power of shareholders embedded in the structure of share ownership in public firms. It is particularly important to understand the effect of concentrated share ownership, given that this is the dominant ownership structure for both public and private firms around the world....... This interest in the power of large shareholders is the animating theme of this thesis, which consists of three self-contained research papers. The aim is to analyze how the power of large shareholders varies with different structures of share ownership and through that increase our awareness of how this may...... affect firms' operations. Such an analysis calls for some kind of measure of influence. The game-theoretic idea of power indices is a useful quantitative tool to model influence within the group of shareholders. Therefore, the purpose is to investigate the effect of ownership structure...

  8. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  9. Advanced power reactors with improved safety characteristics

    International Nuclear Information System (INIS)

    Birkhofer, A.

    1994-01-01

    The primary objective of nuclear safety is the protection of individuals, society and environment against radiological hazards from accidental releases of radioactive materials contained in nuclear reactors. Hereto, these materials are enclosed by several successive barriers and the barriers protected against mishaps and accidents by a multi-level system of safety precautions. The evolution of reactor technology continuously improves this concept and its implementation. At a world-wide scale, several advanced reactor concepts are currently being considered, some of them already at a design stage. Essential safety objectives include both further strengthening the prevention of accidents and improving the containment of fission products should an accident occur. The proposed solutions differ considerably with regard to technical principles, plant size and time scales considered for industrial application. Two typical approaches can be distinguished: The first approach basically aims at an evolution of power reactors currently in use, taking into account the findings from safety research and from operation of current plants. This approach makes maximum use of proven technology and operating experience but may nevertheless include new safety features. The corresponding designs are often termed 'large evolutionary'. The second approach consists in more fundamental changes compared to present designs, often with strong emphasis on specific passive features protecting the fuel and fuel cladding barriers. Owing to the nature and capability of those passive features such 'innovative designs' are mostly smaller in power output. The paper describes the basic objectives of such developments and illustrates important technical concepts focusing on next generation plants, i.e. designs to be available for industrial application until the end of this decade. 1 tab. (author)

  10. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature...... swing in a short cycle period and to change the temperature cycle period easily. Thanks to a short temperature cycle period, test results can be obtained in a reasonable test time. A detailed explanation of apparatus such as configuration and control methods for the different functions of accelerated...

  11. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  12. Concept for a power system controller for large space electrical power systems

    Science.gov (United States)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  13. Advance in technologies of electric power in 2008

    International Nuclear Information System (INIS)

    Hamada, Kenichi; Maekawa, Fumiaki; Nakamura, Akio

    2008-01-01

    Ten electric power companies and two related companies reported their advance in technologies. The technologies of nuclear power plants were stated by ten companies, which consisted of introduction of new main control board to Tomari-3 in Hokkaido Electric Power Co., Inc., reduction methods of exposure dose of Higashidori-1 in Tohoku Electric Power, hot water based two-phase flow testing device for pipe thinning test by Tokyo Electric Power Company, Guideline for prevention of piping damage caused by combustion of mixture gases in BWR (the second edition) published by Thermal and Nuclear Power Engineering Society, setting up distributor in the low-pressure turbine of Shika-2 in Hokuriku Electric Power Company, development of rapid estimation method of release radioactivity and application of high density neutron source to nuclear transmutation of nuclear fuel cycle and introduction of new core monitor system by The Kansai Electric Power Co., Inc., upgrade of investigation of the effects of hot waste water and development of detector for dropout parts of cooling system in reactor by Shikoku Electric Power Co., Inc., change of transformer in Sendai-1 by Kyushu Electric Power Co., Inc., and reactor core design for Oma ABWR by J-Power. The Japan Atomic Power Company reported four articles such as development of technologies for established nuclear power plants, promotion of Tsuruga-3 and Tsuruga-4, application of clearance system in Japan and development of future reactors. (S.Y.)

  14. Advanced construction methods for new nuclear power plants

    International Nuclear Information System (INIS)

    Bilbao y Leon, Sama; Cleveland, John; Moon, Seong-Gyun; Tyobeka, Bismark

    2009-01-01

    The length of the construction and commissioning phases of nuclear power plants have historically been longer than for conventional fossil fuelled plants, often having a record of delays and cost overruns as a result from several factors including legal interventions and revisions of safety regulations. Recent nuclear construction projects however, have shown that long construction periods for nuclear power plants are no longer the norm. While there are several inter-related factors that influence the construction time, the use of advanced construction techniques has contributed significantly to reducing the construction length of recent nuclear projects. (author)

  15. Advanced solutions in power systems HVDC, facts, and artificial intelligence

    CERN Document Server

    Liu, Chen-Ching; Edris, Abdel-Aty

    2016-01-01

    Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements.

  16. Advanced digital computers, controls, and automation technologies for power plants: Proceedings

    International Nuclear Information System (INIS)

    Bhatt, S.C.

    1992-08-01

    This document is a compilation of the papers that were presented at an EPRI workshop on Advances in Computers, Controls, and Automation Technologies for Power Plants. The workshop, sponsored by EPRI's Nuclear Power Division, took place February 1992. It was attended by 157 representatives from electric utilities, equipment manufacturers, engineering consulting organizations, universities, national laboratories, government agencies and international utilities. More than 40% of the attendees were from utilities representing the majority group. There were 30% attendees from equipment manufacturers and the engineering consulting organizations. The participants from government agencies, universities, and national laboratories were about 10% each. The workshop included a keynote address, 35 technical papers, and vendor's equipment demonstrations. The technical papers described the state-of-the-art in the areas of recent utility digital upgrades such as digital feedwater controllers, steam generator level controllers, integrated plant computer systems, computer aided diagnostics, automated testing and surveillance and other applications. A group of technical papers presented the ongoing B ampersand W PWR integrated plant control system prototype developments with the triple redundant advanced digital control system. Several international papers from France, Japan and U.K. presented their programs on advance power plant design and applications. Significant advances in the control and automation technologies such as adaptive controls, self-tuning methods, neural networks and expert systems were presented by developers, universities, and national laboratories. Individual papers are indexed separately

  17. Studies on environment safety and application of advanced reactor for inland nuclear power plants

    International Nuclear Information System (INIS)

    Wei, L.; Jie, L.

    2014-01-01

    To study environment safety assessment of inland nuclear power plants (NPPs), the impact of environment safety under the normal operation was researched and the environment risk of serious accidents was analyzed. Moreover, the requirements and relevant provisions of site selection between international nuclear power plant and China's are comparatively studied. The conclusion was that the environment safety assessment of inland and coastal nuclear power plant have no essential difference; the advanced reactor can meet with high criteria of environment safety of inland nuclear power plants. In this way, China is safe and feasible to develop inland nuclear power plant. China's inland nuclear power plants will be as big market for advanced reactor. (author)

  18. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  19. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  20. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  1. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  2. Large-scale Wind Power integration in a Hydro-Thermal Power Market

    OpenAIRE

    Trøtscher, Thomas

    2007-01-01

    This master thesis describes a quadratic programming model used to calculate the spot prices in an efficient multi-area power market. The model has been adapted to Northern Europe, with focus on Denmark West and the integration of large quantities of wind power. In the model, demand and supply of electricity are equated, at an hourly time resolution, to find the spot price in each area. Historical load values are used to represent demand which is assumed to be completely inelastic. Supply i...

  3. Analysis for Large Scale Integration of Electric Vehicles into Power Grids

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Xiaoru

    2011-01-01

    Electric Vehicles (EVs) provide a significant opportunity for reducing the consumption of fossil energies and the emission of carbon dioxide. With more and more electric vehicles integrated in the power systems, it becomes important to study the effects of EV integration on the power systems......, especially the low and middle voltage level networks. In the paper, the basic structure and characteristics of the electric vehicles are introduced. The possible impacts of large scale integration of electric vehicles on the power systems especially the advantage to the integration of the renewable energies...... are discussed. Finally, the research projects related to the large scale integration of electric vehicles into the power systems are introduced, it will provide reference for large scale integration of Electric Vehicles into power grids....

  4. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    Science.gov (United States)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  5. Wind Power: Building and Connecting Large Wind Power Plants; Vindkraft: bygga och ansluta stoerre vindkraftverk

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    This brochure is written for those who want to build a large wind power plant (1 MW or more) or wind power parks. It describes the process from idea to completed plant. A review of environmental impacts of wind power is also included

  6. Holistic safety analysis for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Guimaraes, A.C.F.

    1992-01-01

    This paper reviews the basic methodology of safety analysis used in the ANGRA-I and ANGRA-II nuclear power plants, its weaknesses, the problems with public acceptance of the risks, the future of the nuclear energy in Brazil, as well as recommends a new methodology, HOLISTIC SAFETY ANALYSIS, to be used both in the design and licensing phases, for advanced reactors. (author)

  7. Advancements of ultra-high peak power laser diode arrays

    Science.gov (United States)

    Crawford, D.; Thiagarajan, P.; Goings, J.; Caliva, B.; Smith, S.; Walker, R.

    2018-02-01

    Enhancements of laser diode epitaxy in conjunction with process and packaging improvements have led to the availability of 1cm bars capable of over 500W peak power at near-infrared wavelengths (770nm to 1100nm). Advances in cooler design allow for multi-bar stacks with bar-to-bar pitches as low as 350μm and a scalable package architecture enabled a single diode assembly with total peak powers of over 1MegaWatt of peak power. With the addition of micro-optics, overall array brightness greater than 10kW/cm2 was achieved. Performance metrics of barbased diode lasers specifically engineered for high peak power and high brightness at wavelengths and pulse conditions commonly used to pump a variety of fiber and solid-state materials are presented.

  8. Advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Masui, Takao; Naito, Norio; Kato, Kanji.

    1990-01-01

    Recent development of artificial intelligence(AI) seems to offer new possibility to strengthen the performance of the operator support system. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plant (MMS-NPP) has been carried out since 1984 as 8-year project. This project aims at establishing advanced operator support functions which support operators in their knowledge-based behaviors and smoother interface with the system. This paper describes the role of MMS-NPP, the support functions and the main feature of the MMS-NPP detailed design with its focus placed on the realization methods using AI technology of the support functions for BWR and PWR plants. (author)

  9. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...

  10. Research on a Small Signal Stability Region Boundary Model of the Interconnected Power System with Large-Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Wenying Liu

    2015-03-01

    Full Text Available For the interconnected power system with large-scale wind power, the problem of the small signal stability has become the bottleneck of restricting the sending-out of wind power as well as the security and stability of the whole power system. Around this issue, this paper establishes a small signal stability region boundary model of the interconnected power system with large-scale wind power based on catastrophe theory, providing a new method for analyzing the small signal stability. Firstly, we analyzed the typical characteristics and the mathematic model of the interconnected power system with wind power and pointed out that conventional methods can’t directly identify the topological properties of small signal stability region boundaries. For this problem, adopting catastrophe theory, we established a small signal stability region boundary model of the interconnected power system with large-scale wind power in two-dimensional power injection space and extended it to multiple dimensions to obtain the boundary model in multidimensional power injection space. Thirdly, we analyzed qualitatively the topological property’s changes of the small signal stability region boundary caused by large-scale wind power integration. Finally, we built simulation models by DIgSILENT/PowerFactory software and the final simulation results verified the correctness and effectiveness of the proposed model.

  11. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    International Nuclear Information System (INIS)

    Chen Junjie; Li Guoqiang; Qian Jinping; Liu Zixi

    2012-01-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta β N limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power P t increases as the toroidal magnetic field B T or the normalized beta β N is increased. (magnetically confined plasma)

  12. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    Science.gov (United States)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  13. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  14. AVATAR: AdVanced Aerodynamic Tools for lArge Rotors

    DEFF Research Database (Denmark)

    Schepers, J.C.; Ceyhan, O.; Savenije, F.J.

    2015-01-01

    An EERA (European Energy Research Alliance) consortium started an ambitious EU FP7 project AVATAR (AdVanced Aerodynamic Tools of lArge Rotors) in November 2013. The project lasts 4 years and is carried out in a consortium with 11 research institutes and two industry partners. The motivation...

  15. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    International Nuclear Information System (INIS)

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin; Dasari, Venkateswara Rao

    2016-01-01

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  16. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  17. The Large Customer Reactive Power Control Possibilities

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2014-03-01

    Full Text Available In this paper the authors wish to draw attention to the rationale for, and the possibility of, the use of local reactive power sources by the Transmission Node Master Controller (TNMC. Large Customers (LC are one of the possible reactive power sources. The paper presents the issues related to the need for coordination between the control systems installed in the LC network, and coordination between control systems of the LC as well as master control systems in the network.

  18. A large-eddy simulation based power estimation capability for wind farms over complex terrain

    Science.gov (United States)

    Senocak, I.; Sandusky, M.; Deleon, R.

    2017-12-01

    There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.

  19. Study of advanced fission power reactor development for the United States. Volume I

    International Nuclear Information System (INIS)

    1976-01-01

    This volume summarizes the results and conclusions of an assessment of five advanced fission power reactor concepts in the context of potential nuclear power economies developed over the time period 1975 to 2020. The study was based on the premise that the LMFBR program has been determined to be the highest priority fission reactor program and it will proceed essentially as planned. Accepting this fact, the overall objective of the study was to provide evaluations of advanced fission reactor systems for input to evaluating the levels of research and development funding for fission power. Evaluation of the reactor systems included the following categories: (1) power plant performance, (2) fuel resource utilization; (3) fuel-cycle requirements; (4) economics; (5) environmental impact; (6) risk to the public; and (7) R and D requirements to achieve commercial status. The specific major objectives of the study were twofold: (1) to parametrically assess the impact of various reactor types for various levels of power demand through the year 2020 on fissile fuel utilization, economics, and the environment, based on varying but reasonable assumptions on the rates of installation; and (2) to qualitatively assess the practicality of the advanced reactor concepts, and their research and development. The reactor concepts examined were limited to the following: advanced high-temperature, gas-cooled reactor (HTGR) systems including the thorium/U-233 fuel cycle, gas turbine, and binary cycle (BIHTGR); gas-cooled fast breeder reactor (GCFR); molten salt breeder reactor (MSBR); light water breeder reactor (LWBR); and CANDU heavy water reactor

  20. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  1. SPV Analysis of CEDMCS in Advanced Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Arigi M.; Emmanuel, Efenji A. Emmanuel; Faragalla, Mohamed M.; Lee, Yong-kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Single Point Vulnerability (SPV) is a component whose failure would directly cause an automatic or manual reactor scram or turbine trip. Although some power plants do not consider the cause of any reduction in power as SPV, others consider components that cause a reduction in power of as low as 2% as SPV. The Control Element Drive Mechanism Control System (CEDMCS) controls and regulates power supplied to drive the control rods with the Control Element Drive Mechanism (CEDM). A 4-coil CEDM is used in the newly built Advanced Power Reactor (APR) 1400 plant, while a new CEDMCS for 3-coil CEDM has been designed to be deployed to another APR1400 plant. This paper shows an approach to evaluate the SPVs that may be available in either of these two systems. System A design has employed a fail-safe concept to its design with less redundancies while System B design provides redundancy and design change although this comes at a high price for the Utility. The System B design has improved reliability but not necessarily eliminating the SPV items. Naturally, the cost of a new redundant system will be more. However, future work will examine the economic effect of the new system considering the operating experiences of power plants on the CEDMCS (i.e. SCRAM rates and power outage cost)

  2. Integrated environmental control concepts for advanced power systems

    International Nuclear Information System (INIS)

    Rubin, E.S.; Kalagnanam, J.R.; Berkenpas, M.B.

    1996-01-01

    For both conventional and advanced power systems, the capability to estimate the performance and cost of environmental control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. This paper describes a computer model developed for the U.S. Department of Energy (USDOE) to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique feature of the model allows performance and costs of integrated environmental control concepts to be modeled probabilistically as a means of characterizing uncertainties and risks. Examples are presented of model applications comparing conventional and advanced emission control designs. 13 refs, 6 figs, 5 tabs

  3. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  4. A report of the overall working group of the AEC Committee on Development of Advanced Power Reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The AEC Committee on Development of Advanced Power Reactors was set up in April, 1978, following on the previous AEC Special Committee on Development of Advanced Power Reactors, in order to study on the complementary power reactors between current LWRs and future FBRs. The subjects of study by the overall working group are the status of advanced power reactors in views of the nuclear fuel cycle, the impacts on industries, the selection of reactor types under present international circumstances, and the evaluation of advanced power reactors in their technology and economy. The following matters are described: evaluations in view of the nuclear fuel cycle, i.e. the features of the ATR of Japan and CANDU reactors of Canada; international problems concerning nuclear nonproliferation and securing of uranium; problems in the diversification of power reactor types concerning the expenditure and technology; problems of technology in the ATR of Japan, CANDU reactors of Canada and Pu utilization for LWRs; and the economy of D 2 O power reactors, i.e. the ATR of Japan and CANDU reactors of Canada. (J.P.N.)

  5. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  6. Interagency Advanced Power Group (IAPG) meeting compendium. October 1991--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Under the direction of the Interagency Advanced Power Group (IAPG), the Power Information Center (PIC) provides support services for each IAPG information exchange session. IAPG members meet a minimum of once each year to share programmatic and technical information on federally funded research and development (R&D) projects in the area of advanced power. This R&D is directed by one of the five IAPG member agencies-the US Army, US Navy, US Air Force, US Department of Energy, and the National Aeronautics and Space Administration. Affiliated Federal groups and federally funded research and development centers can also participate. To enhance the exchange of information between Government researchers, this 1992 IAPG Meeting Compendium has been assembled. This publication is a re-printing of abstracts of each IAPG presentation offered during 1991-1992. The information is arranged chronologically by IAPG meeting. During the 1992 IAPG meeting year, there were presentations restricted to Government audiences only. These ``Restricted`` minutes have not been included in this compilation.

  7. Transient Stability Assessment of Power System with Large Amount of Wind Power Penetration

    DEFF Research Database (Denmark)

    Liu, Leo; Chen, Zhe; Bak, Claus Leth

    2012-01-01

    Recently, the security and stability of power system with large amount of wind power are the concerned issues, especially the transient stability. In Denmark, the onshore and offshore wind farms are connected to distribution system and transmission system respectively. The control and protection...... methodologies of onshore and offshore wind farms definitely affect the transient stability of power system. In this paper, the onshore and offshore wind farms are modeled in detail in order to assess the transient stability of western Danish power system. Further, the computation of critical clearing time (CCT...... plants, load consumption level and high voltage direct current (HVDC) transmission links are taken into account. The results presented in this paper are able to provide an early awareness of power system security condition of the western Danish power system....

  8. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  9. PowerPivot for advanced reporting and dashboards

    CERN Document Server

    Bosco, Robert

    2013-01-01

    A step-by-step tutorial with focused examples that builds progressively from basic to advanced topics and helps you create business intelligence reports and dashboards quickly and efficiently using the PowerPivot add-in.This book is ideal for data analysts, reporting and MIS professionals, business analysts, managers, dashboard makers, business intelligence professionals, self-service business intelligence personnel, and students. It is assumed that you have basic data analysis skills and intermediate level Excel skills. Familiarity with Pivot Tables as well as basic knowledge of VBA scripting

  10. The place of the large electric power consumers in the electric power liberalised market

    International Nuclear Information System (INIS)

    Pavlov, Risto; Chogelja, Goran

    2001-01-01

    In this paper the basic rules of the EC Directive 96/92 of the EU are given. The implementation of the Directive into the Macedonian legislation is analysed. Also, the Directive's influence on the both large electric power consumers and the Macedonian Power System itself is presented

  11. Dual Decomposition for Large-Scale Power Balancing

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus; Jørgensen, John Bagterp; Vandenberghe, Lieven

    2013-01-01

    Dual decomposition is applied to power balancing of exible thermal storage units. The centralized large-scale problem is decomposed into smaller subproblems and solved locallyby each unit in the Smart Grid. Convergence is achieved by coordinating the units consumption through a negotiation...

  12. Advances in in vivo EPR Tooth Biodosimetry: Meeting the targets for initial triage following a large-scale radiation event

    International Nuclear Information System (INIS)

    Flood, Ann Barry; Schreiber, Wilson; Du, Gaixin; Wood, Victoria A.; Kmiec, Maciej M.; Petryakov, Sergey V.; Williams, Benjamin B.; Swartz, Harold M.; Demidenko, Eugene; Boyle, Holly K.; Dong, Ruhong; Geimer, Shireen; Jarvis, Lesley A.; Kobayashi, Kyo; Nicolalde; Roberto, J.; Crist, Jason; Gupta, Ankit; Raynolds, Timothy; Brugger, Spencer; Budzioh, Pawel; Carr, Brandon; Feldman, Matthew; Gimi, Barjor; Grinberg, Oleg; Krymov, Vladimir; Lesniewski, Piotr; Mariani, Michael; Meaney, Paul M.; Rychert, Kevin M.; Salikhov, Ildar; Tipikin, Dmitriy S.; Tseytlin, Mark; Edwards, Brian R.; Herring, Christopher D.; Lindsay, Catherine; Rosenbaum, Traci; Ali, Arif; Carlson, David; Froncisz, Wojciech; Hirata, Hiroshi; Sidabras, Jason; Swarts, Steven G.

    2016-01-01

    Several important recent advances in the development and evolution of in vivo Tooth Biodosimetry using Electron Paramagnetic Resonance (EPR) allow its performance to meet or exceed the U.S. targeted requirements for accuracy and ease of operation and throughput in a large-scale radiation event. Ergonomically based changes to the magnet, coupled with the development of rotation of the magnet and advanced software to automate collection of data, have made it easier and faster to make a measurement. From start to finish, measurements require a total elapsed time of 5 min, with data acquisition taking place in less than 3 min. At the same time, the accuracy of the data for triage of large populations has improved, as indicated using the metrics of sensitivity, specificity and area under the ROC curve. Applying these standards to the intended population, EPR in vivo Tooth Biodosimetry has approximately the same diagnostic accuracy as the purported 'gold standard' (dicentric chromosome assay). Other improvements include miniaturisation of the spectrometer, leading to the creation of a significantly lighter and more compact prototype that is suitable for transporting for Point of Care (POC) operation and that can be operated off a single standard power outlet. Additional advancements in the resonator, including use of a disposable sensing loop attached to the incisor tooth, have resulted in a biodosimetry method where measurements can be made quickly with a simple 5-step workflow and by people needing only a few minutes of training (which can be built into the instrument as a training video). In sum, recent advancements allow this prototype to meet or exceed the US Federal Government's recommended targets for POC biodosimetry in large-scale events. (authors)

  13. Grid Support in Large Scale PV Power Plants using Active Power Reserves

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut

    to validate the performance of the frequency support functions, a flexible grid model with IEEE 12 bus system characteristics has been developed and implemented in RTDS. A power hardware-in-the-loop (PHIL) system composed by 20 kW plant (2 x 10 kW inverters and PV linear simulator) and grid simulator (RTDS......Photovoltaic (PV) systems are in the 3rd place in the renewable energy market, after hydro and wind power. The increased penetration of PV within the electrical power system has led to stability issues of the entire grid in terms of its reliability, availability and security of the supply....... As a consequence, Large scale PV Power Plants (LPVPPs) operating in Maximum Power Point (MPP) are not supporting the electrical network, since several grid triggering events or the increased number of downward regulation procedures have forced European Network of Transmission System Operators for Electricity...

  14. Implicit Particle Filter for Power System State Estimation with Large Scale Renewable Power Integration.

    Science.gov (United States)

    Uzunoglu, B.; Hussaini, Y.

    2017-12-01

    Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.

  15. SELECTIVE MODAL ANALYSIS OF POWER FLOW OSCILLATION IN LARGE SCALE LONGITUDINAL POWER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Wirindi -

    2009-06-01

    Full Text Available Novel selective modal analysis for the determination of low frequency power flow oscillation behaviour based on eigenvalues with corresponding damping ratio, cumulative damping index, and participation factors is proposed. The power system being investigated consists of three large longitudinally interconnected areas with some weak tie lines. Different modes, such as exciter modes, inter area modes, and local modes of the dominant poles are fully studied to find out the significant level of system damping and other factors producing power flow instability. The nature of the energy exchange between area is determined and strategic power flow stability improvement is developed and tested.

  16. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation.

    Science.gov (United States)

    Kececioglu, O Fatih; Acikgoz, Hakan; Sekkeli, Mustafa

    2016-01-01

    Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. Simulation results show that performance of reactive power and harmonic compensation with advanced hybrid passive filter is better than conventional hybrid passive filters.

  17. Interagency advanced power group: Semi-annual compilation of briefs, March 1993

    International Nuclear Information System (INIS)

    1993-03-01

    The Government Research and Development Summaries now available from NTIS are project briefs prepared by the Interagency Advanced Power Group (IAPG). They describe the status of all programs in the fields of advanced power research, development and engineering. Members of the IAPG are the U.S. Army, Navy, and Air Force, U.S. Department of Energy and the National Aeronautics and Space Administration (NASA). Their cooperative effort monitors government-funded research and development producing project briefs in the following working groups: Chemical; Electrical; Magnetohydrodynamic; Mechanical, Nuclear, TE, TI; Solar; and Systems. Each project brief contains title; project description; contract number, period, probable completion date and funding; principle investigator name and telephone number; contractor name and address; directing agency; and index terms

  18. FY2009 Annual Progress Report for Advanced Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States)

    2010-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency.

  19. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  20. Synthesis on power electronics for large fuel cells: From power conditioning to potentiodynamic analysis technique

    International Nuclear Information System (INIS)

    De Bernardinis, Alexandre

    2014-01-01

    Highlights: • Active load for fuel cell managing electrical drive constraints: frequency and current ripple can be adjusted independently. • Multi-port resonant soft-switched topology for power management of a thirty kilowatt segmented PEM fuel cell. • Splitting current control strategy for power segmented PEM fuel cell in case of a segment is under fault. • Reversible Buck topology for large fuel cell with control of the fuel cell potential linked to current density nonlinearity. - Abstract: The work addressed in this paper deals with a synthesis on power electronic converters used for fuel cells. The knowledge gap concerns conceptually different electronic converter architectures for PEM (Proton Exchange Membrane) fuel cells able to perform three types of functionalities: The first one is the capacity of emulating an active load representative of electrical drive constraints. In that case, frequency and fuel cell current ripple can be set independently to investigate the dynamic behavior of the fuel cell. The second one is power conditioning applied to large high power and segmented fuel cell systems (“Large” represents several tens of cells and multi-kilowatt stacks), which is a non trivial consideration regarding the topological choices to be made for improving efficiency, compactness and ensure operation under faulty condition. A multi-port resonant isolated boost topology is analyzed enabling soft switching over a large operating range for a thirty kilowatt segmented fuel cell. A splitting current control strategy in case of a segment is under fault is proposed. Each considered converter topologies meet specific constraints regarding fuel cell stack design and power level. The third functionality is the ability for the power electronics to perform analysis and diagnosis techniques, like the cyclic voltammetry on large PEM fuel cell assemblies. The latter technique is an uncommon process for large fuel cell stacks since it is rather performed on

  1. Large Core Three Branch Polymer Power Splitters

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2015-12-01

    Full Text Available We report about three branch large core polymer power splitters optimized for connecting standard plastic optical fibers. A new point of the design is insertion of a rectangle-shaped spacing between the input and the central part of the splitter, which will ensure more even distribution of the output optical power. The splitters were designed by beam propagation method using BeamPROP software. Acrylic-based polymers were used as optical waveguides being poured into the Y-grooves realized by computer numerical controlled engraving on poly(methyl methacrylate substrate. Measurement of the optical insertion losses proved that the insertion optical loss could be lowered to 2.1 dB at 650 nm and optical power coupling ratio could reach 31.8% : 37.3% : 30.9%.

  2. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

    2014-06-01

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  3. Hydroelectric power in Switzerland: large growth potential by increasing the installed power

    International Nuclear Information System (INIS)

    Schleiss, A.

    2007-01-01

    Due to its important hydroelectric power generation facilities (about 525 plants with a total power of 13,314 MW producing about 35.3 TWh annually) Switzerland plays an important role in the interconnected European power system. Large artificial storage lakes in the Swiss Alps can generate peak power during hours of highest demand: 9700 MW are available from accumulated energy and the total power of pumped-storage facilities amounts to 1700 MW. The latter allow refilling the reservoirs at periods of low power demand and generating power at periods of peak demand. In the case of favorable conditions, the yearly average power production could be increased by 6% and the production during the winter period (October to March) by 20% by the year 2020. However, looking forward to the year 2050, the annual production is expected to decrease by 3% despite a possible extension of hydropower. This decrease is due to the enforcement of the minimum residual water flow rates required by a new legislation to protect the rivers. The enforcement is due at latest when the present licenses for water utilization expire. On the other hand, the installed (peak) power might be further increased by 50% by retrofitting the existing installations and constructing the pumped-storage plants currently at the planning stage

  4. Efficient Approach for Harmonic Resonance Identification of Large Wind Power Plants

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2016-01-01

    Unlike conventional power systems where the resonance frequencies are mainly determined by the passive components parameters, large Wind Power Plants (WPPs) may introduce additional harmonic resonances because of the interactions of the wideband control systems of power converters with each other...... and with passive components. This paper presents an efficient approach for identification of harmonic resonances in large WPPs containing power electronic converters, cable, transformer, capacitor banks, shunt reactors, etc. The proposed approach introduces a large WPP as a Multi-Input Multi-Output (MIMO) control...... system by considering the linearized models of the inner control loops of grid-side converters. Therefore, the resonance frequencies of the WPP resulting from passive components and the control loop interactions are identified based on the determinant of the transfer function matrix of the introduced...

  5. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  6. Development and application of automatic frequency and power control systems for large power units

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Bilenko; A.D. Melamed; E.E. Mikushevich; D.Y. Nikol' skii; R.L. Rogachev; N.A. Romanov [ZAO Interavtomatika (Interautomatika AG), Moscow (Russian Federation)

    2008-07-01

    We describe the results of work carried out at ZAO Interavtomatika on the development and putting into use of a system for automatically controlling the frequency and power output of large coal-fired power units involving the retrofitting of the turbine's hydraulic automatic control system. Certificates affirming conformity to the Standard of the System Operator Centralized Dispatching Administration (SO-CDA) have been received for eight power units as an outcome of these efforts.

  7. A Doherty Power Amplifier with Large Back-Off Power Range Using Integrated Enhancing Reactance

    Directory of Open Access Journals (Sweden)

    Wa Kong

    2018-01-01

    Full Text Available A symmetric Doherty power amplifier (DPA based on integrated enhancing reactance (IER was proposed for large back-off applications. The IER was generated using the peaking amplifier with the help of a desired impedance transformation in the low-power region to enhance the back-off efficiency of the carrier amplifier. To convert the impedances properly, both in the low-power region and at saturation, a two-impedance matching method was employed to design the output matching networks. For verification, a symmetric DPA with large back-off power range over 2.2–2.5 GHz was designed and fabricated. Measurement results show that the designed DPA has the 9 dB back-off efficiency of higher than 45%, while the saturated output power is higher than 44 dBm over the whole operation bandwidth. When driven by a 20 MHz LTE signal, the DPA can achieve good average efficiency of around 50% with adjacent channel leakage ratio of about –50 dBc after linearization over the frequency band of interest. The linearity improvement of the DPA for multistandard wireless communication system was also verified with a dual-band modulated signal.

  8. Mac OS X Snow Leopard for Power Users Advanced Capabilities and Techniques

    CERN Document Server

    Granneman, Scott

    2010-01-01

    Mac OS X Snow Leopard for Power Users: Advanced Capabilities and Techniques is for Mac OS X users who want to go beyond the obvious, the standard, and the easy. If want to dig deeper into Mac OS X and maximize your skills and productivity using the world's slickest and most elegant operating system, then this is the book for you. Written by Scott Granneman, an experienced teacher, developer, and consultant, Mac OS X for Power Users helps you push Mac OS X to the max, unveiling advanced techniques and options that you may have not known even existed. Create custom workflows and apps with Automa

  9. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  10. Nuclear spectroscopy in large shell model spaces: recent advances

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  11. Technology developments for ACIGA high power test facility for advanced interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  12. Technology developments for ACIGA high power test facility for advanced interferometry

    International Nuclear Information System (INIS)

    Barriga, P; Barton, M; Blair, D G

    2005-01-01

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with ∼200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented

  13. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  14. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Bock, H.W.; Graf, A.; Hofmann, H.

    1997-01-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are a clear task related architecture with adaptable redundancy, a consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all function to initiated automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, advanced and likewise economical plant automation and man-machine-interfaces can be implemented into Nuclear Power Plant, assuring compliance with the relevant international safety standards. (author). 10 figs

  15. Advanced I and C systems for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bock, H W; Graf, A; Hofmann, H [Siemens AG, Erlangen (Germany)

    1997-07-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are a clear task related architecture with adaptable redundancy, a consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all function to initiated automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, advanced and likewise economical plant automation and man-machine-interfaces can be implemented into Nuclear Power Plant, assuring compliance with the relevant international safety standards. (author). 10 figs.

  16. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    Science.gov (United States)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  17. Research on trading patterns of large users' direct power purchase considering consumption of clean energy

    Science.gov (United States)

    Guojun, He; Lin, Guo; Zhicheng, Yu; Xiaojun, Zhu; Lei, Wang; Zhiqiang, Zhao

    2017-03-01

    In order to reduce the stochastic volatility of supply and demand, and maintain the electric power system's stability after large scale stochastic renewable energy sources connected to grid, the development and consumption should be promoted by marketing means. Bilateral contract transaction model of large users' direct power purchase conforms to the actual situation of our country. Trading pattern of large users' direct power purchase is analyzed in this paper, characteristics of each power generation are summed up, and centralized matching mode is mainly introduced. Through the establishment of power generation enterprises' priority evaluation index system and the analysis of power generation enterprises' priority based on fuzzy clustering, the sorting method of power generation enterprises' priority in trading patterns of large users' direct power purchase is put forward. Suggestions for trading mechanism of large users' direct power purchase are offered by this method, which is good for expand the promotion of large users' direct power purchase further.

  18. Proceedings of 2009 international congress on advances in nuclear power plants

    International Nuclear Information System (INIS)

    2009-01-01

    This CD-ROM is the collection of the paper presented at the 2009 International Congress on Advances in Nuclear Power Plants (ICAPP'09) . The 365 of the presented papers are indexed individually. (J.P.N.)

  19. Advanced I and C systems for nuclear power plants feedback of experience

    International Nuclear Information System (INIS)

    Prehler, H.J.

    2001-01-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS.(author)

  20. A large capacity turbine generator for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Susumu; Miki, Takahiro; Suzuki, Kazuichi

    2000-01-01

    In future large capacity nuclear power plant, capacity of a generator to be applied will be 1800 MVA of the largest class in the world. In response to this, the Mitsubishi Electric Co., Ltd. began to carry out element technology verification of a four-pole large capacity turbine generator mainly using upgrading technique of large capacity, since 1994 fiscal year. And, aiming at reliability verification of the 1800 MVA class generator, a model generator with same cross-section as that of an actual one was manufactured, to carry out some verifications on its electrified tests, and so on. Every performance evaluation result of tests on the model generator were good, and high reliability to design and manufacturing technique of the 1800 MVA class generator could be verified. In future, on the base of these technologies, further upgrading of reliability on the large capacity turbine generator for nuclear power generation is intended to be carried out. (G.K.)

  1. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  2. Advanced power cycler with intelligent monitoring strategy of IGBT module under test

    DEFF Research Database (Denmark)

    Choi, U. M.; Blaabjerg, F.; Iannuzzo, F.

    2017-01-01

    and diode, which for the wear-out condition monitoring are presented. This advanced power cycler allows to perform power cycling test cost-effectively under conditions close to real power converter applications. In addition, an intelligent monitoring strategy for the separation of package-related wear......-out failure mechanisms has been proposed. By means of the proposed method, the wear-out failure mechanisms of an IGBT module can be separated without any additional efforts during the power cycling tests. The validity and effectiveness of the proposed monitoring strategy are also verified by experiments....

  3. Pushing the boundaries of high power lasers: low loss, large area CVD diamond

    Science.gov (United States)

    Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard

    2018-02-01

    Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.

  4. 77 FR 53177 - Large Power Transformers From the Republic of Korea: Antidumping Duty Order

    Science.gov (United States)

    2012-08-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-867] Large Power Transformers... Commission (ITC), the Department is issuing an antidumping duty order on large power transformers from the... determination of sales at less than fair value in the antidumping duty investigation of large power transformers...

  5. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  6. Advanced Instrumentation and control techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Mori, Nobuyuki; Makino, Maomi; Naito, Norio

    1992-01-01

    Toshiba has been promoting the development of an advanced instrumentation and control system for nuclear power plants to fulfill the requirements for increased reliability, improved functionality and maintainability, and more competitive economic performance. This system integrates state-of-the-art technologies such as those for the latest man-machine interface, digital processing, optical multiplexing signal transmission, human engineering, and artificial intelligence. Such development has been systematically accomplished based on a schematic view of integrated digital control and instrumentation systems, and the development of whole systems has now been completed. This paper describes the purpose, design philosophy, and contents of newly developed systems, then considers the future trends of advanced man-machine systems. (author)

  7. Just enough inflation. Power spectrum modifications at large scales

    International Nuclear Information System (INIS)

    Cicoli, Michele; Downes, Sean

    2014-07-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50-60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-l, and so seem disfavoured by recent observational hints for a lack of CMB power at l< or similar 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  8. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  9. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    Harvego, Edwin A.; McKellar, Michael G.; O'Brien, James E.; Herring, J. Stephen

    2009-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  10. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  11. Dynamic modeling, simulation and control design of an advanced micro-hydro power plant for distributed generation applications

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, J.L. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste 1109, J5400ARL San Juan (Argentina); Pacas, J.M. [Institut fuer Leistungselektronik und Elektrische Antriebe, Universitaet Siegen, Fachbereich 12 Hoelderlinstr 3, D 57068 Siegen (Germany)

    2010-06-15

    A small-scale hydropower station is usually a run-of-river plant that uses a fixed speed drive with mechanical regulation of the turbine water flow rate for controlling the active power generation. This design enables to reach high efficiency over a wide range of water flows but using a complex operating mechanism, which is in consequence expensive and tend to be more affordable for large systems. This paper proposes an advanced structure of a micro-hydro power plant (MHPP) based on a smaller, lighter, more robust and more efficient higher-speed turbine. The suggested design is much simpler and eliminates all mechanical adjustments through a novel electronic power conditioning system for connection to the electric grid. In this way, it allows obtaining higher reliability and lower cost of the power plant. A full detailed model of the MHPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed MHPP is validated through digital simulations and employing a small-scale experimental set-up. (author)

  12. Distributed and hierarchical control techniques for large-scale power plant systems

    International Nuclear Information System (INIS)

    Raju, G.V.S.; Kisner, R.A.

    1985-08-01

    In large-scale systems, integrated and coordinated control functions are required to maximize plant availability, to allow maneuverability through various power levels, and to meet externally imposed regulatory limitations. Nuclear power plants are large-scale systems. Prime subsystems are those that contribute directly to the behavior of the plant's ultimate output. The prime subsystems in a nuclear power plant include reactor, primary and intermediate heat transport, steam generator, turbine generator, and feedwater system. This paper describes and discusses the continuous-variable control system developed to supervise prime plant subsystems for optimal control and coordination

  13. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    Science.gov (United States)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  14. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    Science.gov (United States)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  15. Electric vehicles to support large wind power penetration in future danish power systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte; Thøgersen, Paul

    2012-01-01

    Electric Vehicles (EVs) could play major role in the future intelligent grids to support a large penetration of renewable energy in Denmark, especially electricity production from wind turbines. The future power systems aims to phase-out big conventional fossil-fueled generators with large number...... on low voltage residential networks. Significant amount of EVs could be integrated in local distribution grids with the support of intelligent grid and smart charging strategies....

  16. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  17. Advances in pulsed-power-driven radiography system design

    International Nuclear Information System (INIS)

    Portillo, Salvador; Hinshelwood, David D.; Rovang, Dean Curtis; Cordova, Steve Ray; Oliver, Bryan Velten; Weber, Bruce V.; Welch, Dale Robert; Shelton, Bradley Allen; Sceiford, Matthew E.; Cooperstein, Gerald; Gignac, Raymond Edward; Puetz, Elizabeth A.; Rose, David Vincent; Barker, Dennis L.; Van De Valde, David M.; Droemer, Darryl W.; Wilkins, Frank Lee; Molina, Isidro; Jaramillo, Deanna M.; Swanekamp, Stephen Brian; Commisso, Robert J.; Bailey, Vernon Leslie; Maenchen, John Eric; Johnson, David Lee; Griffin, Fawn A.; Hahn, Kelly Denise; Smith, Ian

    2004-01-01

    Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

  18. Advances in commercial heavy water reactor power stations

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1987-01-01

    Generating stations employing heavy water reactors have now firmly established an enviable record for reliable, economic electricity generation. Their designers recognize, however, that further improvements are both possible and necessary to ensure that this reactor type remains attractively competitive with alternative nuclear power systems and with fossil-fuelled generation plants. This paper outlines planned development thrusts in a number of important areas, viz., capital cost reduction, advanced fuel cycles, safety, capacity factor, life extension, load following, operator aida, and personnel radiation exposure. (author)

  19. Transforming Power Systems; 21st Century Power Partnership

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-20

    The 21st Century Power Partnership - a multilateral effort of the Clean Energy Ministerial - serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with deep energy ef?ciency and smart grid solutions.

  20. Drivers Advancing Oral Health in a Large Group Dental Practice Organization.

    Science.gov (United States)

    Simmons, Kristen; Gibson, Stephanie; White, Joel M

    2016-06-01

    Three change drivers are being implemented to high standards of patient centric and evidence-based oral health care within the context of a large multispecialty dental group practice organization based on the commitment of the dental hygienist chief operating officer and her team. A recent environmental scan elucidated 6 change drivers that can impact the provision of oral health care. Practitioners who can embrace and maximize aspects of these change drivers will move dentistry forward and create future opportunities. This article explains how 3 of these change drivers are being applied in a privately held, accountable risk-bearing entity that provides individualized treatment programs for more than 417,000 members. To facilitate integration of the conceptual changes related to the drivers, a multi-institutional, multidisciplinary, highly functioning collaborative work group was formed. The document Dental Hygiene at a Crossroads for Change(1) inspired the first author, a dental hygienist in a unique position as chief operating officer of a large group practice, to pursue evidence-based organizational change and to impact the quality of patient care. This was accomplished by implementing technological advances including dental diagnosis terminology in the electronic health record, clinical decision support, standardized treatment guidelines, quality metrics, and patient engagement to improve oral health outcomes at the patient and population levels. The systems and processes used to implement 3 change drivers into a large multi-practice dental setting is presented to inform and inspire others to implement change drivers with the potential for advancing oral health. Technology implementing best practices and improving patient engagement are excellent drivers to advance oral health and are an effective use of oral health care dollars. Improved oral health can be leveraged through technological advances to improve clinical practice. Copyright © 2016 Elsevier Inc

  1. EPRI's nuclear power plant instrumentation and control program and its applicability to advanced reactors

    International Nuclear Information System (INIS)

    Naser, J.; Torok, R.; Wilkinson, D.

    1997-01-01

    I ampersand C systems in nuclear power plants need to be upgraded over the lifetime of the plant in a reliable and cost-effective manner to replace obsolete equipment, to reduce O ampersand M costs, to improve plant performance, and to maintain safety. This applies to operating plants now and will apply to advanced reactors in the future. The major drivers for the replacement of the safety, control, and information systems in nuclear power plants are the obsolescence of the existing hardware and the need for more cost-effective power production. Competition between power producers is dictating more cost-effective power production. The increasing O ampersand M costs to maintain systems experiencing obsolescence problems is counter to the needs for more cost-effective power production and improved competitiveness. This need for increased productivity applies to government facilities as well as commercial plants. Increasing competition will continue to be a major factor in the operation of both operating plants and advanced reactors. It will continue to dictate the need for improved productivity and cost-effectiveness. EPRI and its member nuclear utilities are working together on an industry wide I ampersand C Program to address I ampersand C issues and to develop cost-effective solutions. A majority of the I ampersand C products and demonstrations being developed under this program will benefit advanced reactors in both the design and operational phases of their life cycle as well as it will benefit existing plants. 20 refs

  2. Challenges and options for large scale integration of wind power

    International Nuclear Information System (INIS)

    Tande, John Olav Giaever

    2006-01-01

    Challenges and options for large scale integration of wind power are examined. Immediate challenges are related to weak grids. Assessment of system stability requires numerical simulation. Models are being developed - validation is essential. Coordination of wind and hydro generation is a key for allowing more wind power capacity in areas with limited transmission corridors. For the case study grid depending on technology and control the allowed wind farm size is increased from 50 to 200 MW. The real life example from 8 January 2005 demonstrates that existing marked based mechanisms can handle large amounts of wind power. In wind integration studies it is essential to take account of the controllability of modern wind farms, the power system flexibility and the smoothing effect of geographically dispersed wind farms. Modern wind farms contribute to system adequacy - combining wind and hydro constitutes a win-win system (ml)

  3. Contribution of large scale coherence to wind turbine power: A large eddy simulation study in periodic wind farms

    Science.gov (United States)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2018-03-01

    Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.

  4. Resonance power supplies for large accelerator

    International Nuclear Information System (INIS)

    Karady, G.; Schneider, E.J.

    1993-01-01

    The resonance power supply has been proposed as an efficient power supply for a future 6 GB, keon producing accelerator. This report presents a detailed analysis of the circuit operation. Based on these analyses each component is designed, one line diagram is developed, component requirements are determined and a detailed cost estimate is prepared. The major components of the system are: the magnet power supply, high voltage by-pass thyristor switch, with l0kA repetitive interruption capability, capacitor banks, capacitor bank thyristor switch, and an energy make up device. The most important components are the bypass thyristor switch and the energy injection device. The bypass thyristor switch is designed to turn on and interrupt to 10 kA dc current with a recovery voltage of 20kV and repetition frequency of 3 Hz. The switch consists of a large array of series and parallel connected thyristors and gate turn off (GTO) devices. The make up energy device is designed to replace the circuit energy losses. A capacitor bank is charged with constant current and discharged during the acceleration period. One of the advantages of the developed circuit is that it can be supplied directly from the local power network. In order to prove the validity of the assumptions, a scaled down model circuit was thoroughly tested. These tests proved that the engineering design of critical components is correct and this resonant power supply can be properly controlled by an inventer/rectifier connected in series with the magnet and by the make up energy device. This finding reduces the system cost

  5. Improved control system power unit for large parachutes

    Science.gov (United States)

    Chandler, J. A.; Grubbs, T. M.

    1968-01-01

    Improved control system power unit drives the control surfaces of very large controllable parachutes. The design features subassemblies for determining control surface position and cable loading, and protection of the load sensor against the possibility of damage during manipulation.

  6. Large-deviation properties of resilience of power grids

    International Nuclear Information System (INIS)

    Dewenter, Timo; Hartmann, Alexander K

    2015-01-01

    We study the distributions of the resilience of power flow models against transmission line failures via a so-called backup capacity. We consider three ensembles of random networks, and in addition, the topology of the British transmission power grid. The three ensembles are Erdős–Rényi random graphs, Erdős–Rényi random graphs with a fixed number of links, and spatial networks where the nodes are embedded in a two-dimensional plane. We numerically investigate the probability density functions (pdfs) down to the tails to gain insight into very resilient and very vulnerable networks. This is achieved via large-deviation techniques, which allow us to study very rare values that occur with probability densities below 10 −160 . We find that the right tail of the pdfs towards larger backup capacities follows an exponential with a strong curvature. This is confirmed by the rate function, which approaches a limiting curve for increasing network sizes. Very resilient networks are basically characterized by a small diameter and a large power sign ratio. In addition, networks can be made typically more resilient by adding more links. (paper)

  7. Proceedings of the 2008 International Congress on Advances in Nuclear Power Plants - ICAPP '08

    International Nuclear Information System (INIS)

    2008-01-01

    ICAPP 2008 congress brought together international experts of the nuclear industry involved in the operation, development, building, regulation and research related to Nuclear Power Plants. The program covered the full spectrum of Nuclear Power Plant issues from design, deployment and construction of plants to research and development of future designs and advanced systems. It covered also lessons learned from power, research and demonstration reactors from over 50 years of experience with operation and maintenance, structures, materials, technical specifications, human factors, system design and reliability. The program comprised 13 technical tracks: 1. Water-Cooled Reactor Programs and Issues: Evolutionary designs, innovative, passive, light and heavy water cooled reactors; issues related to meeting near term utility needs; design issues; business, economical cost challenges; infrastructure limitations and improved construction techniques including modularization. 2. High Temperature Gas Cooled Reactors: Design and development issues, components and materials, safety, reliability, economics, demonstration plants and environmental issues, fuel design and reliability, power conversion technology, impact of non electricity applications on reactor design; advanced thermal and fast reactors. 3. LMFR and Longer Term Reactor Programs: Reactor technology with enhanced fuel cycle features for improved resource utilization, waste characteristics, and power conversion capabilities. Potential reactor designs with longer development times such as super critical water reactors and liquid fuel reactors, Gen IV, INPRO, EUR and other programs. 4. Operation, Performance and Reliability Management: Training, O and M costs, life cycle management, risk based maintenance, operational experiences, performance and reliability improvements, outage optimization, human factors, plant staffing, outage reduction features, major component reliability, repair and replacement, in

  8. Power quality measurement service in the support of large customers

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, F. [Hydro-Quebec, Montreal, PQ (Canada)

    2006-07-01

    Power quality and how it is measured among Hydro Quebec's major customers were the focus of this conference presentation. Background information on Hydro Quebec and its customers was provided with reference to information on clients, employees and how the organization is organized. The presentation also included a discussion of power quality and how it is delivered at Hydro Quebec. For example, characteristics and target values of the voltage supplied by Hydro Quebec for high, medium and low voltages were examined. Personnel responsible for the grid have created a system to document each event submitted by customers. Documenting the actual power quality at the point of common coupling allows benchmarking of real data against announced characteristics and target values. This approach quantifies disturbances and helps to find and focus on disturbances that really influence large customers, mainly industrials. Portable and permanent installations issues were discussed followed by a discussion of a new service offering power quality metering on a regular basis. This metering service includes a complete analysis and technical support with dedicated expertise since customers are rarely fully experienced in power quality. The metering service is presented from the perspective of preventive maintenance with continuous quantification of a large number of indicators to assess the quality of the delivered power. Essential tools that customers can benefit from with this new service include real time electronic mail notification, weekly reporting and ad hoc technical support. This combination of various levels of services allows Hydro-Quebec to address the needs of these large customers in a flexible way. figs.

  9. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  10. Advances in electric power and energy systems load and price forecasting

    CERN Document Server

    2017-01-01

    A comprehensive review of state-of-the-art approaches to power systems forecasting from the most respected names in the field, internationally. Advances in Electric Power and Energy Systems is the first book devoted exclusively to a subject of increasing urgency to power systems planning and operations. Written for practicing engineers, researchers, and post-grads concerned with power systems planning and forecasting, this book brings together contributions from many of the world’s foremost names in the field who address a range of critical issues, from forecasting power system load to power system pricing to post-storm service restoration times, river flow forecasting, and more. In a time of ever-increasing energy demands, mounting concerns over the environmental impacts of power generation, and the emergence of new, smart-grid technologies, electricity price forecasting has assumed a prominent role within both the academic and industrial ar nas. Short-run forecasting of electricity prices has become nece...

  11. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    Erb, J.; Heinz, W.; Hofmann, A.; Koefler, H.J.; Komarek, P.; Maurer, W.; Nahar, A.

    1975-09-01

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF 6 -cables, polyethylene cables, cryoresistive and superconducting cables. (orig.) [de

  12. Estimation, comparison, and evaluation of advanced fission power reactor generation costs

    International Nuclear Information System (INIS)

    Waddell, J.D.

    1977-01-01

    The study compares the high-temperature gas-cooled reactor (HTGR), the gas-cooled fast reactor (GCFR), the molten-salt breeder reactor (MSBR), the light water breeder reactor (LWBR), and the heavy water reactor (HWR) with proposed light water reactors (LWR) and liquid-metal fast breeder reactors (LMFBR). The relative electrical generation costs, including the effects of the introduction of advanced reactor fuel cycles into the U.S. nuclear power economy, were projected through the year 2030. The study utilized the NEEDS computer code which is a simulation of the U.S. nuclear power economy. The future potential electrical generation costs and cumulative consumption of uranium ore were developed using characterizations of the advanced systems. The reactor-fuel cycle characterizations were developed from literature reviews and personal discussions with the proponents of the various systems. The study developed a ranking of the concepts based on generation costs and uranium consumption

  13. Genetic Spot Optimization for Peak Power Estimation in Large VLSI Circuits

    Directory of Open Access Journals (Sweden)

    Michael S. Hsiao

    2002-01-01

    Full Text Available Estimating peak power involves optimization of the circuit's switching function. The switching of a given gate is not only dependent on the output capacitance of the node, but also heavily dependent on the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based on the maximum power potential (MPP of the nodes under optimization. Four genetic spot optimization heuristics are studied for sequential circuits. Experimental results showed an average of 70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short execution times.

  14. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  15. Advanced power electronics and electric machinery program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as "FreedomCAR" (derived from "Freedom" and "Cooperative Automotive Research"), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001.

  16. Advanced converters and reactors

    International Nuclear Information System (INIS)

    Haefele, W.; Kessler, G.

    1984-01-01

    As Western Europe and most countries of the Asia-Pacific region (except Australia) have only small natural uranium resources, they must import nuclear fuel from the major uranium supplier countries. The introduction of advanced converter and breeder reactor technology allows a fuel utilization of a factor of 4 to 100 higher than with present low converters (LWRs) and will make uranium-importing countries less vulnerable to price jumps and supply stops in the uranium market. In addition, breeder-reactor technology will open up a potential that can cover world energy requirements for several thousand years. The enormous development costs of advanced converter and breeder technologies can probably be raised only by highly industrialized countries. Those highly industrialized countries that have little or no uranium resources (Western Europe, Japan) will probably be the first to introduce this advanced reactor technology on a commercial scale. A number of small countries and islands will need only small power reactors with inherent safety capabilities, especially in the beginning of their nuclear energy programs. For economic reasons, the fuel cycle services should come from large reprocessing centers of countries having sufficiently large nuclear power programs or from international fuel cycle centers. (author)

  17. Indian Nuclear Society annual conference-1994 on advanced technologies related to nuclear power: proceedings

    International Nuclear Information System (INIS)

    Grover, R.B.

    1994-01-01

    The focal theme of the conference is advanced technologies related to nuclear power. Over the past three decades civilian nuclear power plants around the world have accumulated about 6000 reactor years of experience and have performed quite well. Overall safety record has been satisfactory. However, nuclear community is trying to compete with its own record by trying to enhance the safety characteristics of the best operating plant. A safety culture has been established in the nuclear establishments, which is providing impetus to advances in all aspects of nuclear technology all over the world. India has ongoing programmes for the development of advanced reactors and related advanced technologies. Evolution of pressurised heavy water reactors in India, developments made in the design of advanced heavy water reactor and the fast reactor programme, are some of the topics covered in addition to highlighting worldwide developments for the next generation of light water reactors. India is one of the few countries in the world where expertise about complete fuel cycle is available. Developments in the back end of the fuel cycle, use of thorium and plutonium and other related issues are also discussed. Technology control regimes being advocated and adopted by developed nations make it imperative for us to indigenise every equipment and component that goes into a power plant. In view of this, some aspects of manufacturing technologies, inspection techniques and maintenance problems are also covered. Relevant papers are processed separately for INIS. (M.K.V.)

  18. Advanced Grid Support Functionality Testing for Florida Power and Light

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Martin, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurtt, James [Florida Power and Light, Juno Beach, FL (United States)

    2017-03-21

    This report describes the results of laboratory testing of advanced photovoltaic (PV) inverter testing undertaken by the National Renewable Energy Laboratory (NREL) on behalf of the Florida Power and Light Company (FPL). FPL recently commissioned a 1.1 MW-AC PV installation on a solar carport at the Daytona International Speedway in Daytona Beach, Florida. In addition to providing a source of clean energy production, the site serves as a live test bed with 36 different PV inverters from eight different manufacturers. Each inverter type has varied support for advanced grid support functions (GSFs) that are becoming increasingly commonplace, and are being required through revised interconnection standards such as UL1741, IEEE1547, and California (CA) Rule 21. FPL is interested in evaluating the trade-offs between different GSFs, their compliance to emerging standards, and their effects on efficiency and reliability. NREL has provided a controlled laboratory environment to undertake such a study. This work covered nine different classes of tests to compare inverter capabilities and performance for four different inverters that were selected by FPL. The test inverters were all three-phase models rated between 24-36 kW, and containing multiple PV input power point trackers. Advanced grid support functions were tested for functional behavior, and included fixed power factor operation, voltage-ride through, frequency ride-through, volt-var control, and frequency-Watt control. Response to abnormal grid conditions with GSFs enabled was studied through anti-islanding, fault, and load rejection overvoltage tests. Finally, efficiency was evaluated across a range of operating conditions that included power factor, output power, and input voltage variations. Test procedures were derived from requirements of a draft revision of UL741, CA Rule 21, and/or previous studies at NREL. This reports summarizes the results of each test case, providing a comparative performance analysis

  19. ADX: A high Power Density, Advanced RF-Driven Divertor Test Tokamak for PMI studies

    Science.gov (United States)

    Whyte, Dennis; ADX Team

    2015-11-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment, ADX; a divertor test tokamak dedicated to address critical gaps in plasma-material interactions (PMI) science, and the world fusion research program, on the pathway to FNSF/DEMO. Basic ADX design features are motivated and discussed. In order to assess the widest range of advanced divertor concepts, a large fraction (>50%) of the toroidal field volume is purpose-built with innovative magnetic topology control and flexibility for assessing different surfaces, including liquids. ADX features high B-field (>6 Tesla) and high global power density (P/S ~ 1.5 MW/m2) in order to access the full range of parallel heat flux and divertor plasma pressures foreseen for reactors, while simultaneously assessing the effect of highly dissipative divertors on core plasma/pedestal. Various options for efficiently achieving high field are being assessed including the use of Alcator technology (cryogenic cooled copper) and high-temperature superconductors. The experimental platform would also explore advanced lower hybrid current drive and ion-cyclotron range of frequency actuators located at the high-field side; a location which is predicted to greatly reduce the PMI effects on the launcher while minimally perturbing the core plasma. The synergistic effects of high-field launchers with high total B on current and flow drive can thus be studied in reactor-relevant boundary plasmas.

  20. High technology supporting nuclear power industry in CRIEPI

    International Nuclear Information System (INIS)

    Ueda, Nobuyuki

    2009-01-01

    As a central research institute of electric power industry, Central Research Institute of Electric Power Industry (CRIEPI) has carried out R and D on broad range of topics such as power generation, power transmission, power distribution, power application and energy economics and society, aiming to develop prospective and advanced technologies, fundamental reinforce technologies and next-generation core technologies. To realize low-carbon society to cope with enhancement of global environmental issues, nuclear power is highly recommended as large-scale power with low-carbon emission. At the new start of serial explanation on advanced technologies, R and D on electric power industry was outlined. (T. Tanaka)

  1. Proceedings of 2017 international congress on advances in nuclear power plants (ICAPP2017)

    International Nuclear Information System (INIS)

    2017-04-01

    The International Congress on Advances in Nuclear Power Plants (ICAPP) provides a forum for leaders of the nuclear industry to exchange information, present results from their work, review the state of the industry, and discuss future directions and needs for the deployment of new nuclear power plant systems around the world. ICAPP will gather industry leaders in several invited lectures in plenary sessions. The theme for ICAPP2017 is 'A New Paradigm in Nuclear Power Safety'. Since the Fukushima Daiichi Accident in 2011, various efforts in improving nuclear safety have been initiated not only in Japan but also in other countries. Decontamination of affected soil and steps toward decommissioning Fukushima Daiichi are proceeding steadily, but many issues to be resolved still remain. Further advances in reactor decommissioning technologies are expected in light of the rising number of old nuclear power plants being closed. The congress also provides an excellent opportunity to discuss these topics. This issue is the collection of 345 papers presented at the entitled meeting. All the 345 papers are indexed individually. (J.P.N.)

  2. A modeling and control approach to advanced nuclear power plants with gas turbines

    International Nuclear Information System (INIS)

    Ablay, Günyaz

    2013-01-01

    Highlights: • Load frequency control strategies in nuclear plants are researched. • Nuclear reactor-centered control system may not be suitable for load control. • Local unit controllers improve stability and overall time constant. • Coolant loops in nuclear plants should be controlled locally. - Abstract: Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies

  3. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  4. The advanced smart grid edge power driving sustainability

    CERN Document Server

    Carvallo, Andres

    2011-01-01

    Placing emphasis on practical ""how-to"" guidance, this cutting-edge resource provides you with a first-hand, insider's perspective on the advent and evolution of smart grids in the 21st century (smart grid 1.0). You gain a thorough understanding of the building blocks that comprise basic smart grids, including power plant, transmission substation, distribution, and meter automation. Moreover, this forward-looking volume explores the next step of this technology's evolution. It provides a detailed explanation of how an advanced smart grid incorporates demand response with smart appliances and

  5. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    International Nuclear Information System (INIS)

    2004-01-01

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident

  6. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Numano, Masayoshi; Fukuto, Junji; Sugasawa, Shinobu; Miyazaki, Keiko; Someya, Minoru; Haraki, Nobuo

    1994-01-01

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  7. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  8. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration

    DEFF Research Database (Denmark)

    Holttinen, Hannele; Meibom, Peter; Orths, Antje

    2011-01-01

    There are dozens of studies made and ongoing related to wind integration. However, the results are not easy to compare. IEA WIND R&D Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power collects and shares information on wind generation impacts on power systems......, with analyses and guidelines on methodologies. In the state-of-the-art report (October, 2007), and the final report of the 3 years period (July, 2009) the most relevant wind power grid integration studies have been analysed especially regarding methodologies and input data. Several issues that impact...... on the amount of wind power that can be integrated have been identified. Large balancing areas and aggregation benefits of wide areas help in reducing the variability and forecast errors of wind power as well as help in pooling more cost effective balancing resources. System operation and functioning...

  9. Advanced control systems to improve nuclear power plant reliability and efficiency

    International Nuclear Information System (INIS)

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs

  10. Advanced control systems to improve nuclear power plant reliability and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The TECDOC is the result of a series of an advisory and consultants meetings held by the IAEA in 1995-1996 in Vienna (March 1995), in Erlangen Germany (December 1995), in Garching, Germany (June 1996) and in Vienna (November 1996). It was prepared with the participation and contributions of experts from Austria, Canada, Finland, France, Germany, the Republic of Korea, Norway, the Russian Federation, the United Kingdom and the United States of America. The publication not only describes advanced control systems for the improvement of nuclear power plant reliability and efficiency, but also provides a road map to guide interested readers to plan and execute an advanced instrumentation and control project. The subjects include: identification of needs and requirements, justification for safety and user acceptance, and the development of an engineering process. The report should be of interest to nuclear power plant staff, I and C system designers and integrators as well as regulators and researchers. Refs, figs, tabs.

  11. Scalable Newton-Krylov solver for very large power flow problems

    NARCIS (Netherlands)

    Idema, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2010-01-01

    The power flow problem is generally solved by the Newton-Raphson method with a sparse direct solver for the linear system of equations in each iteration. While this works fine for small power flow problems, we will show that for very large problems the direct solver is very slow and we present

  12. Building to Make a Difference: Advanced Practice Nurses' Experience of Power.

    Science.gov (United States)

    Schoales, Catherine A; Bourbonnais, Frances Fothergill; Rashotte, Judy

    2018-02-01

    Power is necessary for nurses to affect change in patient care and to move the nursing profession forward. Despite the evolving body of nursing research on power, there have been no studies that have investigated the nature of advanced practice nurses' (APNs') power. The purpose of this study was to explore the APNs' lived experience of power. Interpretive phenomenology guided the method and analysis. Eight APNs employed in a single Canadian tertiary care teaching health-care organization engaged in in-depth interviews. The overarching theme, building to make a difference, reflected the APNs' perception of power in their practice, which involved a passion to facilitate change in practice to improve patient care. Building to make a difference involved three themes: building on, building with, and building for. The APNs experienced more power-a process they described as power creep-when they used soft power that was shared with others to affect positive change in health care. These findings contribute to our understanding of how power is perceived and manifested in the APN role, thus further enabling organizations to create working conditions to support the APNs' endeavors to empower others.

  13. Prospects for investment in large-scale, grid-connected solar power in Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan; Pedersen, Mathilde Brix

    since the 1990s have changed the competiveness of solar PV in all markets, ranging from individual households via institutions to mini-grids and grid-connected installations. In volume and investment, the market for large-scale grid-connected solar power plants is by far the most important......-scale investments in grid-connected solar power plants and local assembly facilities for PV panels, have exceeded even optimistic scenarios. Finally, therefore, there seem to be bright prospects for investment in large-scale grid-connected solar power in Africa....

  14. Improving human reliability through better nuclear power plant system design: Program for advanced nuclear power studies

    International Nuclear Information System (INIS)

    Golay, M.W.

    1993-01-01

    The project on ''Development of a Theory of the Dependence of Human Reliability upon System Designs as a Means of Improving Nuclear Power Plant Performance'' was been undertaken in order to address the problem of human error in advanced nuclear power plant designs. Lack of a mature theory has retarded progress in reducing likely frequencies of human errors. Work being pursued in this project is to perform a set of experiments involving human subjects who are required to operate, diagnose and respond to changes in computer-simulated systems, relevant to those encountered in nuclear power plants, which are made to differ in complexity in a systematic manner. The computer program used to present the problems to be solved also records the response of the operator as it unfolds

  15. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  16. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  17. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  18. FY2011 Advanced Power Electronics and Electric Motors Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-01-31

    The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), thermal management, and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  19. APSCOM - 97. Fourth international conference on advances in power system control, operation and management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The sessions covered are: FALTS devices; intelligent computing advances; protection; voltage security; local forecasting; modelling techniques; security applications; distribution; alternative generation and control; power system analysis; transient stability; substation equipment; genetic algorithm application; a.c. drives; dynamic stability; power flow; new techniques; open access; power developments in China; system stability; protection techniques and devices; harmonics; monitoring and simulation; security assessment; computational techniques; generating costing and control; power control; operation experiences; machines and traction; electrical installations; Hong Kong power systems; power equipment and modelling; control algorithms and operations; and power systems in buildings.

  20. Advanced in-core monitoring system for high-power reactors

    International Nuclear Information System (INIS)

    Mitin, V.I.; Alekseev, A.N.; Golovanov, M.N.; Zorin, A.V.; Kalinushkin, A.E.; Kovel, A.I.; Milto, N.V.; Musikhin, A.M.; Tikhonova, N.V.; Filatov, V.P.

    2006-01-01

    This paper encompasses such section as objective, conception and engineering solution for construction of advanced in-core instrumentation system for high power reactor, including WWER-1000. The ICIS main task is known to be an on-line monitoring of power distribution and functionals independently of design programs to avoid a common cause error. This paper shows in what way the recovery of power distribution has been carried out using the signals from in-core neutron detectors or temperature sensors. On the basis of both measured and processed data, the signals of preventive and emergency protection on local parameters (linear power of the maximum intensive fuel rods, departure from nucleate boiling ratio peaking factor) have been automatically generated. The paper presents a detection technology and processing methods for signals from SPNDs and TCs, ICIS composition and structure, computer hardware, system and applied software. Structure, composition and the taken decisions allow combining class IE and class B and C tasks in accordance with international standards of separation and safety category realization. Nowadays, ICIS-M is a system that is capable to ensure: monitoring, safety, information display and diagnostics function, which allow securing actual increase of quality, reliability and safety in operation of nuclear fuel and power units. Meanwhile, it reduce negative influence of human factor on thermal technical reliability in the operational process (Authors)

  1. The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1

    Energy Technology Data Exchange (ETDEWEB)

    Charles Kessel, et al

    2014-03-05

    The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized βN ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached βN = 5.28 with BT = 6.75, while the peaked pressure case reaches βN < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ρ ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

  2. 76 FR 76146 - Large Power Transformers From the Republic of Korea: Postponement of Preliminary Determination of...

    Science.gov (United States)

    2011-12-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-867] Large Power Transformers... initiation of the antidumping duty investigation of large power transformers from the Republic of Korea (Korea). See Large Power Transformers from the Republic of Korea: Initiation of Antidumping Duty...

  3. Impact of large scale wind power on the Nordic electricity system

    International Nuclear Information System (INIS)

    Holttinen, Hannele

    2006-01-01

    Integration costs of wind power depend on how much wind power and where, and the power system: load, generation flexibility, interconnections. When wind power is added to a large interconnected power system there is considerable smoothing effect for the production. Increase of reserve requirements will stay at a low level. 10 percent penetration of wind power is not a problem in Nordic countries, as long as wind power is built to all 4 countries. Increasing the share of wind power will increase the integration costs. 20 percent penetration would need more flexibility in the system. That will not happen in the near future for Nordel, and the power system will probably also contain more flexible elements at that stage, like producing fuel for vehicles (ml)

  4. Investigation on the integral output power model of a large-scale wind farm

    Institute of Scientific and Technical Information of China (English)

    BAO Nengsheng; MA Xiuqian; NI Weidou

    2007-01-01

    The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.

  5. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  6. MHD generator performance analysis for the Advanced Power Train study

    Science.gov (United States)

    Pian, C. C. P.; Hals, F. A.

    1984-01-01

    Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.

  7. Large-signal modeling method for power FETs and diodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping, E-mail: sunlu_1019@126.co [School of Electromechanical Engineering, Xidian University, Xi' an 710071 (China)

    2009-06-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  8. Large-signal modeling method for power FETs and diodes

    International Nuclear Information System (INIS)

    Sun Lu; Wang Jiali; Wang Shan; Li Xuezheng; Shi Hui; Wang Na; Guo Shengping

    2009-01-01

    Under a large signal drive level, a frequency domain black box model of the nonlinear scattering function is introduced into power FETs and diodes. A time domain measurement system and a calibration method based on a digital oscilloscope are designed to extract the nonlinear scattering function of semiconductor devices. The extracted models can reflect the real electrical performance of semiconductor devices and propose a new large-signal model to the design of microwave semiconductor circuits.

  9. Impact of fuel properties on advanced power systems

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Jones, M.L.; Hurley, J.P.; Benson, S.A.; Willson, W.G. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Advanced coal-fired combined-cycle power systems currently in development and demonstration have the goal of increasing generating efficiency to a level approaching 50% while reducing the cost of electricity from new plants by 20% and meeting stringent standards on emissions of SO{sub x} NO{sub x} fine particulates, and air toxic metals. Achieving these benefits requires that clean hot gas be delivered to a gas turbine at a temperature approaching 1350{degrees}C, while minimizing energy losses in the gasification, combustion, heat transfer, and/or gas cleaning equipment used to generate the hot gas. Minimizing capital cost also requires that the different stages of the system be integrated as simply and compactly as possible. Second-generation technologies including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), externally fired combined cycle (EFCC), and other advanced combustion systems rely on different high-temperature combinations of heat exchange, gas filtration, and sulfur capture to meet these requirements. This paper describes the various properties of lignite and brown coals.

  10. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  11. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  12. Impact of Wind Shear and Tower Shadow Effects on Power System with Large Scale Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe

    2011-01-01

    presents a simulation model of a variable speed wind farm with permanent magnet synchronous generators (PMSGs) and fullscale back-to-back converters in the simulation tool of DIgSILENT/PowerFactory. In this paper, the impacts of wind shear and tower shadow effects on the small signal stability of power......Grid connected wind turbines are fluctuating power sources due to wind speed variations, the wind shear and the tower shadow effects. The fluctuating power may be able to excite the power system oscillation at a frequency close to the natural oscillation frequency of a power system. This paper...... systems with large scale wind power penetrations are investigated during continuous operation based on the wind turbine model and the power system model....

  13. Large and small baseload power plants: Drivers to define the optimal portfolios

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Despite the growing interest in Small Medium sized Power Plants (SMPP) international literature provides only studies related to portfolios of large plants in infinite markets/grids with no particular attention given to base load SMPP. This paper aims to fill this gap, investigating the attractiveness of SMPP portfolios respect to large power plant portfolios. The analysis includes nuclear, coal and combined cycle gas turbines (CCGT) of different plant sizes. The Mean Variance Portfolio theory (MVP) is used to define the best portfolio according to Internal Rate of Return (IRR) and Levelised Unit Electricity Cost (LUEC) considering the life cycle costs of each power plant, Carbon Tax, Electricity Price and grid dimension. The results show how large plants are the best option for large grids, while SMPP are as competitive as large plants in small grids. In fact, in order to achieve the highest profitability with the lowest risk it is necessary to build several types of different plants and, in case of small grids, this is possible only with SMPP. A further result is the application of the framework to European OECD countries and the United States assessing their portfolios. - Highlights: ► The literature about power plant portfolios does not consider small grids and IRR. ► We evaluated Base load portfolios respect to IRR and LUEC. ► We assessed the influence of grid and plant size, CO 2 cost and Electricity Price. ► Large plants are optimal for large markets even if small plants have similar IRR. ► Small plants are suitable to diversify portfolios in small grids reducing the risk.

  14. Personalized Opportunistic Computing for CMS at Large Scale

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    **Douglas Thain** is an Associate Professor of Computer Science and Engineering at the University of Notre Dame, where he designs large scale distributed computing systems to power the needs of advanced science and...

  15. Assessment of small versus large hydro-power developments - a Norwegian case study

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Tor Haakon; Harby, Atle

    2010-07-01

    Full text: The era of new, large hydro-power development projects seems to be over in Norway. Partly as a response to this, a large number of applications for the development of smallscale hydro power projects up to 10 MW overflow the Water Resources and Energy Directorate, resulting in an extensive development of small tributaries and water courses in Norway. This study has developed a framework for the assessment and comparison of several small versus many large hydro-power projects based on a multi-criteria analysis (MCA) approach, and further tested this approach on planned or developed projects in the Helgeland region, Norway. Multi-criteria analysis is a decision-support tool aimed at providing a systematic approach for the comparison of various alternatives with often non-commensurable and conflicting attributes. At the same time, the technique enables complex problems and various alternatives to be assessed in a transparent and simple way. The MCA-software was in our case equipped with 2 overall criteria (objectives) with a number of sub criteria; Production with sub-criteria like volume of energy production, installed effect, storage capacity and economical profit; Environmental impacts with sub-criteria like fishing interests, biodiversity, protection of unexploited nature The data used in the case study is based on the planned development of Vefsna (large project) with the energy/effect production estimated and the environmental impacts identified as part of the feasibility studies (the project never reached the authorities' licensing system with a formal EIA). The small-scale hydro-power projects used for comparison are based on realized projects in the Helgeland region and a number of proposed projects, up scaled to the size of the proposed Vefsna-development. The results from the study indicate that a large number of small-scale hydro-power projects need to be implemented in order to balance the volume of produced electricity/effect from one

  16. The future of electronic power processing and conversion

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Consoli, A.; Ferreira, J.A.

    2005-01-01

    . - A large penetration of power electronics into power systems will happen within the next 25-30 years. The main transmission grid will not be affected. The power electronics development will be in distributed generation and in the loads. - The success of the integrated starter/generator, hybrid or electric...... cars depends on political decisions more than on technological advances. However, the success of a recent Japanese hybrid car and the cost of oil could trigger the critical momentum for large-scale use of power electronics in automotive applications. - We are moving toward standardized power supply...

  17. Computer simulation of a 20-kHz power system for advanced launch systems

    Science.gov (United States)

    Sudhoff, S. D.; Wasynczuk, O.; Krause, P. C.; Kenny, B. H.

    1993-01-01

    The performance of two 20-kHz actuator power systems being built for an advanced launch system are evaluated for typical launch senario using an end-to-end system simulation. Aspects of system performance ranging from the switching of the power electronic devices to the vehicle aerodynamics are represented in the simulation. It is shown that both systems adequately stabilize the vehicle against a wind gust during launch. However, it is also shown that in both cases there are bus voltage and current fluctuations which make system power quality a concern.

  18. A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-08-01

    Full Text Available The carbon emissions trading market and direct power purchases by large consumers are two promising directions of power system development. To trace the carbon emission flow in the power grid, the theory of carbon emission flow is improved by allocating power loss to the load side. Based on the improved carbon emission flow theory, an optimal dispatch model is proposed to optimize the cost of both large consumers and the power grid, which will benefit from the carbon emissions trading market. Moreover, to better simulate reality, the direct purchase of power by large consumers is also considered in this paper. The OPF (optimal power flow method is applied to solve the problem. To evaluate our proposed optimal dispatch strategy, an IEEE 30-bus system is used to test the performance. The effects of the price of carbon emissions and the price of electricity from normal generators and low-carbon generators with regards to the optimal dispatch are analyzed. The simulation results indicate that the proposed strategy can significantly reduce both the operation cost of the power grid and the power utilization cost of large consumers.

  19. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  20. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    Science.gov (United States)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  1. Thermodynamic analysis of the advanced zero emission power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available The paper presents the structure and parameters of advanced zero emission power plant (AZEP. This concept is based on the replacement of the combustion chamber in a gas turbine by the membrane reactor. The reactor has three basic functions: (i oxygen separation from the air through the membrane, (ii combustion of the fuel, and (iii heat transfer to heat the oxygen-depleted air. In the discussed unit hot depleted air is expanded in a turbine and further feeds a bottoming steam cycle (BSC through the main heat recovery steam generator (HRSG. Flue gas leaving the membrane reactor feeds the second HRSG. The flue gas consist mainly of CO2 and water vapor, thus, CO2 separation involves only the flue gas drying. Results of the thermodynamic analysis of described power plant are presented.

  2. Korean views on needs for international cooperation in development and development of advanced nuclear power systems

    International Nuclear Information System (INIS)

    Yoon, Young Ku; Lee, Byong Whi; Shim, Chang Saeng.

    1993-01-01

    Korea methodology and experience in international cooperation in the field of construction and operation of nuclear power plants as well as Korean views on development and deployment of advanced nuclear nuclear power systems are presented

  3. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    International Nuclear Information System (INIS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-01-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG

  4. Application scenario analysis of Power Grid Marketing Large Data

    Science.gov (United States)

    Li, Xin; Zhang, Yuan; Zhang, Qianyu

    2018-01-01

    In recent years, large data has become an important strategic asset in the commercial economy, and its efficient management and application has become the focus of government, enterprise and academia. Power grid marketing data covers real data of electricity and other energy consumption and consumption costs and so on, which is closely related to each customer and the overall economic operation. Fully tap the inherent value of marketing data is of great significance for power grid company to make rapid and efficient response to the market demand and improve service level. The development of large data technology provides a new technical scheme for the development of marketing business under the new situation. Based on the study on current situation of marketing business, marketing information system and marketing data, this paper puts forward the application direction of marketing data and designed typical scenes for internal and external applications.

  5. Regulatory Risk Management of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    George, Glenn R.

    2002-01-01

    Regulatory risk reflects both the likelihood of adverse outcomes during regulatory interactions and the severity of those outcomes. In the arena of advanced nuclear power plant licensing and construction, such adverse outcomes may include, for example, required design changes and construction delays. These, in turn, could significantly affect the economics of the plant and the generation portfolio in which it will operate. In this paper, the author addresses these issues through the lens of risk management. The paper considers various tools and techniques of regulatory risk management, including design diversity and hedging strategies. The effectiveness of alternate approaches is weighed and recommendations are made in several regulatory contexts. (author)

  6. FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-01

    The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.

  7. Development of advanced secondary chemistry monitoring system for Korea nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang Hak; Kim, Chung Tae

    1997-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend the operating life of the plant. KEPCO and KOPEC developed a computerized tool for this purpose -ASCMS (advanced secondary chemistry monitoring system) which is able to monitor and diagnose the secondary water chemistry. A prototype system had been installed at KORI 3 nuclear power plant since April 1993 in order to evaluate the system performance. After the implementation of enhancements identified during the testing of the prototype, we have developed the advanced secondary monitoring system, ASCMS which is installed at 5 nuclear power plants and has been under operations since April 1997. The ASCMS comprises PC subsystem designed for data acquisition, data analysis, and data diagnosis. The ASCMS will provide overall information related to steam generator secondary side water chemistry problems and improve plant availability, reduce radiation exposure to workers, and reduce operating and maintenance costs. 6 figs

  8. Monograph on safety in high power and high energy advanced technologies and medical applications of lasers

    International Nuclear Information System (INIS)

    2016-01-01

    This monograph is intended for creating awareness amongst the safety and health professionals of nuclear and radiation facilities on hazards involved in high power and high energy advanced technologies as well as on how development of advanced technologies can benefit the common people

  9. Integration of large amounts of wind power. Markets for trading imbalances

    Energy Technology Data Exchange (ETDEWEB)

    Neimane, Viktoria; Axelsson, Urban [Vattenfall Research and Development AB, Stockholm (Sweden); Gustafsson, Johan; Gustafsson, Kristian [Vattenfall Nordic Generation Management, Stockholm (Sweden); Murray, Robin [Vattenfall Vindkraft AB, Stockholm (Sweden)

    2008-07-01

    The well-known concerns about wind power are related to its intermittent nature and difficulty to make exact forecasts. The expected increase in balancing and reserve requirements due to wind power has been investigated in several studies. This paper takes the next step in studying integration of large amounts of wind power in Sweden. Several wind power producers' and corresponding balance providers' perspective is taken and their imbalance costs modeled. Larger producers having wind power spread over larger geographical areas will have lower relative costs than producers having their units concentrated within limited geographical area. Possibilities of the wind power producers to reduce the imbalance costs by acting on after sales market are exposed and compared. (orig.)

  10. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  11. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  12. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  13. Switch: a planning tool for power systems with large shares of intermittent renewable energy.

    Science.gov (United States)

    Fripp, Matthias

    2012-06-05

    Wind and solar power are highly variable, so it is it unclear how large a role they can play in future power systems. This work introduces a new open-source electricity planning model--Switch--that identifies the least-cost strategy for using renewable and conventional generators and transmission in a large power system over a multidecade period. Switch includes an unprecedented amount of spatial and temporal detail, making it possible to address a new type of question about the optimal design and operation of power systems with large amounts of renewable power. A case study of California for 2012-2027 finds that there is no maximum possible penetration of wind and solar power--these resources could potentially be used to reduce emissions 90% or more below 1990 levels without reducing reliability or severely raising the cost of electricity. This work also finds that policies that encourage customers to shift electricity demand to times when renewable power is most abundant (e.g., well-timed charging of electric vehicles) could make it possible to achieve radical emission reductions at moderate costs.

  14. Electric vehicles and large-scale integration of wind power

    DEFF Research Database (Denmark)

    Liu, Wen; Hu, Weihao; Lund, Henrik

    2013-01-01

    with this imbalance and to reduce its high dependence on oil production. For this reason, it is interesting to analyse the extent to which transport electrification can further the renewable energy integration. This paper quantifies this issue in Inner Mongolia, where the share of wind power in the electricity supply...... was 6.5% in 2009 and which has the plan to develop large-scale wind power. The results show that electric vehicles (EVs) have the ability to balance the electricity demand and supply and to further the wind power integration. In the best case, the energy system with EV can increase wind power...... integration by 8%. The application of EVs benefits from saving both energy system cost and fuel cost. However, the negative consequences of decreasing energy system efficiency and increasing the CO2 emission should be noted when applying the hydrogen fuel cell vehicle (HFCV). The results also indicate...

  15. A new advanced software platform for nuclear power plant process information systems

    International Nuclear Information System (INIS)

    Sorsa, A.

    1993-01-01

    In the late 80s, ABB Stromberg Power Ltd. started the development of a new generation software platform for the power plant Process Information System (PIS). This development resulted in a software platform called Procontrol PMS. Procontrol PMS is a platform for fully distributed systems which provides the following features: distributed data processing, non-stop architecture, low-cost incremental expansion path, open network architecture, high functionality, effective application development environment, and advanced user interface services. A description of the structure of the Procontrol PMS software is given. ABB has received by May 1992 six orders for nuclear power plant PISs based on Procontrol PMS (4 for PWR plants, 2 for BWRs). The first Procontrol PMS based nuclear power plant PIS was commissioned in 1989 at the Loviisa nuclear power plant and has been running with 100% availability since the commissioning. (Z.S.) 2 figs

  16. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)

  17. Power Electronic Drives, Controls, and Electric Generators for Large Wind Turbines - An Overview

    DEFF Research Database (Denmark)

    Ma, Ke; Tutelea, L.; Boldea, Ion

    2015-01-01

    and exceed a power rating of 10 MW are discussed. The role of power electronics for improving the operation of wind turbines and ensuring compliance with power grid codes is analyzed with a view at producing fully controllable generation units suitable for tight integration into the power grid and large...

  18. Advanced large airway CT imaging in children: evolution from axial to 4-D assessment

    International Nuclear Information System (INIS)

    Lee, Edward Y.; Zucker, Evan J.; Restrepo, Ricardo; Daltro, Pedro; Boiselle, Phillip M.

    2013-01-01

    Continuing advances in multidetector computed tomography (MDCT) technology are revolutionizing the non-invasive evaluation of congenital and acquired large airway disorders in children. For example, the faster scanning time and increased anatomical coverage that are afforded by MDCT are especially beneficial to children. MDCT also provides high-quality multiplanar 2-dimensional (2-D), internal and external volume-rendering 3-dimensional (3-D), and dynamic 4-dimensional (4-D) imaging. These advances have enabled CT to become the primary non-invasive imaging modality of choice for the diagnosis, treatment planning, and follow-up evaluation of various large airway disorders in infants and children. It is thus essential for radiologists to be familiar with safe and effective techniques for performing MDCT and to be able to recognize the characteristic imaging appearances of large airway disorders affecting children. (orig.)

  19. Development and utilization of the NRC policy statement on the regulation of advanced nuclear power plants

    International Nuclear Information System (INIS)

    Williams, P.M.; King, T.L.

    1988-06-01

    On March 26, 1985, the US Nuclear Regulatory Commission issued for public comment a ''Proposed Policy for Regulation of Advanced Nuclear Power Plants'' (50 FR 11884). This report presents and discusses the Commission's final version of that policy as titled and published on July 8, 1986 ''Regulation of Advanced Nuclear Power Plants, Statement of Policy'' (51 FR 24643). It provides an overview of comments received from the public, of the significant changes from the proposed Policy Statement to the final Policy Statement, and of the Commission's response to six questions contained in the proposed Policy Statement. The report also discusses the definition for advanced reactors, the establishment of an Advanced Reactors Group, the staff review approach and information needs, and the utilization of the Policy Statement in relation to other NRC programs, including the policies for safety goals, severe accidents and standardization. In addition, guidance for advanced reactors with respect to operating experience, technology development, foreign information and data, and prototype testing is provided. Finally, a discussion on the use of less prescriptive and nonprescriptive design criteria for advanced reactors, which the Policy Statement encourages, is presented

  20. Role of advanced RF/microwave technology and high power switch technology for developing/upgrading compact/existing accelerators

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam

    2001-01-01

    With the advances in high power microwave devices as well as in microwave technologies it has become possible to go on higher frequencies at higher powers as well as to go for newer devices which are more efficient and compact and hence reducing the power needs as well as space and weight requirement for accelerators. New devices are now available in higher frequency spectrum for example at C-Band, X-band and even higher. Also new devices like klystrodes/Higher Order Mode Inductive Output Tubes (HOM IOTs) are now becoming competitors for existing tubes which are in use at present accelerator complexes. The design/planning of the accelerators used for particle physics research, medical accelerators, industrial irradiation, or even upcoming Driver Accelerators for Sub Critical Reactors for nuclear power generation are being done taking into account the newer technologies. The accelerators which use magnetrons, klystrons and similar devices at S-Band can be modified/redesigned with devices at higher frequencies like X-Band. Pulsed accelerators need high power high voltage pulsed modulators whereas CW accelerators need high voltage power supplies for functioning of RF / Microwave tubes. There had been a remarkable growth in the development and availability of solid state switches both for switching the pulsed modulators for microwave tubes as well as for making high frequency switch mode power supplies. Present paper discusses some of the advanced devices/technologies in this field as well as their capability to make advanced/compact/reliable accelerators. Microwave systems developed/under development at Centre for Advanced Technology are also discussed briefly along with some of the efforts done to make them compact. An overview of state of art vacuum tube devices and solid state switch technologies is given. (author)

  1. PEP-II Large Power Supplies Rebuild Program at SLAC

    CERN Document Server

    de Lira, Antonio C; Lipari, James J; da Silva Rafael, Fernando

    2005-01-01

    At PEP-II, seven large power supplies (LGPS) are used to power quad magnets in the electron-positron collider region. The LGPS ratings range from 72kW to 270kW, and were installed in 1997. They are unipolar off-line switch mode supplies, with a 6 pulse bridge rectifying 480VAC, 3-phase input power to yield 650VDC unregulated. This unregulated 650VDC is then input into one (or two) IGBT H-bridges, which convert the DC into PWM 16 kHz square wave AC. This high frequency AC drives the primary side of a step-down transformer followed by rectifiers and low pass filters. Over the years, these LGPS have presented many problems mainly in their control circuits, making it difficult to troubleshoot and affecting the overall accelerator availability. A redesign/rebuilding program for these power supplies was established under the coordination of the Power Conversion Department at SLAC. During the 2004 accelerator summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control b...

  2. Advanced nuclear power systems: Design, technology, safety and strategies for their deployment

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the symposium were to provide high level decision makers with an overview of the discussion concerning the need for nuclear power and salient features of advanced nuclear power systems; a forum for discussing the design objectives and safety approaches for such systems and the views of regulatory bodies; a forum for identifying barriers to the deployment of these systems and for reviewing strategies to overcome these barriers; and a forum for reviewing options for international cooperation in the development and deployment of such systems. Refs, figs and tabs

  3. Large-Scale Multiantenna Multisine Wireless Power Transfer

    Science.gov (United States)

    Huang, Yang; Clerckx, Bruno

    2017-11-01

    Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.

  4. MicroRNAs in large herpesvirus DNA genomes: recent advances.

    Science.gov (United States)

    Sorel, Océane; Dewals, Benjamin G

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.

  5. Performance of automatic generation control mechanisms with large-scale wind power

    Energy Technology Data Exchange (ETDEWEB)

    Ummels, B.C.; Gibescu, M.; Paap, G.C. [Delft Univ. of Technology (Netherlands); Kling, W.L. [Transmission Operations Department of TenneT bv (Netherlands)

    2007-11-15

    The unpredictability and variability of wind power increasingly challenges real-time balancing of supply and demand in electric power systems. In liberalised markets, balancing is a responsibility jointly held by the TSO (real-time power balancing) and PRPs (energy programs). In this paper, a procedure is developed for the simulation of power system balancing and the assessment of AGC performance in the presence of large-scale wind power, using the Dutch control zone as a case study. The simulation results show that the performance of existing AGC-mechanisms is adequate for keeping ACE within acceptable bounds. At higher wind power penetrations, however, the capabilities of the generation mix are increasingly challenged and additional reserves are required at the same level. (au)

  6. Advanced controls for stability assessment of solar dynamics space power generation

    Science.gov (United States)

    Momoh, James A.; Anwah, Nnamdi A.

    1995-01-01

    In support of the power requirements for the Space Station Alpha (SSA), a joint program by the U.S. and Russia for a permanently manned space station to be launched into orbit by 1998, a robust control scheme is needed to assure the stability of the rotating machines that will be integrated into the power subsystem. A framework design and systems studies for modeling and analysis is presented. It employs classical d-q axes machine model with voltage/frequency dependent loads. To guarantee that design requirements and necessary trade studies are done, a functional analysis tool CORE is used for the study. This provides us with different control options for stability assessment. Initial studies and recommendations using advanced simulation tools are also presented. The benefits of the stability/control scheme for evaluating future designs and power management are discussed.

  7. Assessment of core protection and monitoring systems for an advanced reactor SMART

    International Nuclear Information System (INIS)

    In, Wang Kee; Hwang, Dae Hyun; Yoo, Yeon Jong; Zee, Sung Qunn

    2002-01-01

    Analogue and digital core protection/monitoring systems were assessed for the implementation in an advanced reactor. The core thermal margins to nuclear fuel design limits (departure from nucleate boiling and fuel centerline melting) were estimated using the design data for a commercial pressurized water reactor and an advanced reactor. The digital protection system resulted in a greater power margin to the fuel centerline melting by at least 30% of rated power for both commercial and advanced reactors. The DNB margin with the digital system is also higher than that for the analogue system by 8 and 12.1% of rated power for commercial and advanced reactors, respectively. The margin gain with the digital system is largely due to the on-line calculations of DNB ratio and peak local power density from the live sensor signals. The digital core protection and monitoring systems are, therefore, believed to be more appropriate for the advanced reactor

  8. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    Science.gov (United States)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  9. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  10. ORNL R and D on advanced small and medium power reactors: selected topics

    International Nuclear Information System (INIS)

    White, J.D.; Trauger, D.B.

    1989-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, an assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable R and D would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current R and D efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described

  11. ORNL R and D on advanced small and medium power reactors: Selected topics

    International Nuclear Information System (INIS)

    White, J.D.; Trauger, D.B.

    1988-01-01

    From 1984-1985, ORNL studied several innovative small and medium power nuclear concepts with respect to viability. Criteria for assessment of market attractiveness were developed and are described here. Using these criteria and descriptions of selected advanced reactor concepts, and assessment of their projected market viability in the time period 2000-2010 was made. All of these selected concepts could be considered as having the potential for meeting the criteria but, in most cases, considerable RandD would be required to reduce uncertainties. This work and later studies of safety and licensing of advanced, passively safe reactor concepts by ORNL are described. The results of these studies are taken into account in most of the current (FY 1989) work at ORNL on advanced reactors. A brief outline of this current work is given. One of the current RandD efforts at ORNL which addresses the operability and safety of advanced reactors is the Advanced Controls Program. Selected topics from this Program are described. 13 refs., 1 fig

  12. Large-scale utilization of wind power in China: Obstacles of conflict between market and planning

    International Nuclear Information System (INIS)

    Zhao Xiaoli; Wang Feng; Wang Mei

    2012-01-01

    The traditional strict planning system that regulates China's power market dominates power industry operations. However, a series of market-oriented reforms since 1997 call for more decentralized decision-making by individual market participants. Moreover, with the rapid growth of wind power in China, the strict planning system has become one of the significant factors that has curtailed the generation of wind power, which contradicts with the original purpose of using the government's strong control abilities to promote wind power development. In this paper, we first present the reasons why market mechanisms are important for large-scale utilization of wind power by using a case analysis of the Northeast Grid, and then we illustrate the impact of conflicts between strict planning and market mechanisms on large-scale wind power utilization. Last, we explore how to promote coordination between markets and planning to realize large-scale wind power utilization in China. We argue that important measures include implementing flexible power pricing mechanisms instead of the current fixed pricing approach, formulating a more reasonable mechanism for distributing benefits and costs, and designing an appropriate market structure for large-scale wind power utilization to promote market liquidity and to send clear market equilibrium signals. - Highlights: ► We present the reasons why market is important for utilization of wind power. ► We discuss the current situation of the conflict between planning and market. ► We study the impact of conflict between planning and market on wind power output. ► We argue how to promote coordination between market and planning.

  13. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  14. Advanced divertor configurations with large flux expansion

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V.A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Menard, J.E.; Paul, S.F.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Raman, R. [University of Washington, Seattle, WA (United States); Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Scotti, F.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mueller, D.M.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Reimerdes, H.; Canal, G.P. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom Confédération Suisse, Lausanne (Switzerland); and others

    2013-07-15

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m{sup 2} to 0.5–1 MW/m{sup 2} was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX

  15. Large-Scale Power Production Potential on U.S. Department of Energy Lands

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, Alicen J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgqvist, Emma M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagne, Douglas A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hillesheim, Michael B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Walker, H. A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Jeff [Colorado School of Mines, Golden, CO (United States); Boak, Jeremy [Colorado School of Mines, Golden, CO (United States); Washington, Jeremy [Colorado School of Mines, Golden, CO (United States); Sharp, Cory [Colorado School of Mines, Golden, CO (United States)

    2017-11-03

    This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.

  16. Development and validation of advanced oxidation protective coatings for super critical steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.B.; Scheefer, M. [Alstom Power Ltd., Rugby (United Kingdom); Agueero, A. [Instituto Nacional de Tecnica Aerospacial (INTA) (Spain); Allcock, B. [Monitor Coatings Ltd. (United Kingdom); Norton, B. [Indestructible Paints Ltd. (United Kingdom); Tsipas, D.N. [Aristotle Univ. of Thessaloniki (Greece); Durham, R. [FZ Juelich (Germany); Xiang, Z. [Northumbria Univ. (United Kingdom)

    2006-07-01

    Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO{sub 2}. In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures in excess of 600 C, such that these materials are being exploited to construct a new generation of advanced coalfired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising environment. To enable the full potential of the new steels to be achieved, it is vital that protective coatings are developed, validated under high temperature steam and applied to candidate components from the steam path. This paper reviews recent work conducted within the Framework V project ''Coatings for Supercritical Steam Cycles'' (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coatings capable of providing steam oxidation protection at temperatures in excess of 620 C and up to 300 bar. The programme of work has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application work packages needed to develop and establish this technology for new and retrofit plant. (orig.)

  17. Recent advances in phosphate laser glasses for high power applications

    International Nuclear Information System (INIS)

    Campbell, J.H.

    1996-01-01

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm 3 have been made and methods for continuous melting laser glass are under development

  18. Scheduling of power generation a large-scale mixed-variable model

    CERN Document Server

    Prékopa, András; Strazicky, Beáta; Deák, István; Hoffer, János; Németh, Ágoston; Potecz, Béla

    2014-01-01

    The book contains description of a real life application of modern mathematical optimization tools in an important problem solution for power networks. The objective is the modelling and calculation of optimal daily scheduling of power generation, by thermal power plants,  to satisfy all demands at minimum cost, in such a way that the  generation and transmission capacities as well as the demands at the nodes of the system appear in an integrated form. The physical parameters of the network are also taken into account. The obtained large-scale mixed variable problem is relaxed in a smart, practical way, to allow for fast numerical solution of the problem.

  19. Auxiliary System Load Schemes in Large Thermal and Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kuzle, I.; Bosnjak, D.; Pandzic, H.

    2010-01-01

    Uninterrupted auxiliary system power supply in large power plants is a key factor for normal operation, transient states, start-ups and shutdowns and particularly during fault conditions. Therefore, there are many challenges in designing the main electrical system as well as the auxiliary systems power supply. Depending upon the type of fuel used and the environmental control system required, a thermal power plant may consume as much as 10% of its total generation for auxiliary power, while a nuclear power plant may require only 4 - 6% auxiliaries. In general, the larger the power generating plant, the higher the voltage selected for the AC auxiliary electric system. Most stations in the 75 to 500 MW range utilize 4,2 kV as the base auxiliary system voltage. Large generating stations 500 - 1000 MW and more use voltage levels of 6,9 kV and more. Some single dedicated loads such as electric driven boiler feed pumps are supplied ba a 13,8 kV bus. While designing the auxiliary electric system, the following areas must be considered: motor starting requirements, voltage regulation requirements, short-circuit duty requirements, economic considerations, reliability and alternate sources. Auxiliary power supply can't be completely generalized and each situation should be studied on its own merits to determine the optimal solution. Naturally, nuclear power plants have more reliability requirements and safety design criteria. Main coolant-pump power supply and continuity of service to other vital loads deserve special attention. This paper presents an overview of some up-to-date power plant auxiliary load system concepts. The main types of auxiliary loads are described and the electric diagrams of the modern auxiliary system supply concepts are given. Various alternative sources of auxiliary electrical supply are considered, the advantages and disadvantages of these are compared and proposals are made for high voltage distribution systems around the thermal and nuclear plant

  20. Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Abplanalp, Laura; Arnold, William

    2014-01-01

    ASTRO2010 Decadal stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies. AMTD is deliberately pursuing multiple design paths to provide the science community with op-tions to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.

  1. NRC research on the application of advanced I and C technology to commercial nuclear power plants

    International Nuclear Information System (INIS)

    Gollei, K.R.; Hon, A.L.

    1983-01-01

    The operational safety and efficiency of commercial nuclear power plants (NPP's) could possibly be enhanced by utilizing advanced instrumentation and control technology developed by other industries. The NRC is interested in learning about new I and C technology that probably will or could be applied to new or existing plants. This would enable the NRC to be better prepared to evaluate the application without undue delays. It would also help identify any appropriate changes in NRC regulations or guidance necessary to facilitate the application of advanced IandC technology to NPP's. The NRC has initiated a project to work cooperatively with the advanced technology industry, power industry, EPRI, and technical organizations such as ISA toward this goal. This paper describes the objectives and plans of this cooperative effort. It summarizes the highlights of some of the advanced technology already being evaluated by NRC such as microprocessor applications, instruments to detect inadequate core cooling and other two-phase flow measurements, reactor noise surveillance and diagnostic techniques. This paper also suggests potential candidates for consideration such as utilization of advanced instruments for LOCA experiments. It also identifies some of the potential challenges facing the application of advanced technology to NPP's. It concludes that close cooperation between NRC and industry is essential for the success of such applications

  2. Transforming Power Systems Through Global Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-01

    Ambitious and integrated policy and regulatory frameworks are crucial to achieve power system transformation. The 21st Century Power Partnership -- a multilateral initiative of the Clean Energy Ministerial -- serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with energy efficiency and grid modernization.

  3. Transforming Power Systems through Global Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-04-01

    Ambitious and integrated policy and regulatory frameworks are crucial to achieve power system transformation. The 21st Century Power Partnership -- a multilateral initiative of the Clean Energy Ministerial -- serves as a platform for public-private collaboration to advance integrated solutions for the large-scale deployment of renewable energy in combination with energy efficiency and grid modernization.

  4. Physics and safety of advanced research reactors

    International Nuclear Information System (INIS)

    Boening, K.; Hardt, P. von der

    1987-01-01

    Advanced research reactor concepts are presently being developed in order to meet the neutron-based research needs of the nineties. Among these research reactors, which are characterized by an average power density of 1-10 MW per liter, highest priority is now generally given to the 'beam tube reactors'. These provide very high values of the thermal neutron flux (10 14 -10 16 cm -2 s -1 ) in a large volume outside of the reactor core, which can be used for sample irradiations and, in particular, for neutron scattering experiments. The paper first discusses the 'inverse flux trap concept' and the main physical aspects of the design and optimization of beam tube reactors. After that two examples of advanced research reactor projects are described which may be considered as two opposite extremes with respect to the physical optimization principle just mentioned. The present situation concerning cross section libraries and neutronic computer codes is more or less satisfactory. The safety analyses of advanced research reactors can largely be updated from those of current new designs, partially taking advantage of the immense volume of work done for power reactors. The paper indicates a few areas where generic problems for advanced research reactor safety are to be solved. (orig.)

  5. Advanced passive PWR AC-600: Development orientation of nuclear power reactors in China for the next century

    International Nuclear Information System (INIS)

    Huang Xueqing; Zhang Senru

    1999-01-01

    Based on Qinshan II Nuclear Power Plant that is designed and constructed by way of self-reliance, China has developed advanced passive PWR AC-600. The design concept of AC-600 not only takes the real situation of China into consideration, but also follows the developing trend of nuclear power in the world. The design of AC-600 has the following technical characteristics: Advanced reactor: 18-24 month fuel cycle, low neutron leakage, low power density of the core, no any penetration in the RPV below the level of the reactor coolant nozzles; Passive safety systems: passive emergency residual heat removal system, passive-active safety injection system, passive containment cooling system and main control room habitability system; System simplified and the number of components reduced; Digital I and C; Modular construction. AC-600 inherits the proven technology China has mastered and used in Qirtshan 11, and absorbs advanced international design concepts, but it also has a distinctive characteristic of bringing forth new ideas independently. It is suited to Chinese conditions and therefore is expected to become an orientation of nuclear power development by self-reliance in China for the next century. (author)

  6. Impacts of large-scale offshore wind farm integration on power systems through VSC-HVDC

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe

    2013-01-01

    The potential of offshore wind energy has been commonly recognized and explored globally. Many countries have implemented and planned offshore wind farms to meet their increasing electricity demands and public environmental appeals, especially in Europe. With relatively less space limitation......, an offshore wind farm could have a capacity rating to hundreds of MWs or even GWs that is large enough to compete with conventional power plants. Thus the impacts of a large offshore wind farm on power system operation and security should be thoroughly studied and understood. This paper investigates...... the impacts of integrating a large-scale offshore wind farm into the transmission system of a power grid through VSC-HVDC connection. The concerns are focused on steady-state voltage stability, dynamic voltage stability and transient angle stability. Simulation results based on an exemplary power system...

  7. A Flipped Mode Teaching Approach for Large and Advanced Electrical Engineering Courses

    Science.gov (United States)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-01-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper…

  8. SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large PHased Array

    Data.gov (United States)

    National Aeronautics and Space Administration — SPS-ALPHA (Solar Power Satellite via Arbitrarily Large Phased Array) is a novel, bio-mimetic approach to the challenge of space solar power. If successful, this...

  9. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  10. Waste-to-energy advanced cycles and new design concepts for efficient power plants

    CERN Document Server

    Branchini, Lisa

    2015-01-01

    This book provides an overview of state-of-the-art technologies for energy conversion from waste, as well as a much-needed guide to new and advanced strategies to increase Waste-to-Energy (WTE) plant efficiency. Beginning with an overview of municipal solid waste production and disposal, basic concepts related to Waste-To-Energy conversion processes are described, highlighting the most relevant aspects impacting the thermodynamic efficiency of WTE power plants. The pervasive influences of main steam cycle parameters and plant configurations on WTE efficiency are detailed and quantified. Advanc

  11. Direct heuristic dynamic programming for damping oscillations in a large power system.

    Science.gov (United States)

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  12. Localized Power Control for Multihop Large-Scale Internet of Things

    KAUST Repository

    Bader, Ahmed

    2015-07-07

    In this paper, we promote the use of multihop networking in the context of large-scale Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, we advocate the use of blind cooperation in conjunction with multihop communications. However, we show that blind cooperation is actually inefficient unless power control is applied. Inefficiency in this paper is projected in terms of the transport rate normalized to energy consumption. To that end, we propose an uncoordinated power control mechanism whereby each device in a blind cooperative cluster randomly adjusts its transmit power level. We derive an upper bound on the mean transmit power that must be observed at each device. We also devise a practical mechanism for each device to infer about the size of its neighborhood; a requirement necessary for the operation of the power control scheme. Finally, we assess the performance of the developed power control mechanism and demonstrate how it consistently outperforms the point-to-point case.

  13. Localized Power Control for Multihop Large-Scale Internet of Things

    KAUST Repository

    Bader, Ahmed

    2015-08-04

    In this paper, we promote the use of multihop networking in the context of large-scale Internet of Things (IoT). Recognizing concerns related to the scalability of classical multihop routing and medium access techniques, we advocate the use of blind cooperation in conjunction with multihop communications. However, we show that blind cooperation is actually inefficient unless power control is applied. Inefficiency in this paper is projected in terms of the transport rate normalized to energy consumption. To that end, we propose an uncoordinated power control mechanism whereby each device in a blind cooperative cluster randomly adjusts its transmit power level. We derive an upper bound on the mean transmit power that must be observed at each device. We also devise a practical mechanism for each device to infer about the size of its neighborhood; a requirement necessary for the operation of the power control scheme. Finally, we assess the performance of the developed power control mechanism and demonstrate how it consistently outperforms the point-to-point case.

  14. Power System Operation with Large Scale Wind Power Integration

    DEFF Research Database (Denmark)

    Suwannarat, A.; Bak-Jensen, B.; Chen, Z.

    2007-01-01

    to the uncertain nature of wind power. In this paper, proposed models of generations and control system are presented which analyze the deviation of power exchange at the western Danish-German border, taking into account the fluctuating nature of wind power. The performance of the secondary control of the thermal......The Danish power system starts to face problems of integrating thousands megawatts of wind power, which produce in a stochastic behavior due to natural wind fluctuations. With wind power capacities increasing, the Danish Transmission System Operator (TSO) is faced with new challenges related...... power plants and the spinning reserves control from the Combined Heat and Power (CHP) units to achieve active power balance with the increased wind power penetration is presented....

  15. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, Pablo R. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Conway, Lawarence E. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Oriani, Luca [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; DeSilva, Greg [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Hu, Min H. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Hartz, Josh [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Bachrach, Uriel [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Smith, Larry [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Dudek, Daniel F. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Toman, Gary J. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Feng, Dandong [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hejzlar, Pavel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kazimi, Mujid S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  16. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Toman, Gary J.; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.

    2006-01-01

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ''standard'' 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (∼600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output

  17. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  18. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  19. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  20. Comprehensive benefit evaluation of direct power-purchase for large consumers

    Science.gov (United States)

    Liu, D. N.; Li, Z. H.; Zhou, H. M.; Zhao, Q.; Xu, X. F.

    2017-06-01

    Based on "several opinions of the CPC Central Committee and the State Council on further deepening the reform of electric power system" in 2015, this paper analyses the influence of direct power-purchase for large consumers on operation benefit of power grid. In three aspects, such as economic benefit, cleaning benefit and social benefit, the index system is proposed. In which, the profit of saving coal energy consumption, reducing carbon emissions and reducing pollutant emissions is quantitative calculated. Then the subjective and objective weights and index scores are figured out through the analytic hierarchy process, entropy weight method and interval number method. Finally, the comprehensive benefit is evaluated combined with the actual study, and some suggestions are made.

  1. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  2. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  3. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    Science.gov (United States)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  4. Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability

    Directory of Open Access Journals (Sweden)

    Hwanik Lee

    2017-10-01

    Full Text Available Abstract: To increase the utilization of wind power in the power system, grid integration standards have been proposed for the stable integration of large-scale wind power plants. In particular, fault-ride-through capability, especially Low-Voltage-Ride-Through (LVRT, has been emphasized, as it is related to tripping in wind farms. Therefore, this paper proposes the Wind power plant applicable-Effective Reactive power Reserve (Wa-ERPR, which combines both wind power plants and conventional generators at the Point of Interconnection (POI. The reactive power capability of the doubly-fed induction generator wind farm was considered to compute the total Wa-ERPR at the POI with reactive power capability of existing generators. By using the Wa-ERPR management algorithm, in case of a violation of the LVRT standards, the amount of reactive power compensation is computed using the Wa-ERPR management scheme. The proposed scheme calculates the Wa-ERPR and computes the required reactive power, reflecting the change of the system topology pre- and post-contingency, to satisfy the LVRT criterion when LVRT regulation is not satisfied at the POI. The static synchronous compensator (STATCOM with the capacity corresponding to calculated amount of reactive power through the Wa-ERPR management scheme is applied to the POI. Therefore, it is confirmed that the wind power plant satisfies the LVRT criteria by securing the appropriate reactive power at the POI, by applying of the proposed algorithm.

  5. Imbalance costs in the Swedish system with large amounts of wind power

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik; Neimane, Viktoria [Vattenfall Research and Development AB, Stockholm (Sweden)

    2009-07-01

    The well-known concerns about wind power are related to its intermittent nature and difficulty to make exact forecasts. The expected increase in balancing and reserve requirements due to wind power has been investigated in several studies. This paper takes the next step in studying integration of large amounts of wind power in Sweden. Several wind power producers' and corresponding balance providers' perspective is taken and their imbalance costs modeled. Larger producers having wind power spread over larger geographical areas will have lower relative costs than producers having their units concentrated within limited geographical area. Possibilities of the wind power producers to reduce the imbalance costs by acting on after sales market are exposed and compared. (orig.)

  6. Advanced methods on the evaluation of design earthquake motions for important power constructions

    International Nuclear Information System (INIS)

    Higashi, Sadanori; Shiba, Yoshiaki; Sato, Hiroaki; Sato, Yusuke; Nakajima, Masato; Sakai, Michiya; Sato, Kiyotaka

    2009-01-01

    In this report, we compiled advanced methods on the evaluation of design earthquake motions for important power constructions such as nuclear power, thermal power, and hydroelectric power facilities. For the nuclear and hydroelectric power facilities, we developed an inversion method of broad-band (0.1-5Hz) source process and obtained valid results from applying the method to the 2007 Niigata-ken Chuetsu-oki earthquake (M6.8). We have also improved our modeling techniques of thick sedimentary layered structure such as the S-wave velocity modeling by using microtremor array measurement and the frequency dependent damping factor with a lower limit. For seismic isolation design for nuclear power facilities, we proposed a design pseudo-velocity response spectrum. For the thermal power facilities, we performed three-dimensional numerical simulation of Kanto Basin for a prediction relation of long-period ground motion. We also proposed the introduction of probabilistic approach into the deterministic evaluation flow of design earthquake motions and evaluated the effect of a great earthquake with a short return period on the seismic hazard in Miyagi Prefecture, Japan. (author)

  7. Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Meneveau, Charles

    2014-01-01

    Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind-farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly

  8. China's large-scale power shortages of 2004 and 2011 after the electricity market reforms of 2002: Explanations and differences

    International Nuclear Information System (INIS)

    Ming, Zeng; Song, Xue; Lingyun, Li; Yuejin, Wang; Yang, Wei; Ying, Li

    2013-01-01

    Since the electricity market reforms of 2002, two large-scale power shortages, one occurring in 2004 and one in 2011, exerted a tremendous impact on the economic development of China and also gave rise to a fierce discussion regarding electricity system reforms. In this paper, the background and the influence scale of the two power shortages are described. Second, reasons for these two large-scale power shortages are analyzed from the perspectives of power generation, power consumption and coordination of power sources and grid network construction investments. Characteristics of these two large-scale power shortages are then summarized by comparatively analyzing the performance and the formation of the reasons behind these two large-scale power shortages. Finally, some effective measures that take into account the current status of electricity market reforms in China are suggested. This paper concludes that to eliminate power shortages in China, both the supply and the demand should be considered, and these considerations should be accompanied by supervisory policies and incentive mechanisms. - Highlights: • Reasons of these two large-scale power shortages are analyzed. • Characteristics of these two large-scale power shortages are summarized. • Some effective measures to eliminate power shortage are suggested

  9. The role of advanced nuclear power technologies in developing countries: Criteria and design requirements

    International Nuclear Information System (INIS)

    1990-02-01

    The document includes the papers presented at the following two technical committee meetings organized by the IAEA: Technical Committee Meeting and Workshop on Criteria for the Introduction of Advanced Nuclear Power Technologies for Specific Applications in Developing Countries, Vienna, 27-30 June 1988 (14 papers) and Technical Committee Meeting and Workshop on Design Requirements for the Application of Advanced Concepts in Developing Countries, Vienna, 6-9 December 1988 (16 papers). A separate abstract was prepared for each of these papers

  10. Laguna Verde nuclear power plant: an experience to consider in advanced BWR design

    International Nuclear Information System (INIS)

    Fuentes Marquez, L.

    2001-01-01

    Laguna Verde is a BWR 5 containment Mark II. Designed by GE, two external re-circulation loops, each of them having two speed re-circulation pump and a flow control valve to define the drive flow and consequently the total core flow an power control by total core flow. Laguna Verde Design and operational experience has shown some insights to be considering in design for advanced BRW reactors in order to improve the potential of nuclear power plants. NSSS and Balance of plant design, codes used to perform nuclear core design, margins derived from engineering judgment, at the time Laguna Verde designed and constructed had conducted to have a plant with an operational license, generating with a very good performance and availability. Nevertheless, some design characteristics and operational experience have shown that potential improvements or areas of opportunity shall be focused in the advanced BWR design. Computer codes used to design the nuclear core have been evolved relatively fast. The computers are faster and powerful than those used during the design process, also instrumentation and control are becoming part of this amazing technical evolution in the industry. The Laguna Verde experience is the subject to share in this paper. (author)

  11. Pilot project wind power - Large scale wind power in northern Sweden; Pilotprojekt vindkraft - Storskalig vindkraft i norra Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Swedish Energy Agency granted 2009-04-20 Svevind AB financial aid to implement {sup P}ilot project wind power- Large scale wind power in northern Sweden{sup .} The purpose of the aid is to implement pilot sub-projects in wind power, to to increase knowledge for the larger establishments. The Energy Agency said in its decision that the projects Dragaliden and Gabriel Mountain is of 'great importance for future large-scale development of wind power in Sweden'. The special conditions prevailing in the project, forest environment and cold climate, gives the possibility of studies of wind turbines on birds, reindeer herding and hunting and the more technical aspects, such as de-icing and obstacle lighting. The objectives of the project, in addition to the construction and operation of 32 wind turbines, has been to include evaluating the permit process, studying the social effects around the wind power, to study the impact on small game hunting, perform tests of the de-icing system, investigate impacts on reindeer herding and explain the outcome of the project-generated rural funds. Some of the above sub-projects have been completed, which are reported in this report. For the sub-projects still in progress, the report presents the results to date, until the completion.

  12. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  13. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  14. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  15. Partial analysis of wind power limit for large disturbance using fixed speed wind turbine

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Cairo Rodriguez, Daniel; Boza Valerino, Juan Gualberto

    2014-01-01

    The amount of wind power that allow an electric network without losing his stability as known as wind power limit. The wind power limit fundamentally depends on the wind turbine technology and the weakness level of the system. To know the system behaviors in dynamic performance having into account the worst disturbance is a very important matter, a short circuit in one of the most power transference line or the loss of a large generation unit was a large disturbance that can affect system stability. The wind power limit may change with the nature of the disturbance. To know the wind power limit considering this conditions allow use the wind at maximum level. In the present paper the behavior of fixed speed wind turbine for different fault types is analyzed, at those conditions, the wind power is increasing until the system become voltage unstable. For the analysis the IEEE 14 Bus Test Case is used. The Power System Analysis Toolbox (PSAT) package is used for the simulation. (author)

  16. Advanced I and C systems for nuclear power plants

    International Nuclear Information System (INIS)

    Bock, H.W.; Graf, A.; Hofmann, H.

    1995-01-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally, specific requirements coming from the nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. The main features of these systems are the clear task related architecture with adaptable redundancy, the consequent application of standards for interfaces and communication, comprehensive tools for easy design and service and a highly ergonomic screen based man-machine-interface. The engineering tasks are supported by an integrated engineering system, which has the capacity for design, test and diagnosis of all I and C functions and the related equipment. TELEPERM XP is designed to optimally perform all automatic functions, which require no nuclear specific qualification. This includes all sequences and closed-loop controls as well as most man-machine-interface functions. TELEPERM XS is designed for all control tasks which require a nuclear specific qualification. This especially includes all functions to initiate automatic countermeasures to prevent or to cope with accidents. By use of the complementary I and C systems TELEPERM XP and TELEPERM XS, economical as well as advanced plant automation and man-machine-interfaces can be implemented into Nuclear Plants, assuring the compliance with the relevant international safety standards. (author). 10 figs

  17. Development of an Intelligent Maximum Power Point Tracker Using an Advanced PV System Test Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Amoiridis, Anastasios; Beres, Remus Narcis

    2013-01-01

    The performance of photovoltaic systems is often reduced by the presence of partial shadows. The system efficiency and availability can be improved by a maximum power point tracking algorithm that is able to detect partial shadow conditions and to optimize the power output. This work proposes...... an intelligent maximum power point tracking method that monitors the maximum power point voltage and triggers a current-voltage sweep only when a partial shadow is detected, therefore minimizing power loss due to repeated current-voltage sweeps. The proposed system is validated on an advanced, flexible...... photovoltaic inverter system test platform that is able to reproduce realistic partial shadow conditions, both in simulation and on hardware test system....

  18. Initial characterization of the ATR [Advanced Test Reactor] Large Gamma Facility

    International Nuclear Information System (INIS)

    Schnitzler, B.G.; Rogers, J.W.

    1986-05-01

    Radiation fields in the ATR Large Gamma Facility test volume are characterized. The preliminary characterization efforts described in this report include total dose rate measurements in the facility, development of a simple methodology for calculating radiation fields from the ATR fuel element power histories, and a comparison of the measured and calculated values

  19. How to correct for long-term externalities of large-scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-01-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of recent renewable promotion schemes adds a new dimension to ensuring long-term security of supply: it necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development in the presence of either subsidized or market driven development scenarios. We test the use of capacity mechanisms to compensate for long-term effects of large-scale wind power development on prices and reliability of supply. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalised for insufficient contribution to the long term system's reliability. - Highlights: • We model power market players’ investment decisions incorporating wind power. • We examine two market designs: an energy-only market and a capacity mechanism. • We test two types of wind power development paths: subsidised and market-driven. • Capacity mechanisms compensate for the externalities of wind power developments

  20. Construction of Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Yamanari, Shozo; Miyahara, Ryohei; Umezawa, Takeshi; Teshiba, Ichiro

    2006-01-01

    Construction of the Shika Nuclear Power Station Unit No.2 of the Hokuriku Electric Power Co., Inc. (advanced boiling-water reactor; output: 1.358 mega watts) was begun in August 1999 and it will resume commercial operation in March 2006 as scheduled. Hitachi contributed effectually toward realizing the project with supply of a complete set of the advanced nuclear reactor and turbine-generator system with the latest design and construction technology in harmony. Large-scale modular structures for installation and a computer-aided engineering system for work procedure and schedule management were applied with the utmost priority placed on work efficiency, safety and quality assurance. (T.Tanaka)

  1. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  2. Development of advanced PWR steam generator

    International Nuclear Information System (INIS)

    Saito, Itaru; Nakamura, Tomomichi

    1999-01-01

    In response to the increased power of the advanced PWR, it is necessary to develop a steam generator (SG) which has a large capacity with high performance and high reliability as well as being economical to produce. In this paper, the development of the design of a new SG for the advanced PWRs is described and compared with the design of a conventional SG. Moreover, an outline of a seismic verification test for the U-bend tube bundle which includes advanced anti-vibration bars (AVB) which are very important is described. As a result, it was verified that the bundle has sufficient strength and a relatively high attenuation to seismic loads. These results will be reflected in the detailed design of advanced AVBs. (author)

  3. Using Multi-Robot Systems for Engineering Education: Teaching and Outreach with Large Numbers of an Advanced, Low-Cost Robot

    Science.gov (United States)

    McLurkin, J.; Rykowski, J.; John, M.; Kaseman, Q.; Lynch, A. J.

    2013-01-01

    This paper describes the experiences of using an advanced, low-cost robot in science, technology, engineering, and mathematics (STEM) education. It presents three innovations: It is a powerful, cheap, robust, and small advanced personal robot; it forms the foundation of a problem-based learning curriculum; and it enables a novel multi-robot…

  4. Advanced Design Tools for the Lifetime of Power Electronics – Study Case on Motor Drive Application

    DEFF Research Database (Denmark)

    Ma, Ke; Vernica, Ionut; Blaabjerg, Frede

    2016-01-01

    assessment of reliability performance for the power electronics is a crucial and emerging need, because it is the essential information for the reliability improvements, and thus reduction of the cost-of-energy. Unfortunately, there is still lack of suitable tools for the reliability assessment in power...... electronics. In this paper, an advanced design tool structure, which can acquire various reliability metrics of the power electronics, is proposed. The proposed design tool is based on the failure mechanisms in the critical components of the power electronics, and the mission profiles in the converter...

  5. Advanced digital instrumentation and control system for nuclear power plant protection

    Energy Technology Data Exchange (ETDEWEB)

    Sabino, D [VVER Engineering, Westinghouse Electric Corporation (United States)

    1998-12-31

    The Diverse Protection System is a back-up to the Primary Reactor Protection System developed for use at the Temelin nuclear power plant. The DPS is a digital system which provides a wealth of benefits from today`s advanced technology. These benefits include a compact hardware design with high performance microprocessors and a structured software design using a high level language. An overview of the DPS functions, hardware and software is provided. (author). 1 fig., 1 tab.

  6. Applicability of HRA to support advanced MMI design review

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    2000-01-01

    More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process. (author)

  7. Alternative Green Technology for Power Generation Using Waste-Heat Energy And Advanced Thermoelectric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in advancing green technology research for achieving sustainable and environmentally friendly energy sources. Thermo-electric power generation...

  8. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  9. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  10. Bi-Level Decentralized Active Power Control for Large-Scale Wind Farm Cluster

    DEFF Research Database (Denmark)

    Huang, Shengli; Wu, Qiuwei; Guo, Yifei

    2018-01-01

    This paper presents a bi-level decentralized active power control (DAPC) for a large-scale wind farm cluster, consisting of several wind farms for better active power dispatch. In the upper level, a distributed active power control scheme based on the distributed consensus is designed to achieve...... fair active power sharing among multiple wind farms, which generates the power reference for each wind farm. A distributed estimator is used to estimate the total available power of all wind farms. In the lower level, a centralized control scheme based on the Model Predictive Control (MPC) is proposed...... to regulate active power outputs of all wind turbines (WTs) within a wind farm, which reduces the fatigue loads of WTs while tracking the power reference obtained from the upper level control. A wind farm cluster with 8 wind farms and totally 160 WTs, was used to test the control performance of the proposed...

  11. Computer visualization for enhanced operator performance for advanced nuclear power plants

    International Nuclear Information System (INIS)

    Simon, B.H.; Raghavan, R.

    1993-01-01

    The operators of nuclear power plants are presented with an often uncoordinated and arbitrary array of displays and controls. Information is presented in different formats and on physically dissimilar instruments. In an accident situation, an operator must be very alert to quickly diagnose and respond to the state of the plant as represented by the control room displays. Improvements in display technology and increased automation have helped reduce operator burden; however, too much automation may lead to operator apathy and decreased efficiency. A proposed approach to the human-system interface uses modern graphics technology and advances in computational power to provide a visualization or ''virtual reality'' framework for the operator. This virtual reality comprises a simulated perception of another existence, complete with three-dimensional structures, backgrounds, and objects. By placing the operator in an environment that presents an integrated, graphical, and dynamic view of the plant, his attention is directly engaged. Through computer simulation, the operator can view plant equipment, read local displays, and manipulate controls as if he were in the local area. This process not only keeps an operator involved in plant operation and testing procedures, but also reduces personnel exposure. In addition, operator stress is reduced because, with realistic views of plant areas and equipment, the status of the plant can be accurately grasped without interpreting a large number of displays. Since a single operator can quickly ''visit'' many different plant areas without physically moving from the control room, these techniques are useful in reducing labor requirements for surveillance and maintenance activities. This concept requires a plant dynamic model continuously updated via real-time process monitoring. This model interacts with a three-dimensional, solid-model architectural configuration of the physical plant

  12. Liquid and solid rad waste treatment in advanced nuclear power plants. Application to the SBWR design

    International Nuclear Information System (INIS)

    Tielas Reina, M.; Asuar Alonso, O.

    1994-01-01

    Rad waste treatment requirements for the new generation of American advanced passive and evolutionary power plants are listed in the URD (Utility Requirements Document) of the EPRI (Electrical Power Research Institute). These requirements focus on: - Minimization of shipped solid wastes - Minimization of liquid effluents - Simplification of design and operation, with emphasis not only on waste treatment system design but also on general plant design and operation These objectives are aimed at: - Reducing and segregating wastes at source - Minimizing chemical contamination of these wastes System design simplification is completed by providing free space in the building for the use of mobile plants, either for special services not considered in the basic design or to accommodate future technical advances. (Author)

  13. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    Science.gov (United States)

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  14. A new proposed approach for future large-scale de-carbonization coal-fired power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Liang, Feifei; Wu, Ying; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2015-01-01

    The post-combustion CO 2 capture technology provides a feasible and promising method for large-scale CO 2 capture in coal-fired power plants. However, the large-scale CO 2 capture in conventionally designed coal-fired power plants is confronted with various problems, such as the selection of the steam extraction point and steam parameter mismatch. To resolve these problems, an improved design idea for the future coal-fired power plant with large-scale de-carbonization is proposed. A main characteristic of the proposed design is the adoption of a back-pressure steam turbine, which extracts the suitable steam for CO 2 capture and ensures the stability of the integrated system. A new let-down steam turbine generator is introduced to retrieve the surplus energy from the exhaust steam of the back-pressure steam turbine when CO 2 capture is cut off. Results show that the net plant efficiency of the improved design is 2.56% points higher than that of the conventional one when CO 2 capture ratio reaches 80%. Meanwhile, the net plant efficiency of the improved design maintains the same level to that of the conventional design when CO 2 capture is cut off. Finally, the match between the extracted steam and the heat demand of the reboiler is significantly increased, which solves the steam parameter mismatch problem. The techno-economic analysis indicates that the proposed design is a cost-effective approach for the large-scale CO 2 capture in coal-fired power plants. - Highlights: • Problems caused by CO 2 capture in the power plant are deeply analyzed. • An improved design idea for coal-fired power plants with CO 2 capture is proposed. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the proposed coal-fired power plant design idea

  15. Thermodynamic and economic analysis of a partially-underground tower-type boiler design for advanced double reheat power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Yang, Zhiping

    2015-01-01

    An increasing number of tower-type boilers have been selected for advanced double reheat power plants, due to the uniform flue gas profile and the smooth steam temperature increase. The tall height and long steam pipelines lengths will however, result in dramatic increases in the difficulty of construction, as well as increased power plant investment cost. Given these factors, a novel partially-underground tower-type boiler design has been proposed in this study, which has nearly half of the boiler embedded underground, thereby significantly reducing the boiler height and steam pipeline lengths. Thermodynamic and economic analyses were quantitatively conducted on a 1000 MW advanced double reheat steam cycle. Results showed that compared to the reference power plant, the power plant with the proposed tower-type boiler design could reduce the net heat rate by 18.3 kJ/kWh and could reduce the cost of electricity (COE) by $0.60/MWh. The study also investigated the effects of price fluctuations on the cost-effectiveness of the reference power plant, for both the conventional and the proposed tower-type boilers designs, and found that the double reheat power plant with the proposed tower-type boiler design would be even more competitive and price-effective when the coal price and the investment costs increase. The research of this paper may provide a promising tower-type boiler design for advanced double reheat power plants with lower construction complexity and better cost-effectiveness. - Highlights: • A partially-underground tower-type boiler in double reheat power plants is proposed. for double reheat power plants is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Better energetic efficiency and greater economic benefits are achieved. • The impacts of price fluctuations on the economic feasibility are discussed

  16. Advanced I and C systems for nuclear power plants feedback of experience

    International Nuclear Information System (INIS)

    Prehler Heinz Josef

    2001-01-01

    Advanced I and C systems for nuclear power plants have to meet increasing demands for safety and availability. Additionally specific requirements arising from nuclear qualification have to be fulfilled. To meet both subjects adequately in the future, Siemens has developed advanced I and C technology consisting of the two complementary I and C systems TELEPERM XP and TELEPERM XS. TELEPERM XP is primarily oriented to automation of the non safety related part of the power plant process. Such applications involve extensive open and closed loop control systems and encompass all tasks required for process control via the man-machine interface. Therefore the TELEPERM XP system consists of the AS 620 automation system, the OM 690 process control and management system, the ES 680 engineering system, the DS 670 diagnostic system and the SIMATIC NET bus system. Three versions of automation systems are available: for standard automation, for fail safe automation of safety related tasks and for turbine automation. TELEPERM XS is designed to meet all the requirements on I and C important to safety in nuclear power plants. Typical applications include reactor protection (RPS) and Engineered Safety Features Actuation System functions (ESFAS). TELEPERM XS has been rapidly accepted by the market and has accumulated an extensive operational experience. The expected advantages, namely, reduced space requirements, consistent documentation, improved ergonomics, reduced testing effort, less repair have been confirmed by the operation. The new possibilities to apply intelligent diagnostic methods have been only applied in few cases. Very good service records from a broad field of safety application prove that it is right to use digital I and C systems for safety tasks. The expected advantages such as reduced space requirements, less repairs and less effort for periodic tests, have been confirmed by practical experience. For the future, use of digital I and C systems for safety

  17. PowerGuard{reg_sign} Advanced Manufacturing; PVMaT Phase 1 Final Technical Report: June 1, 1998 to September 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M. C.; Dinwoodie, T. L.; O' Brian, C.; Botkin, J.; Ansley, J.

    2000-06-14

    During Phase 1 of PowerGuard{reg_sign} Advanced Manufacturing, PowerLight Corporation accomplished the following advancements: (1) Decreased system cost by 15%; (2) Increased PowerGuard tile production capacity from 5 MW/year to 8 MW/yr; (3) Established a manufacturing layout master plan for sequential integration of semi-automated and automated component workstations; (4) Defined semi-automation or automation of selected stages of the existing tile fabrication sequence, including PV module preparation, XPS processing, and coating; (5) Completed the advancement of several design improvements to the grid-tied inverter control board, including controller redesign, integrated data acquisition system (DAS), and communications for audit-worthy verification of PV system performance; (6) Conformed to NEPA, OSHA, and other federal and state regulations applicable to the proposed production process and mitigated potential for waste streams; (7) Initiated Underwriters Laboratories listings and international certifications on PowerGuard improvements; (8) Developed finance packages and integrated warranties; (9) Evaluated commercial demonstrations that incorporated the new design features and manufacturing process.

  18. Hartle-Hawking wave function and large-scale power suppression of CMB*

    Directory of Open Access Journals (Sweden)

    Yeom Dong-han

    2018-01-01

    Full Text Available In this presentation, we first describe the Hartle-Hawking wave function in the Euclidean path integral approach. After we introduce perturbations to the background instanton solution, following the formalism developed by Halliwell-Hawking and Laflamme, one can obtain the scale-invariant power spectrum for small-scales. We further emphasize that the Hartle-Hawking wave function can explain the large-scale power suppression by choosing suitable potential parameters, where this will be a possible window to confirm or falsify models of quantum cosmology. Finally, we further comment on possible future applications, e.g., Euclidean wormholes, which can result in distinct signatures to the power spectrum.

  19. Computation of spot prices and congestion costs in large interconnected power systems

    International Nuclear Information System (INIS)

    Mukerji, R.; Jordan, G.A.; Clayton, R.; Haringa, G.E.

    1995-01-01

    Foremost among the new paradigms for the US utility industry is the ''poolco'' concept proposed by Prof. William W. Hogan of Harvard University. This concept uses a central pool or power exchange in which physical power is traded based on spot prices or market clearing prices. The rapid and accurate calculation of these ''spot'' prices and associated congestion costs for large interconnected power systems is the central tenet upon which the poolco concept is based. The market clearing price would be the same throughout the system if there were no system losses and transmission limitations did not exist. System losses cause small differences in market clearing prices as the cost of supplying a MW at various load buses includes the cost of losses. Transmission limits may cause large differences in market clearing prices between regions as low cost generation is blocked by the transmission constraints from serving certain loads. In models currently in use in the electric power industry spot price calculations range from ''bubble diagram'' type contract path models to full electrical representation such as GE-MAPS. The modeling aspects of the full electrical representation are included in the Appendix. The problem with the bubble diagram representation is that these models are liable to produce unacceptably large errors in the calculation of spot prices and congestion costs. The subtleties of the calculation of spot prices and congestion costs are illustrated in this paper

  20. Full Scope Modeling and Analysis on the Secondary Circuit of Chinese Large-Capacity Advanced PWR Based on RELAP5 Code

    Directory of Open Access Journals (Sweden)

    Dao-gang Lu

    2015-01-01

    Full Text Available Chinese large-capacity advanced PWR under construction in China is a new and indispensable reactor type in the developing process of NPP fields. At the same time of NPP construction, accident sequences prediction and operators training are in progress. Since there are some possible events such as feedwater pumps trip in secondary circuit may lead to severe accident in NPP, training simulators and engineering simulators of CI are necessary. And, with an increasing proportion of nuclear power in China, NPP will participate in regulating peak load in power network, which requires accuracy calculation and control of secondary circuit. In order to achieve real-time and full scope simulation in the power change transient and accident scenarios, RELAP5/MOD 3.4 code has been adopted to model the secondary circuit for its advantage of high calculation accuracy. This paper describes the model of steady state and turbine load transient from 100% to 40% of secondary circuit using RELAP5 and provides a reasonable equivalent method to solve the calculation divergence problem caused by dramatic two-phase condition change while guaranteeing the heat transfer efficiency. The validation of the parameters shows that all the errors between the calculation values and design values are reasonable and acceptable.

  1. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  2. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  3. System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China

    Directory of Open Access Journals (Sweden)

    Linna Hou

    2015-01-01

    Full Text Available This paper focuses on the impacts of renewable energy policy on a large-scale power generation system, including thermal power, hydropower, and wind power generation. As one of the most important clean energy, wind energy has been rapidly developed in the world. But in recent years there is a serious waste of wind power equipment and investment in China leading to many problems in the industry from wind power planning to its integration. One way overcoming the difficulty is to analyze the influence of wind power policy on a generation system. This paper builds a system dynamics (SD model of energy generation to simulate the results of wind energy generation policies based on a complex system. And scenario analysis method is used to compare the effectiveness and efficiency of these policies. The case study shows that the combinations of lower portfolio goal and higher benchmark price and those of higher portfolio goal and lower benchmark price have large differences in both effectiveness and efficiency. On the other hand, the combinations of uniformly lower or higher portfolio goal and benchmark price have similar efficiency, but different effectiveness. Finally, an optimal policy combination can be chosen on the basis of policy analysis in the large-scale power system.

  4. Use of ABB ADVANT Power for large scale instrumentation and controls replacements in nuclear power plants

    International Nuclear Information System (INIS)

    Pucak, J.L.; Brown, E.M.

    1999-01-01

    One of the major issues facing plants planning for life extension is the viability and feasibility of modernization of a plant's existing I and C systems including the safety systems and the control room. This paper discusses the ABB approach to the implementation of large scale Instrumentation and Controls (I and C) modernization. ABB applies a segmented architecture approach using the ADVANT Power control system to meet the numerous constraints of a major I and C upgrade program. The segmented architecture and how it supports implementation of a complete I and C upgrade either in one outage or in a series of outages is presented. ADVANT Power contains standardized industrial control equipment that is designed to support 1E applications as well as turbine and non-1E process control. This equipment forms the basis for the architecture proposed for future new nuclear plant sales as well as large scale retrofits. (author)

  5. How to correct long-term system externality of large scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-04-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of renewable promotion schemes adds a new dimension to ensuring long-term security of supply. It necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development either in the presence of either subsidised wind production or in market-driven development. We test the use of capacity mechanisms to compensate for the long-term effects of large-scale wind power development on the system reliability. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalized for insufficient contribution to the long term system's reliability. (authors)

  6. Directions for advanced use of nuclear power in century XXI

    International Nuclear Information System (INIS)

    Walter, C.E.

    1999-01-01

    Nuclear power can provide a significant contribution to electricity generation and meet other needs of the world and the US during the next century provided that certain directions are taken to achieve its public acceptance. These directions include formulation of projections of population, energy consumption, and energy resources over a responsible period of time. These projections will allow assessment of cumulative effects on the environment and on fixed resources. Use of fossil energy resources in a century of growing demand for energy must be considered in the context of long-term environmental damage and resource depletion. Although some question the validity of these consequences, they can be mitigated by use of advanced fast reactor technology. It must be demonstrated that nuclear power technology is safe, resistant to material diversion for weapon use, and economical. An unbiased examination of all the issues related to energy use, especially of electricity, is an essential direction to take

  7. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  8. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  9. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mugerwa, Michael [Technip USA, Inc., Claremont, CA (United States)

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  10. Harmonic Stability and Resonance Analysis in Large PMSG-Based Wind Power Plants

    DEFF Research Database (Denmark)

    Ebrahimzadeh, Esmaeil; Blaabjerg, Frede; Wang, Xiongfei

    2018-01-01

    Compared to the conventional power systems, large Wind Power Plants (WPPs) present a more challenging system where the interactions between the passive elements and the wideband control systems of power converters may result in harmonic instability and new resonance frequencies. Most of researches...... system and the resonance frequencies are identified based on the element amplitudes of the MIMO matrix. An active damping controller is used to set the poles of the WPP in a desired location in order to mitigate the harmonic instability problems. Multiple case studies are provided to depict that Wind...

  11. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  12. Large-scale data analysis of power grid resilience across multiple US service regions

    Science.gov (United States)

    Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert

    2016-05-01

    Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.

  13. Status of magnet power supply development for the APS [Advanced Photon Source] storage ring

    International Nuclear Information System (INIS)

    McGhee, D.

    1989-01-01

    To simplify installation and speed testing of the Advanced Photon Source (APS) storage ring magnets, vacuum chambers and magnet power supplies, a modular approach was developed. All but the dipole magnets are independently controlled. Pulse width modulated dc-to-dc converters are used to power the individual magnets, with 12-pulse power supplies providing the raw dc to the converters. A magnet support base is the heart of a module and may hold as many as 7 magnets with 8 individually powered coils. The dc-to-dc converters are part of each magnet base module. This paper will show the modular approach which is used for the storage ring magnet systems and will give the test results of the prototype topology for the dc-to-dc converters that are being built and tested to power 680 quadrupole and sextupole magnets. 4 refs., 11 figs., 1 tab

  14. Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion

    International Nuclear Information System (INIS)

    Salpakari, Jyri; Mikkola, Jani; Lund, Peter D.

    2016-01-01

    Highlights: • New models for optimal control of shiftable loads and power-to-heat conversion. • Full technical and economic potential with optimal controls. • Detailed time series of shiftable loads based on empirical data. • Case study of Helsinki (Finland) with over 90% share of district heating. • Positive net present values in cost-optimal operation. - Abstract: Solar and wind power are potential carbon-free energy solutions for urban areas, but they are also subject to large variability. At the same time, urban areas offer promising flexibility solutions for balancing variable renewable power. This paper presents models for optimal control of power-to-heat conversion to heating systems and shiftable loads in cities to incorporate large variable renewable power schemes. The power-to-heat systems comprise heat pumps, electric boilers, and thermal storage. The control strategies comprise optimal matching of load and production, and cost-optimal market participation with investment analysis. All analyses are based on hourly data. The models are applied to a case study in Helsinki, Finland. For a scheme providing ca. 50% of all electricity in the city through self-consumption of variable renewables, power-to-heat with thermal storage could absorb all the surplus production. A significant reduction in the net load magnitude was obtained with shiftable loads. Investments to both power-to-heat and load shifting with electric heating and commercial refrigeration have a positive net present value if the resources are controlled cost-optimally.

  15. The transport sectors potential contribution to the flexibility in the power sector required by large-scale wind power integration

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Lund, H.; Mathiesen, B.V.

    2007-01-01

    -scale integration of renewable energy in the power system – in specific wind power. In the plan, 20 % of the road transport is based on electricity and 20 % on bio- fuels. This, together with other initiatives allows for up to 55-60 % wind power penetration in the power system. A fleet of 0.5 mio electrical...... vehicles in Denmark in 2030 connected to the grid 50 % of the time represents an aggregated flexible power capacity of 1- 1.5 GW and an energy capacity of 10-150 GWh.......In 2006, the Danish Society of Engineers developed a visionary plan for the Danish energy system in 2030. The paper presents and qualifies selected part of the analyses, illustrating the transport sectors potential to contribute to the flexibility in the power sector, necessary for large...

  16. A new framework to increase the efficiency of large-scale solar power plants.

    Science.gov (United States)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  17. Large scale model experimental analysis of concrete containment of nuclear power plant strengthened with externally wrapped carbon fiber sheets

    International Nuclear Information System (INIS)

    Yang Tao; Chen Xiaobing; Yue Qingrui

    2005-01-01

    Concrete containment of Nuclear Power Station is the last shield structure in case of nuclear leakage during an accident. The experiment model in this paper is a 1/10 large-scale model of a real-sized prestressed reinforced concrete containment. The model containment was loaded by hydraulic pressure which simulated the design pressure during the accident. Hundreds of sensors and advanced data-collect systems were used in the test. The containment was first loaded to the damage pressure then strengthened with externally wrapping Carbon fiber sheet around the outer surface of containment structure. Experimental results indicate that CFRP system can greatly increase the capacity of concrete containment to endure the inner pressure. CFRP system can also effectively confine the deformation and the cracks caused by loading. (authors)

  18. Optimal Siting and Sizing of Energy Storage System for Power Systems with Large-scale Wind Power Integration

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Huang, Shaojun

    2015-01-01

    This paper proposes algorithms for optimal sitingand sizing of Energy Storage System (ESS) for the operationplanning of power systems with large scale wind power integration.The ESS in this study aims to mitigate the wind powerfluctuations during the interval between two rolling Economic......Dispatches (EDs) in order to maintain generation-load balance.The charging and discharging of ESS is optimized consideringoperation cost of conventional generators, capital cost of ESSand transmission losses. The statistics from simulated systemoperations are then coupled to the planning process to determinethe...

  19. A new VME based high voltage power supply for large experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M. (Fermi National Accelerator Lab., Batavia, IL (United States)); Franzini, P. (Columbia Univ., New York, NY (United States)); Jones, A.A. (Superconducting Super Collider Lab., Dallas, TX (United States)); Lopez, M.L. (La Plata Univ. Nacional (Argentina)); Wimpenny, S.J.; Yang, M.J

    1991-11-01

    A new VME based high voltage power supply has been developed for the D{O} experiment at Fermilab. There are three types of supplies delivering up to {plus minus}5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs.

  20. A new VME based high voltage power supply for large experiments

    International Nuclear Information System (INIS)

    Ahn, S.C.; Angstadt, R.D.; Droege, T.F.; Johnson, M.E.; MacKinnon, B.A.; McNulty, S.E.; Shea, M.F.; Thompson, R.N.; Watson, M.M.; Franzini, P.; Jones, A.A.; Lopez, M.L.; Wimpenny, S.J.; Yang, M.J.

    1991-11-01

    A new VME based high voltage power supply has been developed for the D OE experiment at Fermilab. There are three types of supplies delivering up to ±5.6 kV at 1.0 mA or +2.0 kV at 3.0 mA with a set accuracy of 1.5 V and extremely low voltage ripples. Complete computer control has allowed many special features to be developed for the supply, including user-defined control land monitor groups, variable ramp rates, and advanced histogram and graphic functions. 3 refs

  1. WAMS Based Intelligent Operation and Control of Modern Power System with large Scale Renewable Energy Penetration

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain

    security limits. Under such scenario, progressive displacement of conventional generation by wind generation is expected to eventually lead a complex power system with least presence of central power plants. Consequently the support from conventional power plants is expected to reach its all-time low...... system voltage control responsibility from conventional power plants to wind turbines. With increased wind penetration and displaced conventional central power plants, dynamic voltage security has been identified as one of the challenging issue for large scale wind integration. To address the dynamic...... security issue, a WAMS based systematic voltage control scheme for large scale wind integrated power system has been proposed. Along with the optimal reactive power compensation, the proposed scheme considers voltage support from wind farms (equipped with voltage support functionality) and refurbished...

  2. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  3. Impacts of Large Amounts of Wind Power on Design and Operation of Power Systems; Results of IEA Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ela, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holttinen, H. [VTT (Finland); Meibom, P. [DTU Riso (Denmark); Orths, A. [Energinet.dk (Denmark); O' Malley, M. [Univ. College Dubline (Ireland); Ummels, B. C. [Delft Univ. of Technology (Netherlands); Tande, J. [SINTEF (Norway); Estanqueiro, A. [INETI (Portugal); Gomez, E. [Univ. Castilla la Mancha (Spain); Smith, J. C. [Utility Wind Integration Group (UWIG), Reston, VA (United States)

    2008-06-01

    There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” produced a state-of-the-art report in October 2007, where the most relevant wind-power grid integration studies were analyzed, especially regarding methodologies and input data. This paper summarizes the results from 18 case studies, with discussion on differences in methodology as well as issues that have been identified to impact the cost of wind integration.

  4. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  5. Retrofitting adjustable speed drives for large induction motors

    International Nuclear Information System (INIS)

    Wuestefeld, M.R.; Merriam, C.H.; Porter, N.S.

    2004-01-01

    Adjustable speed drives (ASDs) are used in many power plants to control process flow by varying the speed of synchronous and induction motors. In applications where the flow requirements vary significantly, ASDs reduce energy and maintenance requirements when compared with drag valves, dampers or other methods to control flow. Until recently, high horsepower ASDs were not available for induction motors. However, advances in power electronics technology have demonstrated the reliability and cost effectiveness of ASDs for large horsepower induction motors. Emphasis on reducing operation and maintenance costs and increasing the capacity factor of nuclear power plants has led some utilities to consider replacing flow control devices in systems powered by large induction motors with ASDs. ASDs provide a high degree of reliability and significant energy savings in situations where full flow operation is not needed for a substantial part of the time. This paper describes the basic adjustable speed drive technologies available for large induction motor applications, ASD operating experience and retrofitting ASDs to replace the existing GE Boiling Water Reactor recirculation flow control system

  6. Advanced chip designs and novel cooling techniques for brightness scaling of industrial, high power diode laser bars

    Science.gov (United States)

    Heinemann, S.; McDougall, S. D.; Ryu, G.; Zhao, L.; Liu, X.; Holy, C.; Jiang, C.-L.; Modak, P.; Xiong, Y.; Vethake, T.; Strohmaier, S. G.; Schmidt, B.; Zimer, H.

    2018-02-01

    The advance of high power semiconductor diode laser technology is driven by the rapidly growing industrial laser market, with such high power solid state laser systems requiring ever more reliable diode sources with higher brightness and efficiency at lower cost. In this paper we report simulation and experimental data demonstrating most recent progress in high brightness semiconductor laser bars for industrial applications. The advancements are in three principle areas: vertical laser chip epitaxy design, lateral laser chip current injection control, and chip cooling technology. With such improvements, we demonstrate disk laser pump laser bars with output power over 250W with 60% efficiency at the operating current. Ion implantation was investigated for improved current confinement. Initial lifetime tests show excellent reliability. For direct diode applications 96% polarization are additional requirements. Double sided cooling deploying hard solder and optimized laser design enable single emitter performance also for high fill factor bars and allow further power scaling to more than 350W with 65% peak efficiency with less than 8 degrees slow axis divergence and high polarization.

  7. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review

  8. GPU-based large-scale visualization

    KAUST Repository

    Hadwiger, Markus

    2013-11-19

    Recent advances in image and volume acquisition as well as computational advances in simulation have led to an explosion of the amount of data that must be visualized and analyzed. Modern techniques combine the parallel processing power of GPUs with out-of-core methods and data streaming to enable the interactive visualization of giga- and terabytes of image and volume data. A major enabler for interactivity is making both the computational and the visualization effort proportional to the amount of data that is actually visible on screen, decoupling it from the full data size. This leads to powerful display-aware multi-resolution techniques that enable the visualization of data of almost arbitrary size. The course consists of two major parts: An introductory part that progresses from fundamentals to modern techniques, and a more advanced part that discusses details of ray-guided volume rendering, novel data structures for display-aware visualization and processing, and the remote visualization of large online data collections. You will learn how to develop efficient GPU data structures and large-scale visualizations, implement out-of-core strategies and concepts such as virtual texturing that have only been employed recently, as well as how to use modern multi-resolution representations. These approaches reduce the GPU memory requirements of extremely large data to a working set size that fits into current GPUs. You will learn how to perform ray-casting of volume data of almost arbitrary size and how to render and process gigapixel images using scalable, display-aware techniques. We will describe custom virtual texturing architectures as well as recent hardware developments in this area. We will also describe client/server systems for distributed visualization, on-demand data processing and streaming, and remote visualization. We will describe implementations using OpenGL as well as CUDA, exploiting parallelism on GPUs combined with additional asynchronous

  9. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  10. Power monitoring and control for large scale projects: SKA, a case study

    Science.gov (United States)

    Barbosa, Domingos; Barraca, João. Paulo; Maia, Dalmiro; Carvalho, Bruno; Vieira, Jorge; Swart, Paul; Le Roux, Gerhard; Natarajan, Swaminathan; van Ardenne, Arnold; Seca, Luis

    2016-07-01

    Large sensor-based science infrastructures for radio astronomy like the SKA will be among the most intensive datadriven projects in the world, facing very high demanding computation, storage, management, and above all power demands. The geographically wide distribution of the SKA and its associated processing requirements in the form of tailored High Performance Computing (HPC) facilities, require a Greener approach towards the Information and Communications Technologies (ICT) adopted for the data processing to enable operational compliance to potentially strict power budgets. Addressing the reduction of electricity costs, improve system power monitoring and the generation and management of electricity at system level is paramount to avoid future inefficiencies and higher costs and enable fulfillments of Key Science Cases. Here we outline major characteristics and innovation approaches to address power efficiency and long-term power sustainability for radio astronomy projects, focusing on Green ICT for science and Smart power monitoring and control.

  11. Large-area self-powered neutron-detectors for neutron-flux measurements in HTRs. Status of developmental work

    International Nuclear Information System (INIS)

    Brixy, H.; Hecker, R.; Serpekian, T.; Benninghofen, G.; Serafin, N.; Spillekothen, H.G.

    1982-06-01

    The development is described of the large-area SPN-detector as an out of core power monitoring system. Gadolinium or cobalt was used as the emitter. Response functions of the gadolinium SPN-detector were found with regard to the reactor power, the effect of the gamma field, its short-term behaviour following reactor shutdown and long-term behaviour during reactor operation. It was shown that a detector of 0.1 mm emitter thickness can withstand an integral thermal neutron flux of 2.10 20 nvt almost without efficiency loss thus indicating that the large-area gadolinium SPN-detector is a suitable means for power monitoring in large HTGR's

  12. Accident of Large-scale Wind Turbines Disconnecting from Power Grid and Its Protection

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    There were many accidents of large-scale wind turbines disconnecting from power grid in 2011. As single- phase-to-ground fault cannot be correctly detected, single-phase-to-ground fault evolved to phase-to-phase fault. Phase-to-phase fault was isolated slowly, thus leading to low voltage. And wind turbines without enough low voltage ride-through capacity had to be disconnected from the grid. After some wind turbines being disconnected from the grid, overvoltage caused by reactive power surplus made more wind turbines disconnect from the grid. Based on the accident analysis, this paper presents solutions to above problems, including travelling waves based single-phase-to-ground protection, adaptive low voltage protection, integrated protection and control, and high impedance fault detection. The solutions lay foundations in theory and technology to prevent large-scale wind turbines disconnecting from the operating power grid.

  13. Advances in high voltage power switching with GTOs

    International Nuclear Information System (INIS)

    Podlesak, T.F.

    1990-01-01

    The control of high voltage at high power, particularly opening switches, has been difficult in the past. Using gate turnoff thyristors (GTOs) arranged in series enables large currents to be switched at high voltage. The authors report a high voltage opening switch has been successfully demonstrated. This switch uses GTOs in series and successfully operates at voltages higher than the rated voltage of the individual devices. It is believed that this is the first time this has been successfully demonstrated, in that GTOs have been operated in series before, but always in a manner as to not exceed the voltage capability of the individual devices. In short, the devices have not worked together, sharing the voltage, but one device has been operated using several backup devices. Of particular interest is how well the individual devices share the voltage applied to them. Equal voltage sharing between devices is absolutely essential, in order to not exceed the voltage rating of any of the devices in the series chain. This is accomplished at high (microsecond) switching speeds. Thus, the system is useful for high frequency applications as well as high power, making for a flexible circuit system element. This demonstration system is rated at 5 KV and uses 1 KV devices. A larger 24 KV system is under design and will use 4.5 KV devices. In order to design the 24 KV switch, the safe operating area of the large devices must be known thoroughly

  14. A prototype of wireless power and data acquisition system for large detectors

    International Nuclear Information System (INIS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-01-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system

  15. A prototype of wireless power and data acquisition system for large detectors

    Energy Technology Data Exchange (ETDEWEB)

    De Lurgio, P. [Argonne National Laboratory, Argonne, IL 60439 (United States); Djurcic, Z., E-mail: zdjurcic@anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Drake, G. [Argonne National Laboratory, Argonne, IL 60439 (United States); Hashemian, R. [Northern Illinois University, Dekalb, IL 60115 (United States); Kreps, A.; Oberling, M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Pearson, T. [Northern Illinois University, Dekalb, IL 60115 (United States); Sahoo, H. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-06-11

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  16. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  17. Mixed-signal instrumentation for large-signal device characterization and modelling

    NARCIS (Netherlands)

    Marchetti, M.

    2013-01-01

    This thesis concentrates on the development of advanced large-signal measurement and characterization tools to support technology development, model extraction and validation, and power amplifier (PA) designs that address the newly introduced third and fourth generation (3G and 4G) wideband

  18. Dynamic state estimation techniques for large-scale electric power systems

    International Nuclear Information System (INIS)

    Rousseaux, P.; Pavella, M.

    1991-01-01

    This paper presents the use of dynamic type state estimators for energy management in electric power systems. Various dynamic type estimators have been developed, but have never been implemented. This is primarily because of dimensionality problems posed by the conjunction of an extended Kalman filter with a large scale power system. This paper precisely focuses on how to circumvent the high dimensionality, especially prohibitive in the filtering step, by using a decomposition-aggregation hierarchical scheme; to appropriately model the power system dynamics, the authors introduce new state variables in the prediction step and rely on a load forecasting method. The combination of these two techniques succeeds in solving the overall dynamic state estimation problem not only in a tractable and realistic way, but also in compliance with real-time computational requirements. Further improvements are also suggested, bound to the specifics of the high voltage electric transmission systems

  19. Incentives to strengthen international co-operation in R and D for advanced nuclear power technology

    International Nuclear Information System (INIS)

    Balthesen, E.; Bakunyaev, A.D.; Gibson, I.H.; Hosemann, J.P.; Tavoni, R.; Versteegh, A.M.

    1993-01-01

    This paper is concerned with the need for International Co-operation in R and D for Advanced Reactors in order to maintain options for the future deployment of nuclear power against the current background of declining R and D capability in Europe

  20. Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials

    International Nuclear Information System (INIS)

    Al-Mousawi, Fadhel Noraldeen; Al-Dadah, Raya; Mahmoud, Saad

    2016-01-01

    Highlights: • Adsorption system based on water and advanced physical adsorbents has the potential of producing cooling and power. • Adding an expander to physisorption system enhances efficiency by up to 11%. • MIL101Cr MOF can produce 95 W/kg and 1357 W/kg of specific power and cooling. • AQSOA Z02 can produce 73 W/kg and 640 W/kg of specific power and cooling. - Abstract: Globally there is abundance of low grade heat sources (around 150 °C) from renewables like solar energy or from industrial waste heat. The exploitation of such low grade heat sources will reduce fossil fuel consumption and CO_2 emissions. Adsorption technology offers the potential of using such low grade heat to generate cooling and power. In this work, the effect of using advanced adsorbent materials like AQSOA-Z02 (SAPO-34) zeolite and MIL101Cr Metal Organic Framework (MOF) at various operating conditions on power and cooling performance compared to that of commonly used silica-gel was investigated using water as refrigerant. A mathematical model for a two bed adsorption cooling cycle has been developed with the cycle modified to produce power by incorporating an expander between the desorber and the condenser. Results show that it is possible to produce power and cooling at the same time without affecting the cooling output. Results also show that for all adsorbents used as the heat source temperature increases, the cooling effect and power generated increase. As for increasing the cold bed temperature, this will decrease the cooling effect and power output except for SAPO-34 which shows slightly increasing trend of cooling and power output. As the condenser cooling temperature increases, the cooling effect and power output will decrease while for the chilled water temperature, the cooling load and power generated increased as the temperature increased. The maximum values of average specific power generation (SP), specific cooling power (SCP) and cycle efficiency are 73 W

  1. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Michael J. Holmes; Jason D. Laumb; Jill M. Mackenzie; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang

    2005-02-01

    The overall objective of the project was to develop advanced innovative mercury control technologies to reduce mercury emissions by 50%-90% in flue gases typically found in North Dakota lignite-fired power plants at costs from one-half to three-quarters of current estimated costs. Power plants firing North Dakota lignite produce flue gases that contain >85% elemental mercury, which is difficult to collect. The specific objectives were focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in electrostatic precipitators (ESPs) and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The approach to developing Hg control technologies for North Dakota lignites involved examining the feasibility of the following technologies: Hg capture upstream of an ESP using sorbent enhancement, Hg oxidation and control using dry scrubbers, enhanced oxidation at a full-scale power plant using tire-derived fuel and oxidizing catalysts, and testing of Hg control technologies in the Advanced Hybrid{trademark} filter.

  2. Efficiency improvement of nuclear power plant operation: the significant role of advanced nuclear fuel technologies

    International Nuclear Information System (INIS)

    Velde Van de, A.; Burtak, F.

    2001-01-01

    Due to the increased liberalisation of the power markets, nuclear power generation is being exposed to high cost reduction pressure. In this paper we highlight the role of advanced nuclear fuel technologies to reduce the fuel cycle costs and therefore increase the efficiency of nuclear power plant operation. The key factor is a more efficient utilisation of the fuel and present developments at Siemens are consequently directed at (i) further increase of batch average burnup, (ii) improvement of fuel reliability, (iii) enlargement of fuel operation margins and (iv) improvement of methods for fuel design and core analysis. As a result, the nuclear fuel cycle costs for a typical LWR have been reduced during the past decades by about US$ 35 million per year. The estimated impact of further burnup increases on the fuel cycle costs is expected to be an additional saving of US$10 - 15 million per year. Due to the fact that the fuel will operate closer to design limits, a careful approach is required when introducing advanced fuel features in reload quantities. Trust and co-operation between the fuel vendors and the utilities is a prerequisite for the common success. (authors)

  3. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  4. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  5. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    International Nuclear Information System (INIS)

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs

  6. Large area self-powered gamma ray detector

    International Nuclear Information System (INIS)

    LeVert, F.E.

    1994-01-01

    The purpose of this research was to develop a large area self-powered gamma detector (LASPGD) capable of detecting the movement of sealed radiation sources into and out of industrial radiographic units and to construct a prototype source position monitor (SPM) for these units utilizing the LASPGD. Prototype isotropic and directional LASPGDs, with solid and inert gas dielectrics, were developed and extensively tested using calibrated gamma sources (i.e., Cs-137, and Co-60). The sensitivities of the isotropic detectors, with inert gas dielectrics, were found to be approximately a factor of ten greater than those measured for the solid dielectric LASPGDs. Directionally sensitive self-powered detectors were found to exhibit a forward-to-back hemispherical sensitivity ratio of approximately 2 to 1. Industrial radiographic units containing Ir-192 sources with different activities were used to test the performance of the SPM. The SPM, which utilized a gas dielectric LASPGD, performed as designed. That is, the current generated in the LASPGD was converted to a voltage, amplified and used to control the on/off state of an incandescent lamp. The incandescent lamp, which functions as the source/out warning indicator, flashes at a rate of one flash per second when the source is in use (i.e. out of its shield)

  7. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    Science.gov (United States)

    Lebrun, Ph.

    2002-05-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2ṡs-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress.

  8. Monitoring, control and protection of interconnected power systems

    CERN Document Server

    Häger, Ulf; Voropai, Nikolai

    2014-01-01

    This book presents new tools and methods for monitoring, control and protection of large scale power systems, adapting Smart Grid technologies based on wide area data exchange in combination with modern measurement devices and advanced network controllers.

  9. Enhanced Particle Swarm Optimization-Based Feeder Reconfiguration Considering Uncertain Large Photovoltaic Powers and Demands

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available The Kyoto protocol recommended that industrialized countries limit their green gas emissions in 2012 to 5.2% below 1990 levels. Photovoltaic (PV arrays provide clear and sustainable renewable energy to electric power systems. Solar PV arrays can be installed in distribution systems of rural and urban areas, as opposed to wind-turbine generators, which cause noise in surrounding environments. However, a large PV array (several MW may incur several operation problems, for example, low power quality and reverse power. This work presents a novel method to reconfigure the distribution feeders in order to prevent the injection of reverse power into a substation connected to the transmission level. Moreover, a two-stage algorithm is developed, in which the uncertain bus loads and PV powers are clustered by fuzzy-c-means to gain representative scenarios; optimal reconfiguration is then achieved by a novel mean-variance-based particle swarm optimization. The system loss is minimized while the operational constraints, including reverse power and voltage variation, are satisfied due to the optimal feeder reconfiguration. Simulation results obtained from a 70-bus distribution system with 4 large PV arrays validate the proposed method.

  10. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.

    Science.gov (United States)

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana

    2012-03-06

    Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.

  11. Advancement on safety management system of nuclear power for safety and non-anxiety of society

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2004-01-01

    Advancement on safety management system is investigated to improve safety and non-anxiety of society for nuclear power, from the standpoint of human machine system research. First, the recent progress of R and D works of human machine interface technologies since 1980 s are reviewed and then the necessity of introducing a new approach to promote technical risk communication activity to foster safety culture in nuclear industries. Finally, a new concept of Offsite Operation and Maintenance Support Center (OMSC) is proposed as the core facility to assemble human resources and their expertise in all organizations of nuclear power, for enhancing safety and non-anxiety of society for nuclear power. (author)

  12. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  13. Expected Future Conditions for Secure Power Operation with Large Scale of RES Integration

    International Nuclear Information System (INIS)

    Majstrovic, G.; Majstrovic, M.; Sutlovic, E.

    2015-01-01

    EU energy strategy is strongly focused on the large scale integration of renewable energy sources. The most dominant part here is taken by variable sources - wind power plants. Grid integration of intermittent sources along with keeping the system stable and secure is one of the biggest challenges for the TSOs. This part is often neglected by the energy policy makers, so this paper deals with expected future conditions for secure power system operation with large scale wind integration. It gives an overview of expected wind integration development in EU, as well as expected P/f regulation and control needs. The paper is concluded with several recommendations. (author).

  14. The key network communication technology in large radiation image cooperative process system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1998-01-01

    Large container inspection system (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of operation manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network communication technology is presented

  15. Large-scale straw supplies to existing coal-fired power stations

    International Nuclear Information System (INIS)

    Gylling, M.; Parsby, M.; Thellesen, H.Z.; Keller, P.

    1992-08-01

    It is considered that large-scale supply of straw to power stations and decentral cogeneration plants could open up new economical systems and methods of organization of straw supply in Denmark. This thesis is elucidated and involved constraints are pointed out. The aim is to describe to what extent large-scale straw supply is interesting with regard to monetary savings and available resources. Analyses of models, systems and techniques described in a foregoing project are carried out. It is reckoned that the annual total amount of surplus straw in Denmark is 3.6 million tons. At present, use of straw which is not agricultural is limited to district heating plants with an annual consumption of 2-12 thousand tons. A prerequisite for a significant increase in the use of straw is an annual consumption by power and cogeneration plants of more than 100.000 tons. All aspects of straw management are examined in detail, also in relation to two actual Danish coal-fired plants. The reliability of straw supply is considered. It is concluded that very significant resources of straw are available in Denmark but there remain a number of constraints. Price competitiveness must be considered in relation to other fuels. It is suggested that the use of corn harvests, with whole stems attached (handled as large bales or in the same way as sliced straw alone) as fuel, would result in significant monetary savings in transport and storage especially. An equal status for whole-harvested corn with other forms of biomass fuels, with following changes in taxes and subsidies could possibly reduce constraints on large scale straw fuel supply. (AB) (13 refs.)

  16. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  17. FY 1998 Report on development of large-scale wind power generation systems. Feasibility study on development of new technologies for wind power generation (Study on the development of wind power generation systems for small-scale power grids); 1998 nendo ogata furyoku hatsuden system kaihatsu seika hokokusho. Furyoku hatsuden shingijutsu kaihatsu kanosei chosa (shokibo keito ni okeru furyoku hatsuden system ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This survey includes the characteristics of small-scale power grids, feasibility studies on introduction of wind turbines in these grids, and statuses of application of wind turbines to isolated islands or the like in the advanced countries, in order to promote introduction of wind power generation systems in isolated islands or the like. It is concluded that small-capacity wind power generation systems can be possibly introduced in the intermediate- to large-scale grids in isolated islands, 1,500kW or larger in capacity, in the Tokyo, Kyushu and Okinawa Electric Power Companies' areas. A scheduled steamer ship for isolated islands can carry up to 10 ton track, and introduction of a small-scale wind turbine is more advantageous viewed from the transportation cost. Some foreign countries have the sites which have achieved a high percentage of grid connection of wind power units by stabilizing wind conditions and connecting them to the main high-voltage grids in different manners from those adopted in Japan. For developing wind turbine bodies, most of the foreign countries surveyed are concentrating their efforts on development and manufacture of large-size units, paying little attention on development of small-size wind turbines for isolated islands. For the future prospects, the promising concepts include adoption of wind turbines small in capacity and easy to transport and assemble, and hybrid systems combined with power storage units. (NEDO)

  18. Challenges and solutions for adoption of advanced cycles for power generation in today's business climate

    International Nuclear Information System (INIS)

    Brockway, D.

    2002-01-01

    plant in Victoria and South Australia. In order to minimise the impact of new coal fired power generation on the environment, advanced cycle power generation systems must be developed and demonstrated to be commercially viable in the current business climate. The potential greenhouse gas abatement expected from advanced cycles for power generation is illustrated in Figure 1 for high moisture brown coal. While there remains a considerable amount of R and D to be completed on the development of advanced cycles, the principal challenge for the implementation of these technologies in the future is a consequence of the manner in which the power generation industry has developed worldwide over the last decade or so. That is, the technical knowledge for the implementation of these technologies is available or will be in the next few years. The principal challenge is not research and development of the technologies but rather creation of a business climate where the risk and cost hurdles to their introduction can be overcome

  19. Advanced Cell Development and Degradation Studies

    International Nuclear Information System (INIS)

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; O'Brien, R.C.; Condie, K.G.; Sohal, M.; Housley, G.K.; Hartvigsen, J.J.; Larsen, D.; Tao, G.; Yildiz, B.; Sharma, V.; Singh, P.; Petigny, N.; Cable, T.L.

    2010-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003-2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  20. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  1. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  2. An advanced conceptual Tokamak fusion power reactor utilizing closed cycle helium gas turbines

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    UWMAK-III is a conceptual Tokamak reactor designed to study the potential and the problems associated with an advanced version of Tokamaks as power reactors. Design choices have been made which represent reasonable extrapolations of present technology. The major features are the noncircular plasma cross section, the use of TZM, a molybdenum based alloy, as the primary structural material, and the incorporation of a closed-cycle helium gas turbine power conversion system. A conceptual design of the turbomachinery is given together with a preliminary heat exchanger analysis that results in relatively compact designs for the generator, precooler, and intercooler. This paper contains a general description of the UWMAK-III system and a discussion of those aspects of the reactor, such as the burn cycle, the blanket design and the heat transfer analysis, which are required to form the basis for discussing the power conversion system. The authors concentrate on the power conversion system and include a parametric performance analysis, an interface and trade-off study and a description of the reference conceptual design of the closed-cycle helium gas turbine power conversion system. (Auth.)

  3. New advanced small and medium nuclear power reactors: possible nuclear power plants for Australia

    International Nuclear Information System (INIS)

    Dussol, R.J.

    2003-01-01

    In recent years interest has increased in small and medium sized nuclear power reactors for generating electricity and process heat. This interest has been driven by a desire to reduce capital costs, construction times and interest during construction, service remote sites and ease integration into small grids. The IAEA has recommended that the term 'small' be applied to reactors with a net electrical output less than 300 MWe and the term 'medium' to 300-700 MWe. A large amount of experience has been gained over 50 years in the design, construction and operation of small and medium nuclear power reactors. Historically, 100% of commercial reactors were in these categories in 1951-1960, reducing to 21% in 1991-2000. The technologies involved include pressurised water reactors, boiling water reactors, high temperature gas-cooled reactors, liquid metal reactors and molten salt reactors. Details will be provided of two of the most promising new designs, the South African Pebble Bed Modular Reactor (PBMR) of about 110 MWe, and the IRIS (International Reactor Innovative and Secure) reactor of about 335 MWe. Their construction costs are estimated to be about US$l,000/kWe with a generating cost for the PBMR of about US1.6c/kWh. These costs are lower than estimated for the latest designs of large reactors such as the European Pressurised Reactor (EPR) designed for 1,600 MWe for use in Europe in the next decade. It is concluded that a small or medium nuclear power reactor system built in modules to follow an increasing demand could be attractive for generating low cost electricity in many Australian states and reduce problems arising from air pollution and greenhouse gas emissions from burning fossil fuels

  4. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  5. Open loop control of filament heating power supply for large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Sugandhi, R., E-mail: ritesh@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Srivastava, P.K.; Sanyasi, A.K. [Homi Bhabha National Institute, Mumbai 400094 (India); Srivastav, Prabhakar [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Awasthi, L.M., E-mail: kushagra.lalit@gmail.com [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Mattoo, S.K. [Homi Bhabha National Institute, Mumbai 400094 (India)

    2017-02-15

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  6. Open loop control of filament heating power supply for large volume plasma device

    International Nuclear Information System (INIS)

    Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

    2017-01-01

    A power supply (20 V, 10 kA) for powering the filamentary cathode has been procured, interfaced and integrated with the centralized control system of Large Volume Plasma Device (LVPD). Software interface has been developed on the standard Modbus RTU communication protocol. It facilitates the dashboard for configuration, on line status monitoring, alarm management, data acquisition, synchronization and controls. It has been tested for stable operation of the power supply for the operational capabilities. The paper highlights the motivation, interface description, implementation and results obtained.

  7. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  8. Regulation of the power sector

    CERN Document Server

    2013-01-01

    Regulation of the Power Sector is a unified, consistent and comprehensive treatment of the theories and practicalities of regulation in modern power-supply systems. The need for generation to occur at the time of use occasioned by the impracticality of large-scale electricity storage coupled with constant and often unpredictable changes in demand make electricity-supply systems large, dynamic and complex and their regulation a daunting task. Conceptually arranged in four parts, this book addresses both traditional regulatory frameworks and also liberalized and re-regulated environments. First, an introduction gives a full characterization of power supply including engineering, economic and regulatory viewpoints. The second part presents the fundamentals of regulation and the third looks at the regulation of particular components of the power sector in detail. Advanced topics and subjects still open or subject to dispute form the content of the fourth part. In a sector where regulatory design is the key driver...

  9. Environmental Impacts From the Installation and Operation of Large-scale Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.; Turney, Damon

    2011-04-23

    Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO{sub 2} emissions as high as 36 g CO{sub 2} kW h{sup -1}, which is a significant contribution to the life cycle CO{sub 2} emissions of solar power, but is still low compared to CO{sub 2} emissions from coal-based electricity that are about 1100 g CO{sub 2} kW h{sup -1}.

  10. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  11. FY2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Susan A. [Dept. of Energy (DOE), Washington DC (United States). Vehicle Technologies Office

    2014-02-01

    The Advanced Power Electronics and Electric Motors (APEEM) technology area within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  12. Scalable Inference and Learning in Very Large Graphical Models Patterned after the Primate Visual Cortex

    National Research Council Canada - National Science Library

    Dean, Thomas

    2008-01-01

    Human-level visual performance has remained largely beyond the reach of engineered systems despite decades of research and significant advances in problem formulation, algorithms and computing power...

  13. DOE FreedomCAR and vehicle technologies program advanced power electronic and electrical machines annual review report

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitch [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2006-10-11

    This report is a summary of the Review Panel at the FY06 DOE FreedomCAR and Vehicle Technologies (FCVT) Annual Review of Advanced Power Electronics and Electric Machine (APEEM) research activities held on August 15-17, 2006.

  14. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  15. Advanced large-capacity commercial technology for multi-pollutant control

    Energy Technology Data Exchange (ETDEWEB)

    Graf, R.E. [Wulff Deutschland GmbH, Rosbach (Germany); Seitz, A. [Teplama Strakonice, a.s. (Czech Republic); Xia Fan Gao [Guangzhou Hengyun Enterprises Holiday, Ltd. (China)

    2003-09-01

    The presentation describes the application in commercial installations in Europe and China of circulating fluid bed (CFB) scrubbers of advanced GRAF/WULFF technology design, retrofitted to coal-fired steam boilers. Details are presented of design and operating experience with installations of CFB scrubbers that efficiently remove diverse pollutants down to and below the required and permitted levels. The paper describes successful solutions to substantial operating problems encountered at a CFB scrubbing plant. The described flue gas scrubbing plants of this simple system design clean the flue gases from boilers comprising units of a capacity of 100 to 300 MW using a single-train scrubbing system arrangement. Specifically, the simultaneous high rates of removal of multipollutants are, e.g., SO{sub 2}>98%, SO{sub 3}>99%, HF > 99%, HCl > 98%, mercury > 95%, and particulate matter > 99.99%. These pollutants are removed in a single scrubber module in combination, downstream, with baghouse or electrostatic precipitator means of dedusting. Information is given on rates and design of a single-module, 660 MW system as would be applied to a coal-fired power plant facility. (orig.)

  16. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  17. Complex program of advance in science and technology

    International Nuclear Information System (INIS)

    Sychev, V.V.

    1986-01-01

    A draft of the complex program of advance in science and technology of the CMEA member-countries is described in brief. The basis of the program includes five priority trends electronics development complex automatization, advanced development of nuclear energy, production of new materials and tecnologies of their production and processing, advanced developmen of biotechnologies. Development of nuclear energy will be based on WWER-440 and WWER-1000 type NPPs. Heat-only nuclear stations and power and heat nuclear stations will receive a large development effort, as well as sodium-cooled fast reactors of the BN type having 800 and 1600 MW capacity, high-temperature gas-cooled breeders of the BGR-300 type, gas-cooled reactors of the VG-400 type for high-temperature heat supply (500-1000 deg C). It is contemplated to design the TOKAMAK-15 research thermonuclear facility and a pilot thermonuclear reactor for power generation and plutonium production. The program also comprises works aimed at improving reliability and safety of the nuclear installations

  18. Power system technologies for the manned Mars mission

    International Nuclear Information System (INIS)

    Bents, D.; Patterson, M.J.; Berkopec, F.; Myers, I.; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems

  19. The role of advanced technology in the future of the power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  20. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1997-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs

  1. Experience using individually supplied heater rods in critical power testing of advanced BWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Majed, M.; Morback, G.; Wiman, P. [ABB Atom AB, Vasteras (Sweden)] [and others

    1995-09-01

    The ABB Atom FRIGG loop located in Vasteras Sweden has during the last six years given a large experience of critical power measurements for BWR fuel designs using indirectly heated rods with individual power supply. The loop was built in the sixties and designed for maximum 100 bar pressure. Testing up to the mid eighties was performed with directly heated rods using a 9 MW, 80 kA power supply. Providing test data to develop critical power correlations for BWR fuel assemblies requires testing with many radial power distributions over the full range of hydraulic conditions. Indirectly heated rods give large advantages for the testing procedure, particularly convenient for variation of individual rod power. A test method being used at Stern Laboratories (formerly Westinghouse Canada) since the early sixties, allows one fuel assembly to simulate all required radial power distributions. This technique requires reliable indirectly heated rods with independently controlled power supplies and uses insulated electric fuel rod simulators with built-in instrumentation. The FRIGG loop was adapted to this system in 1987. A 4MW power supply with 10 individual units was then installed, and has since been used for testing 24 and 25 rod bundles simulating one subbundle of SVEA-96/100 type fuel assemblies. The experience with the system is very good, as being presented, and it is selected also for a planned upgrading of the facility to 15 MW.

  2. The power of PowerPoint.

    Science.gov (United States)

    Niamtu , J

    2001-08-01

    Carousel slide presentations have been used for academic and clinical presentations since the late 1950s. However, advances in computer technology have caused a paradigm shift, and digital presentations are quickly becoming standard for clinical presentations. The advantages of digital presentations include cost savings; portability; easy updating capability; Internet access; multimedia functions, such as animation, pictures, video, and sound; and customization to augment audience interest and attention. Microsoft PowerPoint has emerged as the most popular digital presentation software and is currently used by many practitioners with and without significant computer expertise. The user-friendly platform of PowerPoint enables even the novice presenter to incorporate digital presentations into his or her profession. PowerPoint offers many advanced options that, with a minimal investment of time, can be used to create more interactive and professional presentations for lectures, patient education, and marketing. Examples of advanced PowerPoint applications are presented in a stepwise manner to unveil the full power of PowerPoint. By incorporating these techniques, medical practitioners can easily personalize, customize, and enhance their PowerPoint presentations. Complications, pitfalls, and caveats are discussed to detour and prevent misadventures in digital presentations. Relevant Web sites are listed to further update, customize, and communicate PowerPoint techniques.

  3. Advanced hybrid transient stability and EMT simulation for VSC-HVDC systems

    NARCIS (Netherlands)

    Van Der Meer, A.A.; Gibescu, M.; Van Der Meijden, M.A.M.M.; Kling, W.L.; Ferreira, J.A.

    2015-01-01

    This paper deals with advanced hybrid transient stability and electromagnetic-transient (EMT) simulation of combined ac/dc power systems containing large amounts of renewable energy sources interfaced through voltage-source converter-high-voltage direct current (VSC-HVDC). The concerning transient

  4. A Takagi–Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Directory of Open Access Journals (Sweden)

    Yue Yuan

    2017-08-01

    Full Text Available Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  5. A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yue [Institute of Nuclear and New Energy Technology, Tsinghua University, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Beijing (China); Coble, Jamie [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional–integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi–Sugeno (T–S) fuzzy logic-based power distribution system. Two T–S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T–S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

  6. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    Lebrun, Ph.

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 10 34 cm -2 ·s -1 , respectively with protons). After some ten years of focussed R and D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress

  7. Harmonic Mitigation Methods in Large Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Kocewiak, Łukasz Hubert; Chaudhary, Sanjay; Hesselbæk, Bo

    2013-01-01

    Various sources of harmonic problems in large wind power plants (WPPs) and optimized harmonic mitigation methods are presented in this paper. The harmonic problems such as sources of harmonic emission and amplification as well as harmonic stability are identified. Also modern preventive...... and remedial harmonic mitigation methods in terms of passive and active filtering are described. It is shown that WPP components such as long HVAC cables and park transformers can introduce significant low-frequency resonances which can affect wind turbine control system operation and overall WPP stability...... as well as amplification of harmonic distortion. It is underlined that there is a potential in terms of active filtering in modern grid-side converters in e.g. wind turbines, STATCOMs or HVDC stations utilized in modern large WPPs. It is also emphasized that the grid-side converter controller should...

  8. Test Protocols for Advanced Inverter Interoperability Functions - Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ralph, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated on grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as

  9. Greenhouse gas emissions from operating reserves used to backup large-scale wind power.

    Science.gov (United States)

    Fripp, Matthias

    2011-11-01

    Wind farms provide electricity with no direct emissions. However, their output cannot be forecasted perfectly, even a short time ahead. Consequently, power systems with large amounts of wind power may need to keep extra fossil-fired generators turned on and ready to provide power if wind farm output drops unexpectedly. In this work, I introduce a new model for estimating the uncertainty in short-term wind power forecasts, and how this uncertainty varies as wind power is aggregated over larger regions. I then use this model to estimate the reserve requirements in order to compensate for wind forecast errors to a 99.999% level of reliability, and an upper limit on the amount of carbon dioxide that would be emitted if natural gas power plants are used for this purpose. I find that for regions larger than 500 km across, operating reserves will undo 6% or less of the greenhouse gas emission savings that would otherwise be expected from wind power.

  10. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  11. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial

    Directory of Open Access Journals (Sweden)

    Jingfen Zhu

    2016-01-01

    Full Text Available Subjective memory complaints (SMCs are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47–88, in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML and attention/concentration deficits (SAD were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n=47 or placebo (n=51, using a 5-point memory questionnaire (1 = no/slight, 5 = severe. Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3 (44/47 and severe SAD (43/47 than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp. before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%(13/44 (P<0.01 and SAD (34.9%(15/43(P<0.01 than placebo (5.1% (2/39 and 13.5% (5/37, resp.. Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs.

  12. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial.

    Science.gov (United States)

    Zhu, Jingfen; Shi, Rong; Chen, Su; Dai, Lihua; Shen, Tian; Feng, Yi; Gu, Pingping; Shariff, Mina; Nguyen, Tuong; Ye, Yeats; Rao, Jianyu; Xing, Guoqiang

    2016-01-01

    Subjective memory complaints (SMCs) are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47-88), in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML) and attention/concentration deficits (SAD) were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n = 47) or placebo (n = 51), using a 5-point memory questionnaire (1 = no/slight, 5 = severe). Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3) (44/47) and severe SAD (43/47) than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp.) before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%)(13/44) (P < 0.01) and SAD (34.9%)(15/43)(P < 0.01) than placebo (5.1% (2/39) and 13.5% (5/37), resp.). Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs.

  13. Design and implementation of an advanced protection system for the Shin-Kori 3 and 4 nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Yonghak; Choi, Woongseock; Kwon, Jongsoo; Wilkosz, Stephen J.; Ridolfo, Charles F.; Yanosy, Paul L.

    2008-01-01

    The Nuclear Power Industry is currently embracing modern digital technology for upgrades to existing Instrumentation and Control (I and C) infrastructures as well as for incorporation into the next generation of new plants which will be coming 'on-line' during the next decade. This technology is being fully exploited for the next generation of advanced plant protection systems which will be initially deployed on the Shin-Kori 3 and 4 Nuclear Power Plant in the Republic of Korea. The system design for this plant protection system is being performed by the Korea Power Engineering Company (KOPEC) and builds upon the past generation of digital safety systems which were initially implemented at Ulchin 5 and 6. The advanced protection system is an evolution of this existing design and includes a number of improved operating attributes including: · Integration of Reactor Protection, Engineered Safety Features Actuation, and Qualified Indication and Alarm functions which were previously implemented by separate systems in the past. · Use of a 'soft control' interface which provides convenient accessibility to the safety systems from 'operator workstations' · Implementation of a Large Display Panel (LDP) which provides a consistent and constant representation of the overall plant state and of the plant safety status. The equipment for the advanced plant protection system is being provided by Westinghouse Electric Company (WEC) and utilizes the Westinghouse 'Common Q' Standardized qualified platform (where 'Q' denotes 'qualified'). The 'Common Q' platform is comprised of commercially dedicated Programmable Logic Controllers (PLC's), color-graphic Flat Panel Displays (FPD's) with integral touch screens, and high speed data communication links. It is a mature product that is in wide use for a number of safety-related applications. Among its key attributes are: · High overall system availability, which is achieved via use of a multiple channel configuration that is tolerant

  14. Distributed generation: remote power systems with advanced storage technologies

    International Nuclear Information System (INIS)

    Clark, Woodrow; Isherwood, William

    2004-01-01

    The paper discusses derived from an earlier hypothetical study of remote villiages. It considers the policy implications for communities who have their own local power resources rather than those distributed through transmission from distant sources such as dams, coal power plants or even renewables generation from wind farms, solar thermal or other resources. The issues today, post 911 and the energy crises in California, Northeast North America and Europe, signal the need for a new and different approach to energy supply(s), reliability and dissemination. Distributed generation (DG) as explored in the earlier paper appears to be one such approach that allows for local communities to become energy self-sufficient. Along with energy conservation, efficiency, and on-site generation, local power sources provide concrete definitions and understandings for heretofore ill defined concepts such as sustainability and eco-systems. The end result for any region and nation-state are 'agile energy systems' which use flexible DG, on-site generation and conservation systems meeting the needs of local communities. Now the challenge is to demonstrate and provide economic and policy structures for implementing new advanced technologies for local communities. For institutionalizing economically viable and sound environmental technologies then new finance mechanisms must be established that better reflect the true costs of clean energy distributed in local communities. For example, the aggregation of procurement contracts for on-site solar systems is far more cost effective than for each business owner, public building or household to purchase its own separate units. Thus mass purchasing contracts that are link technologies as hybrids can dramatically reduce costs. In short public-private partnerships can implement the once costly clean energy technologies into local DG systems

  15. Global developments for advanced reactors and the role of the IAEA

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Cleveland, John

    1999-01-01

    To assure that nuclear power can meet world energy needs in the near and medium term, considerable development activities are being carried out for each major reactor line, building on the large experience base. The programmes of global development activities for advanced nuclear power plants, and nuclear desalination are described. As an international forum for exchange of scientific and technical information, the IAEA plays a role in bringing together experts for a world-wide exchange of information about national programmes, trends in safety and user requirements, the impact of safety objectives on plant design, and the co-ordination of research programmes in advanced reactor technology. 15 refs

  16. Advanced Superconducting Technology for Global Science The Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organisation for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology - high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system - to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2.s-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling ...

  17. Health Assessment of Large Two Dimensional Structures Using Limited Information: Recent Advances

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Das

    2012-01-01

    Full Text Available Some recent advances of a recently developed structural health assessment procedure proposed by the research team at the University of Arizona, commonly known as generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI are presented. The procedure is a finite elements-based time-domain system-identification technique. It can assess structural health at the element level using only limited number of noise-contaminated responses. With the help of examples, it is demonstrated that the structure can be excited by multiple loadings simultaneously. The method can identify defects in various stages of degradation in single or multiple members and also relatively less severe defect. The defective element(s need not be in the substructure, but the defect detection capability increases if the defect spot is close to the substructure. Two alternatives are suggested to locate defect spot more accurately within a defective element. The paper advances several areas of GILS-EKF-UI to assess health of large structural systems.

  18. Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production

    International Nuclear Information System (INIS)

    Perna, Alessandra; Minutillo, Mariagiovanna; Jannelli, Elio

    2015-01-01

    Energy systems based on fuel cells technology can have a strategic role in the range of small-size power generation for the sustainable energy development. In order to enhance their performance, it is possible to recover the “waste heat” from the fuel cells, for producing or thermal power (cogeneration systems) or further electric power by means of a bottoming power cycle (combined systems). In this work an advanced system based on the integration between a HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) power unit and an ORC (organic Rankine cycle) plant, has been proposed and analysed as suitable energy power plant for supplying electric and thermal energies to a stand-alone residential utility. The system can operate both as cogeneration system, in which the electric and thermal loads are satisfied by the HT-PEMFC power unit and as electric generation system, in which the low temperature heat recovered from the fuel cells is used as energy source in the ORC plant for increasing the electric power production. A numerical model, able to characterize the behavior and to predict the performance of the HT-PEMFC/ORC system under different working conditions, has been developed by using the AspenPlus™ code. - Highlights: • The advanced plant can operate both as CHP system and as electric generation system. • The performance prediction of the integrated system is carried out by numerical modeling. • ORC thermodynamic optimization is carried out by a sensitivity analysis. • Thermal coupling between the HT-PEMC system and the ORC plant is analyzed. • Results are very promising in the field of the distributed generation

  19. MITI project on advanced man-machine system for nuclear power plants

    International Nuclear Information System (INIS)

    Kato, Kanji; Watanabe, Takao; Hayakawa, Hiroyasu; Naito, Norio; Masui, Takao; Ogino, Takamichi.

    1988-01-01

    A computerized operator support system (COSS) against abnormal plant conditions was developed as a five-year project from 1980 to 1984, under the sponsorship of the Ministry of International Trade and Industry. The main purpose of the COSS development was to implement the lessons learned from the Three Mile Island accident. The main nuclear industries in Japan participated in the project. The design concept of the operator support functions and the method to implement it were established, and the prototype systems of the COSS for BWR and PWR plants were developed. After the completion of the COSS development, the above participant group once again joined for the work on an advanced man-machine system for nuclear power plants (MMS-NPP). This eight-year project aims at realizing an advanced operator support system by applying artificial intelligence, especially knowledge engineering, and sophisticated man-machine interface devices. Its main objectives are shown. This system configuration, operating method decision system, man-machine communication system, operation and maintenance support functions and so on are described. (Kako, I.)

  20. Wind Power accuracy and forecast. D3.1. Assumptions on accuracy of wind power to be considered at short and long term horizons

    Energy Technology Data Exchange (ETDEWEB)

    Morthorst, P.E.; Coulondre, J.M.; Schroeder, S.T.; Meibom, P.

    2010-07-15

    The main objective of the Optimate project (An Open Platform to Test Integration in new MArkeT designs of massive intermittent Energy sources dispersed in several regional power markets) is to develop a new tool for testing these new market designs with large introduction of variable renewable energy sources. In Optimate a novel network/system/market modelling approach is being developed, generating an open simulation platform able to exhibit the comparative benefits of several market design options. This report constitutes delivery 3.1 on the assumptions on accuracy of wind power to be considered at short and long term horizons. The report handles the issues of state-of-the-art prediction, how predictions for wind power enter into the Optimate model and a simple and a more advanced methodology of how to generate trajectories of prediction errors to be used in Optimate. The main conclusion is that undoubtedly, the advanced approach is to be preferred to the simple one seen from a theoretical viewpoint. However, the advanced approach was developed to the Wilmar-model with the purpose of describing the integration of large-scale wind power in Europe. As the main purpose of the Optimate model is not to test the integration of wind power, but to test new market designs assuming a strong growth in wind power production, a more simplified approach for describing wind power forecasts should be sufficient. Thus a further development of the simple approach is suggested, eventually including correlations between geographical areas. In this report the general methodologies for generating trajectories for wind power forecasts are outlined. However, the methods are not yet implemented. In the next phase of Optimate, the clusters will be defined and the needed data collected. Following this phase actual results will be generated to be used in Optimate. (LN)